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Temperature and quantum phonon effects on Holstein-Hubbard bipolarons
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The one-dimensional Holstein-Hubbard model with two electrons of opposite spin is studied using an
extension of a recently developed quantum Monte Carlo method and a very simple yet rewarding variational
approach, both based on a canonically transformed Hamiltonian. The quantum Monte Carlo method yields very
accurate results in the regime of small but finite phonon frequencies, characteristic of many strongly correlated
materials, e.g., the cuprates and the manganites. The influence of electron-electron repulsion, phonon fre-
guency, and temperature on the bipolaron state is investigated. Thermal dissociation of the intersite bipolaron
is observed at high temperatures, and its relation to an existing theory of the manganites is discussed.
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I. INTRODUCTION Il. HOLSTEIN-HUBBARD MODEL

In recent years, the formation and properties of bipo- The HH model is defined in terms of dimensionless pho-

larons, consisting of two electrons forming a pair in real"on by the Hamiltonian
space, have receiveq co_nsiderable interest because of ,thei'Hz—tE e v 92 (52 + £2)— oS g+ uS A
potential role, e.g., in high-temperature superconductivity. e D T
Theories based on bipolaron formation have been proposed
for the superconducting transition in the cuprataad the
metal-insulator transition and colossal magnetoresistance in
the manganite$3 Despite some fundamental problefn§, WhereK describes the hopping of electrofscorresponds to
they are still issues of ongoing discussion. the sum of the kineti¢P,) and elastic(P,) energy of the
Many interesting materials fall into the adiabatic regimePhonons, andey, e denote the electron-phondel-ph) and
of small, but finite phonon frequencies and intermediate tg*lectron-electroriel-e) interaction terms, respectively. Here
strong electron-phonon coupling. For such parameters, an&w (Cis) createsannihilate an electron of spir at lattice
lytical approaches based on, e.g., perturbation theory, do nft€i, X andp; denote the displacement and onmerltum of a
give reliable results. In contrast, computational methods repf@rmonic oscillator at site, and ==, With 1= Ci,
resent a very powerful instrument to obtain exact, unbiased "€ third term,le,, describes the coupling of dispersionless

. . e .
information, and a lot of numerical work has recently beenEiNStein phonons to the electron occupation nuniheFor
devoted to an understanding of the Holstein and th

E}doped cuprates or manganites, such a local interaction is ex-
Holstein-HubbardHH) model pected to be a reasonable approximation as a result of screen-
In this paper, we present a simple but surprisingly accu-

ing. In the first term, the symbdij) denotes a summation
rate variational approach to the HH bipolaron. More impor—over alltnearefsttr;nelghctj)olr hori[r)]m% pa({sj) .a?d (le,ﬂll). Trr:e
tantly, we extend a recently developed quantum Monte Carlcﬁgaa;nfe?rs cz h—f) n]((r)leeel?rﬁ coeu Ici)r?plggnlgt:rgtr a?] dp tr?é
(QMC) method to the case of two electrons of opposite spin. gywlnn=2), P pling '

The resulting algorithm is used to study bipolaron formationcouIomb repulsiorl) >0. For U=0, Eq.(1) is identical to

: . : . . . the Holstein modet.As in previous work, we introduce the
in the one-dimensional HH model, focusing on the ad'abat'cdimensionless coupling  constanh=a?/(wW), where

regime. Although the ground-state properties of t_he HH bI'W:4tD is the bare bandwidth iD dimensions. We further
polaron are rather well understood, here we exploit the capa- _ —
bility of the QMC approach to also study finite temperatures define the parameters=w/t and U=U/t, and express all
We find that, in particular, the weakly bound intersite bipo-€nergies in units of. Consequently, the independent param-
laron is susceptible to thermal dissociation. Furthermore, ireters of the model are, A, andU. We shall see below that
contrast to previous studies, we are able to consider a verg very useful quantity is given by the polaron binding energy
large range of the electron-phonon and electron-electron inEp=AW/2. Finally, throughout this paper, periodic boundary
teraction. conditions in real space are assumed.

The outline of this work is as follows. In Sec. Il we dis-  This work is exclusively concerned with the case of two
cuss the HH model with two electrons, whereas in Sec. lllelectrons, neglecting the interaction between bipolarons,
we present an extended Lang-Firsov transformation wittwhich will definitely be present to some degree in real ma-
nonlocal lattice displacements. Section IV features the exterterials. Furthermore, we restrict our attention to two elec-
sion of the QMC method to the bipolaron problem, and Sectrons with opposite spin, i.e., to the singlet bipolaron. A com-
V covers the variational approach. Results are presented iparison of the singlet and triplet state has recently been given
Sec. VI, and Sec. VII contains our conclusions. in Ref. 9.

(ipo

K P=P,+P, lep Tee (1)
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A review of early work on the bipolaron problem can be  Similar to Ref. 7, for the QMC method, we resort to the
found in the book by Alexandrov and Mdft Here we focus standard Lang-Firsov (LF) transformatiod® with v,
the discussion on more recent developments. The latter carexp(iy=hp;,). Here y=VAW/w has been chosen such that
roughly be divided into two classes, depending on the meththe el-ph coupling term, in Eq. (1) cancels. The trans-
ods employed(i) variational approachés;'” and (i) unbi-  formed Hamiltonian then takes the form
ased numerical studies using exact diagonalizaid), 822

-~ : o : ) 7o T iAPp; _ S —
variational diagonalizatio®26the density-matrix renormal- Ho—‘tz clocjoe M) + P+ (U ZEP)E A = 2Ep.
ization group (DMRG),%” and QMC?2° Except for the (o —

QMC study of de Raedt and Lagendfkall work was re- Ko ! (4)

stricted to the ground state. Moreover, even their QMC re- ) _

sults were reported only for a single, low temperature. Thigl€nce, in contrast to the polaron problérhe el-el interac-

motivates our study of temperature effects in Sec. IV. tion term, resul_tlng from the _canon!cal transformation, does
Although ED and DMRG studies were obtained on clus-Not vanish but instead combines with the Hubbard term.

ters with two'®2122four19 six 27 eight?®23 or twelve siteg?

the variational methods of Boa et al?® and of Refs. 11-17 IV. QUANTUM MONTE CARLO

are only weakly influenced by finite-size effects. An impor-  The derivation of the QMC algorithm for the bipolaron

tant disadvantage of ED and DMRG is the fact that the pho'problem is very similar to the one-electron cdsand we

non Hilbert space has to be truncated, so that these metho

cannot easily be used to study the adiabé#e<1) and/or

strong-coupling(A>1) regime. In contrast, no such limita-

dRall therefore focus on the differences occurring. Moreover,
we restrict the discussion to one dimension.

tions are imposed on QMC and most variational methods. A. Partition function
Although de Raedt and Lagendijk only considered the ~
adiabatic limitw=0, similar to other authors;12.14.152&hejr We set out to calculate the partition functictre#o,

method can also be applied for finite phonon frequéficy. with H, given by Eq.(4). To this end, we first note that the
Moreover, it may be generalized to include dispersivelast term in Hamiltoniar(4) is a constant and can therefore
phonons. Recently, an extended Holstein model with longbe neglected during the QMC simulation. Using the standard
range el-ph interaction has been investigated by¢Beand  Suzuki-Trotter decomposition, we obtédn

Trugman3® De Raedt and Lagendijk also considered long- - - -

range Coulomb interaction, whereas most other authors only e Mo ~ (g7 Aog APpgATPxgrATL = 7L (5)
took into account the local Hubbard-type interaction given in 1 )

Eq. (1), except for Zhangt al2” who have omitted this term Where=(kgT)™>andAr=p/L. InsertingL complete sets of

in their DMRG calculations. Finally, we would like to point Phonon momentum eigenstates and splitting up the trace into
out that bipolaron formation in a model with Jahn-Teller @ bosonic and a fermionic part we ffnd

modes—as present in the perovskite manganites—has been

studied by El Shawislet al2® Z =Tr f dpydpy - - dp (pe|Ud|p2) - - (pLUlpy),  (6)

where ¢,=Il,dp; ,, and lim _..Z, = 2.3 Since the phonon

contribution tol/ is identical to the single-electron problem,
The basis of both the variational approach and the QMGOVe can again integrate out the coordinatespon defining

method presented below is the unitary transformation PP=dPidp,---dpy, the partition function becomes

=vH" of the Hamiltonian(1), with v=exp(iZ;; ;Mp;) (see

Ref. 7). The result is Z = Cf Dp W,Wi, (7)

IIl. TRANSFORMED HAMILTONIANS

H=-12 clycipe™ Mridbie P+ 3 ftwy, - ady) with C=[2m/(wA7) N
(ihe ij )
K ;ep Wy = e_ATSO, Wi = Ter
U
+ 2 ;i = EE A;, L - -
J i Q=[] ed™oead, (8)
ch (2) 3 =1 3
with HereKo , is obtained fromK, [Eq. (4)] by replacingp; (p;)
with p; ; (p; »). The bosonic action has the form
w 1
vjj = E; YiYi— ayijt Eﬁiju- (3

N
S$=2pAp, 9)
As discussed in Ref. 7, the extended transformatidakes =t
into account nonlocal lattice displacements, which are essemwith p;=(p; 1,...,p; ) and a tridiagonaL X L matrix A de-
tial for a correct description in the regime= 1. fined by
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o 1 1 Tr(Q clicjp) E<I i'Qclelin = 2<J i'1lij,
==+ ——, Ap=-——s. 10 (@ cicyp) = - il
Au 2 AP Litl 2wA 7 (10 iy’

As pointed out in Ref. 7, the representatiorSgiven in Eq.
(9) permits us to introduce the so-called principal componentind the kinetic energy finally becomes
representation discussed below.

To evaluate the fermionic trace we choose the two- P | i
electron basis states Bi=-22, f Dpvvb% ]E €

{h=li.p=clclo, ij=1,..N} (11) (20)

where we have introduced a combined indexnning from I addition toE,, we shall also consider the correlation func-
1 to N? in one dimension. We begin with the contribution of tion

the kinetic terrrKO [Eqg. (4)]. It follows that the tight-binding S = .y 5= N/2 -1 21
hopping matrix, denoted as, has dimensiorN?x N2. The p(8)= 2 (i) 0.1..N2-1. (2D

exponential of the transformed hopping term can be written
ad A simple calculation leads to

(19

e3™or= D kD, (12) p(d)= 2" f Dp w2, (i +0fii+d. (22

where
Finally, we would like to point out that other observables,

(DT)"’:5||’(5nm15nw1+ 5%15%1)@“/(pi,#pi,r) (13)  such as the total energy and the momentum distribution
(clqck(), may also be measured within the current approach,
is diagonal in the basi€ll). whereas correlation functions, such(as;) or the quasipar-
The second contribution to the matiikin Eq. (8) comes ticle weight, cannot be determined accurafely.
from the effective el-el interaction terin[Eqg. (4)] in terms
of the diagonal matrix C. Principal components and reweighting
VAMTER T (14 We make use of the principal component representation
and the reweighting procedure, which have been discussed,
in detail, in Ref. 7. Defining the principal componergs
=AY?p,, in terms of whichS, [Eq. (9)] takes a Gaussian form
which can be sampled exacflallows one to perform calcu-
lations that are free of any autocorrelations between succes-
sive phonon configurations. In combination with the re-

We would like to emphasize that the random variahpes
merely enter the diagonal matri®, whereas theN?Xx N?
matricesV, and « are fixed throughout the entire MC simu-
lation. Thus, in total, we have

a=]1 DT"DWT’ (15 weighting, every phonon configuration is accepted, and
! measurements can be made after each sweep through the
and the fermionic trace is calculated as N X L space-time lattice. The reweighting refers to the use of
the purely bosonic weighty, in the QMC simulation, while
TrQ = >, 0,jlQli i), (16)  all the influence of the electrons and their interaction with

ij the phonons—contained n—is treated exactly as part of

L . . the observables.
which is identical to the sum over the diagonal elements of

the matrix() in the basig11).
D. Numerical details and performance

B. Observables The most significant difference between the present cal-
culations and the one-electron case in Ref. 7 is the dimension
€of the matrices involved. While for one electron all matrices
have sizeNxX N—N being the extension gsf)(thtza 1D lattice
under consideration—here the dimensioiN{s<x N“. Clearly,

=- t<%, <6|0'C10' - ZtE <C 16 Tew ), a7) this restricts calculations with respect to the number of lattice

! sites, especially in higher dimensiobs> 1 whereN?— N?P.

where we have exploited spin symmetry. Following the samd he total numerical effort for the current approach is propor-
steps as in the derivation of the partition function we get tional to N°PL. In contrast, the one-electron algorithitis-
plays the same dependenebl*®L as the determinant QMC
method of Blankenbecleat al 3 for the many-electron case,
which can be reduced th?PL by employing the checker-
board breakup of the hopping matf&The increase in re-
Writing out explicitly the fermionic trace we obtain quired computer time for the bipolaron results from the fixed

The first observable of interest is the kinetic energy of the
electrons defined as

(E;r{én) = Z[lf Dp w,e "PirPLITr(Q C;FTC”). (18)
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number of electrons. Recently, a grand-canonical version Ofinjtary transformation, which leads Tgp:O [Eq. (2)]. Fur-

the one-electron algorithm, also with a computer timethermore, neglecting the ground-state energy of the oscilla-
~N?PL, has been applied to study the dependence of polarogys we also hav@®=0, so that

formation on carrier density in the spinless Holstein mddel.
For the bipolaron problem, we shall see below that the D%

: _ H=K+lgo (23
present algorithm allows one to study lattices of reasonable

sizeN= 14, for a wide range of the parametess\, andU.  with the transformed hopping term
In particular, we can obtain accurate results in the adiabatic
regimew < 1. K=—ter 2 clCjr= 2 a(Kc) O (24)

Let us briefly compare our method to other QMC ap- (ij)o ko
proaches to the HH bipolaron. The method of de Raedt and
Lagendijkk8 is based on an analytic integration over the pho-and e(k) ==2 tes>y,cogk). Here, the effective hopping am-
non degrees of freedom, leading to a model with retarde@litude is given by
el-el interaction. Similar to our approach, it employs a
Suzuki-Trotter approximation and gives results at finite tem- t.= 12 e 25— W4 (25)

. .. . eff ’

peratures. For simplicity, de Raedt and Lagendijk only con- z°5
sidered the adiabatic limib=0, in which there are no retar-
dation effects. The numerical effort grows &3, but is  where d=+1 in one dimensionz is the number of nearest
virtually independent of the system size, so that simulationsieighbors, and rotational invariance has been exploited. For
can be carried out even for large clusters in three dimensionswo electrons of opposite spin, the interaction tgBnsim-
However, it is not clear how a small but finite phonon fre- plifies to
guencyw <1 will affect the computer time.

Macridin et al?® used the diagrammatic QMC method to Tee=2vo-U+2> vy Py (26)
study two electrons on a 2525 lattice. Although their ap- ij
proach does not rely on the Suzuki-Trotter decomposition, it o o
is limited to zero temperature, and statistical errors increast We usev;;=vj;_j andn;,n;,=0 for i #j. The two-electron
noticeably forw < 1. Moreover, the accuracy also decreasesfigenstates of the Hamiltonig@3) have the form

for large values of and/orU, whereas we shall see in Sec. ~ 4 4
VI that we can easily study the strong el-ph coupling regime |4 = 25 Aoy Chi[0). (27
also foru>0. P

In Ref. 7, we announced the possibility of reducing theHere we have suppressed the phonon component, which is
numerical effort for the present method by exploiting thesimply given by the ground state dffree harmonic oscilla-
translational invariance of the model. To this end, the basigors. The state§27) may be written as
states(11) would have to be replaced by stafls, A)} with
total quasimomenturk, and with the two electrons separated 1 .
by a distanceA. A similar idea has been used by |tho = _NE i dicf cly,[0), (28
Kornilovitch3>-3¢for a single electrons. In one dimension, the A !
use of the basifk,A)} would reduce the size of the matrices
in the algorithm fromN?x N? to NXxN. However, in the
course of the simulation, we had to evaluate the matrix prod- d=Fd (29)
uct overr[Eq. (15)] for each allowed value . In total, we
could, therefore, reduce the numerical effort by a fador .1, F =e*P/\N has been employed. The normalization of
The major drawback of using the reduced basis in momengq (27‘)’ reads(y lﬂk>22p|dp|2-

tum space is that it §ignif_icantly complicates the_ program - g expectation value of the transformed hopping term
code. Consequently, in this work, we have restricted our-

) . with respect to the states defined b becomes
selves to the straightforward extension of the one-electron P y B2t

where the Fourier transform

algorithm presented in Ref. 7. (Ul K|y =, 3;511),2 g(q)(<0|Cl’Tck—Plﬁ‘1TCZ—p’lcj;’T|0>
Finally, the minus-sign problem, which has been men- op! q .

tioned in Ref. 7, also exists here. However, as for one elec- L 5 %" %

tron, it quickly diminishes with increasing system size, and +<0|CPTCk—I7lnl/lck—p’lcp’T|O>)

therefore does not conceivably affect simulations. 5 15

p.p’ qk-p
=2 |d,[e(p) + (k= p)]=—4 t.4d Tid.
V. VARIATIONAL APPROACH r
Although the method can easily be applied also in higheln the last step we introduced vector notation, defined
dimensions, we wish to keep the notation simple and theref,=F diad cogp)+cogk-p)]/2 F' and used Eq(29). The

fore restrict the derivation t©=1. The approximation con- expectation value of the interaction term is best computed in
sists of the use of a zero-phonon basis after the extenddtie real-space representati®8). We find
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TABLE I. Conditions for the existence of different singlet bipolaron stése® text Here “wc” and “sc”
denote weak coupling and strong coupling, respectively.

u=0 u=>0
Large bipolaron Small bipolaron Two polarons Intersite bipolaron Small bipolaron
A<0.5 A>0.5 U > 2Ep (we) U < 2Ep (we) U<2Ep
2VEplw<1 2VEpl >1 U >4E; (so U <4E; (s0

S 0SS et the atomic limit as &p (se_e, e.g., Ref.)9the latter is given
iy 1% here byW=4t—the kinetic energy of the two electrons at
. A=0. Since\ can also be written in the form:%(4Ep/V\I),
X<0|Cj'+ncj'Lﬁﬁﬁjic;uc;"+m|0> we expect\.=0.5. For larger phonon frequencies> 1, the
g lattice energy plays an important role and gives rise to the

~ 2
<lzbk|lee|l//k> = (2U0 - U)E |dl|2 + ]T,
I}

ij j’j” n

87 8,78 jardi - y Pers :
WO additional criterion 2Ep/w>1 for the existence of a small
=(2vo- U)X, |d)* + NE v ldlf? bipolaron®
! it For U>0, a state with two weakly bound polarons is
=(2uy-U)d'd +2d'Vd, stable for weak enough el-ph interaction. Interestingly, start-

_ _ . ing from a small bipolaron, a crossover to amtersite
where the diagonal matri¥/;;=&;v; has been introduced. bipolaron—with the two electrons being localized most
The minimization with respect ta yields the eigenvalue likely at neighboring lattice sites—takes place at a critical

problem value U..132425Thjs state has been shown to have a much
(= Bte T + 2V)d = (Eo - 200+ U)d. (30)  smaller effective mass than an on-site _bipo!a%and may
therefore exist as a mobile quasiparticle in real systems.
The vector of coefficientd and, thereby, the ground state are phase diagrams of the intersite bipolaron have been reported
determined by minimizing the ground-state energy  in one*2°and two dimension¥ For w=1, the region where
through variation of the displacement fieldg. In the such a state exists in one dimension is quite accurately de-
present work, we use the unconstrained nonlinear optimizascribed by U<2E, at weak el-ph coupling, and by
tion routinefminsearchfrom the MATLAB package, together U< 4E; at strong coupling®
with several different starting points, including the simple LF  f 2E,>U the two electrons can overcome the on-site
result and random values of thg. This ensures reproduc- repulsion and form a small bipolaron. As we shall see below,
ible results even for a large number of variationalthe competition between Hubbard repulsion and attractive
parameters. interaction due to the electron-lattice coupling depends criti-
In contrast to the local LF transformation, this procedurecally on the phonon frequency. A summary of the different
takes into account displacements of the oscillators not only &jipolaron states together witfapproximate conditions for
the same but also at the sites surrounding the two electrongeir existence is given in Table I.
This represents a physically much better ansatz to describe we would like to mention that very interesting physics
the extended state that exists for weak el-ph coupling and/afan also be deduced from the bipolaron band dispersion
strong Coulomb repulsion. Similar to the one-electron prob-(see Ref. 9 and references thejeiAlthough the latter
lem, we shall refer to the result obtained from the abovecan be studied, in principle, within our variational approach,
variational method by replacing; with y&; as the Holstein  the subtle effects originating from the retarded nature
Lang-Firsov(HLF) approximation. of the el-ph interactioh could not be addressed in a
satisfactory way.

VI. RESULTS

Before we turn to the results, we would like to review A. Quantum Monte Carlo
briefly the physics of the one-dimensional HH bipolaron as it
emerges from existing wortsee Sec. )l In the absence of To eliminate the error~(A7)? because of the Suzuki-
Coulomb repulsion, the two electrons form a bound state foifrotter approximation, we extrapolate the QMC results
any A >0. A crossover from an extended state, also called @0 A7=0. In contrast, this error is expected to be relatively
large bipolaron to a small bipolaror—with both electrons large (on the order of a few percenin the calculations of
occupying the same site—is observed at a critical couplingle Raedt and Lagendijk because of the use of a rather small
strength\.. The value ofA. is determined by the competition number of Trotter slice$L=32 at3=5, so thatA7=0.16;
between the different terms in the Hamiltonidn. Similarto  see Ref. 28 Here we have performed simulations for
the one-electron case, for small phonon frequencies, thehree different values oA, typically 0.1, 0.075, and 0.05.
crossover takes place when the gain in potential energf¥he error bars in the following figures are usually as small
because of bipolaron formation overcomes the loss iras the linewidth and will not be shown if smaller than
kinetic energy. While the former can be estimated inthe symbols used.
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FIG. 1. (a) Normalized kinetic energ¥, [Eqg. (31)] from QMC 5
as a function of the el-ph coupling for different values of the 4
pho_non frequencw and the Hubbard repulsidd. (b) Dependence 0% ' 1 3

2
of E, on the cluster siz&\. Here and in subsequent figures QMC A
results have been extrapolated Ae=0 (see tex\, error bars are . )
suppressed if smaller than the symbol size, and lines are guides to F'G- 2. Correlation functiorp(d) [Eq. (21)] from QMC as a
the eye. function of el-ph coupling\ for different values ofs. (a) U=0, (b)
U=4. Inset: Correlation functiop(5) as a function of the distance
Owing to the increased numerical effort compared to the? ©f the electrons for different.

- S JE— JE— _
one-electron caseye shall only present results fof= 12. 810N U=4, E, remains fairly large up to.~1 (for ©=2.0),

Fortunately, finite-size effects on, e.g., the kinetic energy, ih agreement with the strong-coupling resalt=1 for
already very small for this cluster size, as illustrated by Fig.— 9 _ . 9 pling T

1(b) for the most critical parameters. As expected, the largesy =4 (See discussion in Ref,)9At even stronger coupling,
changes withN occur near the crossover to a small the Hubbard repulsion is overcome and a small bipolaron

bipolaron? Similar behavior has been found for the correla-iS formed. Again, we see that the critical coupling increases
tion function p(d).

with increasing phonon frequency. Note that the kinetic
We define the effective kinetic energy of the two energy has also been calculated by ED on clusters of up
electrons as

to 12 siteg2?324 put results for o<1 were restricted
in the accessible range of. In the regime where ED is
— applicable, a very good agreement has been found with
B =Ed(=40). (31) OBPQMC data. V9 ’
, = ) i The nature of the bipolaron state is revealed by the corre-
In Fig. 1(a) we dep'CtE_k as a function of the el-ph coupling |ation function p(8) defined in Eq.(21), which gives the
for different values ofw andU, at t=10.This value of the probability for the two electrons to be separated by a dis-
inverse temperature is twice as large as in previous Work, tances=0 and, therefore, represents a direct measure for the
yielding results sufficiently close to the ground stateto reveakize of the bipolaron. Clearly, we have the sum rEig(J)
the effects of bipolaron formation. _ =1. As pointed out, e.g., by Marsigli§,the phonon fre-
Figure Xa) reveals a strong decreaseifnearn=0.5 for  quency determines the degree of retardation of the el-ph in-
small phonon frequencies and=0. With increasingw, the teraction and, thereby, sets the maximal allowed distance be-
crossover becomes less pronounced and shifts to larger vdWween the two electrons compatible with a bound state. In the
ues of\. For the same value ab, the crossover to a small Sequel, we shall focus on the most interesting case of small
bipolaron is sharper than the small-polaron crossover in th@honon frequencies, which has often been avoided in previ-
Holstein model with one electrofsee, e.g., Ref.)7 The  0us work for reasons outlined in Sec. Il. _
small but finite kinetic energy, even for strong el-ph interac- Figure Za) showsp() as a function ol for U=0. Start-
tion, is a result of undirected, internal motion of the two ing from the noninteracting stata =0) with p=1/N, we see
electrons inside the phonon cloud. For a finite on-site repula pronounced increase pf0) nearA=0.5. For largex =2,
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! (a) ' ‘ ' ' ' ' ' cated by the decrease pf0) in Fig. 3(b). Close toU=4, the

curves forp(0) and p(1) cross, and it becomes more favor-
\ able for the two electrons to reside on neighboring sites. The
A intersite bipolaron only exists below a critical Hubbard re-
pulsionU.. As discussed at the beginning of this section, the
latter is given byU.=2E; (i.e., hereU,=4) at weak el-ph
coupling, and byU.=4E; at strong coupling. For an inter-
oOgp=1.0 mediate value\=1, as in Fig. 3, the crossover from the in-
*om=20 - tersite state to two weakly bound polarons is expected to
02 L AL w=40 | occur somewhere in between, but is difficult to identify ex-
actly from the QMC results.
N=12,pt=10,2=1 Figure 3 further illustrates that the crossover becomes
0— : ‘ —t—t 1 steeper with decreasing phonon frequency. In the adiabatic
limit =0, it has been shown to be a first-order phase
transition!® whereas forw>0 retardation effects suppress

any nonanalytic behavior. At the sarhle Ek increases with

w because for a fixedl, the bipolaron becomes more weakly
bound. For the same reason, the crossover to an intersite
bipolaron—showing up in Fig. 3 as a crossingaid) and

p(1)—shifts to smaller values dfl.

Let us now consider the effect of temperature. While the
kinetic energy shows a similar dependence as in the one-
electron case—with the crossover being smeared out at high
temperatures—it is much more interesting to loolp@). In
Figs. 4a)—-4(c) we plot p(5) at different temperatures, for
parameters corresponding to the three regimes of a large,
small, and intersite bipolaron, respectively.

0.8

N=12,Bt=10,A=1

p(d)

FIG. 3. (a) Normalized kinetic energ)Ek and (b) correlation 1. Large bipolaron

functl_onSp(O),p(l) from QMC as a function of the Hubbard repul- For the parameters ChOSéEZO,)\IO.ZS, the two elec-

sion U for different values of the phonon frequeney trons are most likely to occupy the same site, but the bipo-
laron extends over a distance of several lattice consf&igs
we havep(0) = 1 andp(8) =~ 0 for 6>0, characteristic for the  4(g)]. Clearly, in this regime, the cluster sike=12 used here
on-site bipolaron. The decrease of the spatial extent of this not completely satisfactory, but still provides a fairly ac-
bipolaron with increasing el-ph interaction is better illus- curate description as can be deduced from calculations for
trated in the inset of Fig.(&), where we depicp as a func-  N=14 (not shown. Nevertheless, on such a small cluster, no
tion of 8. For finite on-site repulsioty=4, an extended bi- clear distinction between an extended bipolaron and two
polaron state is stabilized for small[Fig. 2(b)], whereas a weakly bound polarons can be made. As the temperature
small bipolaron is found fon=2. Additionally, we see that increases frompt=10 to St=1, the probability distribution
for A\=1, the electrons are most likely to occupy neighboringbroadens noticeably, so that it becomes more likely for the
lattice siteqintersite bipolaron, see also inset in Figbd. two electrons to be further apart. In particular, for the highest
As pointed out earlier, a crossover from a small to antemperature showrp(0) has reduced by about 30% com-

intersite bipolaron to two weakly bound polarons takes placgared togt=10.
as a function of the Hubbard interaction. Since the latter
competes with the retarded el-ph interaction, the phonon fre-
guency is expected to be an important parameter. In Fig. 3,
we show the kinetic energy and the correlation funci6é) A different behavior is found for the small bipolaron,
as a function ofU. We have fixed the el-ph coupling to which exists at stronger el-ph couPImgzl.O. Figure o

) : — ; reveals thafp(5) peaks strongly ab=0, whereas it is very
A=1. Starting from a small bipolaron fdd=0 [see Fig.

Y . o . mall for 6> 0 at low temperatures. Increasing the tempera-
2(a)], the kinetic energy increases with increasing Hubbar ure, we observe that(5) remains virtually unchanged up to
repulsion, equivalent to a reduction of the effective bipolaron

5.26 Bt=3. Only at very high temperatures does there occur a
mass:>=° Although the crossover is slightly washed out by noticeable transfer of probability frod=0 to 6>0. At the
the finite temperature in our simulations, there is a well- highest temperature showt=0.5, the two electrons have a

conceivable increase i, up to U=4, above which ‘the  nonnegligible probability for traveling a finite distance
kinetic energy begins to decrease again. The mcreaﬁ‘; of 6>0 apart, although most of the probability is still contained
originates from the breakup of the small bipolaron, as indi-in the peak located a$=0.

2. Small bipolaron
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FIG. 4. Correlation functiom(s) from QMC as a function o

for different inverse temperaturgg N=12, andw=0.4.

3. Intersite bipolaron

Finally, we consider in Fig. @) the intersite bipolaron,
which has been found above for=4 and\=1.0[Fig. 2(b)].
At low temperaturesp(d) takes on a maximum fof=1. For
smaller values offt, the latter diminishes, until aBt=1,
the distribution is completely flat, so that aflare equally

likely.

PHYSICAL REVIEW B71, 184309(2005

These quantities can be calculated using the present method
as well that presented in Ref. 7.

Generally, the thermal dissociation is expected to occur at
a temperature such that the thermal enekgy=(8T)™* be-
comes comparable thE,, in accordance with our numerical
data. The large and intersite bipolarons are relatively weakly
bound as a result of the rather small effective interaction
Ues=U-2Ep (see discussion in Ref)9The binding ener-
gies areAE;~-(0.32+0.08t and -0.28+0.08t, respec-
tively, so that we expect a critical inverse temperature
Bt=2.5-5%in agreement with Figs.(4) and 4c). In con-
trast, the small bipolaron in Fig.(d) has a significantly
larger binding energAE~—(3.43+0.09t and, therefore, re-
mains stable up t@t~=0.3.

Since the thermal dissociation of intersite bipolarons has
been proposed to explain the activated dc conductivity in the
paramagnetic state of the manganfésye would like to
comment on the relation of our findings to this theory. In-
stead of the Holstein-type model used here, Alexandrov and
Bratkovsky® argue in favor of a model with long-range
el-ph interaction and assume that charge carriers agg O
holes rather than Mml holes, so that the double-exchange
mechanism does not come into pf&yAn intersite bipolaron
in their theory is formed by two holes residing on neighbor-
ing oxygen ions. Furthermore, they also include a nearest-
neighbor Coulomb repulsioW = Ep between electrons. In
the present case, the latter would, most importantly, reduce
the binding energy of the intersite state, thereby leading to a
lower temperature for dissociation. For sufficiently laige
intersite bipolaron formation is expected to be completely
suppressed. A closer investigation of this issue in the frame-
work of the Holstein-Hubbard model may be carried out us-
ing a generalization of the present method.

In total, a quantitative comparison of our numerical re-
sults to the work of Refs. 2 and 3, and to the 3D manganites,
appears to be not justified because of the simplifications
made and the different model studied in the present work.

B. Variational approach

Although the above QMC approach is limited to finite
temperatures and relatively small clusters, the variational
method of Sec. V yields ground-state results on much larger
systems. It becomes exact in several limits. First, NerO
(i.e., no el-ph coupling we obtain the exact solutiof;=0
for all i,j. Second, asws— o, no phonons can be excited so
that the use of a zero-phonon basis is justified. Similarly, in
the classical limitw=0, the phonons do not have any dynam-
ics and the variational determination of the displacement
fields allows one to obtain exact results for axyln con-
trast, the HLF approximatiofsee Sec. Y generally overes-
timates the displacement of the lattice at a given site in the
presence of an electron, even ferxcc. Finally, the varia-
tional approach becomes exact in the nonadiabatic strong-

The different sensitivity of the bipolaron states to coupling limit A,w—c. Since the two-electron problem is
changes in temperature found above can be exp|aine@iagonalized exactly without phonons, the above statements
by their different binding energies. The latter is given byhold for any value of the Hubbard repulsith

AEy=E? - 2EL", whereE!” andE? denote the ground-state

To scrutinize the quality of the variational method, we

energy of the model with one and two electrons, respectivelystarted by comparing the ground-state energylderO as a
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FIG. 5. Variational results for the normalized kinetic enefgy FIG. 6. Variational results for the normalized kinetic enefgy
as a function of the el-ph coupling and for different phonon fre- and the correlation functiong(0) and p(1) as a function of the
guenciesw. Also shown are results of the HLF approximati@®ee  on-site repulsiory.
text).
nentially decaying kinetic energy for all values of the phonon
rgrequency. Although such behavior actually occurs in the
nonadiabatic limitw— o, the situation is different for small

good agreement over the whole range.oAs expected from [Se§ Figsh. Cla)han'd ﬁ-thUSI the :”‘F approfach carl}notd
the nature of the approximation, slight deviations occur for€Produce the physics of bipolaron formation for small an
=1 intermediate phonon frequencies, whereas the variational

Despite the success in calculating the total energy—beincg‘eth()d presented here accounts qualitatively for the depen-
the quantity that is optimized—one has to be careful not t erlllce on the PT]O”O” frgqutra]ncy.ﬂ f Coulomb |
overestimate the validity of any variational method. To re- NeXt, We wish to study the influence of Coulomb repul-
veal the shortcomings of the current approach, we show igion U. Similar to Fig. 3, we take\=1, so that an on-site

Fig. 5 the normalized kinetic enerd =t.; [see Eqs(25)  bipolaron state is formed dy=0. For small phonon fre-
and(31)] as a function of el-ph coupling, and for differemt ~ quency »=0.4, Fig. 6 reveals a sharp crossover near
We have choseMN=25 to ensure negligible finite-size ef- U=2.5(i.e., at a smaller value df than in the QMC results
fects. In principle, Fig. 5 displays a behavior similar to theof Fig. 3), the reason again being the neglect of the retarded
QMC data in Fig. 1a). There is a strong reduction &f near  nature of the effective el-el interaction. As in the QMC re-
A=0.5 for w=0.4, which becomes washed out and moves tcults, the Coulomb repulsion breaks up the on-site bipolaron,
larger\ with increasing phonon frequency. Compared to theléading to an increase of the kinetic energy. Moreover, the
exact QMC results in Fig. (&), the crossover to a small curve forp(1) peaks at the crossover point, indicating the
bipolaron is much too steep in the adiabatic regime, regardexistence of an intersite bipolaron in this regime. A similar
less of the fact that the variational results areTer0. Thisis ~ picture is found for larger phonon frequeney=4, also
a common defect of variational methods. Moreover, forshown in Fig. 6, although the changes with increasingre
0=0.4-2.0, the variational kinetic energy is too small abovemuch more gradual than fas=0.4.
the bipolaron crossover compared to the QMC data, whereas Finally, we report in Fig. 7(upper panelthe effective
for w=4, the decay of, with increasing\ is too slow. interactionUg¢(6) between the two electrons as a function of
The reason for the failure is the absence of retardatiottheir relative distances, given by v [Eq. (3)]. We have
effects, which play a dominant role in the formation of bipo- chosernw=0.4 andU =4, the same parameters as in Fith)2
laron states. The increased importance of the phonopmor \=0.75, the finite Coulomb repulsion stabilizes
dynamics—not included in the variational method—for thetwo weakly bound polarons, as illustrated by the results
two-electron problem leads to a less good agreement witfor p(5) shown in the inset of Fig. 7. Althoughly is
exact results than in the one-electron caeparticular, our repulsive (positive for =0, the two electrons can form a
variational results overestimate the position of the crossovesound state by traveling a finite distance 5= 4 apart. This
(Fig. 5 compared to the valug;=0.5 expected in the adia- s still true for \=1, for which the HLF approach vyields
batic regime. Nevertheless, the method represents a S|gn|erﬁ(o)=U_2EP:o, Nevertheless, the two electrons experi-
cant improvement over the simple HLF approximation be-gnce an attractive interaction and form an extended bipo-
cause o.f the vanayona}l determination of the parameigrs |5ron. Finally, for even stronger coupling=1.25, the
This is illustrated in Fig. 5, where we also show the HLF phonon-mediated el-el interaction has overcome the on-site
result E,=exp(—Ep/ ) for ®=0.4 and 4.0. In contrast to the repulsion, so that).4(5=0) <0. At the same time, the size of
variational approach, the HLF approximation yields an expothe bipolaron has collapsed to a single site. This crossover is

function of el-ph coupling for different values @j, to the
most accurate approach currently available in one dimensio
namely, the variational diagonalizatiéh. We find a
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N=25w=04,TU=4

FIG. 7. Upper panel: variational results for the effective inter-

actionUq¢(5) (see text and the correlation functiop(d) (inse) as
a function of the el-el distancé. Lower panel: variational lattice
distortionsys as a function ofé.
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1 .
== ipX+(k=p)x;
[P0 NE” Epe ]

X (A + A2V,

with |i,j) defined as in Eq(1l), two canonical transforma-
tions depending on the displacement fieb«%g and yi(.z) (see

Sec. Il), and additional variational paramete b,d(pz).
Thereby, one can take into account lattice distortions not
centered at the sites of the electrons, which become impor-
tant asw — 0 and which reproduce to some degree the effect
of retardation.

VII. CONCLUSIONS

We have studied the Holstein-Hubbard bipolaron with
quantum phonons by extending a quantum Monte Carlo
method previously developed for the Holstein polafdn its
present form, the method is limited to one-dimensional clus-
ters. However, in contrast to other approaches, it allows one
to perform accurate calculations also for small phonon fre-
guencies and finite temperatures.

We have studied the dependence of bipolaron formation
on the phonon frequency and the Hubbard repulsion. Our
results underline the importance of the phonon dynamics,
which has often been neglected in previous work. Moreover,
we have presented for exact results for the effect of tempera-
ture on the bipolaron state in the important adiabatic regime.
Thermal dissociation of bipolarons has been observed at
temperatures where the thermal energy becomes comparable
to the binding energy.

Two interesting open issues are the effect of nearest-
neighbor Coulomb interaction, as well as that of dimension-
ality. Although the latter cannot easily be addressed with the
current approach, one may instead extend the promising
work of Ref. 28 to finite phonon frequencies.

o . . ) Finally, we have proposed a variational ansatz based on a
also well visible in the lower panel, which displays the varia-c4nonjcal transformation with variational parameters. The
tionally determined lattice distortiong,. It is worth men-  |a¢er represents a significant improvement over standard ap-
tioning that the values dfl(0) in Fig. 7 are larger than the  roximations. In particular, it qualitatively accounts for the
strong-coupling predictio) - 2E for all values of consid-  dependence on the phonon frequency.

ered. This may be attributed to the overestimated bipolaron

binding energy in the atomic limit.
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