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We study the heat conduction of the spin-1/2XXZ chain in finite magnetic fields where magnetothermal
effects arise. Due to the integrability of this model, all transport coefficients diverge, signaled by finite Drude
weights. Using exact diagonalization and mean-field theory, we analyze the temperature and field dependence
of the thermal Drude weight for various exchange anisotropies under the condition of zero magnetization-
current flow. First, we find a strong magnetic field dependence of the Drude weight, including a suppression of
its magnitude with increasing field strength and a nonmonotonic field-dependence of the peak position. Second,
for small exchange anisotropies and magnetic fields in the massless as well as in the fully polarized regime, the
mean-field approach is in excellent agreement with the exact diagonalization data. Third, at the field-induced
quantum critical line between the para- and ferromagnetic region, we propose a universal low-temperature
behavior of the thermal Drude weight.
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I. INTRODUCTION

Transport properties of one-dimensional spin-1/2 systems
are currently the focus of active research. This has been mo-
tivated by the experimental manifestation of significant con-
tributions to the thermal conductivity originating from mag-
netic excitations,1–6 stimulating intensive theoretical
work.7–19 Strong theoretical efforts7–11,13,14 have been de-
voted to the question of possible ballistic thermal transport in
generic spin models such as spin ladders, frustrated chains,
and dimerized chains. Such ballistic transport would be char-
acterized by a finite thermal Drude weight. Recent numerical
and analytical studies indicate that in pure butnonintegrable
spin models, the thermal Drude weight scales to zero in the
thermodynamic limit implying that the thermal current is
likely to have a finite intrinsic lifetime.8,9,12–14 In addition,
the effects of extrinsic magnon scattering by phonons and/or
impurities have been addressed in several works.10,12,15For
the integrableXXZ model, the energy current operator is a
conserved quantity,20,21 leading to a finite thermal Drude
weight. Its temperature dependence has been studied with
exact diagonalization7–9 and Bethe ansatz techniques16,17and
is well understood for arbitrary values of the exchange an-
isotropy at zero magnetic field. In this paper, we address the
issue of thermal transport in theXXZ model in the presence
of a finite magnetic fieldh. In this case, magnetothermal
effects become important and must be accounted for. The
magnetothermal response itself has been studied by Louis
and Gros in the limit of small magnetic fields,18 and recently
also by Sakai and Klümper in the low-temperature limit.19

Here, we consider magnetic fields of arbitrary strength and
we discuss the temperature dependence of the thermal Drude
weight under the condition of zero spin-current flow.

The Hamiltonian of theXXZ model reads

H = Jo
l=1

N H1

2
sSl

+Sl+1
− + H.c.d + DSl

zSl+1
z − hSl

zJ , s1d

whereN is the number of sites,Sl
z,± are spin-1/2 operators

acting on sitel, andD denotes the exchange anisotropy. The

exchange couplingJ is set to unity in our numerical calcula-
tions. We focus onDù0 and periodic boundary conditions
are imposed.

The quantum phases and the spectrum of Eq.s1d are well
understood, both as a function of exchange anisotropyD and
magnetic fieldh. The reader is referred to Ref. 22 for a
detailed summary and further references. Here we only re-
peat the main points. At zero magnetic field, the spectrum of
the Hamiltonian equations1d is gapless foruDuø1 and
gapped foruDu.1. The situation at finite magnetic fields is
summarized in the first four columns of Table I. Three dif-
ferent cases are found:sid the ferromagneticsFMd gapped
state forh.hc2=1+D; sii d the gapless or massless phase for
h,hc2=1+D and h.hc1; and siii d the antiferromagnetic
sAFMd, gapped state forD.1 andh,hc1. The lineh=hc1
starts at theSUs2d symmetric pointD=1, h=0 andhc1 grows
exponentially slowly in the regionD.1, h.0.

The fifth column of Table I is a first account of our main
findings for the low-temperature behavior of the thermal
Drude weight, denoted byKth in this paper. These results are
now briefly summarized. One can expect qualitative changes
in the low-temperature behavior of the thermal Drude weight
as the transition linesh=hc1 andh=hc2 are crossed. In par-
ticular, we focus on the transition from the gapless phase to
the ferromagnetic state. In Sec. III, we will argue that for
T/J!1, first, Kth~T3/2 exps−G/Td in the ferromagnetic
state,G being the gap, andT temperature; second,Kth~T in
the massless phase; and third,Kth~T3/2 along the lineh
=hc2.

Regarding the antiferromagnetic state, there is certainly
also an exponentially suppressed Drude weight; see, for in-
stance, Refs. 8 and 17 forh=0. However, the low-
temperature region, in this case and forh=hc1, is difficult to
reach with the methods of the present paper. For a discussion
of the low-temperature limit at vanishing magnetic field, we
refer the reader to Refs. 8, 9, 16, and 17. Apart from the
low-temperature behavior, this paper studies the field depen-
dence of the thermal Drude weight in the phasessid and sii d
at finite temperatures.
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The plan of this paper is the following. First, we discuss
the expressions for the transport coefficients and the current
operators in Sec. II. Second, in Sec. III we perform an analy-
sis of the transport coefficients based on a Jordan-Wigner
mapping of the spin system onto spinless fermions. In this
case, interactions atDÞ0 will be treated by a Hartree-Fock
approximation. Third, we present our results from exact di-
agonalization forD.0 in Sec. IV and compare them to the
results from the Jordan-Wigner approach. The field and tem-
perature dependence of the thermal Drude weight is dis-
cussed with a particular focus on the case of the Heisenberg
chain. A summary and conclusions are given in Sec. V.

II. TRANSPORT COEFFICIENTS

Within linear response theory, the thermal and the spin
current are related to the gradients¹h and¹T of the fieldh
and the temperatureT by23

SJ1

J2
D = SL11 L12

L21 L22
DS ¹h

− ¹ T
D , s2d

whereJi =k j il is either the thermodynamic expectation value
of the spin currentj1 or the thermal current operatorj2, re-
spectively.Lij denote the transport coefficients. At finite fre-
quenciesv, the coefficientsLijsvd depend on the time-
dependent current-current correlation functions via23

Lijsvd =
br

N
E

0

`

dt eis−v+i0+dtE
0

b

dtk j i j jst + itdl. s3d

In this equation,r =0 for j =1 andr =1 for j =2. b=1/T is the
inverse temperature andk·l denotes the thermodynamic ex-
pectation value. Note thatL12=L21/T due to Onsager’s
relation.23 The real part ofLijsvd can be decomposed into a
d-function atv=0 with weightDij and a regular partLij

regsvd:

ReLijsvd = Dijdsvd + Lij
regsvd. s4d

This equation defines the Drude weightsDij , for which a
spectral representation can be given:21

Dijsh,Td =
pbr+1

N
o
m,n

Em=En

pnknu j iumlkmu j junl. s5d

Here, pn=exps−bEnd /Z is the Boltzmann weight andZ de-
notes the partition function. In the exponent,r has to be
chosen in the same way as in Eq.s3d.

Let us now introduce the appropriate definitions of the
current operators. The local current operatorsj1,l and j2,l sat-
isfy the continuity equations

j j ,l+1 − j j ,l = − ifH,dj ,lg; j = 1,2, s6d

whered1,l =Sl
z is the local magnetization density andd2,l =hl

is the local energy density, respectively, withH=olhl. At
zero magnetic field, the total currentsj thfsg=ol j thfsg,l are given
by21,24,25

js = iJo
l=1

N

sSl
+Sl+1

− − Sl+1
+ Sl

−d, s7d

j th = J2o
l=1

N

SW̃ l · sSW l+1 3 SW̃ l+2d, s8d

with the definitionSW̃ l =sSl
x,Sl

y,DSl
zd to achieve a compact rep-

resentation, whileSW l is defined as usual. Note that subscripts
in bracketsf·g refer to spin transport.

At finite magnetic field, the proper set of current operators
is18

j1 = js; j2 = j th − hjs. s9d

Now, the crucial point is that, while thespin current js is
only conserved in theXX casesD=0d, the currentj th is con-
served for all fieldsh and values ofD, i.e., fH , j thg=0 sRefs.
20 and 21d. Thus, it immediately follows from Eqs.s3d and
s9d that the Drude weightsD12, D21, and D22 are finite for
arbitrary fieldsh.

Furthermore, one can show that the spin Drude weight
D11 is also finite in the thermodynamic limit forhÞ0. We
briefly outline the proof along the lines of Ref. 21. Given a
set of all conserved observableshQlj, the spin Drude weight
D11 can be written as

D11sh,Td =
p

TN
s j1uP j1d, s10d

whereP is the projection operator in the Liouville space on
the subspace spanned by all conserved quantitieshQlj. The
bracketss·u·d denote Mori’s scalar productssee, e.g., Ref. 26
for detailsd. Restricting to a subsethQmj, hQlj, one obtains
an inequality21,27

D11sh,Td ù
p

TN
o
m

k j1Qml2

kQm
2 l

, s11d

providing a lower bound for the Drude weightD11sh,Td. In
the literature, this relation is often referred to as Mazur’s
inequality.21,27 Several authors21,28 have used Eq.s11d to in-
fer a finite spin Drude weight for the Heisenberg chain, as-

TABLE I. Magnetic phases of theXXZmodelssee, e.g., Ref. 22d
and leading term of the thermal Drude weightKth at low tempera-
tures.m0 is the average local magnetization atT=0. G=Gshd de-
notes the gap in either the polarized statesid or the massive antifer-
romagnetic regimesiii d. In the polarized statesid, Gshd /J=h−hc2.

h m0 T/J!1

sid FM, gap h.hc2 1/2 Kth~T3/2 exps−G/Td
Saturation h=hc2 1/2 Kth=constT3/2

hc2=1+D

sii d Massless hc1,h,hc2 Kth~T

siii d AFM, gap h,hc1 0
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suming broken particle-hole symmetry, or the presence of a
finite magnetic field, respectively. More explicitly, only one
conserved quantity is often considered in Eq.s11d, namely,
Q1= j th, which has a finite overlaps j1u j thd.0 with the spin
current forhÞ0. This finally provesD11sh,Td.0 for hÞ0.

The main focus of this paper is on the case of purely
thermal transport with a vanishing spin current, i.e.,J1=0.
We therefore arrive at a thermal conductivityk, which is
described by

Reksvd = Kthsh,Tddsvd + kregsvd, s12d

whereKthsh,Td in terms of the Drude weightsDij reads

Kthsh,Td = D22sh,Td − b
D21

2 sh,Td
D11sh,Td

. s13d

Exactly the same result forKthsh,Td is obtained if a different
choice of current operators and corresponding forces is
made, e.g.,js and j th from Eqs.s7d ands8d ssee Ref. 23d. The
expression forKthsh,Td, being fully equivalent to Eq.s13d, is
then given by

Kthsh,Td = Dthsh,Td − b
Dth,s

2 sh,Td
Dssh,Td

. s14d

Note that forh=0, Kthsh=0,Td=Dthsh=0,Td. Therefore, two
competing terms contribute toKthsh,Td in Eq. s14d: the
“pure” thermal Drude weightDth and the “magnetothermal
correction,”bDth,s

2 /Ds. Note that the magnetothermal correc-
tion might be suppressed by external scattering or spin-orbit
coupling, breaking the conservation of the total magnetiza-
tion of the spin systemsRef. 12d. This is an open issue which
may depend crucially on the particular material investigated
in experimental transport studies.

Let us now give spectral representations for the quantities
Dssh,Td, Dthsh,Td, andDth,ssh,Td sRefs. 21, 29, and 30d

Dthfsg
I sh,Td =

pb2f1g

N
o
m,n

Em=En

pnukmu j thfsgunlu2, s15d

Ds
IIsh,Td =

p

NFk− T̂l − 2 o
m,n

EmÞEn

pn

ukmu jsunlu2

Em − En G , s16d

Dth,ssh,Td =
pb

N
o
n

pnknu j thjsunl. s17d

The operatorT̂=s1/2dolsSl
+Sl+1

− +H.c.d is the kinetic energy.
In Eqs. s15d–s17d, the magnetic field only enters via the
Boltzmann weightspn. The two expressionsDs

I and Ds
II are

equivalent in the thermodynamic limit, but exhibit differ-
ences at low temperatures for finite system sizes.21,31–34 In
this context, note thatDs

II −Ds
I is the so-called Meissner frac-

tion, which measures thesuperfluiddensity in the thermody-
namic limit and in a transverse vector-field.32,33This quantity
vanishes forN→` in one dimension, but it can be nonzero
for finite systems.33 In Ref. 9, we have performed a study of
the finite-size scaling of both quantities for theXXZ chain,

showing thatDs
I <Ds

II already holds at sufficiently high tem-
peratures. At low temperatures and zero magnetic field,Ds

I is
always exponentially suppressed for evenN due to finite-size
gaps; thus a finite value ofDssT=0d can only be found for

N→`. On the contrary, sinceDs
II <sp /Ndk−T̂l at low tem-

peratures,Ds
II correctly results in afinite value atT=0 in the

massless regime. Depending on the context, one should care-
fully check which of these two quantities exhibits the more
reliable finite-size behavior, and in fact, in the present case of
finite magnetic fields we will argue in Sec. IV thatDs

I should
preferably be used. For a more detailed discussion of the
relation betweenDs

I andDs
II, we refer the reader to Ref. 9 and

references therein.
In our numerical analysis, we will evaluateDth, Ds, and

Dth,s, while the coefficientsDij from Eq. s13d can be derived
if desired as they are linear combinations ofDth, Ds, and
Dth,s:

D11 = Ds, s18d

D21 = Dth,s− hDs, s19d

D22 = Dth − 2bhDth,s+ bh2Ds. s20d

The XXZ model is integrable and solvable via the Bethe
ansatz. Therefore, one expects all quantities in Eqs.s13d and
s14d to be accessible by analytical techniques. Yet, for the
spin Drude weightDssh=0,Td at zero magnetic field, partly
contradictory results can be found in the literature regarding
both its temperature dependence and the question whether it
is finite or not for the Heisenberg chainsD=1d in the ther-
modynamic limit ssee Refs. 9, 28, 30, 31, and 35–38 and
further references thereind.

III. MEAN-FIELD APPROXIMATION

We now discuss a Hartree-Fock type of approximation to
the Hamiltonian equations1d, which we use to compute the
Drude weightsDij . The spin operatorsSl

z,± are first mapped
onto spinless fermions via the Jordan-Wigner
transformation23

Sl
z = cl

†cl −
1

2
; Sl

+ = eipFlcl
†. s21d

Here, cl
s†d destroysscreatesd a fermion on sitel. The string

operatorFl readsFl =oi=1
l−1ni with ni =ci

†ci. Next, the interac-
tion termDnlnl+1 appearing in the fermionic representation is
treated by a Hartree-Fock decomposition leading to an effec-
tive mean-field Hamiltonian

HMF = o
k

ekck
†ck s22d

with the mean-field dispersion

ek = − Jhs1 + 2Dadcosskd + h − 2Dsn − 1/2dj. s23d

The quantities to be determined self-consistently area
=kcl+1

† cll andn=kcl
†cll, where the latter is related to the av-

erage local magnetizationm via m=kSl
zl=n−1/2. TheDrude

weights can then be obtained from
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D11 = spb/Ndk j1
2l, s24d

D21 = spb/Ndk j2j1l, s25d

D22 = spb2/Ndk j2
2l. s26d

The current operators read

j1 = o
k

vkck
†ck; j2 = o

k

ekvkck
†ck

with vk=dek/dk.
While this approach is exact forD=0, fair results for

Kthsh=0,Td are obtained even for 0,Dø1 ssee Refs. 8 and
9d. From Eqs.s24d–s26d, the leading contribution at low tem-
peratures can be derived.

We start with the free fermion caseD=0, for which we
find at the saturation fieldhc2:

Kthsh,Td = SA22 −
A21

2

A11
DT3/2, for h = hc2 s27d

with

A11 =Îp

2
s1 −Î2dzs1/2d,

A21 =
3

4
Îp

2
s2 −Î2dzs3/2d,

A22 =
15

16
Îp

2
s4 −Î2dzs5/2d, s28d

zsxd being the Riemann-Zeta function. Note that the spin
Drude weight atT=0 is finite for 0,h,hc2 and vanishes for
hùhc2. At low temperatures and forh=hc2, we find
D11sTd=A11

ÎT and a divergence of the pure thermal Drude
weight Dth with Dth<hc2

2 A11T
−1/2 to leading order in tem-

perature, which follows from Eqs.s19d ands20d. We mention
that the resultD22~T3/2 at the critical field was also found
within a continuum theory suggested to describe transport
properties of two-leg spin ladders.10

In the intermediate regime, i.e., the gapless statesii d fsee
Table Ig,

Kthsh,Td =
p2

3
vshdT; vshd = JÎ1 − h2 s29d

holds at low temperatures, because the dispersion is linear in
the vicinity of the Fermi level forkFÞ0,p. Note that
Kthsh,Td<D22sh,Td for small T in this regime. Equation
s29d results inKth=p2JT/3 for h=0, which is, e.g., known
from Ref. 16.

For uhu. uhc2u=1, both D22 and the second term in Eq.
s13d, i.e., D21

2 / sTD11d, are given by

D22 = D21
2 /sTD11d =Îp

2
G2e−G/T

ÎT
, s30d

to leading order in temperature and forT!G, whereG/J
= uhu−1 is the gap. This implies thatKthsh,Td is strongly

suppressed at low temperatures due to the cancellation of the
contributions toKthsh,Td in Eq. s13d. In fact, such cancella-
tion occurs in the next-to-leading order inT as well. One can
further show, taking into account the first nonvanishing con-
tribution to Kth in Eq. s13d, that

Kthsh,Td =
3

4
Î2pT3/2e−G/T s31d

describes the low-temperature behavior of the thermal Drude
weight abovehc2. In Ref. 10, it has been argued that
D22~exps−G/Td /ÎT is a generic feature of gapped systems
with a finite thermal Drude weight.

We further point out that the ratio of the thermal Drude
weight Kth and the spin Drude weightDs fulfills a
Wiedemann-Franz type of relation in the low-temperature
limit in all three cases, i.e., in the massless and the fully
polarized state as well as forh=hc2:

Kth

Ds
= L0T. s32d

The constantL0 takes different values in the regimessid and
sii d, but for the free fermion casesand within mean-field
theory as welld it is independent of the magnetic fieldin the
massless and fully polarized state, respectively.

Before turning to the mean-field theory forD.0, let us
briefly discuss which results can be expected from conformal
field theory for the massless state. The expressions for the
spin and thermal Drude weightD22 and D11 have the same
structure as at zero magnetic field, i.e.,D22sh,Td
=sp2/3dvsh,DdT and D11sh,Td=Ksh,Ddvsh,Dd with field-
dependent velocityv and Luttinger parameterK ssee, e.g.,
Refs. 8 and 9d. This implies that the constantL0 appearing in
Eq. s32d is field dependent in the massless regimessee Ref.
16 for h=0d:

L0 =
p2

3Ksh,Dd
. s33d

Furthermore,D21 vanishes in the continuum limit due to
particle-hole symmetry. While a finite magnetic field initially
breaks this symmetry for the original bosonic fields, the
original form of the Luttinger-liquid Hamiltonian is restored
by introducing a shifted bosonic field.22 This has an interest-
ing consequence for the low-temperature behavior of the
pure thermal Drude weightDth. Namely, by solving Eqs.s19d
and s20d for Dth, one obtains

Dth = D22 +
h2Ds

T
=

p2

3
vT + Kv

h2

T−1 , s34d

which implies thatDth diverges at low temperatures withT−1

in the massless regime, consistent with results of Ref. 19.
Additionally, one obtainsKth in the massless regime and

in the low-temperature limit

Kthsh,Td < D22 =
p2

3
vsh,DdT. s35d

Both parameters, i.e.,K=Ksh,Dd and v=vsh,Dd, can be
computed exactly by solving the Bethe-ansatz equations.39
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The velocityv=vshd has been calculated forD=1 in Ref. 40.
Further numerical values for these parameters can be found
in, e.g., Ref. 41.

Let us next dicuss the results from the MF approximation
for D.0. Figure 1 showsKthsh,Td for D=0.1 and h
=0,0.5,1.1,1.5sthick linesd. The main features are:sid a
suppression of the thermal Drude weight by the magnetic
field; sii d a shift of the maximum to higher temperatures for
h.0.5 compared toh=0; siii d a change in the low-
temperature behavior which will be discussed in more detail
below in this section.

For comparison, the results from exact diagonalization
sEDd for N=18 sites are included in Fig. 1sthin linesd and
we find that the agreement is very good. Deviations at low
temperatures forh=0 and h=0.5 are due to finite-size ef-
fects; i.e., the ED results are not yet converged to the ther-
modynamic limit. For larger fieldshùhc2=1.1, deviations
between ED and MF are negligibly small.

From Eq.s23d, we can derive the critical fieldhc2 within
the Hartree-Fock approximation. AtT=0 and h=hc2, the
ground state is the fully polarized state withn=kci

†cil=1; i.e.,
the parametera from Eq. s23d vanishes. Consequently, we
find hc2=1+D in accordance with the exact result.22 Indeed,
the low-energy theories along the lineh=1+D and for D
=0 are equivalent in the sense that they are characterized by
the same Luttinger parameter.39,42 Within bosonization, the
line h=hc2 is special since the velocity of the elementary
excitations vanishes here.

Regarding the low-temperature behavior of the thermal
Drude weight, we can then conjecture that it is given by Eqs.
s27d and s28d for h=hc2, independently ofD. We will come
back to this issue in Sec. IV, where we discuss the results
from exact diagonalization forD.0. The case ofD=−1 and
h=0, however, seems to be an exception, as we have found
indications for Kthsh=0d~T at low temperatures before.8

Here, the existence of many low-lying excitations might
complicate the situation.

In the ferromagnetic state and for low temperatures, the
parametera from Eq. s23d is exponentially suppressed and
the average local magnetization ism=1/2. Thus, to leading
order in T, the low-temperature dependence ofKthsh,Td is
independent ofD, similar to the case ofh=hc2, and the ther-
mal Drude weight is exponentially suppressedKthsh,Td
~T3/2e−G/T with G=h−hc2.

In the gapless state, our mean-field theory results confirm
that Kthsh,Td=Vsh,DdT for D.0 and low temperatures.
However, the mean-field prefactorVsh,Dd will be renormal-
ized if interactions are fully accounted forfsee Eq.s35dg.

In summary, we have obtained the leading low-
temperature contributions toKth in the regimessid andsii d of
Table I using mean-field theory and conformal field theory.
Mean-field theory provides a reasonable quantitative descrip-
tion of the transport coefficients for smallD andh as well as
for hùhc2.

IV. EXACT DIAGONALIZATION

In this section, we first present numerical results for the
thermal Drude weight of the Heisenberg chainsD=1d. Sec-
ond, the field dependence ofKthsh,Td for intermediate tem-
peraturesT is analyzed. Next,Kthsh,Td for h=hc2 is dis-
cussed for different choices of the anisotropyDù0 and
finally, we make some remarks on the lower bound for the
spin Drude weightD11=Ds given in Eq.s11d. While Dssh,Td
still eludes an exact analytical treatment for arbitrary tem-
peratures, analytically exact results forDthsh,Td and
Dth,ssh,Td of the Heisenberg chain have very recently been
reported in Ref. 19.

Let us first address a technical issue; namely, the appro-
priate choice forDssh,Td in Eq. s14d. For the case of zero
magnetic field, we know from our previous study Ref. 9 that
Ds

Ish,Td andDs
IIsh,Td exhibit a different finite-size behavior

at h=0. This is similar to the situation at finite fields. The
inset of Fig. 2sad shows bothDs

Ish,Td and Ds
IIsh,Td for D

=1 andh=0.5, and we see that first,Ds
IIsh,Td is well con-

verged at low temperatures; and second, a large difference
betweenDs

Ish,Td andDs
IIsh,Td is visible at low temperatures.

The thermal Drude weightKthsh,Td, resulting from either
insertingDs

Ish,Td or Ds
IIsh,Td in Eq. s14d, is shown in Fig.

2sad. We have decided to useDs
I in the numerical study for

consistency reasons, since with this choice, all Drude
weights entering in Eq.s14d have a similar finite-size depen-
dence at low temperatures, characterized by the exponential
suppression at low temperatures due to the finite-size gap.
On the contrary, usingDs

IIsh,Td leads to an artificial double
peak structure inKthsh,Td fsee Fig. 2sadg.

We have checked that a similar scenario arises forD=0
for finite systems. However, for this case the Drude weight
can be computed exactly in the thermodynamic limit and we
find that one of the two maxima disappears. Thus we expect
an analogous behavior forD.0, supporting the choice ofDs

I

instead ofDs
II.

Further numerical results forKthsh,Td of the Heisenberg
chain are provided in Fig. 2sbd for hù1.5. The main features
of the thermal Drude weight can be summarized as follows:

FIG. 1. Thermal Drude weightKthsh,Td of the XXZ chain for
D=0.1: comparison of mean-field theorysMFd and exact diagonal-
ization sEDd. The thermal Drude weightKthsh,Td is shown forh
=0,0.5,1.1,1.5. Increasing field is indicated by the arrow. Thick
lines denote results from the Hartree-Fock approximation; thin
lines: ED for N=18. Deviations at low temperatures forh=0 and
h=0.5 are due to finite-size effects in the ED results.
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sid for 0,h,hc2, finite-size effects are small forT/J*0.4
fsee Fig. 2sadg; sii d for hùhc2, finite-size effects are negli-
gible; siii d the position of the maximum depends on the mag-
netic field; andsivd Kthsh,Td is strongly suppressed as the
magnetic field is increased.

As both Dthsh,Td and Dth,ssh,Td converge rapidly to the
thermodynamic limit at high temperatures, the small finite-
size effects observed forT/J*0.4 fsee Fig. 2sadg are due to
Dssh,Td fsee the inset of Fig. 2sadg. At low T, Kthsh,Td in-
creases with system sizeN, while it decreases with growing
N at high temperatures. The vanishing of pronounced finite-
size effects upon approaching the lineh=hc2 from below can
be ascribed to the fact that a description in terms of free
fermions with parameters independent ofD is valid here, as
was already evidenced in the previous section. For the ferro-
magnetic statesh.hc2d, the curves shown in Fig. 2sbd for
N=20 are indistinguishable from the corresponding ones for
N=18 snot included in the figured within the line width.

Regarding the position of the maximum, there is evidence
that it is first shifted to higher temperatures when the field is
switched on as compared to the case ofh=0 fsee Fig. 2sadg.
A precise determination of its position in the intermediate
gapless phase is somewhat complicated as typically, the nu-
merical data converge well down to roughly only the peak
temperature. Still, there are indications that at strong fields
h,1, the maximum tends to be located at lower tempera-
tures than forh=0. This can be seen, for instance, in the case
of h=1.5 in Fig. 2sbd. In the polarized state,Kthsh,Td defi-
nitely peaks at larger temperatures than at vanishing field due
to its exponential suppression at low temperatures.

The decrease ofKthsh,Td as a function of increasing mag-
netic field, as mentioned in the preceding discussion of the

Heisenberg chain, is also observed for other choices for the
anisotropyD. This is demonstrated forD=0.5,1,2 atT/J
=0.5 in the main panel of Fig. 3, whereKthsh,Td is shown as
a function of the magnetic fieldh and plotted versush/hc2.
In contrast toKthsh,Td, Dthsh,Td grows with increasing mag-
netic field at intermediate temperatures. For illustration,
Dthsh,Td is plotted versush/hc2 at T/J=0.5 in the inset of
Fig. 3 for the same choice of parameters as in the main panel.
It exhibits a maximum at large fields, which increases and its
position approachesh=hc2 when the temperature is lowered.
Thus, indications of the transition to the ferromagnetic phase
are visible inDthsh,Td, but not present inKthsh,Td. Note,
however, that all three curves in the main panel of Fig. 3
almost pass through the same point forh<hc2. For T/J&1,
Dthsh,Td is enhanced by the magnetic field, and we can
therefore conclude that the decrease ofKthsh,Td as a function
of magnetic field is due to a cancellation ofDthsh,Td and the
magnetothermal correction in Eq.s14d.

Along the critical lineh=hc2=1+D, further evidence for
universal low-temperature behavior can be found by ED.
This can be seen in Fig. 4, where we presentKthsh,Td for
D=0.1,0.5,1,2 andN=18. The curve forD=0 is also in-
cluded in the figure; this one, however, is exact in the ther-
modynamic limit. BelowT/J<0.25, the curves lie on top of
each other. Small deviations at lowest temperatures visible in
the plot can be ascribed to the presence of finite-size gaps.
This supports our conclusion from Sec. III that Eqs.s27d and
s28d hold for arbitraryDù0 and further numerical datasnot
included in the figured show that it is also correct for −1
,D,0.

Finally, let us turn to the inequality Eq.s11d for the spin
Drude weightD11sh,Td=Dssh,Td introduced in Sec. II. Here,
we want to discuss to which extent the inequality Eq.s11d is
exhausted byj th at finite magnetic fields and finite tempera-
tures. An analogous analysis in the limit ofb=0 can be
found in Ref. 21. To this end, we compareDs

Ish,Td and

Dsubsh,Td ª
p

TN

k jsj thl2

k j th
2 l

=
1

T

Dth,s
2 sh,Td

Dthsh,Td
s36d

in Fig. 5. Note that first, the relationDssh,TdùDsubsh,Td is
equivalent to the positivity of the thermal Drude weight

FIG. 2. Thermal Drude weightKthsh,Td of the Heisenberg chain
sD=1d. Panelsad Kthsh,Td computed from Eq.s14d using Ds=Ds

I

ssolid linesd and Ds=Ds
II sdashed linesd, both for h=0.5 andN

=12,14,16,18,20. Arrows indicate increasing system size. The
dotted line is the result forh=0 andN→` from Ref. 16. Inset:
comparison ofDs

Ish,Td fsolid linesg and Ds
IIsh,Td fdashed linesg;

h=0.5, D=1. Panelsbd Kthsh,Td for h=1.5,2,2.5,3 andN=20
fthick lines;Dssh,Td=Ds

Ish,Tdg. The curve forN=18, h=1.5 is in-
cludedsthin solid lined.

FIG. 3. Main panel: field dependence of the thermal Drude
weightKthsh,Td for D=0.5,1,2 andT/J=0.5 sED for N=18 sitesd.
Inset: field dependence ofDthsh,Td for the same parameter sets as
in the main panel.
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Kthsh,Tdù0. Second,Dssh,Td<Dsubsh,Td implies a very
small thermal Drude weight, and thus the comparison pro-
vided in Fig. 5 also reveals the relative size of the two con-
tributions toKthsh,Td in Eq. s14d: Dthsh,Td and the magne-
tothermal correctionDth,s

2 sh,Td / fTDs
Ish,Tdg. In Fig. 5, results

are shown forD=1, N=20 sites, andh=0.5,2,2.5. For the
sake of clarity, data for smaller system sizes are not included
in the figure. Differences between the curves forN=18 and
N=20 are anyway only pronounced for temperaturesT/J
&0.1 and become smaller as the magnetic fieldh increases.

Figure 5 allows for three major observations:sid
Ds

Ish,Td<Dsubsh,Td at low temperatures and for all cases
shown in the figure;sii d Dsubsh,Td approximatesDs

Ish,Td, the
better the larger the magnetic field; andsiii d significant de-
viations are present for high temperatures, implying that for
a quantitative description ofDssh,Td using Eq.s11d, more
conserved quantities need to be considered in Eq.s11d.

Our comparison provides, at least for finite system sizes, a
quantitative measure of the temperature range whereDs

I

<Dsub. Point sid indicates that analytical approaches can
make use ofDsubsh,Td for a quantitative description of
Dssh,Td at low temperatures, as has been done by Fujimoto
and Kawakami within a continuum theory in Ref. 28. The
quantities that appear on the right hand side of Eq.s36d are
less involved than Eqs.s15d and s16d for Dssh,Td, as the
former are static correlators. Furthermore, for finite magnetic
fields, we suggest to computeDssh,Td analytically from Eq.
s11d, taking into account some of the conserved quantities
Qm, which are, in principle, knownssee, e.g., Ref. 43d. Such
a procedure is applicable tohÞ0 and might circumvent the
ambiguities in the results encountered in recent computations
of Dssh=0d sRefs. 28, 36, 38, and 44d. The latter have used
Eq. s16d directly or Kohn’s formula,29,30 equivalently. Re-
garding the relative size ofDthsh,Td and the magnetothermal
correction, we see that the latter becomes more relevant the
larger the magnetic field is which leads to the strong suppres-
sion of Kthsh,Td. This is consistent with results of the previ-
ous sections of this paper.

V. CONCLUSIONS

In this paper we have studied the thermal Drude weight of
the XXZ model with exchange anisotropyDù0 in finite

magnetic fields using mean-field theory and exact diagonal-
ization. Magnetothermal effects have been taken into account
and the condition of zero magnetization current flow has
been applied. Let us now summarize the main findings and
relate them to experiments.

We have discussed the low-temperature limit of the ther-
mal Drude weightKthsh,Td and we have given arguments
that it changes from an algebraic behavior for 0øDø1, h
øhc2 to an exponentially activated behavior in the polarized
state forh.hc2. In addition, the leading term at low tem-
peratures along the critical lineh=hc2, D.−1, is universally
given by Kthsh,Td=AT3/2, where the prefactorA, given in
Eqs.s27d ands28d, is independent ofD. In the gapless phase,
the leading contribution toKthsh,Td is linear in the tempera-
ture with a field- and anisotropy-dependent prefactor. In con-
sequence, the thermal Drude weightKthsh,Td can be ex-
pected to be proportional to the specific heat in the gapless
state in the low-temperature limit, where the velocity of el-
ementary excitations is constant.

Further, the Drude weight is suppressed by the magnetic
field, which can be ascribed to the increase of the magneto-
thermal correction relative to the pure thermal Drude weight
Dthsh,Td. As a third result, the position of the maximum of
Kthsh,Td depends nonmonotonically on the magnetic field.
While in the present paper, we have focused on the thermal
Drude weightKth under the condition of zero spin-current
flow, our analysis of the full transport matrix Eq.s2d can
easily be extended to a variety of other transport situations,
which would be characterized by different combinations of
the Drude weights.

Turning now to experiments, we emphasize that for a de-
scription of realistic materials external scattering has to be
accounted for. In a simple picture, one may expect the Drude
peak to be broadened by external scattering mechanisms.
The behavior in magnetic fields that one may observe in
experiments will likely depend both on external scattering
rates as well as on the thermal Drude weight. Nevertheless,
one may speculate that qualitative trends of the field depen-
dence of the thermal Drude weight are reflected in thermal
transport experiments.

FIG. 4. Thermal Drude weightKthsh,Td at the critical fieldhc2

=1+D for D=0,0.1,0.5,1,2. ForDÞ0, we show numerical results
for N=18 sites, while the curve for the free fermion casesthin solid
lined is valid in the thermodynamic limit. FIG. 5. Comparison of the spin Drude weightDs

Ish,Td sthick
linesd and its lower boundDsub sthin lines; see text for further
detailsd. The figure shows results forD=1, N=20, and h
=0.5,2,2.5.
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In recent experiments on quasi-one-dimensional magnetic
materials,1–5 the thermal conductivity has often been found
to be insensitive to the application of an external magnetic
field. This is, however, explained by the large absolute value
of the exchange coupling in these materials, being typically
of the order of magnitude of 1000 K. It would therefore be
desirable to perform measurements on materials with a mod-
erately small exchange coupling to check our results. Still, it
might be very difficult to reach the saturation fieldhc2 in
realistic materials, but at least the qualitative features like the
suppression of the thermal conductivity or a shift of the
maximum could be verified. In particular, experiments in
relatively large magnetic fields may provide an indirect
probe of spin currents in one-dimensional quantum magnets,
which have so far not yet been observed directly in experi-
ments. Conclusions about the low-temperature limit would

require reliable methods to separate the magnetic contribu-
tion from the phonon part, which is a challenging task in the
interpretation of experiments. Nevertheless, we believe that
further experiments on the field dependence of the thermal
conductivity could hint at the nature and mechanisms of
magnetic transport properties.
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