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Solving the stochastic Landau-Lifshitz equation numerically, we compute as a function of timet the prob-
ability per unit time,Psstd, that a classical, single-domain magnetic particle with an easy uniaxial anisotropy
and a collinear applied magnetic field will reverse its magnetizations“switch”d via thermal activation over the
energy barrier. ThePsstd curves increase witht for small t, achieving a maximum at some timetP before
decaying exponentially with time constanttD at long time, as per the standard Neel-Brown picture. BothtP

and tD increasesthe latter exponentiallyd with increasing barrier height;tP grows logarithmically withtD,
consistent with a recent phenomenological “energy-ladder” model, and experiments on submicron-sized mag-
netic thin films.
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I. INTRODUCTION

Both the relentless increase in the areal density of mag-
netic storage devices1 and the attempt to fabricate magnetic
dynamic random access computer memories whose perfor-
mance exceeds that of standard semiconductor technology2,3

have fueled the need for progressively more refined under-
standing of the thermal magnetization reversal, or switching,
of small magnetic systems. For example, the probability that
a given element or bit of a magnetic device will spontane-
ously switch due to thermal fluctuations increases rapidly
with decreasing volume of the bit. Since even a minute prob-
ability of such spontaneous switching is unacceptable for
memory or magnetic storage elements,4 this phenomenon po-
tentially limits the size to which individual bits can be de-
creased, at least at room temperature. The intricacies of ther-
mal switching on very short—say nanosecond—time scales
also have important implications for technology as areal den-
sities and read and write speeds increase. For example, one
needs to be able to switch or “write” a given bit very rapidly
by applying a short, localized magnetic field pulse to it, with-
out switching nearby bits as well. To do this requires detailed
understanding of the short-time switching probabilities of
small magnetic systems at finite temperaturesTd.

In a recent paper,3 we studied experimentally the switch-
ing probabilitiesPsstd of submicron magnetic thin films on
microsecond time scales, as a function of applied field. At
sufficiently long timest, the probabilities fell off exponen-
tially with time, consistent with the Neel-Brown5,6 picture of
a single characteristic timetD governing the long-time decay
of probability ast→`. At short times, however, the prob-
abilities increasedwith t, achieving a peak value at another
characteristic timetP before commencing their ultimate ex-
ponential decay. BothtP and tD were found to increase as
the energy barrier to switching was increased by reducing the
applied magnetic field in the experiments, the rate of in-
crease oftP being far slower than that oftD.

We rationalized these observations in Ref. 3 by construct-
ing and analyzing an elementary one-variable “energy-
ladder” model wherein the switching process is idealized as
the stochastic, thermally activated progression of the system

through a seriess“ladder”d of states of steadily increasing
energy. In the model, switching can occur only after the sys-
tem has reached the highest state, the energy difference be-
tween the lowest and highest states defining the height of the
energy barrier,DE, which must be surmounted in the switch-
ing process. The ladder model produces switching probabili-
ties with the same qualitative peaked structures observed ex-
perimentally, as well as the exponential decays at large
times. BothtP and tD in the model diverge asDE/kBT di-
verges, withtP growing like logstDd asymptotically.

In Ref. 3, we hypothesized that the phenomenological lad-
der model and the resulting peaked switching curves ought to
apply quite generally to switching phenomena involving
thermal activation over barriers. A natural starting place to
investigate this hypothesis is the magnetization reversal of a
single classical, monodomain magnetic particle, the theory of
which has been studied for more than half a century. Calcu-
lations of switching probabilities have been carried out,5,6 at
least in the long-time limit that has typically been of greatest
experimental relevance, and for the simplest models involv-
ing only uniaxial anisotropy and magnetic fields. The famil-
iar result, Psstd,e−t/tD, valid for t@tD, has emerged, to-
gether with the Arrhenius formulatD=t0e

DE/kBT, and
approximations for the microscopic timet0 swhich is typi-
cally of order 10−9 sd, in certain limits.6,7

While verifying these results experimentally has not
proven easy,8 recent work by Wernsdorferet al.9 has sug-
gested the correctness of the Neel-Brown picture of magne-
tization reversal for ideal monodomain magnets on the
nanoscale. However, little attention has been paid to the
short-time switching behavior of a single-domain magnetic
particle.10 In this paper, we compute switching probabilities
for such a particle numerically from the stochastic Landau-
Lifshitz dynamical equation in the simplest case of easy
uniaxial anisotropy and a collinear applied field. We find that
the Psstd curves indeed have the peaked structure predicted
by the ladder model. Moreover, the data are consistent with a
logarithmic dependence oftP upontD, at least whentD be-
comes large compared to microscopic times.
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II. THE MODEL

The system studied here is an idealized single-domain
classical magnetic particle with easy uniaxial anisotropy and
a magnetic field applied along the easyszd axis. It is modeled

by a single Heisenberg spin vector,Ŝ, of unit length, de-
scribed by the classical energy function

E = − KzVSz
2 − hMSVSz, s1d

whereV is the particle volume,Kz s.0d the anisotropy en-
ergy density,h the applied field, andMs the saturation mag-
netization. Forh less than the valuehc;2Kz/Ms, this model
has a local, metastable energy minimum atSz=−1, a global
minimum atSz=1, and a maximum atSz=−h/hc. The energy
barrier separating the metastable minimum and the maxi-
mum has heightDE=KzVs1−h/hcd2. At h=hc, the metastable
minimum and maximum merge, whereuponDE vanishes.

The dynamics of the spin at finite temperatureT is de-
scribed by the noisy Landau-Lifshitz equation,11,6,12,13

dŜ/dt = − DŜ+ gŜ3 ]E/]Ŝ+ agfŜ3 sŜ3 ]E/]Ŝdg + Ŝ3 hW .

s2d

Here hW is a Gaussian random noise variable of strength
D, with correlations khistdh jst8dl=Ddi jdst− t8d,g;g0/
MsVs1+a2d, whereg0 is the gyromagnetic ratio,14 and a is
the phenomenological damping constant. The choiceD
=2kBTag ensures15,6 that the stationary Boltzmann distribu-
tion corresponding to the energy functionE and temperature
T is achieved in the long-time limit. HerekB is Boltzmann’s
constant.fWe use the Itô interpretation of the multiplicative

noise term16–18 in Eq. s2d, whereupon the extra term −DŜ
must be included12,13,19on the right side of Eq.s2d in order

both that the magnitude ofŜ be preserved by the equation,
and that the Boltzmann distribution be reached ast→`.g

Mimicking the measurements performed in Ref. 3, we
study switching in the model according to the following pro-
tocol: We start the system off in the metastable energy mini-
mum at Sx= Sy=0, Sz=−1, for fixed, chosen values of all
parameters excepth. Choosing a value ofh somewhat below
hc, we then solve Eq.s2d numerically, using the elementary
Euler method for a chosen discrete time stepdt. We record
the elapsed time at whichSz first becomes positive, defining
that as the time taken for the system to switch. Performing
many such measurements for a givenh value, we accumulate
statistics for the switching time, thereby computing a discrete
approximant to the probabilityPsstd that the system switches
at time t. We repeat these calculations for a series of values
of h to study the dependence of thePsstd curve on the energy
barrier height.

III. RESULTS

Figure 1 shows representative data forPsstd versust for
parameter valuesKz=43105 erg/cm3, V=2.5310−19 cm3,
Ms=400 emu/cm3, a=0.01, g0=2.03107 Oe−1 s−1, T
=7.25 K,dt=10−12 s, and a series ofh values between 1550
and 1950 Oe.20

Each curve represents the results of between 2 000 000
and 15 000 000 runs, and each exhibits the same qualitative
peaked structure seen in Ref. 3. This supports the argument
in that reference that any switching process involving ther-
mal activation over an energy barrier should give rise toPsstd
curves with this characteristic shape.Psstd increases witht
for t,tP because it takes the particle some time to activate
thermally up to the top of the barrier where it can switch
with high probability.

Figure 2 shows a semilog plot of the data displayed in
Fig. 1. For timest exceeding its peak timetP, each curve
appears linear, indicating the exponential decay,e−t/tD, of
Psstd predicted at long times by the Neel-Brown theory.5,6

The inverse slopes of these curves are the decay timestD. As
expected,tD increases with decreasingh, that is, with in-
creasing energy barrier. The peak times,tP, also increase as

FIG. 1. sColor onlined Switching probabilityPsstd as a function
of time t sin units of 10−12 sd, for a magnetic particle with param-
eters given in the text, andh values srespectively describing the
curves in decreasing order of peak heightsd of 1950, 1850, 1750,
1650, and 1550 Oe.

FIG. 2. sColor onlined Same as Fig. 1, except plotted on a semi-
log scale.
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h is lowered, though far more slowly than doestD.
This phenomenology again agrees qualitatively with that

emerging from the ladder model of Ref. 3. To make the
comparison more quantitative, note that when the ratio
DE/kBT becomes large,tP in that model increases as the
logarithm oftD swhich in turn grows likeeDE/kBT, consistent
with the Neel-Brown pictured. Figure 3 shows a plot oftP
versus logstDd for the set of curves whose representatives are
displayed in Figs. 1 and 2. Over the roughly two-decade
range oftD’s studied,tP does indeed seem to grow logarith-
mically with tD. In fact, given that the logarithmic depen-
dence has only been derived in the ladder model for asymp-
totically large values of DE/kBT, the agreement is
surprisingly good.

Of course it is always difficult to distinguish numerically
between a logarithmic dependence and a power law with a
sufficiently small exponent. In Fig. 4 we show thetP versus
tD data on a log-log plot. The data exhibit clear, systematic

curvature in this plot, but if one insists upon fitting them to a
straight line, one arrives at an exponent of roughly 0.2, i.e.,
tP,tD

0.2.
To check that these results are characteristic of the model

s1d and s2d, and not artifacts of the time discretization, we
performed computations with the parameters listed above,
but with dt=3.33310−13 s rather than 10−12 s. The results
are illustrated in Fig. 5, which shows thetP versustD data
on a semilog plot, together with the data from Fig. 3, for
comparison. The two approximately linear curves are indis-
tinguishable within the accuracy of our numerical measure-
ments. Thus Fig. 5 strongly suggests that the relationship
tP, logstDd continues to hold even with the finer time mesh.

We conclude that the switching of a single classical spin
is in accord with the phenomenology of the ladder model.
This furthers one’s confidence that the simple arguments ad-
vanced in Ref. 3 indeed capture the essential physics of ther-
mal switching: At short times, the process is governed by the
stochastic climb of the system to the top of the energy bar-
rier, producing a switching probabilityPsstd that is zero at
t=0, and increases witht up to tP;21 at long times, the fa-
miliar exponential decay of the switching probability, char-
acterized by a single decay time,tD, is obtained.

While switching probabilities exhibiting peaks have been
observed in Monte Carlo simulations of spatially extended
systems such as 1D micromagnetic models22 and 2D Ising
models,23,24 the peaks have been ascribed—very
reasonably—to the fact that it takes time for the boundary of
a switched region or droplet to propagate spatially through
the entire system. The ladder model, which consists of a
single variable, and the single-domain particle studied here,
make clear that peaked switching probabilites should be ex-
pected to occur very generally, even in the absence of any
spatial extension: Surmounting any energy barrier via ther-
mal fluctuations will necessarily involve some “climbing”
time which will produce a peak inPsstd.

It is obviously of some importance to see how widely this
prediction can be verified experimentally.25 To give one ex-

FIG. 3. sColor onlined Semilog plot of peak time,tP, vs decay
time, tD, for switching curves computed with parameters given in
the text. Data are consistent withtP growing logarithmically with
tD.

FIG. 4. sColor onlined Same as Fig. 3, except on a log-log plot,
which shows noticeable downward curvature.

FIG. 5. sColor onlined Semilog plots oftP vs tD for parameters
identical to those of Fig. 3ssolid circlesd; and for parameters iden-
tical to those of Fig. 3, except that the discrete time step,dt, is
3.33310−13 s, rather than 10−12 s sopen squaresd.
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ample of clear significance: At short enough times26 t the
switching probabilitiesPsstd measured in Ref. 9 should in-
crease witht. On a more quantitative level, it also remains to
be seen how universally the relationshiptP, logstDd, pre-
dicted by the ladder model, holds. Recent important
advances27 in the numerical identification of the most prob-
able switching paths for experimentally realistic and techno-

logically relevant magnetic systems can doubtless be brought
fruitfully to bear upon this question.
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