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Effect of electron-phonon interaction range on lattice polaron dynamics:
A continuous-time quantum Monte Carlo study
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We present the numerically exact ground-state energy, effective mass, and isotope exponents of a one-
dimensional lattice polaron, valid for any range of electron-phonon interaction, applying a continuous-time
guantum Monte Carl¢QMC) technique in a wide range of coupling strength and adiabatic ratio. The QMC
method is free from any systematic finite-size and finite-time-step errors. We compare our numerically exact
results with analytical weak-coupling theory and with the strong-coupling eixpansion. We show that the
exact results agree well with the canonical Frohlich and Holstein-Lang-Firsov theories in the weak and strong
coupling limits, respectively, for any range of interaction. We find a strong dependence of the polaron dynam-
ics on the range of interaction. An increased range of interaction has a similar effect to an in¢fessed
adiabati¢ phonon frequency: specifically, a reduction in the effective mass.
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I. INTRODUCTION Feynman diagram$ provide the exact answer in the con-
, o tinuous(large polaron model. On the other hand, the small
While qualitative features of polarons were well recog-polaron regime cannot be reached by summation of the stan-
nized a long time ago and have been described in severghrd Feynman-Dyson perturbation diagrams using a
review papers and textbooksee Refs. 1-4 for recent pub- translation-invariant Green functio®(r,r’,7=G(r-r’,7)
lications, there is renewed interest in quantitative studieswith the Fourier transformG(k,Q) prior to solving the
owing to the overwhelming evidence for polaronic carriers inDyson equations on a discrete lattice. This assumption ex-
cuprates, fullerenes, and manganitese, for example, Refs. cludes the possibility of local violation of the translational
3-10. Under certain conditiort$ the multipolaron system symmetry° due to the lattice deformation in any order of the
can be metallic but with polaronic carriers rather than bareceynman-Dyson perturbation theory similar to the absence
electrons. There is a qualitative difference between the ordief the anomalou$Bogoliuboy averages in any order of per-
nary metal and the polaronic one. One can account for theurbation theory? One way to describe the formation of the
electron-phonor{e-ph) interaction in simple metals by ap- lowest polaronic band is to introduce an infinitesimal
plying Migdal's theorent? The theorem shows that the con- translation-noninvariant potential, which should be set to
tribution of diagrams with “crossing” phonon lin¢so-called  zero only in the final solution obtained by the summation of
“vertex” correction$ is small if the parametekfiw/Eg is Feynman diagrams for the Fourier transfo@tk ,k’,Q) of
small, where\ is the dimensionles$BCS) e-ph coupling  G(r,r’,7) rather than forG(k,Q).17 As in the case of the
constantw is the characteristic phonon frequency, ahdis  off-diagonal superconducting order parameter, the off-
the Fermi energy. Neglecting the vertex corrections, Migdaliagonal terms of the Green function, in particular the Um-
calculated the renormalized electron masstasmo(1+\)  kiapp terms withk’ =k +G, drive the system into a small
(near the Fermi levgl? wheremy is the band mass in the polaron ground state at sufficiently large coupling. Setting
absence of electron-phonon interaction, and Eliastberg  the translation-noninvariant potential to zero in the solution
tended Migdal’s theory to describe the BCS superconductingf the equations of motion restores the translation symmetry
state at intermediate values bf A<1. Later on many au- but in a polaron band rather than in the bare electron band,
thors applied Migdal-Eliashberg theory withmuch larger  which turns out to be an excited stateAlternatively, one
than 1(see, for example, Ref. 14 can work with momentum eigenstates throughout the whole
On the other hand, starting from the infinite coupling limit coupling region, but taking into account the finite-electron
A= and applying the inversél/\) expansion technigd®  bandwidth(i.e., including Umklapp terms In recent years
one can sho¥f~18 that the many-electron system collapsesmany such numerical and analytical studies have confirmed
into the small polaron regime at~ 1 almost independently the conclusioff that the Migdal-Eliashberg theory breaks
of the adiabatic ratigw/Eg. This regime is beyond Migdal- down atA =1 (see Refs. 22-36, and references therein
Eliashberg theory, where the effective mass approximation is In ordinary metals, where the Migdal approximation is
used and the electron bandwidth is infinite. It is a well-believed to be valid, the renormalized effective mass of elec-
established theorem that a self-trapping crossover is analytirons is independent of the ion madgsbecause the electron-
cal in the coupling strength, so that one could believe that th@honon interaction constaitdoes not depend oll. How-
sum of all diagramgincluding the vertex correctionshould  ever, when thee-ph interaction is sufficiently strong, the
produce the exact solution if the expansion converges. Inelectrons form polarons dressed by lattice distortions, with
deed, results of QMC simulations based on summing than effective massn*:moexp(yEp/ﬁw). HereE, is the po-
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laron binding energyor the polaron shijt and y is a nu-  particle. Such a process results in the exponentially small
merical constant that depends on the radius of electromeverlap between the initial and the final states, and in an
phonon interaction and is typically less than 1. Wiigin exponentially large effective mass with=1. Real ionic sol-
the above expression does not depend on the ion mass, this with low density of free carriers are characterized by poor
phonon frequency does. As a result, there is a large isotopgcreening and are more appropriately described by a long-
effect on the carrier mass in polaronic conductarg  range electron-phonon interaction. Thus the lattice Frohlich
=(1/2)In(m"/m),%" in contrast to the zero isotope effect in model introduced in Ref. 36 is intermediate between the ex-
ordinary metals. Such an effect was found experimentally itremes of the Holstein and Frohli€Himits. On one hand, it
the cuprate® and manganite¥ A recent high-resolution is a lattice mode(similar to the Holstein one and the ratio
angle resolved photoemission spectroscopy sfupsovided  of the hopping integral to the phonon frequency is an impor-
further compelling evidence for stromgph interaction in the tant parameter. On the other hand, the electron-phonon inter-
cuprates. It revealed a fine phonon structure in the electroaction is long range, as in the Fréhlich model. It was shown
self-energy of underdoped L3Sr,CuQ, sample®®*®and a in Ref. 36 that in this intermediate case the polaron mass still
complicated isotope effect in the electron spectral function ofjrows exponentially with the polaron binding eneigy but
Bi2212 that depended on the electron energy andhe parametely is now less than unity. That leads to much
momentuntft! reduced numerical values of the polaron mass, hence the
With increasing phonon frequency the range of validity ofterm “mobile small polaron.” The model was further studied
the 1/\ polaron expansion extends to smaller valuea 6f by numerical cluster diagonalizati$h and 1A
As a result, the region of applicability of the Migdal- expansiort!®”In addition, the two-particle model with non-
Eliashberg approacteven with vertex correctionsshrinks  local  electron-phonon  interactions  was  studied
to smaller values of the coupling<1 with increasingw.  variationally® and by the 1X expansion techniqu€:>®
Strong correlations between carriers might reduce this regioiihese studies confirmed the original conclusion that a long-
further?® Carriers in the fascinating novel materials arerange interaction significantly reduces the effective mass of
strongly coupled with high-frequency optical phonons, mak-the carrier, polaron or bipolaron, sometimes by several or-
ing small polarons and nonadiabatic effects relevant for higheers of magnitude, in comparison with the Holstein model. It
temperature superconductivity and colossal magnetoresigdiso makes the self-trapping transition more gradual as a
tance phenomena. Indeed the characteristic phonon energisction of A\, and better describable by the Lang-Firsov
0.05-0.2 eV in cuprates, manganites, and in dopedheory!® These findings are in agreement with some earlier
fullerenes are of the same order as the generally acceptetiudies on long-range interactions in narrow-band moels.
values of the hopping integrats=0.1-0.3 eV In this paper, we further generalize the lattice Frohlich
The continued interest in polarons extends beyond physimodel of Ref. 36 to electron-phonon interaction of some fi-
cal description of low-mobility conductors such as the oxidesnite radiusR. We perform a systematic study of tlséngle
or doped polymers. The field has been a testing ground fopolaron problem in one dimension as a functiorRofin the
analytical and numerical techniques for several decades. llocal limit R—0 we recover the results of the Holstein
the past 25 years, several families of powerful numericamodel obtained in the past by various methods mentioned
methods have been developed and successfully applied @bove. In the infiniteR limit the original AK model and its
one-, two-, and multiple-polaron lattice models. These areesults are fully recovered as well. Our computational tool
the quantum Monte Carl6QMC) simulations}®*3-%exact  will be the continuous-time path-integral quantum Monte
diagonalization of finite clustefs;?>2651 advanced varia- Carlo algorithm developed previously by one of“8sThis
tional methodg;39313435and the density-matrix renormal- method is particularly suited for investigating long-range
ization group>> Many methods have been developed so farelectron-phonon interactions because the phonon degrees of
as to enable reliable calculation of not only static and therfreedom are integrated out analytically. Thus the shape of the
modynamic polaron properties, but also of the effectiveinteraction does not complicate the algorithm at all, but sim-
mass, spectrum, and, in some cases, the spectral function plfy modifies the weight function of a Monte Carlo configu-
the polaron. ration. The method works on infinite lattices and in arbitrary
At the same time, the bulk of the lattice polaron studiesdimensions, eliminating finite-size errors; there is also no
have been limited to the short-range electron-phonon intertruncation of the phonon Fock space. The method is also free
actions described by the Holstein moé&In numerical cal-  from finite-time-step errors because it is formulated in con-
culations, the locality of the interaction usually simplifies thetinuous time. The method enables unbiased calculdtien
algorithm and reduces the finite-size errors. However, aso numerical errors besides statistical fluctuatiaighe po-
pointed out by two of u¢A.S.A. and P.E.K),3¢ the Holstein laron energies, effective mass, spectrum, density of states,
model isnot a typical but arextremepolaron model because isotope exponents, the number of excited phonons, and other
the screening length is normally larger than the lattice conquantities.
stant in doped insulators. It yieldse highest possiblealue In addition to presenting results on the finite-radius
of the polaron mass in the strong coupling limit, if lattice Fréhlich model, we use the present paper to explain many
vibrations are isotropic or polarised perpendicular to the hoptechnical details of the polaron QMC methtfdyhich have
ping direction>* With an on-site electron-phonon interaction, not previously been published. The electron-phonon Hamil-
during every polaron hop the existing lattice deformation hagonian is introduced in Sec. Il. In Sec. lll we describe the
to relax completely to the undeformed state, while a fullcontinuous-time Monte Carlo method. In Secs. IV-VI we
deformation has to form again at the new location of thepresent the numerical results for the energy, effective mass,
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number of dressing phonons, and isotope exponents of lattice

polarons for differentR, and compare them with weak- Ve R e e
coupling and strong-coupling analytical results and with nu- me Mo me a
merical results of other authors. Section VII summarizes our o {3”’(" 9 o o o
conclusions. S e -

FIG. 1. Geometry of the Frohlich modél)—(4) shown in one
dimension. The mobile charge carrier moves on the lower chain
with nearest-neighbor hopping integttahnd interacts with all the

The electron-phonon model under investigation represent8"S of the upper chain. The displacemegjsof the ions are po-
a single electron interacting witall the ions of an infinite 'af1zed in a direction perpendicular to the chains.
hypercubic lattice, with one vibrational degree of freedom
per unit cell. The Hamiltonian takes the form

H= He+ th+ He—phi

Il. ELECTRON-PHONON MODEL

A. General model Hamiltonian

B. Discrete Frohlich model

Some time ago Alexandrov and Kornilovitch proposed a
long-range discrete Frohlich interacti§rio describe the in-
teraction between a hole and the apical oxygen ions in high-
T, superconducting materials. The model is depicted in Fig.
1 for the one-dimensional case. The mobile carfgectron
or hole may hop from site to nearest-neighbor site along the
lower chain. The chain consists of an infinite number of lat-
tice sites with lattice constamt The electron interacts with
all the ions which reside at the lattice sites of a similar chain
that is parallel to the first. The separation of the two chains is
equal to the lattice constaat We assume that the vibrations
of the ions are polarized in a direction that is perpendicular
to the chains, and that the ions do not interact with each
other.

The free-electron terntl, describes the movement of a  Let us find the appropriate form for the interaction force
single electron through the lattice by the process of nearesfm(n) between the mobile charge-carrier on tfté site (of
neighbor hopping. Here the operatuj creates an electron the lower chainand themth ion (of the upper chain Since
on siten, the operatoc, destroys an electron on sité, and bothm andn are measured in units af we choose from this
(nn’) denotes pairs of nearest-neighbor sites. phenon  Point on to takea=1. The presence of the charge-carrier
term H,, represents the vibrations of the lattice ions. Heredisplaces themth ion by asmall distancey, in a direction
the operator,, is the displacement of theath ion from its perpendicular to the.ch_aln, as shown in Fig. 1. By expanding
equilibrium position, and®,, =-i%d/ d&,, its momentum. Itis the Coulomb potential in powers &k, we deducé that the
assumed that the ions, each of ionic md&sare noninter- Hamiltonian for the discrete Frohlich model is that of our

acting and so have the same characterigpiconon fre- generalized model Hamiltoniail) with the electron-phonon

1)

where

He=—-t >, clcy,

(nn’)

)

1 M w?
Hy=—> P2 +——> & 3
ph 2M% m 2 Emlgm ()

and

Hepn=— > fm(N)Cichén. (4)

quencyw. The final part of the Hamiltonian, the electron-
phonon termHgpy,, is of the “density-displacement” type,

where the interaction energy between the electron and the

mth ion is proportional tc&,, (the displacement of theth

ion from its equilibrium positioh Herecﬁcn is the electron
number operator, ant},(n) is interpreted as thateraction
force between the electron on siteand themth lattice ion.

interaction force having the form
K
[(m=m?+ 1]

with a constantk. Physically, this model was proposed in
order to represent the interaction between a hole in the
copper-oxygen layeflower chain and the apical oxygens in

f(n) = (7)

The model is parametrized by two dimensionless quantithe ionic layer(upper chaihcontained within the structure of

ties. The first is the dimensionless phonon frequency certain doped highy superconductors such as

YBa,Cu;04.,.3¢ These materials are highly anisotropic due
(5) y

to the fact that the holes are sharply localized in the copper-
The second is related to the small-polaron binding enEygy —OXygen layer, giving rise to poor conduction in thedirec-
derived in Sec. VI, which serves as a natural and convenieriton (normal to copper-oxygen layeiThis leads to very poor
measure of the strength of the electron-phonon interactiorcreening of the electron-phonon interaction in theirec-
The dimensionless electron-phonon coupling constant is déion, and almost complete screening in thé plane. This

w=holt.

fined as

-

2
zt 2M wzztE fn(0),

m

(6)

wherezt is the bare-electron half bandwidth, withthe lat-
tice coordination number.

justifies the restriction to phonon modes polarized in ¢he
direction.

C. Screened Frohlich model

Our aim in this paper is to investigate the way in which
the shape of the long-range electron-phonon interaction af-
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7 2
o e E. .‘ ()= lim d E(P), )

P—0 (9P2

whereE(P) is the ground-state energy for total momentBm
(sum of the momenta of the electron aaitl the phononk

The evaluation ofm’)™* by differentiating QMC energies
is not practical within our approach because a minus-sign
problem arises for finite momentum, exacerbating the errors
already present in such a procedure. The usual means of
extracting dynamical properti€such as the effective mass
from QMC simulation is by making use of some kind of
analytical continuation from imaginary to real time. How-
ever, it is possible to infem” directly from QMC simulation
by considering electron trajectories with twist@dther than
periodig boundary conditions in imaginary time.
Kornilovitch*® showed(for the isotropic or one-dimensional

case that
FIG. 2. The shape of the screened Fréhlich interaction f¢8e, 2
at screening lengths dRsc— 0 (bold line, Holstein interaction my . 1 zm (Ar)°Zy
Re=1 (dashed ling Ry=3 (dot-dashed line and Ry— o (thin m -}m 2812 S 2 , (10
line, nonscreened Frohlich interactjon Ar “Ar

—32 2) i
fects the properties of the polaron. It is therefore interesting\)Nhererrb_ﬁ /(2ta”) is the bare electron mass and

to study the screened Frohlich model, in which the screening
effect due to the presence of other electrons in the lattice is Zy = J dN§<{§m+w—r},f'|E_BH|{§m},f>, (11
taken into account from withirf,(n). Accordingly, let us

define the interaction force for the screened Frohlich model “ . .. P
as is a “partial partition function”(which is similar in form to

the total partition function of the systgnmwith

i (n):éex;{— |m_”|> (8) N T o
™ [(m=n)2+ 132 Ree /' f dVe=[] [ f dgm]. (12
m=1 -

whereR. is the screening length. That is, the screened force

is the unscreened force multiplied by an exponential dampHere|r> is the electron basi$lé, 1) =|&1, & &, ... &) is the

ing factor. Increasing the value Bf.decreases the screening . ~. 7" ! . : .
effect and thus increases the width of the interaction force.'°"' dlsplacement basis, ami tbe summations averin-
gludes all possible values dfr =r’-r.

The Holstein model describes an electron that interact Given Eq.(10), the effective mass may be obtained from
only with the oscillator it currently occupiggshort-range QMC simulation by taking the statistical average (& )2

interactior). This may be regarded as a special case of Eq. . . .
(8) with Re.—0, so thatf,(n)=—«s, Simply by altering sampled over trajectories of the path integral formed from

C 1 m mn* H H H H “ ” “ ” H
the value of the paramet&;,, we can easily cross over from Zar- (qu)e dL?)S(Z;Ln(!?;Itg be;meie&;hreal b;‘ aggvilr(ft t\?vtiziz n
the Holstein model, through the screened Fréhlich model, tﬁq' P P 9 ar 9

the unscreened Frohlich model, in a universal manner. In thi rather than the usual periodiboundary conditions. Note

paper we consider the following four cases in one dimensioni'at: Sinceé we need only consider the cas@eD, there is
(1) Holstein model with R,.—0, (2) screened Frohlich ho sign problem.

model, with Rs.=1, (3) screened Frohlich model, witRg,

=3, and(4) Unscreened Frohlich model witR,.— . B. Continuous imaginary time

The shapes of the electron-phonon interaction fdpga) QMC schemes have recently been developed that are

for each of the above screening lengths are shown in Fig. Zyplemented directly ircontinuousimaginary time for lat-
Note that, based on calculations involving the dynamic propsjce models.9.50.61 eliminating the problematic finite-time-

erties of the polaron responsethe amount of screening We st error associated with the traditional discrete-time ap-
impose here is greater than that expected in the Wigtem-  yrach. The partial partition functidhy, in Eq. (11) is given

pounds. in continuous-imaginary-time path-integral fornfés
I1l. PATH INTEGRAL APPROACH
A. Effective mass using a partial partition function Iy = ftw DEDr exp(S), 13
The effective mass of the polaran’ is defined for the
isotropic or one-dimensional case*as where the phonon action reads
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B ) 2 C. Analytical phonon integration
M-, Mw* ,
$=28§ =2 | dr- opzém(D) = &m(7) We wish to inte
- ~Jo grate out the phonon degrees of freedom
from the problem analytically, that is, perform the phonon

* fm[rw)]gm(r)], (14  Pathintegral

. — — |
with &,(7)=dé&,(7)/d7. In forming the path integral above, Itw—ftwl)fexp(% S‘“) _C‘Wftw dgexp<§m‘, SC"“)

an imaginary-time dimension has been introduced, having
the range 6= 7< B. The electron and phonon coordinates are (20)
represented as continuous functions of imaginary "¢  where the nonclassical part & (terms involving quantum
and &,(7), which can be interpreted as continuous trajectofluctuation integrates to an unimportant const&nt,,, re-
riesin 7. ducing the problem to the integration of the classical action
The symbolfy, in Eq. (13) represents the integration over S‘in'1 The integration must be performed under twisted bound-
all possible trajectories under twisted boundary conditions irary conditions in imaginary time. Accordingly, we impose
imaginary time. The “end states” of the individual trajecto- the constraints
ries, which are identified with the staté&., _},r’| and

|{§m},r> |n Eq (ll), are g|ven b98 gm(o) = gm! gm(ﬁ) = gm—Ar (21)
_ on S in Eq. (16), which one can see produces mixed vari-
{&m(0)},r(0)) =[{&m}.1) able terms involving,&ém-ar- The phonon integration cannot
directly be performed in this form. However, we may pro-
Hém(B} T (B) = [{€meart.T +Ar), (15  ceed by transforming,, into real Fourier componentg, and

that is, the final statér=g) is the initial statg 7=0) with all y:
the coordinateselectron andall phonon$ shifted byAr. 1 . i

We may decompose the trajectagy(7) in Eq. (14) into &m = \D=NE (8q +ibg)e ™, (22)
the sum of a the classical paftme trajectory that extremizes a
S,) and a deviatior(or “quantum fluctuatiory from it. The ~ whereD is the dimensionality of the lattice arN is the
part of S, that contains no terms involving quantum fluctua- total number of phonon degrees of freedom. In this represen-
tion is the classical action. The classical action is an importation, the transformed acticgj is diagonal, and so the pho-
tant quantity, and is given B§%2 non path integral in Eq(20) decomposes to the product of
" single variable integrals according to

w

2h sinh(fiwp)
+ me(O)fm(,B)} + gm(O)Bm(T) + gm(,B)Cm(T)

Sh= {~[£(0) + &(B)Icosifwp)

low = Conl [ J da,db, exp(Sﬁ'). (23
q tw

42 (B (B After performing the Gaussian integratién a, andb,) the
+ mj f drd7 f[r ()]G(7, 7)f[r ()], result is
o0 6 - { i sinh(fiwp) ]DN’Z A
(16) w = Cw M w[cosiiwB) — cogq - Ar)] eXpA,
where (24)
B _
B = | ate Bl e, an Ve
: wp B Sint7wB) Y, Bu(Crea: - C)
A=
B sinl(hwr) 2M o[ coshfiwp) — cogq - Ar)]
Co(n=| dr——f,, 18
7 J o Sinhfiwp) [r{=)] (18 fsinh(fiwB) 2, (B + Cry)?
and the Green function is ¥ AMw[cosifiwB) — codq - Ar)]
1 E 52 fﬂ fﬂ
N ——— +, — drd7'f,, G(r,7)f[r(7)],
G(7,7) heo SiNiB) < om ), 7 falr (01G(7, 7)f[r (7)]
{sinr(hm)sinr[ﬁw(/a— M), 0<r<7, (25)
sinffiw(B - 7)]sinhfiwr), 7 <7<pB. which does not contain any phonon degrees of freedom. We

(19) have thus transformed the problem from that of an electron

interacting with many phonons to that of an electron with

Note that the phonon coordinates in Ej6) are those of the retarded self-interaction, which allows the QMC method to
end-points only#,,(0) and &,(B). be applied effectively.
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D. Low-temperature limit (a) (b} ()
The result above may be conveniently rendered into the
required low-temperature limit using coBwB=~sinhiwB (7
~1egwB>1, to give ik
| o €XPA = eXPAge,+ AA), (26) T aded
where " kink
_ [ B _ - N removed A
A= _Do f P f p d7d7e—5(3/2)(e5(ﬁ/2-\7—?’l> : ¥ ‘r
P 20(0,0 )5 Jo .
1
+ & 2T D) [ (7,1 ()] (27) 0
i_s the low-temperature action for periodic boundary condi- HT)
tions and

N FIG. 3. lllustration of a one-dimensional electron trajectory in
o (PP — o a7 imagi time. The point in imaginary time at which the electron
AA= Tem ot BN D, [ (7),r (7 imaginary time. The point ginary tin i
Dy(0,0) fo fo drdree {@arlr (7,1 (7)] hops to a neighboring site is known as a kif&.Shows a trajectory
with three kinks: occurring at;, 7, andz,. (b) The same trajectory,
—Or(n,r (7)1} (28 but with a kink added at times. The entire trajectory above, is

. . . . S shifted by one lattice parametéc) The same trajectory as {@) but
is the correction for twisted boundary conditions, in dlmen-With the kink atr, removed. Again, the entire trajectory aboweis

sionless form. Herer=tr and Eztﬂ define dimensionless  shifted accordingly.
imaginary time; the parametetss and\ are defined in Egs.
(5) and(6), respectively; and thiattice summatiors defined

pletely eliminates the finite-time-step error, rendering the

as scheme “numerically exact.”

N NP — If N is the number of kinks of directios, we wish to

Cplr(n).r(7)]= % Fnl (D fnearlr (7)]. (29 generate random states according to the Monte Carlo weight

Note that the dimensionless quantify(n) represents the W({Ng}) = Wei({NsHwWpr({Ng}), (31
shapeor form of the electron-phonon interaction force, de-
fined via the decomposition where the weight from the electron subsystem

f (n) = «f.(n , 30 (tﬂ)Nse—tB

()= Kl %0 wel{Nah) = [T == (32)
S S*

where k={22AMt3w?/[#25 ,f2 (0)]}2 takes the dimensions

of force. is given by the Poisson distribution, and the phonon-induced

weight
IV. CONTINUOUS-TIME MONTE CARLO

A. Algorithm Won(Ns) = exd A(Ng) ] (33

Traditionally, path-integral QMC simulation is imple- is given by Eq.(26).
mented indiscreteimaginary time, where the trajectory is Proposed changes to the shape of the trajectory are gen-
represented by the position of the electron in each of a largerated by the addition or deletion of single kinks. This is
number of imaginary-time slices. The use of discrete timesufficient in practice. In order to increase efficiency one
introduces the problematic finite-time-stepgstematicerror,  might also consider changing a kink-direction, repositioning
which scales with the square of the time-slice width. a kink in imaginary time, or altering the temporal ordering of

A path-integral QMC scheme implemented directly inthe kinks. The Metropolis meth&#°* accepts or rejects the
continuousimaginary time has been developed for systemsrial change from statg to statex’ with a transition prob-
with a discrete basi¥.6*Here, the electron trajectory is rep- ability P(u— u')=g(u— u")a(u— u'), whereg(u— u') is
resented as finite intervals of imaginary time in which thethe sampling distribution and(x— u') is the acceptance
system remains in a particular state, separated by sporadigopability. For the case dfi;=1 (one or more kinks exit
transitions from one state to anoth@n electron hop The  \ye chooseg(Ng+1— Ng=g(Ns—N+1)=1/2, and so the
points in imaginary time at which the state of the SyStemacceptance probability is given by
changes are called “kinks,” as shown in Fig. 3. It is necessary
to consider the statistics governing different directions of
kink independently of one another. For our one-dimensional a,gdNs— N+ 1) = min{l,g(NS+ 1= N WIN, + 1)}
case with nearest-neighbor hopping, we need only consider 9(Ns— Ns+1)  W(Ny)
single left and right kinks. The use of continuous time com- (34)
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_ t3 constant value, allowing the double integration appearing in
=mim 1,97 exgdA(Ns+ 1) = A(Ng) ] (35 Egs.(27) and(29) to be treated analytically for each segment
S Ajx. The result after rearrangement reads

to add a kink, and similarly

Ng+1
NG+l _ N\ Dl 4 ADPUD
Arem(Ns+1— Ng = mm{l, iﬁ exgd A(Ng) — A(Ng+ 1)]} A= 09 121 [AYDYD + ADDY]
(36) Ng+1 Ng+1
+ ADYY + ADINT 7, 40
to remove a kink of directios. For the case di;=0, we can J% kzlzﬂ[ 2o SPir] (40

only add a kink, and sg(0— 1)=1, which gives
{ 18 } where we have used _ the shqrthand_@ﬁ;k) _
A9d0— 1) =miny 1,— exd A(1) - A(0)] (37) =@y [r(7-1),r(n-y)] for the lattice summation defined in
2 Eq. (29), and
and
2 AJ = 2[al7 - 7-0) - KO (42)
Ber(1— 0) = min{ 1,% exdA(0) - A(l)]}. (39) w

The continuous-imaginary-time QMC step used in this work 1 -
has the following structure. A(l” = —g @B (42

(1) Randomly select a kink directiaifor the trial change. w
In the case of a one-dimensional system, this is left or right.

(2) Propose a change to the trajectory by randomly select- 1 . _
ing whether to add a new kinfat a random imaginary time Ay = ZKDKWerolner), (43)
or to remove an existing kintselected in a random fashipn @

This is done according to the selection probabilitggdlg
+1—Ng) andg(Ng— Ng+1).

(3) Accept or reject the proposed change with probability 1 _
a.qdNs— Ng+1) if adding, ora,e{Ng+1— Ny if removing a Ag= —KIKWgelB-n7-1) (44)
kink. w

(4) If the change has been accepted, therethtire trajec- )
tory that lies “above” the kinki.e., from the imaginary time ~Where we have defined
of the kink to B) is shifted across accordingly. If the pro- ) .
posed change has been rejected, then the trajectory is left KD =1-e*7-0, (45)
untouched.

and

The action can thus be computed efficiently using this double
summation over kinks.
For the models studied in this papégr(n) depends only
The Metropolis algorithm requires the action, which in- on therelativelattice distancém—n|, and tends to zer@r is
volves a double integration in imaginary time, to be com-zerg at large distance. Consequently, the lattice summation,
puted on each Monte Carlo step. The fact that the trajectorfzg. (29), is a function of thesingle variabler’=r,—r;—Ar
consists of a series of single kinks, between which the traenly, namely,
jectory is a straight lingr (7) is constany, leads us to decom-

B. Analytical integration over kinks

pose the actior in Eqg. (26) into segments according to d(r') = Ef_(m/)f_(m/ -1, (46)
Ng+1 Ng Ngt1 m’
A= Ai+2 A, 39 ) ,
,—% ) El gﬂ L 39 uhich can be evaluated for al possible valuesr bfin ad-

) . . _ vance of the simulation proper, improving the efficiency of
wherej andk label the kinks(along trajectories correspond- o QMC scheme.

ing with 7 and 7', respectively, in the double integration
such thatr; is the imaginary time at which thgth kink oc-
curs, with7p=0 and?,\ls+1:,8. We treat the diagona;; and
off-diagonal segmentd,, separately in order to increase ef-  We consider four physical observables: the ground-state
ficiency. EachAy involves the range of imaginary time be- energy, the number of phonons in the polaron cloud, the
tween successive kinks of_;<7<7 and7;<7 <7, in  effective mass, and the isotope exponent on the effective
which the electron coordinate is fixed efr)=r(r;_;) and  mass. For a given observale the expectation value is the
r(7')=r(zn.1), respectively. Thus the value of the lattice statistical average over trajectories R&0 (ground statg
summation®,,[r(7i-1),r (1] given by Eq.(29), has a which can be written in the form

C. Physical observables
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SPENCEREet al. PHYSICAL REVIEW B 71, 184310(2005

for the isotropic or one-dimensional case. On substitution of
f DrQwW(Ny) the derivative ofny/m’, as in Eq(50), with respect tVl, we
tw

(Qp=——, (47) have
J Drw(Ny)
tw

o 1 oA oA
= E?[<(Ar)2__> - ((Ar)2)0< __> j| )
where the phonon degrees of freedom have been integrated ((Ar)%o de [ o dw [ o
out, andw(Ny) is given by Eq.(31). This corresponds to a (52

simple arithmetic average within the QMC simulation.

The ground stat¢P=0) energy estimator is given B o . )
where the ionic mass enters our formalism via the phonon

A frequencyw=(k/M)'2, wherek is some “spring constant”

1 1 i
Eo(0) =~ <—a\—N> =- <—> - —<2 NS> , (48 anddAldw is easily obtained from Eq40). [For a general
WaB /o IBlo B\'s 0 D-dimensional system, we may define tith component of

ich fol . " ding finite.i ) i the isotope exponent on the effective mass @m@
which follows from the corresponding finite-imaginary-time _ _ « « *
energy estimatdf in the continuum limit. Within the QMC ~ ~ M—(Enldmb’d)ij,(%'d/%)’ _ Where Moo/ Mg
simulation, then, we must gather separate statistics for thg(25) (g)(Ard) dor With Arg=ry(8)-r4(0), and thus we may
total number of kinkNs and the quantityA/Jp. One can  Write e as Eq.(52) with everyAr replaced byAr.]
see that the expression féA/JB is easily obtained by ana-
lytically differentiating Eq.(40) with respect tog.

The number of phonons in the polaron cloig, quanti- D. Simulation details

JF
Nph: <E ddem> = .
m

fies the amount of lattice deformation associated with the The QMC scheme is based on the simulation irgle
polaron. The value oN,, is given by the expectation value , . i ) — —
of the phonon number operator, which can be isolated fronjrajectoryr (7) in imaginary time 6< 7< 3. The standard Me-
the model Hamiltonian using the fact thatH/d(fiw)l,, tropolis alg_o_nthm is used. to alter. the sr_lape of the tra_Jectory
:Edemdm. This can be related to the action via the freePY the addition and deletion of_ single kinks, as described in
energyFo,=—8"1In Z, to give Sec. IV A. The start of the trajectom(0) does_not change
throughout the simulation, but the other engB) is “free”
1/ oA (open boundary cor)ditions in imaginary timén _practi(_:e,
ohw) =-= a—_ /o the shape of the trajectory was represented using a list con-
0 Ao B @\o/ o taining the imaginary-time, and the direction, of each kink.
(490  In addition, we also kept track of the value af =r(B)
-r(0), and the the total number of kinks of each direction
where dA/Jwl\5 is easily obtained by differentiating Eq. {Ng. The major computational task is the evaluation, on each
(40) with respect tow holding the produch e constant. Monte Carlo step, of the action given by Hd0). (The num-

As discussed in Sec. Ill A, by imposing twisted boundaryber of exponential-function-evaluations was reduced by stor-
conditions in imaginary time, dynamical properties can being the values 0A<11'> andK " along with each kink, reducing
inferred directly from QMC simulation. The effective mass the overall computational effojtin order to calculate the
of the polaronm’, for the isotropic or one-dimensional case, expectation values of the observables given in Sec. IV C,
may be measured using separate statistics for the quantitidE;Nyg, (IA/IB)o,

(A dwlyg)o, (A1), (IA] dw)g, and ((Ar)2dAl dw), were
"—1‘3 = i—((Ar)zh. (50)  gathered every 10-50 Monte Carlo steps. We only consider
m 2 the case ofP=0, corresponding to the ground state of the
system, where there is no sign problem.
where the difference in position of the endpoints of the tra- e four one-dimensional interaction models studied dif-
jectory Ar=r(8)-r(0) is measured in units of the lattice fer only in the value of thg screening Ien/gﬂgq The model
. dependency enters the simulation vigr’) given by Eq.
constania, andmy is the bare electron mass. 46). For each model, simulations were conducted for vari-

The isotope effect is most often observed via its influencé .d'ff ¢ val ’f the di ionl sieEnd
on the superconducting transition temperaffyzeThe depen- ous difierent values ot the dimensioniess parametess
dence ofT. on the mass of the lattice ioM8 has been found

empirically to beT,«M™%566 where « is known as the The value ofE was set at a sufficiin_tly large value to
isotope exponent ofi.. In a similar way, let us define the enforce the low-temperature limit efpB) — . For the
isotope exponent on the effective mags as present simulations, a value & 15 was found to make the
. X finite-temperature error negligibléReducing the value ab,
_ Mdm m 4 <mo> (51) or increasing\, beyond those studied here would require this
= —="M——|— — . . -
o m dMm MgdM \m value of B8 to be increased.Increasing the value oB in-
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creases the “length” of the trajectofwhich involves more V. LIMITING CASES
kinks), and thus increases the computational effort required
to perform each Monte Carlo step. o

For each set of model parametéRs, », and\), between When the electron-phonon coupling is strong, the electron
3 and 6 statistically independent Monte Carlo runs were per?€comes “trapped” in a potential well created by the induced

formed, each using a different value of the inverse temperéﬁttice distortion. In this case the “size” of the polaron state

. can become comparable with the lattice constant, and the
ture 15< 8=<25. The number of Monte Carlo steps in each;q, «

run was taken to be about five times the “warm-up” period.

Typically, thg runs conS|st§-d. of betweenx10" and strong-coupling regimé& The small polaron can move from
5X 10’ steps in total(The statistics gathered for each set of site to site(at zero temperatuyehrough the action of zero-
runs were viewed together graphically, in order to better espgint motion.

timate the point at which equilibrium had been reached.  aAp analytical method to determine the effective mass and
Only those statistics gathered after the estimated Warm-u@nergy dispersion in the Strong_coup"ng regime, for a lattice
periOd were included in the averages. Given that the finitepo|aron with a genera| e|ectr0n-phon0n interaction force
temperature error is small, and in the absence of systematic (n)3¢ is based on the Lang-Firsov canonical
finite-size and finite-time-step errors, the main source of eryansformatiot® (which renders the transformed Hamil-
ror is statistical. The size of the statistical error depends ofgnjan diagonal foi — o), followed by a second-order per-
fn(n) and B, as well as orw and\. For each set of model turbation technique that usesXLas a small parametét.For
parametersR,, o, and\), we performed a sufficient number nearest-neighbor hopping only, and formsfgfn) that de-

of runs to ensure that the Monte Carlo averages were detepend on the relative lattice distange—n|, the result for the
mined to a statistical error of less than 1%. lowest energy levels reatfs

A. Strong coupling (small polaron) regime

small polaron” is used. The condition for small po-
laron formation is\=E,/zt=1, which is referred to as the

2

_ ’ igmAT _ 4-ig:m
KOSt eXp{Em,q [fm(n) — fn(n)](€9™dy — €™ dq)lcT &k’ el

V2NMAw? "
E(k):_Ep_Sp(k)_ E .
k' {ng} hwzq Ng

. (53

where the summation is over intermediate states with one or In the ground state of the systetk=0), the value of
more phononsz n,>0, the polaronic energy-level shift ep(K) is real and small compared wittes, and so Eq(53) is
dominated by Ep. Thus, the (dimensionless strong-
coupling result for the ground-state energy is

1
E,= f2(0 54
p 2Mw2§ m(0) (54) )
= =2, (57)
(used to define\) corresponds with the solution far— o, t

and the small-polaron dispersion and sinceE,=Nyfiw, it follows that the number of phonons

5 ) in the polaron cloud ak=0 is given by
ep(k) =t e Werikn, (55)
n#0 Z\
Nph = —. (58)
2 w
whereg© is known as thézero temperatujemass renormal-

ization exponent, given by Assuming that the third term in E¢53) is completelyinde-
pendent ok, then the inverse effective mass, for the isotro-

1 pic or one-dimensional case, is given by
gi(1) = 52 [f2(0) = fn(Of (D] (56)
2MAw
i oy TER | e (59
m S P .

The final term of Eq.53) is quadratic with respect to the
bare hopping amplitudg,,,, and produces a negative correc- This can be conveniently expressed in dimensionless form as
tion to the energy(Here,n, is the number of phonons with

wave vectom, and|k’,n,) is an excited state that consists of Mo =29\

a single electron with wave vectdt’ and one or more - = ex — )
phonons!. It is of order of 1A% and is almost independent of

k.36 where we have defined the constant

(60)

w
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TABLE |I. VaIuezs of the dimensionless parameter=1 go(k) = - 2t cogka) (64)
=2 fm(0)fr(1)/ 2 7, (0) for the one-dimensional models studied ) ) ) _—
in this work, wherey depends only on thehapeof the interaction ~ rather than the parabolic approximatieg(k)=%A%</2m,

force. +0(k%, wheremy=%2/(2ta?) used by Frohliclf? Thus we
write
Interaction model vy
H = eo(k) +fiw>, didy + Heph, (65)
Holstein 1.000 q
Screened Fr?hlfchRscf b 0.745 where the electron-phonon teiify ,, is @ small perturbation.
Screened FrOh“CK"?SCT 3 0.531 Assuming thaf,(n) depends only on the relative lattice dis-
Nonscreened Frohlich 0.387 tance|m-n|, thenHe, given by Eq.(4) may be written in
momentum representation as
S () fm(D) Hepn= = VR Tq(C_qoidl + H.c), (66)
y=l-—F—5 — (61) ak
2 f(0) .
m’'m where we have defined
which depends only on thehapeof the electron-phonon Aot
interaction force. The isotope exponent on the effective mass K= ——— (67)
ayy, defined in Eq.(51), can be written in terms ofv Zm f2(0)
o M—l/2 as
and
mw d ~ i eeia-
Uy =—2_<ﬂi>, (62 fq=2 fr(0)e . (68)
My 2 dw\ M r

Here, the summation is over all valuesregfm—-n for which
fn(n)=f(m-n)=f,(0) is a function of a single variable only.
Using standard second-order perturbation theory, with an ini-
tial state that consists of an electron of momentikrand no

phonons, and an intermediate state that consists of an elec-
(63 . .

tron with momentunvi(k—q) and a single phonon of mo-
mentum?q, the energy measured from the bottom of the

The value of the dimensionless constant §<1 must in  €lectron band is given by

general be determined numerically: the value calculated for .|

each of the one-dimensional interaction models studied in E(k) = gg(k) - %>, 2 (69)
q

for the isotropic(or one-dimensionalcase. Thus, thédi-
mensionlessstrong-coupling isotope exponent is giverfby

=

el

F.12
this work is presented in Table I. W'’

where we have defined
B. Weak coupling (large polaron) regime

W=¢gyk—q) +iw — go(k). 70
In 1950 Frohlichet al®” considered the ground state of a olk =) olk) (70

polaron in the weak-coupling limit <1, using second-order Here the ground-state energy occurs atkk=0 andX, is a
perturbation theory, under the condition that there is nevesuitable Brillouin zone average.

more than one phonon virtually excited, and the discreteness The number of virtual phonons in the polaron cloud is
of the lattice is unimportantbecause the band-electron-like defined aSNph=Eq<0’|d$dq|0’>, where |0’) represents the
“large polaron” stat®® is much larger than the lattice con- eigenstate for the perturbed Hamiltonian. Using standard
stan). In our case we use the tight-binding dispersion first-order perturbation theory, this is given by

TABLE Il. The numerically calculated values of the coefficient of the linear terin in Eqgs.(74)—77),
for each one-dimensional interaction modebatl in the weak coupling limit. For example, the ground-state
energy(74) of the Holstein polaron is given biy/t=-2-0.894.

Interaction model Emf_ﬁ1(0) Ye, YNph Yy Yo
Holstein (Rsc— 0) 1.000 0.894 0.537 0.537 0.125
Screened FrohlickiRs.=1) 1.034 1.080 0.736 0.625 0.200
Screened FrohlickiRs.=3) 1.133 1.257 0.938 0.678 0.266
Unscreened FrohlickRg.— o) 1.269 1.394 1.104 0.687 0.306
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0 ., ~
< ; & m s, [|fq|2W’(W—2hw)
a4 X Um =5 —
X 4at? my; we
2R A N |2 12
~ |fq| 2W'S(W - 3fiw)
@ 31 AL :.\\\ - VV4 . (73)
5] AN
=} IR
4T ‘\\ The above expressions for the observables may be written
Al N in the form
-6+ N 1 —
N YEO ==-2 _)\YEO(f,a), (74)
-7 : : : : : S
00 05 1.0 1.5 20 25 30 35 .
g Non =Ny, (), (75
FIG. 4. The variation of ground-state energy(0) (triangles,
together with potential energydiamond$ and kinetic energy my —
(squarey with coupling\ for the one-dimensional Holstein model R =1-MY i (f0), (76)
with a dimensionless phonon frequency«t 1. The dashed line is
the strong coupling perturbatiogfSCP result (57) and the dotted and
line the weak-coupling perturbatiofWCP) result (74). One can
clearly distinguish the large-polaron, transition and small-polaron Wor = A Y (f_—) (77)
regions. M omg/m”
~ WhereY(f_,B) is the coefficient of the linear term i, which
Ny =% M (71) may be calculated numerically. We are interested in the
ph W2 ° ground-state properties and thus must evaluate the above ex-

q

The effective mass is easily found by differentiating E&f)
twice with respect td, according to Eq(59), to give

* < [fgPew?2-w
ﬂi:l_%zhﬂ( \N),
m 2at WA

(72
q

where W' =W/ dk and W’'="W/ k2. Differentiating this
expression with respect 9, according to Eq(62), gives the
isotope exponent on the effective mass as

1

pressions ak —0. The ground-state values of(f,w) for
each one-dimensional interaction model are presented in
Table Il for o=1.

The coefficients can be expressed in closed form for the
simplest case of the one-dimensional Holstein interaction.
Here we find that the energy is

2wt
E(k) =- 2t cogka) - o+ 2coskaP— 41" (78)
so that
— 20
YEO(flm = (52_'_40) 1/2? (79)

Encrgy

FIG. 5. The variation of
ground-state energyEy(0) (tri-
angle3, together with potential
energy(diamond$ and kinetic en-
ergy (squares with coupling A,
for the one-dimensional Holstein
model with a phonon frequency of
w=0.5 (small symboly 1.0
(medium-size symbao)s and 3.0
(large symbols As o increases,
the transition region shifts to
higher\ and becomes broader.
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TABLE lll. The boundaries of the transition region for the one-dimensional Holstein model at different
values of the(dimensionlessphonon frequencyw. The estimates are based on the QMC results for the
energies andNy;, (observing the changing “trend” in plots of the deviation from the corresponding SCP and

WCP results
o \ (end of large-polaron region \ (start of small-polaron region
0.5 (1.1+0.0 (2.0+£0.2
1 (1.3+0.) (2.7+£0.3
3 (2.1+0.0 (5.5+0.6
_ 20(w+2) (1) The large-polaron region at weak couplifig=0 to
Y, (f0) = P+ e (800  \=1 in this casgis defined as the range of for which
@ @ Ey(0) is accurately described by WCP thedS8ec. V B. At
_ N=0 the energy is entirely kinetic and represents the bottom
Ym*(f_,a - M (81) of the bare-electron banavith E;(0)=-zt]. As \ increases
(0 + 4w)®? within this region, KE increases but remains large compared
and with PE (nonlocalized bandlike states
(2) The small-polaron region at strong couplifig this
_ X2+ 20+ 4) case\ = 2.5 toh — ») hasEy(0) accurately predicted by SCP
Yam*(fvm =T = sz - (82) theory(Sec. V A). The PE is much greater than the K&lf-
(w0 + 4w)
trapped statgs
(3) The smooth transition region at intermediate coupling
VI. RESULTS (A=1tox=2.5in this casgbetween the two regions above.
o _ As \ increases in this region, a decrease in the PE and an
A. Holstein interaction increase in KE indicates the localization of the polaron.
1. Self-trapping transition 2. Variation with phonon frequency

Let us consider first the QMC results for the simplest case Now let us consider the way in which the properties of the
of the one-dimensional Holstein model. The variation of theHolstein polaron are affected by altering the value of the
ground-state energf,(0) with the coupling constank is  dimensionless phonon frequenay as defined by Eq(5).
shown in Fig. 4 for a fixed phonon frequency ®F1. The  This quantity (also known as the adiabatic raties often
Eo(0) curve tends to the weak-coupling perturbati®dCP)  used as a parameter in analytical approaches to the polaron
result from below as\— 0, and to the strong-coupling per- problem: the adiabatic regime is defined as the case when
turbation (SCB result as\ —«. Here we have also plotted w<1, and the antiadiabatic regime as>1. With this in
the first and second terms of E48), which provide an mind, we present below the properties of the one-
indication of the potential enerdy?E) and the kinetic energy dimensional Holstein polaron fas=0.5, w=1, andw=3.

(KE) of the system, respectively. Three separate regions can The ground-state energies for all three valueswofire
be clearly distinguished from Fig. 4. presented together in Fig. 5 againstThe PE tends to the

FIG. 6. The number of
phonons for the Holstein model at
0=0.5,1.0,3.0 (small, medium-
size, and large circles, respec-
tively). The dashed line shows the
SCP resul{57). The transition re-
gion boundaries are the same as
those in Fig. 5.
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1 The QMC results for the inverse effective masg/m’,
09| and the isotope exponent on the effective mags are pre-
sented against in Figs. 7-9, for each value ab. We see
081 from Fig. 7 that increasing reduces the effective mass over
074 A\ N the entire range of. Both my/m" and «,; tend to the WCP
06l R solution as\ becomes small, and to the §CP result\as
* becomes large. However, the results fomih/my) tend to
Sosp AR{ M the SCP solution at a slower rate than for the other observ-
oal N\ . ables.
AN, . From all the results for the Holstein model above, we
037 observe that as the value ofincreases, the curve for each
02l observablgPE, Ny, m’, anda,) against\ moves closer to
oLl : A the line representing the SCP result over émtire range of
: - \. In other words, the SCP prediction becomes more appli-
0 ; s cable asw increases.
0 1 2 3 4 5 6

A

) ) . B. Screened Frohlich interaction
FIG. 7. The inverse effective mass,/m" (wheremy=%2/2ta? ) . .
is the bare-electron massfor the Holstein model atw Here we consider the case of the one-dimensional

=0.5,1.0,3.0small, medium-size, and large circles, respectively Screened Frohlich model, E(B), at a fixed dimensionless
The dotted line shows the WCP res@1) for the tight-binding ~ Phonon frequency ofb=1. We investigate the way the po-
Hamiltonian. laron properties depend on the range of the electron-phonon
. interaction by comparing the QMC results at four different
same(w-independentSCP result 0Ey(0)=2\ askh —. No-  yajyes of the screening lengtshown in Fig. 2: R— 0 (the
tice that the KE for intermediate and large values\ofle-  ghort-range Holstein interactipnRy.=1, R..=3, and Ry,
creases a® increases. This affects the position of the start_, o (the nonscreened Fréhlich interaction
and end of the transition region. More precisely, @sn- The QMC results for the enerd§g,(0), PE, and K& and
creasesl) the start of the smooth transition region moves tothe number of phonons in the polaron clobk, are pre-
higher\ and(2) the transition region becomes broadtte sented against in Figs. 10 and 11, respectively. They are in
start of the small-polaron region is also shifted to largger excellent agreement with the WCP results at smalinot
The values ofx that mark the estimated start and end of h c?t d 10 th that i ind dentSCP
the transition region are shown in Table IIl. The definition of fesolmné:{]_)jnoé C:;nar::é tﬁatls,a??h:?/zrllusg& in

\, in Eq. (6), is independent of, and so naturally charac- ; . .
terizes?hf& )three regFi)ons defined above. y creases, the KE increases less rapidly wiftand so(1) the

The variation ofN,, with \ is presented in Fig. 6 for each Start of the transition region shifts to highkrand (2) the
value ofw. Over all couplingsN,, decreases as the value of {ransition region becomes broadén A). This behavior is
w increases. Loosely speaking, it is simply “harder” to createSimilar to that found for the Holstein model with increasing
phonons of higher frequency. The smooth transition from. In the present case, with the phonon frequenciixed,
large to small polaron is again visible in the results oy, ~ the above effect is due only to changing the shape of the
with the edges of the transition region occurring at the samelectron-phonon interaction fordg,(n). Table IV shows the
\ as in the above results fé,(0). values ofA that mark the estimated start and end of the

15

FIG. 8. The logarithm of the
effective mass for the Holstein
model at w=0.5, 1.0, and 3.0
(small, medium-size, and large
circles, respectively The dashed
line shows the SCP result
In(m*/mg) =2\ w.

In{m */m o)

0 i
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FIG. 9. The isotope exponent
for the Holstein model atw
=0.5,1.0,3.0 (small, medium-
size, and large circles, respec-
tively). The dotted line shows the
SCP result.

transition region for each value & From theN,, results
in Fig. 11, we notice that increasing the valueRyf has the
effect ofincreasing N, at small\, and the opposite effect of
decreasing I, at largeX. That is, the order thal,, appears

polaron regior(with increasingR,) is the opposite to that in
the small polaron region. As can be seen in Fig. 12, the
decrease ofny/m" with X\ is approximately linear for the
Holstein model, and approximately exponential for the other

(with increasingRsy) in the large polaron region is the re- screening lengths. In fact, the effective mass of the Frohlich
verse of the order in the small polaron region. large-polaron idarger (up to approximately 10%than the

The results for the effective mass are presented in Figs. 1€ffective mass of théshort-rangg Holstein large polaron.
and 13, and the isotope exponent results in Fig. 14, against It is apparent from the above results for the screened
for the same four values dR;. We can see that for each Frohlich model that asR,. increases(from Holstein to
value of R, the QMC results tend to the “model dependent” Frohlich), the QMC results move, in general, closer to the
SCP resulfof In(m"/my) =2y\ /@ anda,y =Y\ w, where the  SCP prediction over thentire range of\. That is, the SCP
value of the mass enhancement facjois given in Table |  prediction becomes generally more applicable as the range of
for eachRyg. This model dependency is in contrast to theinteraction increase@s well as with increasing). This fact
above results foEy(0) and Ny, which arey independent in  allows us to define the intermediate region of the coupling
the limit A — oo, strength and of the adiabatic ratio as a “small polaron” re-

An important observation is evident from the plot of gime for any realistic-range-ph interaction, that is the re-
In(m"/my) against\ shown in Fig. 13. At intermediate and
large couplinggthat is, in the transition and small polaron
regions, altering the value oRy. has adramatic effect on a4
the effective mass. For example, the nonscreened Frohlict
polaron is over 1®times “lighter” than the Holstein polaron 248
at\=4, and over 1Htimes lighter at\=5.

The isotope exponent,; in Fig. 14 shows a strong de-
pendence on the range of electron-phonon interactamn
well as onw and\) in the (physically most realisticinter-
mediate values of coupling. This is important, as experimen- -5
tal measuremenrby Zhaoet al) of the exponent of the iso-
tope exponent on the effective supercarrier mass along thi
CuG, planes m;b, in the material La,Sr,CuQ, shows a a2l

large value ofa(ab):1.9(2) in the deeply underdoped regime

o
(x=0.06, and a much smaller value ofa?*b):OAG(S) for

optimal doping(x=0.15.196°Both the magnitude and radius
of the electron-phonon interaction should decrease with dop- |G, 10. The ground-state energg(0) (triangles, potential

ing due to screening. These experimental results show th@hergy (squares and kinetic energy(diamonds of the one-
the former effect is more significant. dimensional screened Frohlich modelat 1, vs\, for screening

Now let us consider the large-polaron region. The QMClengthsR,=0,1,3 e (increasing size of symbalsThe curves for
results form" anda;,; tend to the WCP results for s (N0t E,(0) (and PE tends to the same strong coupling perturbation
shown as\ — 0. As was the case fd¥,,, we see from Figs. (SCB result ofEy/t=-2\ (dashed linpas\ — . Note the crossing
12 and 14 that the order that” and «,,; appear in the large of the potential energy curves near 2.
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dependence of effective mass with interaction rahefeby
interpolation between the Holstein and Fréhlich limits.

VII. CONCLUSIONS

The general aim of this work was to investigate the way
in which therange of electron-phonon interaction governs
the physical properties of thesingle lattice polaron. The
understanding of this is of considerable current interest be-
cause of the increasing amount of experimental evidence
suggesting that polarons are present in high-temperature su-
perconducting and colossal magnetoresistance materials.

Perturbation approaches are used in the limits of strong
and weak electron-phonon coupling strengtiHowever, in
general these do not provide an acceptable description in the
(physically most realistic intermediate coupling ranga
~1. We have performed an extensive Monte Carlo study of

FIG. 11. The number of phonons in the polaron cldyg vs \ the ground state properties for the screened Frohlich polaron,
for screening length®=0,1,3 (increasing size of circlgsat  EQ. (8), in one dimension, over a wide range of coupling.
»=1. The curves tend to the same SCP resuligfz\/ » (dashed We have used path-integral quantum Monte Carlo, in
line) as\ — . which the phonon degrees of freedom are analytically inte-
grated out, leaving only the electron coordinates to be simu-

gime which is well described by the small polaron theorylated. The use of a path integral witistedboundary con-

based on the Lang-Firsov transformed Hamiltonian averageditions allowed us to extract dynamic propertidsectly
over phonons. from the simulations. There were risystematit errors due

to finite size or finite time-step.
The properties measured were the ground state energy
C. Comparison with other approaches Eo(0), the number of phonons in the polaron cloNgl, the
hef“fective massn’, and the isotope exponent on the effective
assa,;. The QMC results were always found to tend to the
weak-coupling perturbatiofWCP) predictions forx—0,
and to the strong-coupling perturbati@®CP predictions for

As a test of our method, we compare our results wit
those of other authors. Our main and original computation
are for finite values oR; however, the majority of published
work on lattice polarons relates to the HolstéiR=0) inter- N 30

action. Figure 15 compares our ground-state energyuior The screened Frohlich polaron was studied for various

=1.0,R=0 (compare Fig. #with that obtained by other au- ) . .
thors. To highlight the differences, the weak coupling ap_values of the screening leng®y. (which essentially controls

proximation (74) is subtracted from the energy. The figure tsri]t?a rar;?sete?:] itr?tee r?;%;gj:g”;: zlgte;?]c(:jlgsﬁs_c}; %éﬁ;:
compares our results with the QMC data of Hohenadler ran’e nonscreened Fr,(jhli?:h i,nte(;acl,ioﬁor ezcich value of
al.*® (based on a bosonic path integral, evaluated at invers&s g¢, ) L

— ) o - we determined the variation of the above observables
temperature=10) and exact diagonalization results for yith ) at a fixed phonon frequency af=1. The main find-
small clusters? Different computations yield similar values ings are summarized below.
of the ground-state energy, but our QMC energies are closer (1) \we observe the presence of a self-trapping transition
to the the exact diagonalization results; our calculations havgy 51| values ofRs. In each case, the following three regions
been carried out at a lower temperaty#e25. Figure 16 are identified.
shows good agreement between our results for the effective (a) The large-polaron region at weak coupling, in which
mass(compare Fig. Band variational calculations of Béa  the behavior of the system is accurately described by WCP
et al3® (Note that the\ in that work corresponds tg2wt\ in  theory. This region is characterized by delocalized, band-
our notation. We also reinforce earlier conclusions on the electron-like states.

TABLE IV. The boundaries of the transition region for the one-dimensional screened Frohlich interaction,
at various screening length&,. (measured in units of the lattice constarfthe estimates are based on the
QMC results for the energy arfd,,.

Interaction model \ (start of transition \ (end of transition
Holstein (Rye— 0) (1.1+0.1 (2.0£0.2
Screened FréhliciRs.=1) (1.7+£0. (3.8+0.9
Screened FréhliciRs.=3) (2.2+0. (4.7+£0.9
Non-screened FrohlictRg.— =) (2.9+0.2 (6.3+0.5
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FIG. 12. The inverse effective
massmy/m’ for screening lengths
R,:=0,1,3 (increasing size of
circles vs \ at fixed w=1. For
weak coupling(A<1) the Hol-
stein large-polaron has a slightly
smaller m" than the long-range
interactions.

FIG. 13. The logarithm of the
effective mass for screening
lengths Rsc=0,1,3 0 (increasing
size of circle$ vs \ at w=1. At
intermediate and strong coupling,
decreasing the value dRry; dra-
matically increases the effective
mass. The curves tend to the SCP
result (dashed linesat a slower
rate thanEq(0) and Ny,

FIG. 14. The isotope exponent
on the effective massa,; for
screening lengthsRs:=0,1,3
(increasing size of circlgs/s \ at
w=1.
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FIG. 15. One-dimensional Holstein polaron ground-state energy fat.0, R=0 (crossel compared with bosonic QMircles, Ref.
49) and exact diagonalization energiémlid line, Ref. 70 at w=1.0. The energy in weak-coupling perturbation the6f) has been
subtracted.

(b) The small-polaron region at strong coupling, in which polaron region starts when the kinetic energy is much
the behavior is accurately described by SCP theory. This resmaller than the potential energy.
gion is characterized by localizgtself-trapped’) polaronic (c) The values of the observabléBE, Ny, m’, and a;y)
states. generally move closer to the corresponding SCP result over
(c) The transition region between the two, at intermediatethe entire range of\.
coupling. We observe a smooth crossover from large to small (3) In the large polaron region, the effective mass for
polaron inall the observables measured. long-range electron-phonon interactitR,.> 1) is found to
(2) The transition region boundaries depend on the rangee up to approximately 10% larger than that for the Holstein
of interaction. As the value dR increases we find the fol- interaction(Ry.— 0).
lowing. (4) We observe large variations in the isotope exponent on
(a) The start of the transition regidithe point at which it the effective massy,y in the (physically most realisticin-
becomes energetically favorable for localized states to)existermediate coupling regim@vith changingR,. andX, as well
shifts to higher. as w). This is encouraging, as experimental observation
(b) The transition region becomes broade start of the  shows large variations in the isotope exponent with the level
small polaron region also shifts to high&). The small- of doping in highT, materials.

5

w

FIG. 16. One-dimensional
Holstein polaron effective mass
for w=1.0, R=0 (crosses com-
pared with variational results
(solid line, Ref. 35.

In (m */m o)

8]
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(5) Reducing the range of electron-phonon interactionshake-off, measured in ARPE%;*1the QMC algorithm has
dramatically increases the effective mass for intermediatéo include the off-diagonal paths, which remains a challeng-
and large values of couplinghat is, in the transition and ing but solvable problem of our QMC simulations in the site
small-polaron regions In comparison,Ex(0) and Ny, are  representation. Also other methods as the momentum based
only slightly affected by alterindr,. __ QMC° the numerical diagonalization of vibrating clusters

(6) We also study the dependence on phonon frequency or the renormalisation group are able to calculate the spectral
of the Holstein polaroriRs.— 0). As w increases we find the  function. The method used here relies on a phonon gap, the

following. N . _ . errors being exponentially small ipiw, and is therefore
(a) The transition region shifts to highar more accurate for intermediate and large values.ofVhile
(b) The transition region becomes broader. lower w can be also simulated without major difficulty but
(c) The observablegPE, Ny, m', andayy) move toward itk increased inverse temperature and therefore increased
the corresponding SCP result over the entire range. of CPU time, the parameters used cover the most physically

(7) Inc_reasing_ interaction range has a qualitatively Sim"arrelevant rangé.
effect to increasing phonon frequency; compare for example
Figs. 8 and 13 or Figs. 9 and 14.

One can also calculate the isotope effect on the whole ACKNOWLEDGMENTS
polaron band dispersion applying the continuous-time quan-
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