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Thermal transport of the XXZ chain in a magnetic field
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We study the heat conduction of the spin-IXXZ chain in finite magnetic fields where magnetothermal
effects arise. Due to the integrability of this model, all transport coefficients diverge, signaled by finite Drude
weights. Using exact diagonalization and mean-field theory, we analyze the temperature and field dependence
of the thermal Drude weight for various exchange anisotropies under the condition of zero magnetization-
current flow. First, we find a strong magnetic field dependence of the Drude weight, including a suppression of
its magnitude with increasing field strength and a nonmonotonic field-dependence of the peak position. Second,
for small exchange anisotropies and magnetic fields in the massless as well as in the fully polarized regime, the
mean-field approach is in excellent agreement with the exact diagonalization data. Third, at the field-induced
qguantum critical line between the para- and ferromagnetic region, we propose a universal low-temperature
behavior of the thermal Drude weight.
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[. INTRODUCTION exchange coupling is set to unity in our numerical calcula-
Transport properties of one-dimensional spin-1/2 systemgons' We focus omd =0 and periodic boundary conditions

are currently the focus of active research. This has been m@'€ imposed.
The quantum phases and the spectrum of(Egare well

tivated by the experimental manifestation of significant con- d 4. both ; . ¢ h cotroand
tributions to the thermal conductivity originating from mag- un erstpof_, Idor: aﬁ a ungtlon N e;<c agge anls%otzzp};l
netic excitations;® stimulating intensive theoretical magnetic fieldh. The reader is referred to Ref. ora

work.7-19 Strong theoretical efforfs!1314 have been de- detailed summary and further references. Here we only re-

voted to the question of possible ballistic thermal transport irpeat the main points. At. Zero r_nagnetlc field, the spectrum of
generic spin models such as spin ladders, frustrated chain‘;h,e Hamiltonian equat|(_)r(1)_ IS gaP'?SS for|A|§1_and :
and dimerized chains. Such ballistic transport would be Chargapped ]‘or|A|_>1. The situation at finite magnetic fields IS
acterized by a finite thermal Drude weight. Recent numerica ummarized in the f|rst.four columns of T{;\ble l. Three dif-
and analytical studies indicate that in pure hahintegrable erent cases are fou.nqj'[) the ferromagnetidFM) gapped
spin models, the thermal Drude weight scales to zero in th§tate forh=>he;=1+A; (ii) the gapless or massless phase for
thermodynamic limit implying that the thermal current is <he=1+A and h>h,; and (i) the ant|ferr_omagnet|c
likely to have a finite intrinsic lifetim&:%12-14|n addition, (AFM), gapped state foA>1 andh<hg. The lineh=hg
the effects of extrinsic magnon scattering by phonons and/opta"s at theU2) symmetric pointd =1, h=0 andh, grows
impurities have been addressed in several witk&15For ~ €xponentially slowly in the regiod>1, h>0. ,
the integrableXXZ model, the energy current operator is a . T_he fifth column of Table | is a first account of our main
conserved quanti??! leading to a finite thermal Drude findings fpr the Iow-tempe(atur_e behavior of the thermal
weight. Its temperature dependence has been studied wifArude weight, denoted by, in this paper. These results are
exact diagonalizatidn® and Bethe ansatz techniqé®¥and ~ NOW briefly summarized. One_ can expect qualitative changes
is well understood for arbitrary values of the exchange ann the low-temperature behavior of the thermal Drude weight
isotropy at zero magnetic field. In this paper, we address th@S the transition linee=h., andh=h, are crossed. In par-
issue of thermal transport in théXZ model in the presence ticular, we focus' on the transition from the.gapless phase to
of a finite magnetic fielch. In this case, magnetothermal € ferromagnetic stgtze. In Sec. Ill, we will argue that for
effects become important and must be accounted for, Th&/J<1, first, Ky, T “exp(=G/T) in the ferromagnetic
magnetothermal response itself has been studied by Loufate,G being the gap, and temperatg/rze; second, T in
and Gros in the limit of small magnetic fielé&and recently ~the massless phase; and thii, =T~ along the lineh
also by Sakai and Klimper in the low-temperature litit. =hg,. ) ) _ ) )
Here, we consider magnetic fields of arbitrary strength and Regarding the antiferromagnetic state, there is certainly
we discuss the temperature dependence of the thermal Dru@s0 an exponentially suppressed Drude weight; see, for in-
weight under the condition of zero spin-current flow. stance, Refs. 8 and 17 foh=0. However, the low-
The Hamiltonian of thexXZ model reads temperature region, in this case and fisrh,y, is difficult to
N reach with the methods of the present paper. For a discussion
1 of the low-temperature limit at vanishing magnetic field, we
H :JE{E(SS_HJ' H.c) +A§§+l_h§*}’ (1) refer the reader to Refs. 8, 9, 16, and 17. Apart from the
h low-temperature behavior, this paper studies the field depen-
whereN is the number of sites§"* are spin-1/2 operators dence of the thermal Drude weight in the phadgsnd (ii)
acting on sitd, andA denotes the exchange anisotropy. Theat finite temperatures.
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TABLE I. Magnetic phases of th€XZmodel(see, e.g., Ref. 22
and leading term of the thermal Drude weid§y, at low tempera-
tures.my is the average local magnetization &t 0. G=G(h) de-
notes the gap in either the polarized stajeor the massive antifer-
romagnetic regimeiii ). In the polarized staté), G(h)/J=h-hg,.

h My T/I<1
(i) FM, gap h>h., 1/2  KypxT¥2exp-G/T)
Saturation h=hg, 1/2 K= constT3/2
ho=1+A
(i) Massless hg <h<hg Kine T
(i)  AFM, gap h<hgy 0
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N

D;j(h,T) = > pofnliiimy(mlj;[n). (5)

E~En

Here, p,=exp(—BE,)/Z is the Boltzmann weight and de-
notes the partition function. In the exponenthas to be
chosen in the same way as in ES).

Let us now introduce the appropriate definitions of the
current operators. The local current operafgisandj,, sat-
isfy the continuity equations

Jjer— i =—1lH.d ] (6)

whered; =5 is the local magnetization density adg,=h,
is the local energy density, respectively, with=Xh,. At

j:1121

. . . . . zero magnetic field, the total currenigg==] are given
The plan of this paper is the following. First, we discuss g N5 =21 uis), are g

21,24,25
the expressions for the transport coefficients and the currerl?ty

operators in Sec. Il. Second, in Sec. Il we perform an analy- N

sis of the transport coefficients based on a Jordan-Wigner =13 (S'S.. - S4S). (7)
mapping of the spin system onto spinless fermions. In this I=1

case, interactions at # 0 will be treated by a Hartree-Fock

approximation. Third, we present our results from exact di- N ~

agonalization forA>0 in Sec. IV and compare them to the Jth=~]2lzl S (S+1X S+2), (8)

results from the Jordan-Wigner approach. The field and tem-

perature dependence of the thermal Drude weight is dis- . L E ]
cussed with a particular focus on the case of the Heisenbelyith the definition§=(S',§,AS) to achieve a compact rep-

chain. A summary and conclusions are given in Sec. V.

II. TRANSPORT COEFFICIENTS

Within linear response theory, the thermal and the spin

current are related to the gradieth and VT of the fieldh
and the temperatur€ by?®

)= =)
3/ Ly Lp/\-VT)

2

whereJ;=(j;) is either the thermodynamic expectation value

of the spin currenj, or the thermal current operatgy, re-

resentation, whileé is defined as usual. Note that subscripts
in bracketq -] refer to spin transport.

At finite magnetic field, the proper set of current operators
islB

I1=0ss J2=jn~his. 9
Now, the crucial point is that, while thepin currentj is
only conserved in th&X case(A=0), the currentj, is con-
served for all field$ and values of\, i.e.,[H,j,]=0 (Refs.
20 and 2}. Thus, it immediately follows from Eg¢3) and
(9) that the Drude weight®,,, D,;, and D, are finite for
arbitrary fieldsh.

Furthermore, one can show that the spin Drude weight

D, is also finite in the thermodynamic limit fdr+ 0. We

spectively.L;; denote the transport coefficients. At finite fre- Priefly outline the proof along the lines of Ref. 21. Given a

quenciesw, the coefficientsLjj(w) depend on the time-
dependent current-current correlation functiong¥ia

Lij(w):%f
0

In this equationy =0 forj=1 andr=1 forj=2. 8=1/Tis the
inverse temperature an@ denotes the thermodynamic ex-
pectation value. Note thakt,,=L,;/T due to Onsager’s
relation?? The real part olL;j(w) can be decomposed into a
s-function atw=0 with weightD;; and a regular pait{"{w):

B
dté(—w+i0+)tf d(jij;(t+i). 3

0

Re L”(w) = D” 5((1)) + Llrjeg(a)) . (4)

This equation defines the Drude weiglidg, for which a
spectral representation can be givén:

set of all conserved observablgg;}, the spin Drude weight
D, can be written as
T
Dll(h!T) = ﬁl(] 1|PJ 1)! (10)
whereP is the projection operator in the Liouville space on
the subspace spanned by all conserved quanfi@gs The
brackets(|:) denote Mori’s scalar produc¢see, e.g., Ref. 26

for detaily. Restricting to a subsd,,} C{Q,}, one obtains
an inequality*%”

<lem>2
Q-

providing a lower bound for the Drude weigbt;4(h,T). In

the literature, this relation is often referred to as Mazur’s

inequality?>2” Several authofd2 have used Eq(11) to in-
fer a finite spin Drude weight for the Heisenberg chain, as-

Dyy(h,T) = —>

TN, (4
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suming broken particle-hole symmetry, or the presence of ahowing thaD,~D! already holds at sufficiently high tem-
finite magnetic field, respectively. More explicitly, only one peratures. At low temperatures and zero magnetic flb.';ds

conserved quantity is often considered in Efl), namely,
Q:=ju, Which has a finite overlagj,|j) >0 with the spin
current forh# 0. This finally provesD,,(h,T) >0 for h#0.

always exponentially suppressed for eedue to finite-size
gaps; thus a finite value dd{(T=0) can only be found for

N— . On the contrary, sinc@Q z(w/N)(—i’) at low tem-

The main focus of this paper is on the case of purelyperatyresp! correctly results in dinite value atT=0 in the

thermal transport with a vanishing spin current, ih50.
We therefore arrive at a thermal conductiviky which is
described by

Rek(w) = Kip(h, T) () + kedw), (12
whereK,(h,T) in terms of the Drude weight®;; reads
D3,(h,T)
Dyy(h,T)”

Exactly the same result fd€;,(h, T) is obtained if a different

Kin(h,T) =Dyo(h, T) - B (13

choice of current operators and corresponding forces

made, e.g.js andj, from Eqgs.(7) and(8) (see Ref. 2B The
expression foKy,(h, T), being fully equivalent to Eq.13), is

then given by

Dz (h,T)
Dg(h,T)
Note that forh=0, K;,(h=0,T)=D,(h=0,T). Therefore, two

competing terms contribute t&,(h,T) in Eq. (14): the

Kin(h, T) =Dn(h, T) - B (14)

“pure” thermal Drude weighDy, and the “magnetothermal

correction,”,Bthh’s/ D.. Note that the magnetothermal correc-
tion might be suppressed by external scattering or spin-orb
coupling, breaking the conservation of the total magnetiza:
tion of the spin systertRef. 12. This is an open issue which T
may depend crucially on the particular material investigategnodynamic limit (

in experimental transport studies.

Let us now give spectral representations for the quantities

Dg(h,T), Dy(h,T), andDy, h,T) (Refs. 21, 29, and 30

| 77.BZ[l] ) 5
Dth[s](h!T): N E pn|<m|Jth[s]|n>| ) (15)
mn
Em=En
- (mljgm?
DIthT)=—=| (-Ty-2 Krmliglrol* 1
sh D=1 T mE Pig g |+ (10
Em*En
el o
Din 0. T) = - "2 Po(ljnieln). 17
n

The operator'AI':(llz)E,(S*S+l+ H.c) is the kinetic energy.

In Egs. (15—17), the magnetic field only enters via the

Boltzmann weightsp,. The two expressionB, and D! are

equivalent in the thermodynamic limit, but exhibit differ-

ences at low temperatures for finite system sf2é$:3*In

this context, note thad! - Dy, is the so-called Meissner frac-

tion, which measures theuperfluiddensity in the thermody-
namic limit and in a transverse vector-figkf3 This quantity

massless regime. Depending on the context, one should care-
fully check which of these two quantities exhibits the more
reliable finite-size behavior, and in fact, in the present case of
finite magnetic fields we will argue in Sec. IV that should
preferably be used. For a more detailed discussion of the
relation betwee! andD!, we refer the reader to Ref. 9 and
references therein.

In our numerical analysis, we will evaluai®;, D, and
Din,s While the coefficient®;; from Eg.(13) can be derived
if desired as they are linear combinations @f, D, and

iDins

D.,=Dg, (18)
DZl: D'[h,S_ hDS, (19)
Dy, =Dy~ 28Dy s + Bh?Ds. (20)

The XXZ model is integrable and solvable via the Bethe
ansatz. Therefore, one expects all quantities in Et®.and
(14) to be accessible by analytical techniques. Yet, for the
spin Drude weighD4(h=0,T) at zero magnetic field, partly
ontradictory results can be found in the literature regarding
oth its temperature dependence and the question whether it
is finite or not for the Heisenberg chaih=1) in the ther-
see Refs. 9, 28, 30, 31, and 35-38 and
further references therein

IIl. MEAN-FIELD APPROXIMATION

We now discuss a Hartree-Fock type of approximation to
the Hamiltonian equatiofil), which we use to compute the
Drude weightsD;;. The spin operator§-* are first mapped

onto spinless fermions via the Jordan-Wigner
transformatiof®
1 .
SZ:C,TC,—E; S =€e™q. (21)

Here,clm destroys(createg a fermion on sitd. The string
operatord, reads®,=3!_In, with n;=c/c;. Next, the interac-
tion termAnyn,,, appearing in the fermionic representation is
treated by a Hartree-Fock decomposition leading to an effec-
tive mean-field Hamiltonian

Hur = 2 €Cick (22)
k
with the mean-field dispersion
e =— X1 +2Aa)codk) +h—-2A(n-1/2)}. (23

The quantities to be determined self-consistently are

vanishes folN— in one dimension, but it can be nonzero =(c/,,¢)) andn=(c/c)), where the latter is related to the av-
for finite systems? In Ref. 9, we have performed a study of erage local magnetizatian via m=(§)=n-1/2. TheDrude

the finite-size scaling of both quantities for th&XZ chain,

weights can then be obtained from
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Dy1= (wBIN)(j §>, (24) suppressed at low temperatures due to the cancellation of the
contributions toKy,(h,T) in Eg. (13). In fact, such cancella-
D,1 = (7BINYjj1), (25)  fion occurs in the next-to-leading orderTnas well. One can
further show, taking into account the first nonvanishing con-
Dy = (BN (26) tribution to Ky, in Eq. (13), that
The current operators read Kin(h,T) = §\,,%T3/ze—en (31)
' 4

oo to.s +
1= 2 Gl 2= 2 &uiCic . .
! K KK 2 K KoKk describes the low-temperature behavior of the thermal Drude

weight abovehg,. In Ref. 10, it has been argued that
D,,>exp(—G/T)/\T is a generic feature of gapped systems
with a finite thermal Drude weight.

We further point out that the ratio of the thermal Drude
weight Ky, and the spin Drude weighDg fulfills a
Wiedemann-Franz type of relation in the low-temperature
limit in all three cases, i.e., in the massless and the fully
polarized state as well as ftr=hg,:

with v,=de/dk.

While this approach is exact foh=0, fair results for
Kin(h=0,T) are obtained even forOA=<1 (see Refs. 8 and
9). From Egs(24)—(26), the leading contribution at low tem-
peratures can be derived.

We start with the free fermion case=0, for which we
find at the saturation fieltl.,:

A2
Kin(h, T) = (Azz_ A_'c‘l)Tsxz, for h=hg, (27) Kin =L,T. (32)
11 D
with The constant, takes different values in the regimés and
o _ (ii), but for the free fermion caséand within mean-field
A= (1-v2)¢(1/2), theory as well it is independent of the magnetic fieild the

massless and fully polarized state, respectively.
Before turning to the mean-field theory far>0, let us
A, = 3 \/E (2 -\2)£(312) briefly discuss which results can be expected from conformal
274N 2 ‘ ' field theory for the massless state. The expressions for the
spin and thermal Drude weigli,, and D, have the same
15 [ — structure as at zero magnetic field, i.eD,y(h,T)
Az = 6 5(4—v2)§(5/2). (28)  =(#2/3)v(h,A)T and Dyy(h, T)=K(h,A)v(h,A) with field-
dependent velocity and Luttinger paramete (see, e.g.,
{(x) being the Riemann-Zeta function. Note that the spinRefs. 8 and 8 This implies that the constaht, appearing in
Drude weight alf=0 is finite for 0<h<h,, and vanishes for Eq. (32) is field dependent in the massless regifsee Ref.
h=h,. At low temperatures and foh=h, we find 16 forh=0):

Dll(T)zAllﬁ and a divergence of the pure thermal Drude 2
weight Dy, with Dy, ~h2,A,, T2 to leading order in tem- 0= . (33
perature, which follows from Eq$19) and(20). We mention 3K(h,A)

that the resulD,,=T%? at the critical field was also found Furthermore,D,; vanishes in the continuum limit due to
within a continuum theory suggested to describe transporbarticle-hole symmetry. While a finite magnetic field initially

properties of two-leg spin laddet$. ) breaks this symmetry for the original bosonic fields, the
In the intermediate regime, i.e., the gapless stit}§see  qyriginal form of the Luttinger-liquid Hamiltonian is restored
Table I, by introducing a shifted bosonic fiefd This has an interest-

2 J— ing consequence for the low-temperature behavior of the
Kin(h, T) = Ev(h)T; v(h) = V1 -h? (29)  pure thermal Drude weiglid,,. Namely, by solving Eqg19)
and(20) for Dy,, one obtains

holds at low temperatures, because the dispersion is linear in hD. 2 h2
the vicinity of the Fermi level forkz#0,7. Note that Dip=Dgp+ —=—uvT+ Kv—, (39
Kin(h,T)=Dyy(h,T) for small T in this regime. Equation T 3 T
(29) results inKy,=72JT/3 for h=0, which is, e.g., known \hich implies thaDy, diverges at low temperatures with'
from Ref. 16. _ in the massless regime, consistent with results of Ref. 19.

For |h|>]he|=1, both Dy, and the second term in Ed.  Additionally, one obtainy, in the massless regime and
(13), i.e., D3,/(TDyy), are given by in the low-temperature limit

- e
Dj,=D3,/(TD;y) = \/;GZ = (30) Kin(h,T) = Dy, = Ev(h,A)T. (35)
v

to leading order in temperature and f6,KxG, whereG/J Both parameters, i.eK=K(h,A) and v=v(h,A), can be
=|h|-1 is the gap. This implies that(h,T) is strongly = computed exactly by solving the Bethe-ansatz equafidns.
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06 ' T ' I ; . ' T ' In the ferromagnetic state and for low temperatures, the
- A=0.1: MF vs ED —— h=0 T parametera from Eq. (23) is exponentially suppressed and
05 R ‘l::‘l)? - the average local magnetizationris=1/2. Thus, to leading
Y/ N h=1.5 1 order inT, the low-temperature dependencelqgf(h,T) is
041 . —— ED,N=18 independent o\, similar to the case dfi=h.,, and the ther-
B //’,--\:\ . mal Drude weight is exponentially suppress&g,(h,T)
g osf N 4 «T32e7CT with G=h-h,.
V- 1)/ N ] In the gapless state, our mean-field theory results confirm
02| I/’ \\\\ _ that Ky,(h,T)=V(h,A)T for A>0 and low temperatures.
L s ar—— “\\\ 1 However, the mean-field prefactoh,A) will be renormal-
01l //" ""“*-*~_:‘ i, ized if interactions are fully accounted ffsee Eq.(35)].
" /./' . In summary, we have obtained the leading low-
ol Do ! \ I , I . temperature contributions , in the regimesi) and (ii) of
0 02 0 o % 08 ' Table | using mean-field theory and conformal field theory.

Mean-field theory provides a reasonable quantitative descrip-
FIG. 1. Thermal Drude weighy(h,T) of the XXZ chain for  tion of the transport coefficients for smallandh as well as
A=0.1: comparison of mean-field theofyF) and exact diagonal- for h=h,.
ization (ED). The thermal Drude weigh,(h,T) is shown forh
=0,0.5,1.1,1.5. Increasing field is indicated by the arrow. Thick
lines denote results from the Hartree-Fock approximation; thin IV. EXACT DIAGONALIZATION
lines: ED forN=18. Deviations at low temperatures fo=0 and

A : In this section, we first present numerical results for the
h=0.5 are due to finite-size effects in the ED results.

thermal Drude weight of the Heisenberg chéaik~1). Sec-

The velocityv=v(h) has been calculated far=1 in Ref. 40.  ond, the field dependence Kf,(h,T) for intermediate tem-

Further numerical values for these parameters can be fourfgeraturesT is analyzed. NextKy(h,T) for h=hg, is dis-

in, e.g., Ref. 41. cussed for different choices of the anisotropy=0 and
Let us next dicuss the results from the MF approximationfinally, we make some remarks on the lower bound for the

for A>0. Figure 1 showsKy(h,T) for A=0.1 andh  spin Drude weighD;,=Ds given in Eq.(11). While D¢(h,T)

=0,0.5,1.1,1.5(thick lines. The main features ardi) a  still eludes an exact analytical treatment for arbitrary tem-

suppression of the thermal Drude weight by the magnetigeratures, analytically exact results fdby,(h,T) and

h>0.5 compared toh=0; (iii) a change in the low- _‘ep’orted in Ref. 19.

temperature behavior which will be discussed in more detai Let us first address a technical issue; namely, the appro-

below in this s_ection. . .__.._priate choice forD4(h,T) in Eq. (14). For the case of zero
For comparison, the results from exact d|agonal|zat|0rfna netic field weskn,ow from our previous study Ref. 9 that
(ED) for N=18 sites are included in Fig. (¢thin lines and | E d i h hibit & diff P finite.si y b h. .
we find that the agreement is very good. Deviations at Iovxps( D anc D_S( ?T)_ exhibit a : ere_nt '”'t?'s.'ze. enavior
at h=0. This is similar to the situation at finite fields. The

temperatures foh=0 andh=0.5 are due to finite-size ef- ) | i
fects; i.e., the ED results are not yet converged to the thefnset of Fig. 28) shows bothDy(h,T) and Ds(h,T) for A

modynamic limit. For larger field§=h,=1.1, deviations -1 andh=0.5, and we see that firsBg (h, T) is well con-
between ED and MF are negligibly small. verged atllow temperl?tures;_ and second, a large difference

From Eq.(23), we can derive the critical fieltl., within ~ betweerD¢(h,T) andDg(h,T) is visible at low temperatures.
the Hartree-Fock approximation. Ak=0 and h=h.,, the =~ The thermal Drude weighKy,(h,T), resulting from either
ground state is the fully polarized state with(c/c,)=1;i.e., insertingD(h,T) or D{(h,T) in Eq. (14), is shown in Fig.
the parameter from Eq. (23) vanishes. Consequently, we 2(2). We have decided to uda! in the numerical study for
find h,,=1+A in accordance with the exact restdtindeed, — consistency reasons, since with this choice, all Drude
the low-energy theories along the lime=1+A and for A Wweights entering in Eq14) have a similar finite-size depen-
=0 are equivalent in the sense that they are characterized I§ignce at low temperatures, characterized by the exponential
the same Luttinger paramef&X2 Within bosonization, the suppression at low temperatures due to the finite-size gap.
line h=hg, is special since the velocity of the elementary On the contrary, usin®{(h,T) leads to an artificial double
excitations vanishes here. peak structure ifK(h,T) [see Fig. 2a)].

Regarding the low-temperature behavior of the thermal We have checked that a similar scenario arisesAfe0
Drude weight, we can then conjecture that it is given by Egsfor finite systems. However, for this case the Drude weight
(27) and (28) for h=h,,, independently ofA. We will come  can be computed exactly in the thermodynamic limit and we
back to this issue in Sec. IV, where we discuss the resultfind that one of the two maxima disappears. Thus we expect
from exact diagonalization fak >0. The case oA=-1 and an analogous behavior fd&r> 0, supporting the choice dijg
h=0, however, seems to be an exception, as we have fouridstead ofD!.

indications for Ky,(h=0)=T at low temperatures befofe. Further numerical results fdf,(h,T) of the Heisenberg
Here, the existence of many low-lying excitations mightchain are provided in Fig.(B) for h=1.5. The main features
complicate the situation. of the thermal Drude weight can be summarized as follows:
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L B e s C T 1 T
(a) A=1, h=0,0.5 = 08K\ — '+ ~y T/=0.5, N=18 4 // N -
14f o h=0 g 06 s 7 L5 N % sl / \ ]
L 044 N . \ =] & 7 \
S o 0.2 — NQ \\ A=1 552—// \ -
= oL ] (=) =
E O08F  [aweds w0 02 04 06 038 =
MG Wi S m—m“"G e / i
04 NG i ia ik taon o —
0.2
[i}3 | | 1 1
(b) A=1,N=20 — h=1.5,N=18
o 04 — h=1.5
= -—- h=2
& 03 h=2.5 . ,
S ok /0 T h=3 FIG. 3. Main panel: field dependence of the thermal Drude
N

weightKy,(h,T) for A=0.5,1,2 andl/J=0.5(ED for N=18 site$.
____________________________________ Inset: field dependence &,(h,T) for the same parameter sets as
in the main panel.

- e
P —_——————

Heisenberg chain, is also observed for other choices for the

FIG. 2. Thermal Drude weight,(h, T) of the Heisenberg chain anisotropyA. This is demonstrated foA=0.5,1,2 atT/J
(A=1). Panel(a) Ky(h,T) computed from Eq(14) usingDs=D.,  =0.5 in the main panel of Fig. 3, whekg,(h,T) is shown as
(solid line9 and D¢g=D! (dashed lings both for h=0.5 andN  a function of the magnetic field and plotted versub/hg,.
=12,14,16,18,20. Arrows indicate increasing system size. Thén contrast toK,(h,T), Dy,(h, T) grows with increasing mag-
dotted line is the result foh=0 andN—c from Ref. 16. Inset: netic field at intermediate temperatures. For illustration,
comparison ofDy(h,T) [solid line§ and Dg(h,T) [dashed lines D, (h,T) is plotted versus/hg, at T/J=0.5 in the inset of
h=0.5, A=1. Panel(b)l Kin(h,T) for h=1.5,2,2.5,3 andN=20 Fig. 3 for the same choice of parameters as in the main panel.
[thick lines;Dg(h, T)=Dg(h, T)]. The curve foN=18,h=1.5is in- | axhibits a maximum at large fields, which increases and its
cluded(thin solid ling. position approacheis=h,, when the temperature is lowered.
(i) for 0<h<h,, finite-size effects are small foF/J=0.4  Thus, indications of the transition to the ferromagnetic phase
[see Fig. 2a)]; (ii) for h=h,, finite-size effects are negli- are visible inDy(h,T), but not present irKi,(h, T). Note,
gible; (iii ) the position of the maximum depends on the mag-however, that all three curves in the main panel of Fig. 3
netic field; and(iv) Ky, (h,T) is strongly suppressed as the almost pass through the same point fiee he,. For T/J<1,
magnetic field is increased. Dy (h,T) is enhanced by the magnetic field, and we can

As both Dy,(h,T) and Dy, {h,T) converge rapidly to the therefore conclude that the decreas&gth, T) as a function
thermodynamic limit at high temperatures, the small finite-of magnetic field is due to a cancellation®f,(h, T) and the
size effects observed fdi/J=0.4[see Fig. a)] are due to  magnetothermal correction in E€L4).
Dy(h,T) [see the inset of Fig.(@]. At low T, Ki(h,T) in- Along the critical lineh=h.,=1+A, further evidence for
creases with system si2¢ while it decreases with growing yniversal low-temperature behavior can be found by ED.
N at high temperatures. The vanishing of pronounced finiteThis can be seen in Fig. 4, where we presegth, T) for
size effects upon approaching the Iime_hc_z from below can A=0.1,0.5,1,2 andN=18. The curve forA=0 is also in-

fermions with parameters independent’ofs valid here, as modynamic limit. BelowT/J~0.25, the curves lie on top of

was already evidenced in the previous section. For the ferro- o AR
magnetic statéh>h,,), the curves shown in Fig.(B) for each other. Small deviations at lowest temperatures visible in

N=20 are indistinguishable from the corresponding ones fo hrﬁspézt C?)?tsbgu?i(g;]tz:?gsitgnt?grﬁrgséinTﬁ t?\;?rl;gl;r? dgaps.
N=18 (not included in the figusewithin the line width. PP : :

Regarding the position of the maximum, there is evidencézs) hold _for arbit_raryA>0 and f“T‘h_er numerical dataot
that it is first shifted to higher temperatures when the field iénCIUded in the figurpshow that it is also correct for —1
switched on as compared to the casénal [see Fig. 2a)]. <A<0. . . .

A precise determination of its position in the intermediate Fmally,_let us turn t_o the mequallty E(ql.l) for the spin
gapless phase is somewhat complicated as typically, the mli)_rude We'ghpll(h’T)_Ds.(h’T) mtroducgd n Sep. . nge,
merical data converge well down to roughly only the peakVe Want to discuss to which extent the inequality B) is

temperature. Still, there are indications that at strong fielg§xhausted by, at finite magr)etic fields.ar]d finite tempera-
tures. An analogous analysis in the limit ¢=0 can be

h~1, the maximum tends to be located at lower tempera; ; .
tures than foh=0. This can be seen, for instance, in the casd®Und in Ref. 21. To this end, we compaldg(h,T) and

of h=1.5 in Fig. Zb). In the polarized statK,(h,T) defi- 7 (sjmn)? 1Dt2h {h,T)
nitely peaks at larger temperatures than at vanishing field due Dsudh, T) == TN (2 _TD ](h T (36)
to its exponential suppression at low temperatures. J s
The decrease d{;,(h,T) as a function of increasing mag- in Fig. 5. Note that first, the relatioDy(h,T)=Dgh,T) is
netic field, as mentioned in the preceding discussion of thequivalent to the positivity of the thermal Drude weight
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FIG. 4. Thermal Drude weigh,(h,T) at the critical fieldh, ol . .
=1+A for A=0,0.1,0.5,1,2. FoA # 0, we show numerical results 0 02 04 7 0.6 08 !
for N=18 sites, while the curve for the free fermion céten solid
line) is valid in the thermodynamic limit. FIG. 5. Comparison of the spin Drude Weight(h,T) (thick

. . lines) and its lower boundD thin lines; see text for further
Kin(h, T)=0. Second,DS(h,T)zDsub(h,T) implies a very deta)ils. The figure showssu?e(sults fod=1, N=20, and h
small thermal Drude weight, and thus the comparison prog 5 5 2 5.
vided in Fig. 5 also reveals the relative size of the two con-
tributions toKy,(h,T) in Eq. (14): Dg(h,T) and the magne- magnetic fields using mean-field theory and exact diagonal-
tothermal correctiorthhvs(h,T)/[TD!S(h,T)]. In Fig. 5, results  ization. Magnetothermal effects have been taken into account
are shown forA=1, N=20 sites, anch=0.5,2,2.5. For the and the condition of zero magnetization current flow has
sake of clarity, data for smaller system sizes are not includetieen applied. Let us now summarize the main findings and
in the figure. Differences between the curves for18 and  relate them to experiments.
N=20 are anyway only pronounced for temperatufés We have discussed the low-temperature limit of the ther-
=0.1 and become smaller as the magnetic fieidcreases. mal Drude weightK,(h,T) and we have given arguments
Figure 5 allows for three major observationgi) that it changes from an algebraic behavior forA<1, h
DL(h,T)=Dgh,T) at low temperatures and for all cases <hc, to an exponentially activated behavior in the polarized
shown in the figurefii) Dg,fh, T) approximate®l(h,T), the  State forh>hc,. In addition, the leading term at low tem-
better the larger the magnetic field; afiil) significant de- Peratures along the cr;/t;cal life=hc,, A>-1, is universally
viations are present for high temperatures, implying that fodIVen by Kth(h’T)?A.T , where the prefactoR, given in
a quantitative description db(h,T) using Eq.(11), more  £ds-(27) and(28), is independent od. In the gapless phase,
conserved quantities need to be considered in(Ef. the Iea_ldmg _contrlbutlon_thh(h,T) is linear in the tempera-
Our comparison provides, at least for finite system sizes, 1€ With a field- and anisotropy-dependent prefactor. In con-
guantitative measure of the temperature range Wlte'sre sequednce,bthe thermal IIDrud(; We'ghﬁ}(h’r-]r ) can Ee ex-l
~Dg, Point (i) indicates that analytical approaches canpeCte to be proportional to the speciiic heat In the gapless

g - state in the low-temperature limit, where the velocity of el-
make use ofDg,{h,T) for a quantitative descrlptlon__of ementary excitations is constant.
Dy(h,T) at low temperatures, as has been done by Fujimoto  ryrher, the Drude weight is suppressed by the magnetic

and Kawakami within a continuum theory in Ref. 28. The fie|d, which can be ascribed to the increase of the magneto-
quantities that appear on the right hand side of B6) are  thermal correction relative to the pure thermal Drude weight
less involved than Eqg15) and (16) for D¢(h,T), as the p,(h,T). As a third result, the position of the maximum of
former are static correlators. Furthermore, for finite magneticKth(h,T) depends nonmonotonically on the magnetic field.
fields, we suggest to compul(h,T) analytically from Eq.  whijle in the present paper, we have focused on the thermal
(11), taking into account some of the conserved quantitieprude weightK,, under the condition of zero spin-current
Qm which are, in principle, knowfsee, e.g., Ref. 43Such  flow, our analysis of the full transport matrix E) can
a procedure is applicable to#0 and might circumvent the  easily be extended to a variety of other transport situations,
ambiguities in the results encountered in recent computationghich would be characterized by different combinations of
of D¢(h=0) (Refs. 28, 36, 38, and 44The latter have used the Drude weights.
Eq. (16) directly or Kohn's formul&®®° equivalently. Re- Turning now to experiments, we emphasize that for a de-
garding the relative size d@y,(h, T) and the magnetothermal scription of realistic materials external scattering has to be
correction, we see that the latter becomes more relevant thgcounted for. In a simple picture, one may expect the Drude
larger the magnetic field is which leads to the strong suppregpeak to be broadened by external scattering mechanisms.
sion of Ki,(h,T). This is consistent with results of the previ- The behavior in magnetic fields that one may observe in
ous sections of this paper. experiments will likely depend both on external scattering
rates as well as on the thermal Drude weight. Nevertheless,
one may speculate that qualitative trends of the field depen-
In this paper we have studied the thermal Drude weight oflence of the thermal Drude weight are reflected in thermal
the XXZ model with exchange anisotrop¥=0 in finite  transport experiments.

V. CONCLUSIONS
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In recent experiments on gquasi-one-dimensional magnetiequire reliable methods to separate the magnetic contribu-
materialsi— the thermal conductivity has often been found tion from the phonon part, which is a challenging task in the
to be insensitive to the application of an external magnetiénterpretation of experiments. Nevertheless, we believe that
field. This is, however, explained by the large absolute valudurther experiments on the field dependence of the thermal
of the exchange coupling in these materials, being typicalliconductivity could hint at the nature and mechanisms of
of the order of magnitude of 1000 K. It would therefore be magnetic transport properties.
desirable to perform measurements on materials with a mod-
er_ately small exc_hange coupling to check our re;ults. Still, it ACKNOWLEDGMENTS
might be very difficult to reach the saturation fiefig, in
realistic materials, but at least the qualitative features like the This work was supported by the DFG, Schwerpunktpro-
suppression of the thermal conductivity or a shift of thegramm 1073. It is a pleasure to thank B. Biichner, D.C. Ca-
maximum could be verified. In particular, experiments inbra, and C. Hess for fruitful discussions. We are indebted to
relatively large magnetic fields may provide an indirectC. Hess for a careful reading of the manuscript and valuable
probe of spin currents in one-dimensional quantum magnetsuggestions. We acknowledge support by the Rechenzentrum
which have so far not yet been observed directly in experiof the TU Braunschweig where parts of the numerical com-
ments. Conclusions about the low-temperature limit wouldputations have been performed on a COMPAQ ES45.
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