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The spin dynamics of a ring-shaped molecule comprising 10 ironsIII d ions ss=5/2d is studied by inelastic
neutron scattering. Exchange integrals and single-ion anisotropy parameters are determined by studying several
intermultiplet excitations. Difficulties associated with the dimension of the Hilbert space are overcome by
exploiting both the irreducible tensor operator technique and the Lanczos algorithm. By calculating the time
correlation function of the Néel vector we show that the low-temperature spin dynamics of Fe10 is only
approximately described by the semiclassical picture of tunneling of the Néel vector.
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I. INTRODUCTION

Quantum effects in antiferromagneticsAFd rings formed
from a finite number of coplanar magnetic ions were widely
investigated during the past few years.1–11 Indeed, favorable
conditions for the observation of mesoscopic quantum coher-
ence are expected in these systems, where tunneling of the
Néel vectorn can take place at a frequency larger than the
decoherence rate.1,3,6

The Fe10 ferric wheel, fFesOCH3d2sO2CCH2Cldg10, is a
typical example of a spin-compensated AF ring.12 The ten
FesIII d ions ssFe=5/2d form an almost coplanar ring in a
distorted octahedral coordination. With AF nearest-neighbor
coupling, the ground state is a singlet with total spinS=0.
Low temperature magnetization and magnetic torque mea-
surements have revealed the presence of well defined steps at
evenly spaced magnetic field values, corresponding to level-
crossing conditions.12–14 Theoretical studies of the low tem-
perature magnetic susceptibility of Fe10 are discussed in Ref.
15, and a detailed analysis of the magnetization curves based
on numerical simulations, exact diagonalization and density
matrix renormalization group methods is given in Ref. 4. A
numerical study of the low-lying eigenspectrum of the ex-
change Hamiltonian for ferric wheels is presented in Ref. 5.
Proton nuclear magnetic resonancesNMRd experiments on
powder samples have shown a strong enhancement of the
spin-lattice relaxation rateT1

−1 corresponding to level cross-
ing betweenuS,−Sl and uS+1,−sS+1dl states induced by an
external magnetic field.16 These effects were interpreted as a
consequence of dipole-dipole superhyperfine couplings be-

tween the proton nuclear spin and the electronic spins of the
magnetic ions.17 Further information on the energy splitting
of the low-lying spin levels of Fe10 was provided by heat
capacity measurements.18

Fe10 recently attracted interest as a system potentially
suitable for observing quantum tunneling of the Néel
vector.1,3 Inelastic neutron scatteringsINSd is an ideal tech-
nique to assess to what extent such effect characterizes the
low-temperature spin dynamics. In fact, the measured change
in neutron energy produced by the transition from the Fe10
ground state to the first excited spin state gives directly the
tunneling frequency of the Néel vector. In addition, from an
accurate determination of eigenstates and eigenfunctions of
the cluster spin Hamiltonian, the time correlation function of
the Néel vector,knastdnas0dl, can be calculated.

Here we report the results of INS measurements carried
out on a polycrystalline sample of Fe10, and we discuss the
analysis of the experimental data. Energies and intensities of
several excitations corresponding to transitions between
zero-field split spin multiplets were observed. Neutron re-
sults are interpreted using a microscopic spin Hamiltonian
approach, and the dynamics of the Néel vector is analyzed.

II. EXPERIMENTAL DETAILS

The Fe10 sample was synthesized following the procedure
described in Ref. 12. The molecule has an idealizedD5d
symmetry, with aC5 axis passing through the inversion cen-
ter and five perpendicularC2 axes passing through pairs of
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Fe atoms related by the inversion center. The system crystal-
lizes in the P21/c space group fa=11.106s3d Å, b
=15.958s3d Å, c=22.938s5d Å, b=97.34s1d+ at 226 Kg and
the unit cell contains two Fe10 molecules related by the 21
screw axissFig. 1d.12

The INS experiment was carried out using the time-of-
flight Disk Chopper SpectrometersDCSd at the National In-
stitute of Standards and TechnologysNISTd Center for Neu-
tron Research, Gaithersburg, USA.19 Three grams of
protonated polycrystalline sample were sealed in an annular
cylindrical Al container, ca. 6 cm in height, 2.2 cm external
diameter and 1 mm annular thickness. A standard liquid-
helium cryostat allowed us to reach a base temperature of 1.8
K. Data were taken at several temperatures operating DCS in
the “low resolution” mode19 with three incident neutron
wavelengths,l=2.9 Å, 5 Å, and 7 Å corresponding to full
width at half maximumsFWHMd resolution widths for elas-
tic scattering of 500, 105, and 42meV, respectively. The
measured intensities were normalized to the signal from a
vanadium sample and the standard procedure for time-of-
flight data treatment was applied using the DAVE software
package.20

III. EXPERIMENTAL RESULTS AND ANALYSIS

The INS response recorded with an incident neutron
wavelength of 7 Å, and the sample at a temperature of 1.8 K,
is shown in Fig. 2. Magnetic excitations are observed at 0.33
meV and around 0.67 meV, where two barely resolved peaks
can be distinguished. These excitations approximately corre-
spond to transitions from theuS=0,M =0l ground state to the
first uS=1l excited state, which is split by anisotropic inter-
actions into itsM =0, M =1 andM =−1 components. We at-
tribute the signal at about 0.25 meV to impurities. At 5 K, the
intensities of both groups decrease, as expected for transi-
tions arising from the ground state. The splitting of theuS

=1,M = ±1l states suggests the presence of a sizeable non-
axial term in the spin Hamiltonian.

Spin excitations at higher energy were measured using an
incident wavelength of 5 Å at three different temperatures, 2,
5 and 10 KsFig. 3d. Because of the lower energy resolution
in this setup, the spurious peak at 0.25 meV appears as a
shoulder on the low-energy side of the peak at 0.33 meV. The
peak at 1.20 meV in the spectrum recorded at 2 K is due to
a transition from the weakly populateduS=1,M =0l state at
0.33 meV to theuS=2l multiplet, centered at about 1.5 meV.
At 5 K the uS=1,M = ±1l levels are also thermally popu-
lated, and theuS=1,M = ±1l→ uS=2l transition appears at
0.9 meV. Finally, at 10 K the transition from theuS=2l level
to the uS=3l state lying at about 3.1 meV becomes visible
at 1.6 meV. Thus the low-lying spin multiplets withS=1, 2,
3 … have, to a good approximation, energies given by the
Landé interval rulessee belowd, EsSd=2JSsS+1d /N, with
N=10 andJ=1.25 meV. TheJ value so determined has been

FIG. 1. Perspective view of the Fe10 crystal structure. The stack-
ing of the molecules produces channels through the centers of the
wheels. Only Fe ions are shown for clarity.

FIG. 2. sColor onlined INS spectra recorded on DCS with an
incident wavelength of 7 Å and the sample at 1.8 Ksblue squaresd
and 5 K sred circlesd. Counts in individual detectors at different
scattering angles were summed before the time-of-flight to energy
conversion. The solid lines represent intensities calculated as de-
scribed in the text.

FIG. 3. sColor onlined Spectra recorded withl=5 Å and T
=2 K sblue squaresd, 5 K sred circlesd, and 10 Ksgreen trianglesd.
The energy resolution is 105meV at the elastic peak. Data points
correspond to the sum of individual detector counts over the
spanned scattering angle range. The solid lines are intensities cal-
culated as described in the text. The inset shows the intensity dis-
tribution measured at 1.8 K with an incident neutron wavelength of
2.9 Å.
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used as starting point in the fitting procedure of the whole
data set.

The spectrum recorded atT=1.8 K with l=2.9 Å is
shown in the inset of Fig. 3. Because of the INS selection
rules,DS=0, ±1, the neutron group around 4 meV must cor-
respond to a transition from theuS=0l ground state touS
=0l or uS=1l excited states not belonging to the Landé band.
Indeed, the diagonalization of the exchange Hamiltonian al-
lows us to identify this broad peak with transitions toward
four, almost degenerate,uS=1l multiplets.

The experimental data were interpreted assuming that the
cluster spin system can be described by the Hamiltonian

H = Jo
i=1

10

si ·si+1 + do
i=1

10 Fsz,i
2 −

1

3
sissi + 1dG + eo

i=1

10

fsx,i
2 − sy,i

2 g

+ o
i, j=1

10

si ·Di j ·sj + gmBB ·o
i=1

10

si . s1d

The first term, with s11;s1, is the isotropic, nearest-
neighbor Heisenberg exchange interaction. The second and
third terms describe the axial and rhombic parts of the local
crystal-field sCFd interaction, and the fourth term is the
dipole-dipole intracluster interaction, which is evaluated
within the point-dipole approximation. Theẑ axis is normal
to the plane of the ring. Fourth-order local anisotropy terms
have no appreciable effect on the calculated INS intensities
and are therefore neglected.

Sincesi =5/2, thetotal dimension of the Hilbert space is
very large,s2si +1d10=60466176, and this prevents a full ex-
act diagonalization of the Hamiltonian. The Heisenberg con-
tribution is dominant and antiferromagnetic. Hence, as a first
approximation, the energy spectrum is characterized by a
series of level multiplets with an almost definite value of the
total spin quantum numberS. Therefore, in the first step of
our procedure only the first term in Eq.s1d was considered.
By exploiting the rotational invariance of the isotropic ex-
change interaction, the Hamiltonian matrix was block-
factorized according toS. This can be effectively done by
using irreducible tensor operatorssITOd algebra, and writing
the spin statesunl as linear combinations of basis vectors

usS̃dSMl labelled by the set of intermediate spin statessS̃d. A
further factorization was achieved by building basis states
belonging to irreducible representationssirrepsd of the C2
point group, as the exploitation of the full symmetry of the
Heisenberg Hamiltonian turned out to be more cumbersome
to treat numerically. Even in this way the dimensions of the
diagonal blocks remain too largesof the order of 200000d to
perform a full standard diagonalization. Therefore, we used
the Lanczos method to calculate the lowest eight states in
each subspace, i.e., for each value ofS and for each irrep of
C2. By using the Lanczos method in combination with the
ITO formalism swhich was needed to exploit the conserva-
tion of the total spind we managed to include a number of
excited states sufficient to interpret INS results at nonzero
temperature. In the second step of our calculation, the aniso-
tropic part of the spin Hamiltonian and the associated
S-mixing effects were included by using the procedure de-
scribed in Refs. 8 and 21. The error associated with this

procedure is much smaller than experimental uncertainty.
The lowest energy levels of the Heisenberg part of the

Hamiltonian are shown in Fig. 4. The energy of the lowest
level for each value ofSalmost exactly follows the rotational
s“L” d band behavior,22,23 EsSd=ALSsS+1d, with AL

,0.25 meV. These levels belong to thek=0 or k=p irreps
of the discrete translation group. A second group of parabolic
bands
s“E bands”9d is visible above the rotational band. These lev-
els belong to thekÞ0, p irreps of the discrete translation
group. TheL andE bands reflect the fact that at low energy
the exchange Hamiltonian can be approximated by a two-
sublattice Hamiltonian~ Seven·Sodd, whereSevensSoddd is the
total spin of evensoddd sites.24 The rotational character of
theL-band excitations can also be understood by considering
that if the spins in the ring have nearly staggeredsNéeld
alignment the AF Heisenberg Hamiltonian with uniaxial an-
isotropy can be semiclassically mapped into1

Hrot =
2J

N
S2 + gmBB ·S+ Ndnz

2, s2d

whereN is the number of spin centers in the ring,S=Seven
+Sodd is the total spin andn=sSeven−Soddd /N is the Néel
vector. If B=0 andd=0, Hrot describes anOs3d rigid rotor,
whose eigenvalues are 2JSsS+1d /N.

The INS cross section for a polycrystalline sample of
magnetic molecules is25

]2s

]V ] v
=

A

Nm

kf

k0
e−2Wo

n,n8

e−bEn

Z
Inn8sQdds"v − En8 + End,

s3d

whereA=0.29 barn and the functionInn8sQd is defined as26

Inn8sQd = o
i,j

Fi
*sQdFjsQdH2

3
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2
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d
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1
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2 ss̃xi

s̃yj
+ s̃yi
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dg

+ j2sQRijdfC1
2ss̃zi

s̃xj
+ s̃xi

s̃zj
d + C−1

2 ss̃zi
s̃yj

+ s̃yi
s̃zj

dgJ .

s4d

In the above equationsNm is the number of magnetic ions,Z
is the partition function,k f and k0 are the wave vectors of
the scattered and incident neutrons, exps−2Wd is the Debye-
Waller factor,Q=k0−k f is the scattering vector,En is the
energy of the spin stateunl ,FsQd is the magnetic form factor,
Ri j gives the relative position of ionsi and j ,

C0
2 =

1

2
F3SRijz

Rij
D2

− 1G ,

C2
2 =

Rijx
2 − Rijy

2

Rij
2 ,
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C−2
2 = 2

RijxRijy

Rij
2 ,

C1
2 =

RijxRijz

Rij
2 ,

C−1
2 =

RijyRijz

Rij
2 , s5d

and

s̃ai
s̃g j

= knusai
un8lkn8usg j

unl sa,g = x,y,zd. s6d

A best fit of the measured neutron spectra based on cal-
culations of Eq. s3d enables the parameters of the spin
Hamiltonian to be determined. The analysis is here compli-
cated by the fact that even at low temperature the INS spec-
tra show a broadening of the inelastic features, whose
FWHM is about twice as large as the instrument resolution.
This broadening is most probably a consequence of struc-
tural disorder resulting in a spread of the anisotropy param-
eters throughout the sample. To account for this effect in the
simplest possible way, the CF parametersd and e fcf. Eq.
s1dg were allowed to vary within a finite interval assuming
Gaussian distributions of values. These distributions were
then used to obtain a weighted average of the INS spectra
calculated for different sets of parameters, assuming resolu-
tion limited linewidths for each set. The best fit of the ex-
perimental datassolid lines in Figs. 2 and 3d is obtained for a
nearest-neighbor exchange integralJ=1.23 meV, an axial
anisotropy parameter with mean valued=−5 meV and stan-
dard deviationsd=0.25meV, and a rhombic anisotropy pa-
rameter with mean valuee=3.6 meV and standard deviation
se=1.8 meV. An almost equivalent fit is obtained assuming
the values ofd quoted above and values ofe approximately
halved. There are in fact two sources of axial and in-plane
anisotropies, namely crystal field and dipole-dipole interac-
tions. While the sign of the axial anisotropy can be deduced
from the measured spectra, no information can be extracted
about the sign of the in-plane anisotropy. Hence, once the
dipole-dipole contribution is calculated in the point-dipole
approximation, there are two possible choices fore fitting the
spectra equally well. We remark that the CF axial anisotropy,

represented by the parameterd, is about 30% of the total, the
dominant contribution being determined by the dipole-dipole
interactions. For a realistic modelling of disorder one should
include the distribution of dipole-dipole interaction strengths
produced by local strains. We have instead chosen to mimic
the latter by a wider distribution of CF parameters for the
sake of simplicity, since this choice turns out to work very
well and it does not affect the mean values of the best-fit
parameters.

Equations3d has also been used to evaluate theQ depen-
dence of the transition intensities obtained from groups of
detectors after normalization for efficiency and geometrical
variations. The experimental data for selected transitions are
shown in Fig. 5 together with the calculated curves. The
good agreement between calculation and experiment con-
firms the proposed spectroscopic assignment.

IV. DYNAMICS OF THE NÉEL VECTOR

The low-T, low-frequency spin dynamics of Fe10 can be
expressed in terms of the dynamics of the Néel vectornstd
and the total spinSstd.6 In fact, since low-energy states be-
long to either thek=0 or the k=p irreps of the discrete
translation group of the ring, at lowT the low-frequency
spectrum of the various dynamical spin correlations is solely
determined by the dynamical structure factors ofS andn.

The most interesting aspect of the dynamics of Fe10 is the
possible occurrence of tunneling of the direction ofn.1,3,6

This is the AF counterpart of the tunneling of the magneti-
zation sSz in the present notationd observed in nanomagnets
se.g., Mn12 or Fe8d. For the latter the tunneling time is mac-
roscopic, and so long that the time autocorrelation ofSz be-
comes overdamped due to dissipation into the nuclear-spins
subsystem. Thus the temporal oscillations ofSz associated
with coherent tunneling do not actually take place. On the
contrary, the time scale of the tunneling ofn in AF rings is
microscopic, and much shorter than the decoherence time
associated with spin-nuclei or spin-phonon interactions.

FIG. 4. Lowest energy multiplets of the Heisenberg part of the
Hamiltonian as a function of the total spinS.

FIG. 5. Neutron scattering intensities for the transitionuS=0l
→ uS=1l at 4 meV, as a function of the transferred wave vector
Q sl=2.9 Åd. The line is the corresponding calculated intensity.
The inset shows theQ dependence of theuS=0,M =0l→ uS=1,M
=0l transition at 0.33 meVsopen circles and dashed lined and uS
=0,M =0l→ uS=1,M = ±1l transition at 0.67 meVssquares and
solid lined; sl=5 Åd.
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Within the semiclassical framework of Eq.s2d, the condi-
tion for the occurrence of a tunneling regime is that the tun-
nel actionS0=NsÎ−2d/J be much larger than unity.6 With
this condition, the orientation of the vectorn tunnels be-
tween ±ẑ. The estimate for the tunnel action in Fe10 sbased
on torque measurements resultsd wasS0=3.3,4,6 making this
ring one of the most promising candidates for the tunneling
to be observed. Our neutron scattering results show thatS0 is
even larger, i.e.S0,4.2. In order to match the semiclassical
description, in calculatingS0 we considered a model Hamil-
tonian given by Eq.s1d, simplified by assuming single-site
axial anisotropy only, but with a larger value of the axial
parameter,d* =3.45d=−17 meV.27 The previous underesti-
mate ofS0 was due to both an overestimation ofJ and an
underestimation ofd* . Indeed, the parameters used in Ref. 4
areJ=1.34 meV andd* =−12 meV.

In order to illustrate the classical situation, we consider
the classical version of the model Hamiltonian given by Eq.
s1d.27 The magnetic fieldB is applied along thex̂ direction.
Figure 6 shows the energy surfaceEsu ,fd as a function of
the directionsu ,fd of the spin of one sublattice. For any
value of su ,fd the orientation of the second sublattice is
determined by minimizing the classical energy. Classically,
there are two equivalent minima inEsu ,fd, which corre-
spond to swapping the two sublattices. These minima are
separated by an energy barrier atu=p /2, whose height and
shape can be modulated by varying the field intensityB. For
B=0 the minima are atu=0 and u=p, the barrier is atu
=p /2 and its height is independent of the value off. For
BÞ0 canting alongx̂ occurs, the minima are displaced from
u=0, p and there are saddle points atu=p /2 andfÞ0. The
height of the energy barrier is

U = Nd*S sgmBBd2

16J2 − 8Jd* − s2D . s7d

This givesU=1.078 meV forB=0 andU=1.074 meV for
B=6.6 T. Hence, atT=0, n is fixed at one of the two
minima.

The quantum behavior of the model is very different from
the classical one. Figure 7 shows the energy levels of the
Hamiltonian Eq.s1d as a function ofB. The ground stateu0l
is nondegenerate, except at level-crossing fields. Since the
observablen does not commute withH, it experiences quan-
tum fluctuations that are described by theT=0 autocorrela-
tion functions,6

knastdnas0dl = o
n

e−iDnt/"uknunau0lu2, s8d

whereunl is thenth spin level,Dn=Esnd−Es0d anda=x, y,z.
Hence, in principle many different frequencies may contrib-
ute to the Néel-vector dynamics.

The spectral weightuk1unzu0lu2, corresponding to the low-
est frequencyD1, is calculated as a function ofB and com-
pared in Fig. 8sad with the sum of all remaining higher-
frequency weights,Wn.1=onÞ1uknunzu0lu2. The dynamics of
the Néel vector is characterized by single-frequency oscilla-
tions only for B values corresponding to vanishingly small
Wn.1. This situation occurs forB=0 and forB values which
are intermediate between two consecutive ground-state
crossing fieldssi.e., corresponding toanticrossings between
the first and second excited statesd, as can be immediately

FIG. 6. Classical energyEsu ,fd as a function
of the directionsu ,fd of the spin of one sublat-
tice in the presence of an external magnetic field
B=6.6 T applied along thex̂ directionssee textd.

FIG. 7. Energy levels of the Hamiltonian Eq.s1d as a function of
an external magnetic fieldB applied along thex̂ direction.
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verified by inspection of Fig. 7. Similar results were obtained
for Fe6 and Fe8 in Ref. 6. Hence, at these particular values of
B sincludingB=0d, the autocorrelation ofnz oscillates with a
single frequency. Since this single frequencys&0.35 meVd
is smaller than the classical energy barriers,1.07 meVd, this
situation recalls the semiclassical image of tunneling ofnz.

For B=0, the existence of a single dominating frequency
in the dynamics ofnz can be understood on the basis of
general considerations on AF bipartite rings. In fact, in small
rings of this type, the exchange part of the Hamiltonian can
be approximated by a 2-sublattice Hamiltonian~Seven·Sodd.
A local spin operatorsi, being of rank 1, connects the ground
state only with states having total spinS=1. In addition,
within the 2-sublattice approximation, theseS=1 states must
belong to either the Landé band or theE band.24 This holds
for n too, since this observable is a linear combination of
local spin operators. In addition,n has a well-defined wave
vector k=p, and therefore it only connects states whose
wave vectors differ byp. As a result, matrix elementsk0ununl
are appreciable only ifunl belongs to theuS=1l multiplet of
the Landé band. AtB=0 biaxial anisotropy splits thisuS
=1l multiplet into a singlet and a quasidoublet. The matrix
elementk0unzunl is nonzero whenunl is the singletuS=1,M
=0l, whilst k0unx,yunl are nonzero whenunl is one specific
state of the doublet suS=1,M =1l± uS=1,M =−1ld /Î2.
Hence, in a bipartite AF ring, the autocorrelation function of
all three components ofn is expected to be characterized by
a single dominating frequency atB=0 but, as we will see
below, this condition is not sufficient for a tunnelling picture
to apply.

INS data permit a complete determination of the autocor-
relation ofnz,uk0unzu1lu2exps−iD1t /"d. In fact, both the tun-
neling frequencysi.e., the INS peak positiond and the matrix
elementk0unzu1l can be extracted from the data. The latter
can be obtained by the intensity of the lowest INS peak mea-
sured in absolute units, or else by the ratio of the intensities
of the two lowest INS peaks. We followed the second way,
taking into account the sample inhomogeneity by a proper
model ssee aboved. We obtaink0unzu1l=1.6 for the ideal ho-
mogeneous Fe10 molecule. Because of the high spatial sym-
metry of ideal ring molecules, the momentum transfersQd
dependence of the powder INS intensity can be calculated
analytically,25 and it is completely specified by the difference
Dk in the ring wave vectork of the two states involved in the
INS transition. Hence, the structure factor of the INS peak
corresponding to the transition between the tunnel-split dou-
blet should follow the behavior expected forDk=p. This is
confirmed by our data and calculations reported in Fig. 5.

Although in Fe10 the semiclassical criterion for the valid-
ity of the tunneling picture is approximately fulfilledsin fact
the tunnel action isS0=4.2d, the actual validity of this pic-
ture can be directly assessed by using the measured intensity
of the lowest INS peaks to extract the spectral weight
uk0unzu1lu2. In the ideal tunneling scenario, in which the
two states involved in the transition are even and odd com-
binations of the classical Néel statessi.e.,
1 /Î2su↑ , ↓ , ↑ ,…l± u↓ , ↑ , ↓ ,…ld, the squared matrix ele-
ment uk0unzu1lu2 should be equal tos2=6.25. This value
would be obtained in the limit −N2d@J. In Fe10, the maxi-
mum of uk0unzu1lu2 varies between about 2.6 and 3.2ssee Fig.
8d, so that an ideal tunneling scenario is not achieved. This is
also the case for the CsFe8 ring, which has been reported to
be one of the best candidate molecules for the tunneling re-
gime to occur.3 Indeed, although the tunnel action of CsFe8 is

FIG. 9. sColor onlined uk1unzu0lu2 sblackd compared with the cor-
responding tunneling limitsdashed redd as a function ofd/J for an
eight sitess=5/2 ring swith B=0d. In-plane and dipolar anisotro-
pies are neglected. The arrow indicates thed/J ratio corresponding
to CsFe8 sRef. 10d.

FIG. 8. sColor onlined sUpper paneld Magnetic-field dependence
of uk1unzu0lu2 sblackd compared withonÞ1uknunzu0lu2 sredd, calculated
from the full Hamiltonian Eq.s1d. The magnetic field is oriented
alongx̂. slower paneld The same quantities calculated withSmixing
forced to zero.
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large, S0=4.6,10 the value of uk0unzu1lu2 for this system is
much closer to the isotropic limitsd=0d than to the tunneling
limit. This can be readily appreciated from Fig. 9, where
uk0unzu1lu2 is shown as a function of the ratiod/J for an
octanuclears=5/2 regular ring. In spite of the fact that the
semiclassical picture for the tunneling states is not quantita-
tively correct, for appropriate values of the applied fieldsin-
cludingB=0d the autocorrelation ofn remains nearly mono-
chromatic.

Classical tunneling states are recovered for large values of
d, and imply a large degree ofS mixing. Even for values of
d close to the one we find for Fe10, S mixing plays an im-
portant role. First of all, atB=0 it increases the weight
uk0unzu1lu2 by about 30%. This is reflected directly in the
relative intensity of the three lowestuS=0l→ uS=1l transi-
tions: while the transition probability of the lower-lyinguS
=0l→ uS=1,M =0l transition is increased by about 30%, the
two others are decreased by about 14%. More remarkably,
for BÞ0 Smixing produces the single-frequency behavior in
between level crossings seen in Fig. 8sad. In fact, whenS
mixing is artificially suppressed, the autocorrelation ofnz is
not characterized by a single-frequency any morefsee Fig. 8
slower paneldg.

V. CONCLUSIONS

The spin dynamics of the Fe10 wheel was investigated by
inelastic neutron scattering, and analyzed using a micro-
scopic model. Difficulties related with the dimension of the
Hilbert space were overcome by exploiting both the irreduc-
ible tensor operator technique and the Lanczos algorithm.
Intracluster dipolar interactions are found to be the main
source of axial anisotropy, providing about 70% of the total
anisotropy. Fe10 was proposed as one of the best candidate
systems to observe tunneling of the Néel vector. Our results
allow us to directly probe the zero-field autocorrelation of
the Néel vector, and show that a tunneling scenario for this
quantity is only approximately valid. In addition, the remark-
able role ofS mixing in the Néel vector dynamics was dem-
onstrated.
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