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We present the numerically exact ground-state energy, effective mass, and isotope exponents of a one-
dimensional lattice polaron, valid for any range of electron-phonon interaction, applying a continuous-time
quantum Monte CarlosQMCd technique in a wide range of coupling strength and adiabatic ratio. The QMC
method is free from any systematic finite-size and finite-time-step errors. We compare our numerically exact
results with analytical weak-coupling theory and with the strong-coupling 1/l expansion. We show that the
exact results agree well with the canonical Fröhlich and Holstein-Lang-Firsov theories in the weak and strong
coupling limits, respectively, for any range of interaction. We find a strong dependence of the polaron dynam-
ics on the range of interaction. An increased range of interaction has a similar effect to an increasedsless
adiabaticd phonon frequency: specifically, a reduction in the effective mass.

DOI: 10.1103/PhysRevB.71.184310 PACS numberssd: 71.38.2k, 02.70.Ss

I. INTRODUCTION

While qualitative features of polarons were well recog-
nized a long time ago and have been described in several
review papers and textbooksssee Refs. 1–4 for recent pub-
licationsd, there is renewed interest in quantitative studies
owing to the overwhelming evidence for polaronic carriers in
cuprates, fullerenes, and manganitesssee, for example, Refs.
3–10d. Under certain conditions11 the multipolaron system
can be metallic but with polaronic carriers rather than bare
electrons. There is a qualitative difference between the ordi-
nary metal and the polaronic one. One can account for the
electron-phononse-phd interaction in simple metals by ap-
plying Migdal’s theorem.12 The theorem shows that the con-
tribution of diagrams with “crossing” phonon linessso-called
“vertex” correctionsd is small if the parameterl"v /EF is
small, wherel is the dimensionlesssBCSd e-ph coupling
constant,v is the characteristic phonon frequency, andEF is
the Fermi energy. Neglecting the vertex corrections, Migdal
calculated the renormalized electron mass asm* =m0s1+ld
snear the Fermi leveld,12 wherem0 is the band mass in the
absence of electron-phonon interaction, and Eliashberg13 ex-
tended Migdal’s theory to describe the BCS superconducting
state at intermediate values ofl, lø1. Later on many au-
thors applied Migdal-Eliashberg theory withl much larger
than 1ssee, for example, Ref. 14d.

On the other hand, starting from the infinite coupling limit
l=` and applying the inverses1/ld expansion technique15

one can show16–18 that the many-electron system collapses
into the small polaron regime atl,1 almost independently
of the adiabatic ratio"v /EF. This regime is beyond Migdal-
Eliashberg theory, where the effective mass approximation is
used and the electron bandwidth is infinite. It is a well-
established theorem that a self-trapping crossover is analyti-
cal in the coupling strength, so that one could believe that the
sum of all diagramssincluding the vertex correctionsd should
produce the exact solution if the expansion converges. In-
deed, results of QMC simulations based on summing the

Feynman diagrams19 provide the exact answer in the con-
tinuousslarge polarond model. On the other hand, the small
polaron regime cannot be reached by summation of the stan-
dard Feynman-Dyson perturbation diagrams using a
translation-invariant Green functionGsr ,r 8 ,td=Gsr −r 8 ,td
with the Fourier transformGsk ,Vd prior to solving the
Dyson equations on a discrete lattice. This assumption ex-
cludes the possibility of local violation of the translational
symmetry20 due to the lattice deformation in any order of the
Feynman-Dyson perturbation theory similar to the absence
of the anomaloussBogoliubovd averages in any order of per-
turbation theory.12 One way to describe the formation of the
lowest polaronic band is to introduce an infinitesimal
translation-noninvariant potential, which should be set to
zero only in the final solution obtained by the summation of
Feynman diagrams for the Fourier transformGsk ,k8 ,Vd of
Gsr ,r 8 ,td rather than forGsk ,Vd.17 As in the case of the
off-diagonal superconducting order parameter, the off-
diagonal terms of the Green function, in particular the Um-
klapp terms withk8=k +G, drive the system into a small
polaron ground state at sufficiently large coupling. Setting
the translation-noninvariant potential to zero in the solution
of the equations of motion restores the translation symmetry
but in a polaron band rather than in the bare electron band,
which turns out to be an excited state.21 Alternatively, one
can work with momentum eigenstates throughout the whole
coupling region, but taking into account the finite-electron
bandwidthsi.e., including Umklapp termsd. In recent years
many such numerical and analytical studies have confirmed
the conclusion16 that the Migdal-Eliashberg theory breaks
down atl*1 ssee Refs. 22–36, and references thereind.

In ordinary metals, where the Migdal approximation is
believed to be valid, the renormalized effective mass of elec-
trons is independent of the ion massM because the electron-
phonon interaction constantl does not depend onM. How-
ever, when thee-ph interaction is sufficiently strong, the
electrons form polarons dressed by lattice distortions, with
an effective massm* =m0 expsgEp/"vd. HereEp is the po-
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laron binding energysor the polaron shiftd, and g is a nu-
merical constant that depends on the radius of electron-
phonon interaction and is typically less than 1. WhileEp in
the above expression does not depend on the ion mass, the
phonon frequency does. As a result, there is a large isotope
effect on the carrier mass in polaronic conductorsam
=s1/2dlnsm* /md,37 in contrast to the zero isotope effect in
ordinary metals. Such an effect was found experimentally in
the cuprates10 and manganites.38 A recent high-resolution
angle resolved photoemission spectroscopy study39 provided
further compelling evidence for stronge-ph interaction in the
cuprates. It revealed a fine phonon structure in the electron
self-energy of underdoped La2−xSrxCuO4 samples39,40 and a
complicated isotope effect in the electron spectral function of
Bi2212 that depended on the electron energy and
momentum.41

With increasing phonon frequency the range of validity of
the 1/l polaron expansion extends to smaller values ofl.11

As a result, the region of applicability of the Migdal-
Eliashberg approachseven with vertex correctionsd shrinks
to smaller values of the couplingl,1 with increasingv.
Strong correlations between carriers might reduce this region
further.25 Carriers in the fascinating novel materials are
strongly coupled with high-frequency optical phonons, mak-
ing small polarons and nonadiabatic effects relevant for high-
temperature superconductivity and colossal magnetoresis-
tance phenomena. Indeed the characteristic phonon energies
0.05–0.2 eV in cuprates, manganites, and in doped
fullerenes are of the same order as the generally accepted
values of the hopping integralst.0.1–0.3 eV.42

The continued interest in polarons extends beyond physi-
cal description of low-mobility conductors such as the oxides
or doped polymers. The field has been a testing ground for
analytical and numerical techniques for several decades. In
the past 25 years, several families of powerful numerical
methods have been developed and successfully applied to
one-, two-, and multiple-polaron lattice models. These are
the quantum Monte CarlosQMCd simulations,19,43–50 exact
diagonalization of finite clusters,23,25,26,51 advanced varia-
tional methods,4,30,31,34,35and the density-matrix renormal-
ization group.52 Many methods have been developed so far
as to enable reliable calculation of not only static and ther-
modynamic polaron properties, but also of the effective
mass, spectrum, and, in some cases, the spectral function of
the polaron.

At the same time, the bulk of the lattice polaron studies
have been limited to the short-range electron-phonon inter-
actions described by the Holstein model.53 In numerical cal-
culations, the locality of the interaction usually simplifies the
algorithm and reduces the finite-size errors. However, as
pointed out by two of ussA.S.A. and P.E.K.d,36 the Holstein
model isnot a typical but anextremepolaron model because
the screening length is normally larger than the lattice con-
stant in doped insulators. It yieldsthe highest possiblevalue
of the polaron mass in the strong coupling limit, if lattice
vibrations are isotropic or polarised perpendicular to the hop-
ping direction.54 With an on-site electron-phonon interaction,
during every polaron hop the existing lattice deformation has
to relax completely to the undeformed state, while a full
deformation has to form again at the new location of the

particle. Such a process results in the exponentially small
overlap between the initial and the final states, and in an
exponentially large effective mass withg=1. Real ionic sol-
ids with low density of free carriers are characterized by poor
screening and are more appropriately described by a long-
range electron-phonon interaction. Thus the lattice Fröhlich
model introduced in Ref. 36 is intermediate between the ex-
tremes of the Holstein and Fröhlich55 limits. On one hand, it
is a lattice modelssimilar to the Holstein oned, and the ratio
of the hopping integral to the phonon frequency is an impor-
tant parameter. On the other hand, the electron-phonon inter-
action is long range, as in the Fröhlich model. It was shown
in Ref. 36 that in this intermediate case the polaron mass still
grows exponentially with the polaron binding energyEp but
the parameterg is now less than unity. That leads to much
reduced numerical values of the polaron mass, hence the
term “mobile small polaron.” The model was further studied
by numerical cluster diagonalization56 and 1/l
expansion.11,57 In addition, the two-particle model with non-
local electron-phonon interactions was studied
variationally58 and by the 1/l expansion technique.11,59

These studies confirmed the original conclusion that a long-
range interaction significantly reduces the effective mass of
the carrier, polaron or bipolaron, sometimes by several or-
ders of magnitude, in comparison with the Holstein model. It
also makes the self-trapping transition more gradual as a
function of l, and better describable by the Lang-Firsov
theory.15 These findings are in agreement with some earlier
studies on long-range interactions in narrow-band models.60

In this paper, we further generalize the lattice Fröhlich
model of Ref. 36 to electron-phonon interaction of some fi-
nite radiusR. We perform a systematic study of thesingle
polaron problem in one dimension as a function ofR. In the
local limit R→0 we recover the results of the Holstein
model obtained in the past by various methods mentioned
above. In the infinite-R limit the original AK model and its
results are fully recovered as well. Our computational tool
will be the continuous-time path-integral quantum Monte
Carlo algorithm developed previously by one of us.48 This
method is particularly suited for investigating long-range
electron-phonon interactions because the phonon degrees of
freedom are integrated out analytically. Thus the shape of the
interaction does not complicate the algorithm at all, but sim-
ply modifies the weight function of a Monte Carlo configu-
ration. The method works on infinite lattices and in arbitrary
dimensions, eliminating finite-size errors; there is also no
truncation of the phonon Fock space. The method is also free
from finite-time-step errors because it is formulated in con-
tinuous time. The method enables unbiased calculationsi.e.,
no numerical errors besides statistical fluctuationsd of the po-
laron energies, effective mass, spectrum, density of states,
isotope exponents, the number of excited phonons, and other
quantities.

In addition to presenting results on the finite-radius
Fröhlich model, we use the present paper to explain many
technical details of the polaron QMC method,48 which have
not previously been published. The electron-phonon Hamil-
tonian is introduced in Sec. II. In Sec. III we describe the
continuous-time Monte Carlo method. In Secs. IV–VI we
present the numerical results for the energy, effective mass,
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number of dressing phonons, and isotope exponents of lattice
polarons for differentR, and compare them with weak-
coupling and strong-coupling analytical results and with nu-
merical results of other authors. Section VII summarizes our
conclusions.

II. ELECTRON-PHONON MODEL

A. General model Hamiltonian

The electron-phonon model under investigation represents
a single electron interacting withall the ions of an infinite
hypercubic lattice, with one vibrational degree of freedom
per unit cell. The Hamiltonian takes the form

H = He + Hph + He-ph, s1d

where

He = − t o
knn8l

cn
†cn8, s2d

Hph =
1

2M
o
m

Pm
2 +

Mv2

2 o
m

jm
2 , s3d

and

He-ph = − o
nm

fmsndcn
†cnjm. s4d

The free-electron termHe describes the movement of a
single electron through the lattice by the process of nearest-
neighbor hopping. Here the operatorcn

† creates an electron
on siten, the operatorcn8 destroys an electron on siten8, and
knn8l denotes pairs of nearest-neighbor sites. Thephonon
term Hph represents the vibrations of the lattice ions. Here
the operatorjm is the displacement of themth ion from its
equilibrium position, andPm=−i"] /]jm its momentum. It is
assumed that the ions, each of ionic massM, are noninter-
acting and so have the same characteristicsphonond fre-
quencyv. The final part of the Hamiltonian, the electron-
phonon termHe-ph, is of the “density-displacement” type,
where the interaction energy between the electron and the
mth ion is proportional tojm sthe displacement of themth
ion from its equilibrium positiond. Herecn

†cn is the electron
number operator, andfmsnd is interpreted as theinteraction
force between the electron on siten and themth lattice ion.

The model is parametrized by two dimensionless quanti-
ties. The first is the dimensionless phonon frequency

v̄ = "v/t. s5d

The second is related to the small-polaron binding energyEp,
derived in Sec. VI, which serves as a natural and convenient
measure of the strength of the electron-phonon interaction.
The dimensionless electron-phonon coupling constant is de-
fined as

l =
Ep

zt
=

1

2Mv2zt
o
m

fm
2 s0d, s6d

wherezt is the bare-electron half bandwidth, withz the lat-
tice coordination number.

B. Discrete Fröhlich model

Some time ago Alexandrov and Kornilovitch proposed a
long-range discrete Fröhlich interaction36 to describe the in-
teraction between a hole and the apical oxygen ions in high-
Tc superconducting materials. The model is depicted in Fig.
1 for the one-dimensional case. The mobile carrierselectron
or holed may hop from site to nearest-neighbor site along the
lower chain. The chain consists of an infinite number of lat-
tice sites with lattice constanta. The electron interacts with
all the ions which reside at the lattice sites of a similar chain
that is parallel to the first. The separation of the two chains is
equal to the lattice constanta. We assume that the vibrations
of the ions are polarized in a direction that is perpendicular
to the chains, and that the ions do not interact with each
other.

Let us find the appropriate form for the interaction force
fmsnd between the mobile charge-carrier on thenth site sof
the lower chaind and themth ion sof the upper chaind. Since
bothm andn are measured in units ofa, we choose from this
point on to takea=1. The presence of the charge-carrier
displaces themth ion by asmall distancejm in a direction
perpendicular to the chain, as shown in Fig. 1. By expanding
the Coulomb potential in powers ofjm, we deduce36 that the
Hamiltonian for the discrete Fröhlich model is that of our
generalized model Hamiltonians1d with the electron-phonon
interaction force having the form

fmsnd =
k

fsm− nd2 + 1g3/2 s7d

with a constantk. Physically, this model was proposed in
order to represent the interaction between a hole in the
copper-oxygen layerslower chaind and the apical oxygens in
the ionic layersupper chaind contained within the structure of
certain doped high-Tc superconductors such as
YBa2Cu3O6+x.

36 These materials are highly anisotropic due
to the fact that the holes are sharply localized in the copper-
oxygen layer, giving rise to poor conduction in thec direc-
tion snormal to copper-oxygen layerd. This leads to very poor
screening of the electron-phonon interaction in thec direc-
tion, and almost complete screening in thea-b plane. This
justifies the restriction to phonon modes polarized in thec
direction.

C. Screened Fröhlich model

Our aim in this paper is to investigate the way in which
the shape of the long-range electron-phonon interaction af-

FIG. 1. Geometry of the Fröhlich models1d–s4d shown in one
dimension. The mobile charge carrier moves on the lower chain
with nearest-neighbor hopping integralt and interacts with all the
ions of the upper chain. The displacementsjm of the ions are po-
larized in a direction perpendicular to the chains.
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fects the properties of the polaron. It is therefore interesting
to study the screened Fröhlich model, in which the screening
effect due to the presence of other electrons in the lattice is
taken into account from withinfmsnd. Accordingly, let us
define the interaction force for the screened Fröhlich model
as

fmsnd =
k

fsm− nd2 + 1g3/2 expS−
um− nu

Rsc
D , s8d

whereRsc is the screening length. That is, the screened force
is the unscreened force multiplied by an exponential damp-
ing factor. Increasing the value ofRsc decreases the screening
effect and thus increases the width of the interaction force.

The Holstein model describes an electron that interacts
only with the oscillator it currently occupiess“short-range”
interactiond. This may be regarded as a special case of Eq.
s8d with Rsc→0, so thatfmsnd=−kdmn. Simply by altering
the value of the parameterRsc, we can easily cross over from
the Holstein model, through the screened Fröhlich model, to
the unscreened Fröhlich model, in a universal manner. In this
paper we consider the following four cases in one dimension:
s1d Holstein model with Rsc→0, s2d screened Fröhlich
model, with Rsc=1, s3d screened Fröhlich model, withRsc
=3, ands4d Unscreened Fröhlich model withRsc→`.

The shapes of the electron-phonon interaction forcefmsnd
for each of the above screening lengths are shown in Fig. 2.
Note that, based on calculations involving the dynamic prop-
erties of the polaron response,11 the amount of screening we
impose here is greater than that expected in the high-Tc com-
pounds.

III. PATH INTEGRAL APPROACH

A. Effective mass using a partial partition function

The effective mass of the polaronm* is defined for the
isotropic or one-dimensional case as48

sm*d−1 = lim
P→0

]2EsPd
]P2 , s9d

whereEsPd is the ground-state energy for total momentumP
ssum of the momenta of the electron andall the phononsd.

The evaluation ofsm*d−1 by differentiating QMC energies
is not practical within our approach because a minus-sign
problem arises for finite momentum, exacerbating the errors
already present in such a procedure. The usual means of
extracting dynamical propertiesssuch as the effective massd
from QMC simulation is by making use of some kind of
analytical continuation from imaginary to real time. How-
ever, it is possible to inferm* directly from QMC simulation
by considering electron trajectories with twistedsrather than
periodicd boundary conditions in imaginary time.
Kornilovitch48 showedsfor the isotropic or one-dimensional
cased that

m0

m* = lim
b→`

1

2bta2

oDr
sDr d2ZDr

oDr
ZDr

, s10d

wherem0="2/ s2ta2d is the bare electron mass and

ZDr =E dNjkhjm+r8−rj,r 8ue−bHuhjmj,r l, s11d

is a “partial partition function”swhich is similar in form to
the total partition function of the systemd, with

E dNj = p
m=1

N FE
−`

`

djmG . s12d

Hereur l is the electron basis,uhjmjl= uj1,j2,j3, . . . ,jNl is the
ionic displacement basis, and the summations overDr in-
cludes all possible values ofDr =r 8−r .

Given Eq.s10d, the effective mass may be obtained from
QMC simulation by taking the statistical average ofsDr d2,
sampled over trajectories of the path integral formed from
ZDr . The dissimilarity between the “bra” and “ket” states in
Eq. s11d produces a path integral ofZDr having twisted
srather than the usual periodicd boundary conditions. Note
that, since we need only consider the case ofP=0, there is
no sign problem.

B. Continuous imaginary time

QMC schemes have recently been developed that are
implemented directly incontinuousimaginary time for lat-
tice models,19,50,61 eliminating the problematic finite-time-
step error associated with the traditional discrete-time ap-
proach. The partial partition functionZDr in Eq. s11d is given
in continuous-imaginary-time path-integral form as48

ZDr =E
tw

DjDr expsSd, s13d

where the phonon action reads

FIG. 2. The shape of the screened Fröhlich interaction force,s8d,
at screening lengths ofRsc→0 sbold line, Holstein interactiond,
Rsc=1 sdashed lined, Rsc=3 sdot-dashed lined, and Rsc→` sthin
line, nonscreened Fröhlich interactiond.
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S= o
m

Sm = o
m
E

0

b

dtF−
M

2"2j̇m
2 std −

Mv2

2
jm

2 std

+ fmfr stdgjmstdG , s14d

with j̇mstd=]jmstd /]t. In forming the path integral above,
an imaginary-time dimensiont has been introduced, having
the range 0øtøb. The electron and phonon coordinates are
represented as continuous functions of imaginary timer std
and jmstd, which can be interpreted as continuous trajecto-
ries in t.

The symboletw in Eq. s13d represents the integration over
all possible trajectories under twisted boundary conditions in
imaginary time. The “end states” of the individual trajecto-
ries, which are identified with the stateskhjm+r8−rj ,r 8u and
uhjmj ,r l in Eq. s11d, are given by48

uhjms0dj,r s0dl = uhjmj,r l

uhjmsbdj,r sbdl = uhjm+Drj,r + Dr l, s15d

that is, the final statest=bd is the initial statest=0d with all
the coordinatesselectron andall phononsd shifted byDr .

We may decompose the trajectoryjmstd in Eq. s14d into
the sum of a the classical pathsthe trajectory that extremizes
Smd and a deviationsor “quantum fluctuation”d from it. The
part ofSm that contains no terms involving quantum fluctua-
tion is the classical action. The classical action is an impor-
tant quantity, and is given by48,62

Sm
cl =

Mv

2" sinhs"vbd
h− fjm

2 s0d + jm
2 sbdgcoshs"vbd

+ 2jms0djmsbdj + jms0dBmstd + jmsbdCmstd

+
"2

2M
E

0

b E
0

b

dtdt8fmfr stdgGst,t8dfmfr st8dg,

s16d

where

Bmstd ; E
0

b

dt
sinhf"vsb − tdg

sinhs"vbd
fmfr stdg, s17d

Cmstd ; E
0

b

dt
sinhs"vtd
sinhs"vbd

fmfr stdg s18d

and the Green function is

Gst,t8d =
1

"v sinhs"vbd

3Hsinhs"vtdsinhf"vsb − t8dg, 0 , t , t8,

sinhf"vsb − tdgsinhs"vt8d, t8 , t , b.
J

s19d

Note that the phonon coordinates in Eq.s16d are those of the
end-points only:jms0d andjmsbd.

C. Analytical phonon integration

We wish to integrate out the phonon degrees of freedom
from the problem analytically, that is, perform the phonon
path integral

I tw =E
tw

Dj expSo
m

SmD = ctwE
tw

dj expSo
m

Sm
clD ,

s20d

where the nonclassical part ofS sterms involving quantum
fluctuationd integrates to an unimportant constant48 ctw, re-
ducing the problem to the integration of the classical action
Sm

cl . The integration must be performed under twisted bound-
ary conditions in imaginary time. Accordingly, we impose
the constraints

jms0d = jm, jmsbd = jm−Dr s21d

on Sm
cl in Eq. s16d, which one can see produces mixed vari-

able terms involvingjmjm−Dr . The phonon integration cannot
directly be performed in this form. However, we may pro-
ceed by transformingjm into real Fourier componentsaq and
bq:

jm =
1

ÎDN
o
q

saq + ibqdeiq·m, s22d

whereD is the dimensionality of the lattice andDN is the
total number of phonon degrees of freedom. In this represen-
tation, the transformed actionSq

cl is diagonal, and so the pho-
non path integral in Eq.s20d decomposes to the product of
single variable integrals according to

I tw = ctwp
q
E

tw
daqdbq expsSq

cld. s23d

After performing the Gaussian integrationsin aq andbqd the
result is

I tw = ctwF p" sinhs"vbd
Mvfcoshs"vbd − cossq · Dr dgGDN/2

expA,

s24d

where

A =
" sinhs"vbdom

BmsCm−Dr − Cmd

2Mvfcoshs"vbd − cossq · Dr dg

+
" sinhs"vbdom

sBm + Cmd2

4Mvfcoshs"vbd − cossq · Dr dg

+ o
m

"2

2M
E

0

b E
0

b

dtdt8fmfr stdgGst,t8dffr st8dg,

s25d

which does not contain any phonon degrees of freedom. We
have thus transformed the problem from that of an electron
interacting with many phonons to that of an electron with
retarded self-interaction, which allows the QMC method to
be applied effectively.

EFFECT OF ELECTRON-PHONON INTERACTION RANGE… PHYSICAL REVIEW B 71, 184310s2005d

184310-5



D. Low-temperature limit

The result above may be conveniently rendered into the
required low-temperature limit using cosh"vb<sinh"vb
< 1

2e"vb@1, to give

I tw ~ expA = expsAper+ DAd, s26d

where

Aper=
zlv̄

2F0s0,0dE0

b̄ E
0

b̄
dt̄dt̄8e−v̄sb̄/2dsev̄sb̄/2−ut̄−t̄8ud

+ e−v̄sb̄/2−ut̄−t̄8uddF0fr st̄d,r st̄8dg s27d

is the low-temperature action for periodic boundary condi-
tions and

DA =
zlv̄

F0s0,0dE0

b̄ E
0

b̄
dt̄dt̄8e−v̄t̄e−v̄sb̄−t̄8dhFDrfr st̄d,r st̄8dg

− F0fr st̄d,r st̄8dgj s28d

is the correction for twisted boundary conditions, in dimen-

sionless form. Heret̄= tt and b̄= tb define dimensionless
imaginary time; the parametersv̄ andl are defined in Eqs.
s5d ands6d, respectively; and thelattice summationis defined
as

FDrfr st̄d,r st̄8dg = o
m

f̄mfr st̄dg f̄m+Drfr st̄8dg. s29d

Note that the dimensionless quantityf̄msnd represents the
shapeor form of the electron-phonon interaction force, de-
fined via the decomposition

fmsnd = k f̄msnd, s30d

wherek=h2zlMt3v̄2/ f"2om f̄m
2 s0dgj1/2 takes the dimensions

of force.

IV. CONTINUOUS-TIME MONTE CARLO

A. Algorithm

Traditionally, path-integral QMC simulation is imple-
mented indiscrete imaginary time, where the trajectory is
represented by the position of the electron in each of a large
number of imaginary-time slices. The use of discrete time
introduces the problematic finite-time-stepsystematicerror,
which scales with the square of the time-slice width.

A path-integral QMC scheme implemented directly in
continuousimaginary time has been developed for systems
with a discrete basis.19,61 Here, the electron trajectory is rep-
resented as finite intervals of imaginary time in which the
system remains in a particular state, separated by sporadic
transitions from one state to anothersan electron hopd. The
points in imaginary time at which the state of the system
changes are called “kinks,” as shown in Fig. 3. It is necessary
to consider the statistics governing different directions of
kink independently of one another. For our one-dimensional
case with nearest-neighbor hopping, we need only consider
single left and right kinks. The use of continuous time com-

pletely eliminates the finite-time-step error, rendering the
scheme “numerically exact.”

If Ns is the number of kinks of directions, we wish to
generate random states according to the Monte Carlo weight

wshNsjd = welshNsjdwphshNsjd, s31d

where the weight from the electron subsystem

welshNsjd = p
s

stbdNse−tb

Ns!
s32d

is given by the Poisson distribution, and the phonon-induced
weight

wphsNsd = expfAsNsdg s33d

is given by Eq.s26d.
Proposed changes to the shape of the trajectory are gen-

erated by the addition or deletion of single kinks. This is
sufficient in practice. In order to increase efficiency one
might also consider changing a kink-direction, repositioning
a kink in imaginary time, or altering the temporal ordering of
the kinks. The Metropolis method63,64 accepts or rejects the
trial change from statem to statem8 with a transition prob-
ability Psm→m8d=gsm→m8dasm→m8d, wheregsm→m8d is
the sampling distribution andasm→m8d is the acceptance
probability. For the case ofNsù1 sone or more kinks existd,
we choosegsNs+1→Nsd=gsNs→Ns+1d=1/2, and so the
acceptance probability is given by

aaddsNs → Ns + 1d = minH1,
gsNs + 1→ Nsd
gsNs → Ns + 1d

WsNs + 1d
WsNsd

J
s34d

FIG. 3. Illustration of a one-dimensional electron trajectory in
imaginary time. The point in imaginary time at which the electron
hops to a neighboring site is known as a kink.sad Shows a trajectory
with three kinks: occurring att1, t2, andt4. sbd The same trajectory,
but with a kink added at timet3. The entire trajectory abovet3 is
shifted by one lattice parameter.scd The same trajectory as insad but
with the kink att2 removed. Again, the entire trajectory abovet2 is
shifted accordingly.
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=minH1,
tb

Ns + 1
expfAsNs + 1d − AsNsdgJ s35d

to add a kink, and similarly

aremsNs + 1→ Nsd = minH1,
Ns + 1

tb
expfAsNsd − AsNs + 1dgJ

s36d

to remove a kink of directions. For the case ofNs=0, we can
only add a kink, and sogs0→1d=1, which gives

aadds0 → 1d = minH1,
tb

2
expfAs1d − As0dgJ s37d

and

arems1 → 0d = minH1,
2

tb
expfAs0d − As1dgJ . s38d

The continuous-imaginary-time QMC step used in this work
has the following structure.

s1d Randomly select a kink directions for the trial change.
In the case of a one-dimensional system, this is left or right.

s2d Propose a change to the trajectory by randomly select-
ing whether to add a new kinksat a random imaginary timed
or to remove an existing kinksselected in a random fashiond.
This is done according to the selection probabilitiesgsNs

+1→Nsd andgsNs→Ns+1d.
s3d Accept or reject the proposed change with probability

aaddsNs→Ns+1d if adding, oraremsNs+1→Nsd if removing a
kink.

s4d If the change has been accepted, then theentire trajec-
tory that lies “above” the kinksi.e., from the imaginary time
of the kink to bd is shifted across accordingly. If the pro-
posed change has been rejected, then the trajectory is left
untouched.

B. Analytical integration over kinks

The Metropolis algorithm requires the action, which in-
volves a double integration in imaginary time, to be com-
puted on each Monte Carlo step. The fact that the trajectory
consists of a series of single kinks, between which the tra-
jectory is a straight linefr st̄d is constantg, leads us to decom-
pose the actionA in Eq. s26d into segments according to

A = o
j=1

Ns+1

Ajj + 2o
j=1

Ns

o
k=j+1

Ns+1

Ajk, s39d

where j andk label the kinkssalong trajectories correspond-
ing with t and t8, respectively, in the double integrationd,
such thatt̄ j is the imaginary time at which thej th kink oc-

curs, with t̄0=0 andt̄Ns+1=b̄. We treat the diagonalAjj and
off-diagonal segmentsAjk separately in order to increase ef-
ficiency. EachAjk involves the range of imaginary time be-
tween successive kinks oft̄ j−1øt̄øt̄ j and t̄k−1øt̄8øt̄k, in
which the electron coordinate is fixed atr st̄d=r st̄ j−1d and
r st̄8d=r st̄k−1d, respectively. Thus the value of the lattice
summationFDrfr st̄ j−1d ,r st̄k−1dg given by Eq. s29d, has a

constant value, allowing the double integration appearing in
Eqs.s27d ands28d to be treated analytically for each segment
Ajk. The result after rearrangement reads

A =
lz

F0
s0,0dH o

j=1

Ns+1

fA0
s jdF0

s j ,jd + A1
s jdFDr

s j ,jdg

+ o
j=1

Ns+1

o
k=j+1

Ns+1

fA2F0
s j ,kd + A3FDr

s j ,kdgJ , s40d

where we have used the shorthandFDr
s j ,kd

=FDrfr st̄ j−1d ,r st̄k−1dg for the lattice summation defined in
Eq. s29d, and

A0
s jd =

1

v̄
fv̄st̄ j − t̄ j−1d − Ks jdg, s41d

A1
s jd =

1

v̄
e−v̄sb̄+t̄ j−1−t̄ jd, s42d

A2 =
1

v̄
Ks jdKskde−v̄st̄k−1−t̄ jd, s43d

and

A3 =
1

v̄
Ks jdKskde−v̄sb̄−t̄k+t̄ j−1d, s44d

where we have defined

Ks jd = 1 −e−v̄st̄ j−t̄ j−1d. s45d

The action can thus be computed efficiently using this double
summation over kinks.

For the models studied in this paper,fmsnd depends only
on therelative lattice distanceum−nu, and tends to zerosor is
zerod at large distance. Consequently, the lattice summation,
Eq. s29d, is a function of thesingle variabler 8=r 2−r 1−Dr
only, namely,

Fsr 8d = o
m8

f̄sm8d f̄sm8 − r 8d, s46d

which can be evaluated for all possible values ofr 8 in ad-
vance of the simulation proper, improving the efficiency of
the QMC scheme.

C. Physical observables

We consider four physical observables: the ground-state
energy, the number of phonons in the polaron cloud, the
effective mass, and the isotope exponent on the effective
mass. For a given observableQ, the expectation value is the
statistical average over trajectories atP=0 sground stated,
which can be written in the form
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kQl0 =

E
tw

DrQwsNsd

E
tw

DrwsNsd
, s47d

where the phonon degrees of freedom have been integrated
out, andwsNsd is given by Eq.s31d. This corresponds to a
simple arithmetic average within the QMC simulation.

The ground statesP=0d energy estimator is given by48

E0s0d = −K 1

w

]w

]b
L

0
= −K ]A

]b
L

0
−

1

bKo
s

NsL
0

, s48d

which follows from the corresponding finite-imaginary-time
energy estimator46 in the continuum limit. Within the QMC
simulation, then, we must gather separate statistics for the
total number of kinksosNs and the quantity]A/]b. One can
see that the expression for]A/]b is easily obtained by ana-
lytically differentiating Eq.s40d with respect tob.

The number of phonons in the polaron cloudNph quanti-
fies the amount of lattice deformation associated with the
polaron. The value ofNph is given by the expectation value
of the phonon number operator, which can be isolated from
the model Hamiltonian using the fact thatu]H /]s"vdulv

=omdm
† dm. This can be related to the action via the free

energyF0=−b−1 ln Z0 to give

Nph = Ko
m

dm
† dmL

0

= U ]F0

]s"vdUlv

= −
1

b̄
KU ]A

]v̄
U

lv̄
L

0

,

s49d

where u]A/]v̄ulv̄ is easily obtained by differentiating Eq.
s40d with respect tov̄ holding the productlv̄ constant.

As discussed in Sec. III A, by imposing twisted boundary
conditions in imaginary time, dynamical properties can be
inferred directly from QMC simulation. The effective mass
of the polaronm* , for the isotropic or one-dimensional case,
may be measured using

m0

m* =
1

2b̄
ksDr d2l0, s50d

where the difference in position of the endpoints of the tra-

jectory Dr =r sb̄d−r s0d is measured in units of the lattice
constanta, andm0 is the bare electron mass.

The isotope effect is most often observed via its influence
on the superconducting transition temperatureTc. The depen-
dence ofTc on the mass of the lattice ionsM has been found
empirically to beTc~M−a,65,66 where a is known as the
isotope exponent onTc. In a similar way, let us define the
isotope exponent on the effective massam* as

am* =
M

m*

dm*

dM
= − M

m*

m0

]

]M
Sm0

m* D s51d

for the isotropic or one-dimensional case. On substitution of
the derivative ofm0/m* , as in Eq.s50d, with respect toM, we
have

am* =
v̄

2

1

ksDr d2l0
FKsDr d2]A

]v̄
L

0

− ksDr d2l0K ]A

]v̄
L

0
G ,

s52d

where the ionic mass enters our formalism via the phonon
frequencyv=sk/Md1/2, wherek is some “spring constant”
and ]A/]v̄ is easily obtained from Eq.s40d. fFor a general
D-dimensional system, we may define thedth component of
the isotope exponent on the effective mass asa

m*
sdd

=−Msmd
* /m0,dd] /]Msm0,d/md

*d, where m0,d/md
*

=s2b̄d−1ksDrdd2l0, with Drd=rdsb̄d−rds0d, and thus we may

write a
m*
sdd as Eq.s52d with everyDr replaced byDrd.g

D. Simulation details

The QMC scheme is based on the simulation of asingle

trajectoryr st̄d in imaginary time 0øt̄øb̄. The standard Me-
tropolis algorithm is used to alter the shape of the trajectory
by the addition and deletion of single kinks, as described in
Sec. IV A. The start of the trajectoryr s0d does not change

throughout the simulation, but the other endr sb̄d is “free”
sopen boundary conditions in imaginary timed. In practice,
the shape of the trajectory was represented using a list con-
taining the imaginary-time, and the direction, of each kink.

In addition, we also kept track of the value ofDr =r sb̄d
−r s0d, and the the total number of kinks of each direction
hNsj. The major computational task is the evaluation, on each
Monte Carlo step, of the action given by Eq.s40d. sThe num-
ber of exponential-function-evaluations was reduced by stor-
ing the values ofA1

s jd andKs jd along with each kink, reducing
the overall computational effort.d In order to calculate the
expectation values of the observables given in Sec. IV C,

separate statistics for the quantitieskosNsl0, k]A/]b̄l0,
ku]A/]v̄ulv̄l0, ksDr d2l0, k]A/]v̄l0, and ksDr d2]A/]v̄l0 were
gathered every 10–50 Monte Carlo steps. We only consider
the case ofP=0, corresponding to the ground state of the
system, where there is no sign problem.

The four one-dimensional interaction models studied dif-
fer only in the value of the screening lengthRsc. The model
dependency enters the simulation viaFsr 8d given by Eq.
s46d. For each model, simulations were conducted for vari-
ous different values of the dimensionless parametersv̄ and
l.

The value ofb̄ was set at a sufficiently large value to

enforce the low-temperature limit expsv̄b̄d→`. For the

present simulations, a value ofb̄ù15 was found to make the
finite-temperature error negligible.sReducing the value ofv̄,
or increasingl, beyond those studied here would require this

value of b̄ to be increased.d Increasing the value ofb̄ in-
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creases the “length” of the trajectoryswhich involves more
kinksd, and thus increases the computational effort required
to perform each Monte Carlo step.

For each set of model parameterssRsc, v̄, andld, between
3 and 6 statistically independent Monte Carlo runs were per-
formed, each using a different value of the inverse tempera-

ture 15øb̄ø25. The number of Monte Carlo steps in each
run was taken to be about five times the “warm-up” period.
Typically, the runs consisted of between 13107 and
53107 steps in total.sThe statistics gathered for each set of
runs were viewed together graphically, in order to better es-
timate the point at which equilibrium had been reached.d
Only those statistics gathered after the estimated warm-up
period were included in the averages. Given that the finite-
temperature error is small, and in the absence of systematic
finite-size and finite-time-step errors, the main source of er-
ror is statistical. The size of the statistical error depends on

fmsnd and b̄, as well as onv̄ andl. For each set of model
parameterssRsc, v̄, andld, we performed a sufficient number
of runs to ensure that the Monte Carlo averages were deter-
mined to a statistical error of less than 1%.

V. LIMITING CASES

A. Strong coupling (small polaron) regime

When the electron-phonon coupling is strong, the electron
becomes “trapped” in a potential well created by the induced
lattice distortion. In this case the “size” of the polaron state
can become comparable with the lattice constant, and the
term “small polaron” is used. The condition for small po-
laron formation isl=Ep/ztù1, which is referred to as the
strong-coupling regime.42 The small polaron can move from
site to sitesat zero temperatured through the action of zero-
point motion.

An analytical method to determine the effective mass and
energy dispersion in the strong-coupling regime, for a lattice
polaron with a general electron-phonon interaction force
fmsnd,36 is based on the Lang-Firsov canonical
transformation15 swhich renders the transformed Hamil-
tonian diagonal forl→`d, followed by a second-order per-
turbation technique that uses 1/l as a small parameter.42 For
nearest-neighbor hopping only, and forms offmsnd that de-
pend on the relative lattice distanceum−nu, the result for the
lowest energy levels reads36

Eskd = − Ep − «pskd − o
k8,hnqj

Ukk,0uonn8
tnn8 expFom·q

ffmsnd − fmsn8dgseiq·mdq
† − e−iq·mdqd

Î2NM"vq
3 Gcn8

† cnuk8,hnqjlU2

"voq
nq

, s53d

where the summation is over intermediate states with one or
more phonons,oqnq.0, the polaronic energy-level shift

Ep =
1

2Mv2o
m

fm
2 s0d s54d

sused to defineld corresponds with the solution forl→`,
and the small-polaron dispersion

«pskd = t o
nÞ0

e−g2s1de−ik·n, s55d

whereg2 is known as theszero temperatured mass renormal-
ization exponent, given by

g2s1d =
1

2M"v3o
m

ffm
2 s0d − fms0dfms1dg. s56d

The final term of Eq.s53d is quadratic with respect to the
bare hopping amplitudetnn8, and produces a negative correc-
tion to the energy.sHere,nq is the number of phonons with
wave vectorq, anduk8 ,nql is an excited state that consists of
a single electron with wave vectork8 and one or more
phonons.d It is of order of 1/l2 and is almost independent of
k.36

In the ground state of the systemsk =0d, the value of
«pskd is real and small compared with −Ep, and so Eq.s53d is
dominated by −EP. Thus, the sdimensionlessd strong-
coupling result for the ground-state energy is

E0

t
= zl, s57d

and sinceEp=Nph"v, it follows that the number of phonons
in the polaron cloud atk =0 is given by

Nph =
zl

v̄
. s58d

Assuming that the third term in Eq.s53d is completelyinde-
pendent ofk, then the inverse effective mass, for the isotro-
pic or one-dimensional case, is given by

m0

m* = m0U ]2Eskd
]k2 U

k→0
= e−g2s1d. s59d

This can be conveniently expressed in dimensionless form as

m0

m* = expS− 2gl

v̄
D , s60d

where we have defined the constant
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g ; 1 −
om

fms0dfms1d

om8
fm8
2 s0d

, s61d

which depends only on theshapeof the electron-phonon
interaction force. The isotope exponent on the effective mass
am* , defined in Eq.s51d, can be written in terms ofv
~M−1/2 as

am* =
m*

m0

v

2

]

]v
Sm0

m* D , s62d

for the isotropicsor one-dimensionald case. Thus, thesdi-
mensionlessd strong-coupling isotope exponent is given by37

am* =
gl

v̄
. s63d

The value of the dimensionless constant 0øgø1 must in
general be determined numerically: the value calculated for
each of the one-dimensional interaction models studied in
this work is presented in Table I.

B. Weak coupling (large polaron) regime

In 1950 Fröhlichet al.67 considered the ground state of a
polaron in the weak-coupling limitl!1, using second-order
perturbation theory, under the condition that there is never
more than one phonon virtually excited, and the discreteness
of the lattice is unimportantsbecause the band-electron-like
“large polaron” state68 is much larger than the lattice con-
stantd. In our case we use the tight-binding dispersion

«0skd = − 2t cosskad s64d

rather than the parabolic approximation«0skd="2k2/2m0

+Osk4d, wherem0="2/ s2ta2d used by Fröhlich.67 Thus we
write

H = «0skd + "vo
q

dq
†dq + He-ph, s65d

where the electron-phonon termHe-ph is a small perturbation.
Assuming thatfmsnd depends only on the relative lattice dis-
tanceum−nu, thenHe-ph given by Eq.s4d may be written in
momentum representation as

He-ph = − Îk̃o
q,k

f̃qsck−q
† ckdq

† + H.c.d, s66d

where we have defined

k̃ =
zlv̄t2

om
f̄m
2 s0d

s67d

and

f̃q = o
r

f̄ rs0de−iq·r /". s68d

Here, the summation is over all values ofr =m−n for which

f̄msnd= f̄sm−nd= f̄ rs0d is a function of a single variable only.
Using standard second-order perturbation theory, with an ini-
tial state that consists of an electron of momentum"k and no
phonons, and an intermediate state that consists of an elec-
tron with momentum"sk −qd and a single phonon of mo-
mentum"q, the energy measured from the bottom of the
electron band is given by

Eskd = «0skd − k̃o
q

u f̃qu2

W
, s69d

where we have defined

W= «0sk − qd + "v − «0skd. s70d

Here the ground-state energyE0 occurs atk =0 andoq is a
suitable Brillouin zone average.

The number of virtual phonons in the polaron cloud is
defined asNph=oqk08udq

†dqu08l, where u08l represents the
eigenstate for the perturbed Hamiltonian. Using standard
first-order perturbation theory, this is given by

TABLE I. Values of the dimensionless parameterg=1
−omfms0dfms1d /om8fm8

2 s0d for the one-dimensional models studied
in this work, whereg depends only on theshapeof the interaction
force.

Interaction model g

Holstein 1.000

Screened FröhlichsRsc=1d 0.745

Screened FröhlichsRsc=3d 0.531

Nonscreened Fröhlich 0.387

TABLE II. The numerically calculated values of the coefficient of the linear term inl in Eqs.s74d–s77d,
for each one-dimensional interaction model atv̄=1 in the weak coupling limit. For example, the ground-state
energys74d of the Holstein polaron is given byE0/ t=−2−0.894l.

Interaction model om f̄m
2 s0d YE0

YNph
Ym0/m* Yam*

Holstein sRsc→0d 1.000 0.894 0.537 0.537 0.125

Screened FröhlichsRsc=1d 1.034 1.080 0.736 0.625 0.200

Screened FröhlichsRsc=3d 1.133 1.257 0.938 0.678 0.266

Unscreened FröhlichsRsc→`d 1.269 1.394 1.104 0.687 0.306
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Nph = k̃o
q

u f̃qu2

W2 . s71d

The effective mass is easily found by differentiating Eq.s69d
twice with respect tok, according to Eq.s59d, to give

m0

m* = 1 −
k̃

2at2oq

u f̃qu2s2W82 − W9Wd
W3 , s72d

where W8=]W/]k and W9=]2W/]k2. Differentiating this
expression with respect tov, according to Eq.s62d, gives the
isotope exponent on the effective mass as

am* =
k̃

4at2
m*

m0
o
q
F u f̃qu2W9sW− 2"vd

W3

−
u f̃qu22W82sW− 3"vd

W4 G . s73d

The above expressions for the observables may be written
in the form

1

t
E0 = − 2 −lYE0

s f̄,v̄d, s74d

Nph = lYNph
s f̄,v̄d, s75d

m0

m* = 1 −lYm*s f̄,v̄d, s76d

and

am* =
l

m0/m
* Yam*s f̄,v̄d, s77d

whereYs f̄ ,v̄d is the coefficient of the linear term inl, which
may be calculated numerically. We are interested in the
ground-state properties and thus must evaluate the above ex-

pressions atk →0. The ground-state values ofYs f̄ ,v̄d for
each one-dimensional interaction model are presented in
Table II for v̄=1.

The coefficients can be expressed in closed form for the
simplest case of the one-dimensional Holstein interaction.
Here we find that the energy is

Eskd = − 2t cosskad −
2v̄tl

hfv̄ + 2 cosskadg2 − 4j1/2, s78d

so that

YE0
s f̄,v̄d =

2v̄

sv̄2 + 4v̄d1/2, s79d

FIG. 4. The variation of ground-state energyE0s0d strianglesd,
together with potential energysdiamondsd and kinetic energy
ssquaresd, with couplingl for the one-dimensional Holstein model
with a dimensionless phonon frequency ofv̄=1. The dashed line is
the strong coupling perturbationsSCPd result s57d and the dotted
line the weak-coupling perturbationsWCPd result s74d. One can
clearly distinguish the large-polaron, transition and small-polaron
regions.

FIG. 5. The variation of
ground-state energyE0s0d stri-
anglesd, together with potential
energysdiamondsd and kinetic en-
ergy ssquaresd, with coupling l,
for the one-dimensional Holstein
model with a phonon frequency of
v̄=0.5 ssmall symbolsd, 1.0
smedium-size symbolsd, and 3.0
slarge symbolsd. As v̄ increases,
the transition region shifts to
higherl and becomes broader.
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YNph
s f̄,v̄d =

2v̄sv̄ + 2d
sv̄2 + 4v̄d3/2, s80d

Ym*s f̄,v̄d =
2v̄sv̄ + 2d

sv̄2 + 4v̄d3/2, s81d

and

Yam*s f̄,v̄d =
v̄2sv̄2 + 2v̄ + 4d

sv̄2 + 4v̄d5/2 . s82d

VI. RESULTS

A. Holstein interaction

1. Self-trapping transition

Let us consider first the QMC results for the simplest case
of the one-dimensional Holstein model. The variation of the
ground-state energyE0s0d with the coupling constantl is
shown in Fig. 4 for a fixed phonon frequency ofv̄=1. The
E0s0d curve tends to the weak-coupling perturbationsWCPd
result from below asl→0, and to the strong-coupling per-
turbationsSCPd result asl→`. Here we have also plotted
the first and second terms of Eq.s48d, which provide an
indication of the potential energysPEd and the kinetic energy
sKEd of the system, respectively. Three separate regions can
be clearly distinguished from Fig. 4.

s1d The large-polaron region at weak couplingsl=0 to
l<1 in this cased is defined as the range ofl for which
E0s0d is accurately described by WCP theorysSec. V Bd. At
l=0 the energy is entirely kinetic and represents the bottom
of the bare-electron bandfwith E0s0d=−ztg. As l increases
within this region, KE increases but remains large compared
with PE snonlocalized bandlike statesd.

s2d The small-polaron region at strong couplingsin this
casel<2.5 tol→`d hasE0s0d accurately predicted by SCP
theorysSec. V Ad. The PE is much greater than the KEsself-
trapped statesd.

s3d The smooth transition region at intermediate coupling
sl<1 to l<2.5 in this cased between the two regions above.
As l increases in this region, a decrease in the PE and an
increase in KE indicates the localization of the polaron.

2. Variation with phonon frequency

Now let us consider the way in which the properties of the
Holstein polaron are affected by altering the value of the
dimensionless phonon frequencyv̄, as defined by Eq.s5d.
This quantity salso known as the adiabatic ratiod is often
used as a parameter in analytical approaches to the polaron
problem: the adiabatic regime is defined as the case when
v̄,1, and the antiadiabatic regime asv̄.1. With this in
mind, we present below the properties of the one-
dimensional Holstein polaron forv̄=0.5, v̄=1, andv̄=3.

The ground-state energies for all three values ofv̄ are
presented together in Fig. 5 againstl. The PE tends to the

TABLE III. The boundaries of the transition region for the one-dimensional Holstein model at different
values of thesdimensionlessd phonon frequencyv̄. The estimates are based on the QMC results for the
energies andNph sobserving the changing “trend” in plots of the deviation from the corresponding SCP and
WCP resultsd.

v̄ l send of large-polaron regiond l sstart of small-polaron regiond

0.5 s1.1±0.1d s2.0±0.2d
1 s1.3±0.1d s2.7±0.3d
3 s2.1±0.1d s5.5±0.6d

FIG. 6. The number of
phonons for the Holstein model at
v̄=0.5,1.0,3.0 ssmall, medium-
size, and large circles, respec-
tivelyd. The dashed line shows the
SCP results57d. The transition re-
gion boundaries are the same as
those in Fig. 5.
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samesv̄-independentd SCP result ofE0s0d=2l asl→`. No-
tice that the KE for intermediate and large values ofl de-
creases asv̄ increases. This affects the position of the start
and end of the transition region. More precisely, asv̄ in-
creasess1d the start of the smooth transition region moves to
higherl and s2d the transition region becomes broadersthe
start of the small-polaron region is also shifted to largerld.

The values ofl that mark the estimated start and end of
the transition region are shown in Table III. The definition of
l, in Eq. s6d, is independent ofv̄, and so naturally charac-
terizes the three regions defined above.

The variation ofNph with l is presented in Fig. 6 for each
value ofv̄. Over all couplings,Nph decreases as the value of
v̄ increases. Loosely speaking, it is simply “harder” to create
phonons of higher frequency. The smooth transition from
large to small polaron is again visible in the results forNph,
with the edges of the transition region occurring at the same
l as in the above results forE0s0d.

The QMC results for the inverse effective massm0/m* ,
and the isotope exponent on the effective massam* , are pre-
sented againstl in Figs. 7–9, for each value ofv̄. We see
from Fig. 7 that increasingv̄ reduces the effective mass over
the entire range ofl. Both m0/m* andam* tend to the WCP
solution asl becomes small, and to the SCP result asl
becomes large. However, the results for lnsm* /m0d tend to
the SCP solution at a slower rate than for the other observ-
ables.

From all the results for the Holstein model above, we
observe that as the value ofv̄ increases, the curve for each
observablesPE,Nph, m* , andam*d againstl moves closer to
the line representing the SCP result over theentire range of
l. In other words, the SCP prediction becomes more appli-
cable asv̄ increases.

B. Screened Fröhlich interaction

Here we consider the case of the one-dimensional
screened Fröhlich model, Eq.s8d, at a fixed dimensionless
phonon frequency ofv̄=1. We investigate the way the po-
laron properties depend on the range of the electron-phonon
interaction by comparing the QMC results at four different
values of the screening lengthsshown in Fig. 2d: Rsc→0 sthe
short-range Holstein interactiond, Rsc=1, Rsc=3, and Rsc
→` sthe nonscreened Fröhlich interactiond.

The QMC results for the energyfE0s0d, PE, and KEg and
the number of phonons in the polaron cloudNph are pre-
sented againstl in Figs. 10 and 11, respectively. They are in
excellent agreement with the WCP results at smalll snot
shownd, and tend to thesamesthat is, g-independentd SCP
result asl→`. One can see that, as the value ofRsc in-
creases, the KE increases less rapidly withl, and sos1d the
start of the transition region shifts to higherl and s2d the
transition region becomes broadersin ld. This behavior is
similar to that found for the Holstein model with increasing
v̄. In the present case, with the phonon frequencyv̄ fixed,
the above effect is due only to changing the shape of the
electron-phonon interaction forcefmsnd. Table IV shows the
values of l that mark the estimated start and end of the

FIG. 7. The inverse effective massm0/m* swherem0="2/2ta2

is the bare-electron massd for the Holstein model at v̄
=0.5,1.0,3.0ssmall, medium-size, and large circles, respectivelyd.
The dotted line shows the WCP results81d for the tight-binding
Hamiltonian.

FIG. 8. The logarithm of the
effective mass for the Holstein
model at v̄=0.5, 1.0, and 3.0
ssmall, medium-size, and large
circles, respectivelyd. The dashed
line shows the SCP result
lnsm* /m0d=2l / v̄.
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transition region for each value ofRsc. From theNph results
in Fig. 11, we notice that increasing the value ofRsc has the
effect of increasing Nph at smalll, and the opposite effect of
decreasing Nph at largel. That is, the order thatNph appears
swith increasingRscd in the large polaron region is the re-
verse of the order in the small polaron region.

The results for the effective mass are presented in Figs. 12
and 13, and the isotope exponent results in Fig. 14, againstl
for the same four values ofRsc. We can see that for each
value ofRsc the QMC results tend to the “model dependent”
SCP resultfof lnsm* /m0d=2gl / v̄ andam* =gl / v̄, where the
value of the mass enhancement factorg is given in Table I
for eachRscg. This model dependency is in contrast to the
above results forE0s0d andNph, which areg independent in
the limit l→`.

An important observation is evident from the plot of
lnsm* /m0d againstl shown in Fig. 13. At intermediate and
large couplingssthat is, in the transition and small polaron
regionsd, altering the value ofRsc has adramatic effect on
the effective mass. For example, the nonscreened Fröhlich
polaron is over 103 times “lighter” than the Holstein polaron
at l=4, and over 104 times lighter atl=5.

The isotope exponentam* in Fig. 14 shows a strong de-
pendence on the range of electron-phonon interactionsas
well as onv̄ and ld in the sphysically most realisticd inter-
mediate values of coupling. This is important, as experimen-
tal measurementsby Zhaoet al.d of the exponent of the iso-
tope exponent on the effective supercarrier mass along the
CuO2 planesmab

* , in the material La2−xSrxCuO4 shows a

large value ofa
m*
sabd=1.9s2d in the deeply underdoped regime

sx=0.06d, and a much smaller value ofa
m*
sabd=0.46s5d for

optimal dopingsx=0.15d.10,69Both the magnitude and radius
of the electron-phonon interaction should decrease with dop-
ing due to screening. These experimental results show that
the former effect is more significant.

Now let us consider the large-polaron region. The QMC
results form* andam* tend to the WCP results for allRsc snot
shownd asl→0. As was the case forNph, we see from Figs.
12 and 14 that the order thatm* andam* appear in the large

polaron regionswith increasingRscd is the opposite to that in
the small polaron region. As can be seen in Fig. 12, the
decrease ofm0/m* with l is approximately linear for the
Holstein model, and approximately exponential for the other
screening lengths. In fact, the effective mass of the Fröhlich
large-polaron islarger sup to approximately 10%d than the
effective mass of thesshort-ranged Holstein large polaron.

It is apparent from the above results for the screened
Fröhlich model that asRsc increasessfrom Holstein to
Fröhlichd, the QMC results move, in general, closer to the
SCP prediction over theentire range ofl. That is, the SCP
prediction becomes generally more applicable as the range of
interaction increasessas well as with increasingv̄d. This fact
allows us to define the intermediate region of the coupling
strength and of the adiabatic ratio as a “small polaron” re-
gime for any realistic-rangee-ph interaction, that is the re-

FIG. 9. The isotope exponent
for the Holstein model at v̄
=0.5,1.0,3.0 ssmall, medium-
size, and large circles, respec-
tivelyd. The dotted line shows the
SCP result.

FIG. 10. The ground-state energyE0s0d strianglesd, potential
energy ssquaresd, and kinetic energysdiamondsd of the one-
dimensional screened Fröhlich model atv̄=1, vs l, for screening
lengthsRsc=0,1,3 ,̀ sincreasing size of symbolsd. The curves for
E0s0d sand PEd tends to the same strong coupling perturbation
sSCPd result ofE0/ t=−2l sdashed lined asl→`. Note the crossing
of the potential energy curves nearl=2.
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gime which is well described by the small polaron theory
based on the Lang-Firsov transformed Hamiltonian averaged
over phonons.

C. Comparison with other approaches

As a test of our method, we compare our results with
those of other authors. Our main and original computations
are for finite values ofR; however, the majority of published
work on lattice polarons relates to the HolsteinsR=0d inter-
action. Figure 15 compares our ground-state energy forv̄
=1.0,R=0 scompare Fig. 4d with that obtained by other au-
thors. To highlight the differences, the weak coupling ap-
proximation s74d is subtracted from the energy. The figure
compares our results with the QMC data of Hohenadleret
al.49 sbased on a bosonic path integral, evaluated at inverse

temperatureb̄=10d and exact diagonalization results for
small clusters.70 Different computations yield similar values
of the ground-state energy, but our QMC energies are closer
to the the exact diagonalization results; our calculations have

been carried out at a lower temperatureb̄=25. Figure 16
shows good agreement between our results for the effective
massscompare Fig. 8d and variational calculations of Bonča
et al.35 sNote that thel in that work corresponds toÎ2vtl in
our notation.d We also reinforce earlier conclusions on the

dependence of effective mass with interaction range36,56 by
interpolation between the Holstein and Fröhlich limits.

VII. CONCLUSIONS

The general aim of this work was to investigate the way
in which the range of electron-phonon interaction governs
the physical properties of thessingled lattice polaron. The
understanding of this is of considerable current interest be-
cause of the increasing amount of experimental evidence
suggesting that polarons are present in high-temperature su-
perconducting and colossal magnetoresistance materials.

Perturbation approaches are used in the limits of strong
and weak electron-phonon coupling strengthl. However, in
general these do not provide an acceptable description in the
sphysically most realisticd intermediate coupling rangel
<1. We have performed an extensive Monte Carlo study of
the ground state properties for the screened Fröhlich polaron,
Eq. s8d, in one dimension, over a wide range of coupling.

We have used path-integral quantum Monte Carlo, in
which the phonon degrees of freedom are analytically inte-
grated out, leaving only the electron coordinates to be simu-
lated. The use of a path integral withtwistedboundary con-
ditions allowed us to extract dynamic propertiesdirectly
from the simulations. There were nossystematicd errors due
to finite size or finite time-step.

The properties measured were the ground state energy
E0s0d, the number of phonons in the polaron cloudNph, the
effective massm* , and the isotope exponent on the effective
massam* . The QMC results were always found to tend to the
weak-coupling perturbationsWCPd predictions for l→0,
and to the strong-coupling perturbationsSCPd predictions for
l→`.

The screened Fröhlich polaron was studied for various
values of the screening lengthRsc swhich essentially controls
the range of the electron-phonon interactiond: Rsc→0 son-
site, Holstein interactiond, Rsc=1, Rsc=3, andRsc→` slong-
range, nonscreened Fröhlich interactiond. For each value of
Rsc, we determined the variation of the above observables
with l, at a fixed phonon frequency ofv̄=1. The main find-
ings are summarized below.

s1d We observe the presence of a self-trapping transition
for all values ofRsc. In each case, the following three regions
are identified.

sad The large-polaron region at weak coupling, in which
the behavior of the system is accurately described by WCP
theory. This region is characterized by delocalized, band-
electron-like states.

TABLE IV. The boundaries of the transition region for the one-dimensional screened Fröhlich interaction,
at various screening lengthsRsc smeasured in units of the lattice constantd. The estimates are based on the
QMC results for the energy andNph.

Interaction model l sstart of transitiond l send of transitiond

Holstein sRsc→0d s1.1±0.1d s2.0±0.2d
Screened FröhlichsRsc=1d s1.7±0.1d s3.8±0.4d
Screened FröhlichsRsc=3d s2.2±0.1d s4.7±0.4d

Non-screened FröhlichsRsc→`d s2.9±0.2d s6.3±0.5d

FIG. 11. The number of phonons in the polaron cloudNph vs l
for screening lengthsRsc=0,1,3 ,̀ sincreasing size of circlesd at
v̄=1. The curves tend to the same SCP result ofNph=zl / v̄ sdashed
lined asl→`.
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FIG. 12. The inverse effective
massm0/m* for screening lengths
Rsc=0,1,3 ,̀ sincreasing size of
circlesd vs l at fixed v̄=1. For
weak coupling sl,1d the Hol-
stein large-polaron has a slightly
smaller m* than the long-range
interactions.

FIG. 13. The logarithm of the
effective mass for screening
lengths Rsc=0,1,3 ,̀ sincreasing
size of circlesd vs l at v̄=1. At
intermediate and strong coupling,
decreasing the value ofRsc dra-
matically increases the effective
mass. The curves tend to the SCP
result sdashed linesd at a slower
rate thanE0s0d andNph.

FIG. 14. The isotope exponent
on the effective massam* for
screening lengthsRsc=0,1,3 ,̀
sincreasing size of circlesd vs l at
v̄=1.
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sbd The small-polaron region at strong coupling, in which
the behavior is accurately described by SCP theory. This re-
gion is characterized by localizeds“self-trapped”d polaronic
states.

scd The transition region between the two, at intermediate
coupling. We observe a smooth crossover from large to small
polaron inall the observables measured.

s2d The transition region boundaries depend on the range
of interaction. As the value ofRsc increases we find the fol-
lowing.

sad The start of the transition regionsthe point at which it
becomes energetically favorable for localized states to existd
shifts to higherl.

sbd The transition region becomes broadersthe start of the
small polaron region also shifts to higherld. The small-

polaron region starts when the kinetic energy is much
smaller than the potential energy.

scd The values of the observablessPE, Nph, m* , andam*d
generally move closer to the corresponding SCP result over
the entire range ofl.

s3d In the large polaron region, the effective mass for
long-range electron-phonon interactionsRsc.1d is found to
be up to approximately 10% larger than that for the Holstein
interactionsRsc→0d.

s4d We observe large variations in the isotope exponent on
the effective massam* in the sphysically most realisticd in-
termediate coupling regimeswith changingRsc andl, as well
as v̄d. This is encouraging, as experimental observation
shows large variations in the isotope exponent with the level
of doping in high-Tc materials.

FIG. 15. One-dimensional Holstein polaron ground-state energy forv̄=1.0, R=0 scrossesd compared with bosonic QMCscircles, Ref.
49d and exact diagonalization energiesssolid line, Ref. 70d at v̄=1.0. The energy in weak-coupling perturbation theorys74d has been
subtracted.

FIG. 16. One-dimensional
Holstein polaron effective mass
for v̄=1.0, R=0 scrossesd com-
pared with variational results
ssolid line, Ref. 35d.
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s5d Reducing the range of electron-phonon interaction
dramatically increases the effective mass for intermediate
and large values of couplingsthat is, in the transition and
small-polaron regionsd. In comparison,E0s0d and Nph are
only slightly affected by alteringRsc.

s6d We also study the dependence on phonon frequencyv̄
of the Holstein polaronsRsc→0d. As v̄ increases we find the
following.

sad The transition region shifts to higherl.
sbd The transition region becomes broader.
scd The observablessPE, Nph, m* , andam*d move toward

the corresponding SCP result over the entire range ofl.
s7d Increasing interaction range has a qualitatively similar

effect to increasing phonon frequency; compare for example
Figs. 8 and 13 or Figs. 9 and 14.

One can also calculate the isotope effect on the whole
polaron band dispersion applying the continuous-time quan-
tum Monte-Carlo algorithm.71 To deal with the electron spec-
tral function and high-energy excitations, involving phonon

shake-off, measured in ARPES,39–41 the QMC algorithm has
to include the off-diagonal paths, which remains a challeng-
ing but solvable problem of our QMC simulations in the site
representation. Also other methods as the momentum based
QMC,19 the numerical diagonalization of vibrating clusters
or the renormalisation group are able to calculate the spectral
function. The method used here relies on a phonon gap, the
errors being exponentially small inb"v, and is therefore
more accurate for intermediate and large values ofv. While
lower v can be also simulated without major difficulty but
with increased inverse temperature and therefore increased
CPU time, the parameters used cover the most physically
relevant range.3
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