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The one-dimensional Holstein-Hubbard model with two electrons of opposite spin is studied using an
extension of a recently developed quantum Monte Carlo method and a very simple yet rewarding variational
approach, both based on a canonically transformed Hamiltonian. The quantum Monte Carlo method yields very
accurate results in the regime of small but finite phonon frequencies, characteristic of many strongly correlated
materials, e.g., the cuprates and the manganites. The influence of electron-electron repulsion, phonon fre-
quency, and temperature on the bipolaron state is investigated. Thermal dissociation of the intersite bipolaron
is observed at high temperatures, and its relation to an existing theory of the manganites is discussed.
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I. INTRODUCTION

In recent years, the formation and properties of bipo-
larons, consisting of two electrons forming a pair in real
space, have received considerable interest because of their
potential role, e.g., in high-temperature superconductivity.
Theories based on bipolaron formation have been proposed
for the superconducting transition in the cuprates1 and the
metal-insulator transition and colossal magnetoresistance in
the manganites.2,3 Despite some fundamental problems,4–6

they are still issues of ongoing discussion.
Many interesting materials fall into the adiabatic regime

of small, but finite phonon frequencies and intermediate to
strong electron-phonon coupling. For such parameters, ana-
lytical approaches based on, e.g., perturbation theory, do not
give reliable results. In contrast, computational methods rep-
resent a very powerful instrument to obtain exact, unbiased
information, and a lot of numerical work has recently been
devoted to an understanding of the Holstein and the
Holstein-HubbardsHHd model.

In this paper, we present a simple but surprisingly accu-
rate variational approach to the HH bipolaron. More impor-
tantly, we extend a recently developed quantum Monte Carlo
sQMCd method7 to the case of two electrons of opposite spin.
The resulting algorithm is used to study bipolaron formation
in the one-dimensional HH model, focusing on the adiabatic
regime. Although the ground-state properties of the HH bi-
polaron are rather well understood, here we exploit the capa-
bility of the QMC approach to also study finite temperatures.
We find that, in particular, the weakly bound intersite bipo-
laron is susceptible to thermal dissociation. Furthermore, in
contrast to previous studies, we are able to consider a very
large range of the electron-phonon and electron-electron in-
teraction.

The outline of this work is as follows. In Sec. II we dis-
cuss the HH model with two electrons, whereas in Sec. III
we present an extended Lang-Firsov transformation with
nonlocal lattice displacements. Section IV features the exten-
sion of the QMC method to the bipolaron problem, and Sec.
V covers the variational approach. Results are presented in
Sec. VI, and Sec. VII contains our conclusions.

II. HOLSTEIN-HUBBARD MODEL

The HH model is defined in terms of dimensionless pho-
non by the Hamiltonian

s1d

whereK describes the hopping of electrons,P corresponds to
the sum of the kineticsPpd and elasticsPxd energy of the
phonons, andIep,Iee denote the electron-phononsel-phd and
electron-electronsel-eld interaction terms, respectively. Here
cis

† scisd createssannihilatesd an electron of spins at lattice
site i , x̂i and p̂i denote the displacement and momentum of a
harmonic oscillator at sitei, and n̂i =osn̂is with n̂is=cis

† cis.
The third term,Iep, describes the coupling of dispersionless
Einstein phonons to the electron occupation numbern̂i. For
doped cuprates or manganites, such a local interaction is ex-
pected to be a reasonable approximation as a result of screen-
ing. In the first term, the symbolki j l denotes a summation
over all nearest-neighbor hopping pairssi , jd and s j , id. The
parameters of the model are the hopping integralt, the pho-
non energyvs"=1d, the el-ph coupling constanta, and the
Coulomb repulsionU.0. For U=0, Eq. s1d is identical to
the Holstein model.8 As in previous work, we introduce the
dimensionless coupling constantl=a2/ svWd, where
W=4tD is the bare bandwidth inD dimensions. We further

define the parametersv̄=v / t and Ū=U / t, and express all
energies in units oft. Consequently, the independent param-

eters of the model arev̄ , l, andŪ. We shall see below that
a very useful quantity is given by the polaron binding energy
EP=lW/2. Finally, throughout this paper, periodic boundary
conditions in real space are assumed.

This work is exclusively concerned with the case of two
electrons, neglecting the interaction between bipolarons,
which will definitely be present to some degree in real ma-
terials. Furthermore, we restrict our attention to two elec-
trons with opposite spin, i.e., to the singlet bipolaron. A com-
parison of the singlet and triplet state has recently been given
in Ref. 9.
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A review of early work on the bipolaron problem can be
found in the book by Alexandrov and Mott.10 Here we focus
the discussion on more recent developments. The latter can
roughly be divided into two classes, depending on the meth-
ods employed:sid variational approaches,11–17 and sii d unbi-
ased numerical studies using exact diagonalizationsEDd,18–22

variational diagonalization,23–26the density-matrix renormal-
ization group sDMRGd,27 and QMC.28,29 Except for the
QMC study of de Raedt and Lagendijk,28 all work was re-
stricted to the ground state. Moreover, even their QMC re-
sults were reported only for a single, low temperature. This
motivates our study of temperature effects in Sec. IV.

Although ED and DMRG studies were obtained on clus-
ters with two,18,21,22four,19 six,27 eight,20,23 or twelve sites,24

the variational methods of Bonča et al.25 and of Refs. 11–17
are only weakly influenced by finite-size effects. An impor-
tant disadvantage of ED and DMRG is the fact that the pho-
non Hilbert space has to be truncated, so that these methods
cannot easily be used to study the adiabaticsv̄!1d and/or
strong-couplingsl@1d regime. In contrast, no such limita-
tions are imposed on QMC and most variational methods.

Although de Raedt and Lagendijk only considered the
adiabatic limitv̄=0, similar to other authors,11,12,14,15,28their
method can also be applied for finite phonon frequency.28

Moreover, it may be generalized to include dispersive
phonons. Recently, an extended Holstein model with long-
range el-ph interaction has been investigated by Bonča and
Trugman.30 De Raedt and Lagendijk also considered long-
range Coulomb interaction, whereas most other authors only
took into account the local Hubbard-type interaction given in
Eq. s1d, except for Zhanget al.27 who have omitted this term
in their DMRG calculations. Finally, we would like to point
out that bipolaron formation in a model with Jahn-Teller
modes—as present in the perovskite manganites—has been
studied by El Shawishet al.26

III. TRANSFORMED HAMILTONIANS

The basis of both the variational approach and the QMC

method presented below is the unitary transformationH̃
;nHn† of the Hamiltonians1d, with n=expsioi jgi j n̂i p̂jd ssee
Ref. 7d. The result is

s2d

with

vi j =
v

2o
l

gl jgli − agi j +
1

2
di jU. s3d

As discussed in Ref. 7, the extended transformationn takes
into account nonlocal lattice displacements, which are essen-
tial for a correct description in the regimev̄&1.

Similar to Ref. 7, for the QMC method, we resort to the
standard Lang-Firsov sLFd transformation31 with n0
=expsigoin̂i p̂id. Hereg=ÎlW/v has been chosen such that
the el-ph coupling termIep in Eq. s1d cancels. The trans-
formed Hamiltonian then takes the form

s4d

Hence, in contrast to the polaron problem,7 the el-el interac-
tion term, resulting from the canonical transformation, does
not vanish but instead combines with the Hubbard term.

IV. QUANTUM MONTE CARLO

The derivation of the QMC algorithm for the bipolaron
problem is very similar to the one-electron case,7 and we
shall therefore focus on the differences occurring. Moreover,
we restrict the discussion to one dimension.

A. Partition function

We set out to calculate the partition functionZ=e−bH̃0,

with H̃0 given by Eq.s4d. To this end, we first note that the
last term in Hamiltonians4d is a constant and can therefore
be neglected during the QMC simulation. Using the standard
Suzuki-Trotter decomposition, we obtain32

e−bH̃0 < se−DtK̃0e−DtPPe−DtPxe−DtĨdL ; UL, s5d

whereb=skBTd−1 andDt=b /L. InsertingL complete sets of
phonon momentum eigenstates and splitting up the trace into
a bosonic and a fermionic part we find7

ZL = Trf E dp1dp2 ¯ dpLkp1uUup2l ¯ kpLuUup1l, s6d

where dpt;pidpi,t, and limL→`ZL=Z.32 Since the phonon
contribution toU is identical to the single-electron problem,7

we can again integrate out the coordinatesx̂. Upon defining
Dp=dp1dp2¯dpL, the partition function becomes

ZL = CE Dp wbwf , s7d

with C=f2p / svDtdgNL,

wb = e−DtSb, wf = TrfV

V = p
t=1

L

e−DtK̃0,te−DtĨ . s8d

Here K̃0,t is obtained fromK̃0 fEq. s4dg by replacingp̂i sp̂jd
with pi,t spj ,td. The bosonic action has the form

Sb = o
i=1

N

pi
TA pi , s9d

with pi =spi,1,… ,pi,Ld and a tridiagonalL3L matrix A de-
fined by
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Al,l =
v

2
+

1

vDt2, Al,l±1 = −
1

2vDt2 . s10d

As pointed out in Ref. 7, the representation ofSb given in Eq.
s9d permits us to introduce the so-called principal component
representation discussed below.

To evaluate the fermionic trace we choose the two-
electron basis states

hull ; ui, jl ; ci↑
† cj↓

† u0l, i, j = 1,…,Nj, s11d

where we have introduced a combined indexl running from
1 to N2 in one dimension. We begin with the contribution of

the kinetic termK̃0 fEq. s4dg. It follows that the tight-binding
hopping matrix, denoted ask, has dimensionN23N2. The
exponential of the transformed hopping term can be written
as7

e−DtK̃0,t = DtkDt
†, s12d

where

sDtdll8 = dll8sdni↑,1dnj↓,1 + dni↓,1dnj↑,1deigspi,t+pj ,td s13d

is diagonal in the basiss11d.
The second contribution to the matrixV in Eq. s8d comes

from the effective el-el interaction termĨ fEq. s4dg in terms
of the diagonal matrix

sVtdll8 = dll8e
DtsU−2EPddi j . s14d

We would like to emphasize that the random variablesp
merely enter the diagonal matrixD, whereas theN23N2

matricesVt andk are fixed throughout the entire MC simu-
lation. Thus, in total, we have

V = p
t

DtkDt
†Vt, s15d

and the fermionic trace is calculated as

TrfV = o
i j

ki, j uVui, jl, s16d

which is identical to the sum over the diagonal elements of
the matrixV in the basiss11d.

B. Observables

The first observable of interest is the kinetic energy of the
electrons defined as

Ek = − t o
ki j ls

kc̃is
† c̃jsl = − 2to

ki j l
kci↑

† cj↑eigsp̂i−p̂jdl, s17d

where we have exploited spin symmetry. Following the same
steps as in the derivation of the partition function we get

kc̃i↑
† c̃j↑l = ZL

−1E Dp wbe
igspi,1−pj ,1dTrfsV ci↑

† cj↑d. s18d

Writing out explicitly the fermionic trace we obtain

TrfsV ci↑
† cj↑d = o

i8 j8

ki8, j8uV ci↑
† cj↑ui8, j8l = o

j8

k j , j8uVui, j8l,

s19d

and the kinetic energy finally becomes

Ek = − 2tZL
−1E Dpwbo

ki j l
o
j8

eigspi,1−pj ,1dk j , j8uVui, j8l.

s20d

In addition toEk, we shall also consider the correlation func-
tion

rsdd = o
i

kn̂i↑n̂i+d↓l, d = 0,1,…,N/2 − 1. s21d

A simple calculation leads to

rsdd = ZL
−1E Dp wbo

i

ki,i + duVui,i + dl. s22d

Finally, we would like to point out that other observables,
such as the total energy and the momentum distribution
kcks

† cksl, may also be measured within the current approach,
whereas correlation functions, such askn̂ix̂jl or the quasipar-
ticle weight, cannot be determined accurately.7

C. Principal components and reweighting

We make use of the principal component representation
and the reweighting procedure, which have been discussed,
in detail, in Ref. 7. Defining the principal componentsji
=A1/2pi, in terms of whichSb fEq. s9dg takes a Gaussian form
which can be sampled exactly,7 allows one to perform calcu-
lations that are free of any autocorrelations between succes-
sive phonon configurations. In combination with the re-
weighting, every phonon configuration is accepted, and
measurements can be made after each sweep through the
N3L space-time lattice. The reweighting refers to the use of
the purely bosonic weightwb in the QMC simulation, while
all the influence of the electrons and their interaction with
the phonons—contained inwf—is treated exactly as part of
the observables.

D. Numerical details and performance

The most significant difference between the present cal-
culations and the one-electron case in Ref. 7 is the dimension
of the matrices involved. While for one electron all matrices
have sizeN3N—N being the extension of the 1D lattice
under consideration—here the dimension isN23N2. Clearly,
this restricts calculations with respect to the number of lattice
sites, especially in higher dimensionsD.1 whereN2°N2D.
The total numerical effort for the current approach is propor-
tional to N6DL. In contrast, the one-electron algorithm7 dis-
plays the same dependence~N3DL as the determinant QMC
method of Blankenbecleret al.33 for the many-electron case,
which can be reduced toN2DL by employing the checker-
board breakup of the hopping matrix.32 The increase in re-
quired computer time for the bipolaron results from the fixed

TEMPERATURE AND QUANTUM PHONON EFFECTS ON… PHYSICAL REVIEW B 71, 184309s2005d

184309-3



number of electrons. Recently, a grand-canonical version of
the one-electron algorithm, also with a computer time
,N2DL, has been applied to study the dependence of polaron
formation on carrier density in the spinless Holstein model.34

For the bipolaron problem, we shall see below that the
present algorithm allows one to study lattices of reasonable

sizeNø14, for a wide range of the parametersv̄ , l, andŪ.
In particular, we can obtain accurate results in the adiabatic
regimev̄,1.

Let us briefly compare our method to other QMC ap-
proaches to the HH bipolaron. The method of de Raedt and
Lagendijk28 is based on an analytic integration over the pho-
non degrees of freedom, leading to a model with retarded
el-el interaction. Similar to our approach, it employs a
Suzuki-Trotter approximation and gives results at finite tem-
peratures. For simplicity, de Raedt and Lagendijk only con-
sidered the adiabatic limitv̄=0, in which there are no retar-
dation effects. The numerical effort grows asL2, but is
virtually independent of the system size, so that simulations
can be carried out even for large clusters in three dimensions.
However, it is not clear how a small but finite phonon fre-
quencyv̄,1 will affect the computer time.

Macridin et al.29 used the diagrammatic QMC method to
study two electrons on a 25325 lattice. Although their ap-
proach does not rely on the Suzuki-Trotter decomposition, it
is limited to zero temperature, and statistical errors increase
noticeably forv̄,1. Moreover, the accuracy also decreases

for large values ofl and/orŪ, whereas we shall see in Sec.
VI that we can easily study the strong el-ph coupling regime

also for Ū.0.
In Ref. 7, we announced the possibility of reducing the

numerical effort for the present method by exploiting the
translational invariance of the model. To this end, the basis
statess11d would have to be replaced by stateshuk,Dlj with
total quasimomentumk, and with the two electrons separated
by a distance D. A similar idea has been used by
Kornilovitch35,36for a single electrons. In one dimension, the
use of the basishuk,Dlj would reduce the size of the matrices
in the algorithm fromN23N2 to N3N. However, in the
course of the simulation, we had to evaluate the matrix prod-
uct overt fEq. s15dg for each allowed value ofk. In total, we
could, therefore, reduce the numerical effort by a factorN.
The major drawback of using the reduced basis in momen-
tum space is that it significantly complicates the program
code. Consequently, in this work, we have restricted our-
selves to the straightforward extension of the one-electron
algorithm presented in Ref. 7.

Finally, the minus-sign problem, which has been men-
tioned in Ref. 7, also exists here. However, as for one elec-
tron, it quickly diminishes with increasing system size, and
therefore does not conceivably affect simulations.

V. VARIATIONAL APPROACH

Although the method can easily be applied also in higher
dimensions, we wish to keep the notation simple and there-
fore restrict the derivation toD=1. The approximation con-
sists of the use of a zero-phonon basis after the extended

unitary transformation, which leads toĨep=0 fEq. s2dg. Fur-
thermore, neglecting the ground-state energy of the oscilla-
tors, we also haveP=0, so that

H̃ = K̃ + Ĩee, s23d

with the transformed hopping term

K̃ = − teff o
ki j ls

cis
† cjs = o

ks

«skdcks
† cks s24d

and «skd=−2 teffokscosskd. Here, the effective hopping am-
plitude is given by7

teff =
1

z
o

d

e−olsgl−d − gld
2/4, s25d

whered= ±1 in one dimension,z is the number of nearest
neighbors, and rotational invariance has been exploited. For
two electrons of opposite spin, the interaction terms3d sim-
plifies to

Ĩee= 2v0 − U + 2o
i j

vi j n̂i↑n̂j↓ s26d

if we usevi j =vu j−i u and n̂isn̂js=0 for i Þ j . The two-electron
eigenstates of the Hamiltonians23d have the form

uckl = o
p

d̃pck−p↓
† cp↑

† u0l. s27d

Here we have suppressed the phonon component, which is
simply given by the ground state ofN free harmonic oscilla-
tors. The statess27d may be written as

uckl =
1

ÎN
o

i

eikxio
l

dlci↓
† ci+l↑

† u0l, s28d

where the Fourier transform

d = Fd̃ s29d

with Flp=eixlp/ÎN has been employed. The normalization of
Eq. s27d readskckuckl=opudpu2.

The expectation value of the transformed hopping term
with respect to the states defined by Eq.s27d becomes

In the last step we introduced vector notation, defined
Tk=F diagfcosspd+cossk−pdg /2 F† and used Eq.s29d. The
expectation value of the interaction term is best computed in
the real-space representations28d. We find
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where the diagonal matrixVij =di jvi has been introduced.
The minimization with respect tod yields the eigenvalue
problem

s− 4teffTk + 2Vdd = sE0 − 2v0 + Udd. s30d

The vector of coefficientsd and, thereby, the ground state are
determined by minimizing the ground-state energyE0
through variation of the displacement fieldsgi j . In the
present work, we use the unconstrained nonlinear optimiza-
tion routinefminsearchfrom the MATLAB package, together
with several different starting points, including the simple LF
result and random values of thegi j . This ensures reproduc-
ible results even for a large number of variational
parameters.

In contrast to the local LF transformation, this procedure
takes into account displacements of the oscillators not only at
the same but also at the sites surrounding the two electrons.
This represents a physically much better ansatz to describe
the extended state that exists for weak el-ph coupling and/or
strong Coulomb repulsion. Similar to the one-electron prob-
lem, we shall refer to the result obtained from the above
variational method by replacinggi j with gdi j as the Holstein
Lang-FirsovsHLFd approximation.

VI. RESULTS

Before we turn to the results, we would like to review
briefly the physics of the one-dimensional HH bipolaron as it
emerges from existing workssee Sec. IId. In the absence of
Coulomb repulsion, the two electrons form a bound state for
any l.0. A crossover from an extended state, also called a
large bipolaron, to a small bipolaron—with both electrons
occupying the same site—is observed at a critical coupling
strengthlc. The value oflc is determined by the competition
between the different terms in the Hamiltonians1d. Similar to
the one-electron case, for small phonon frequencies, the
crossover takes place when the gain in potential energy
because of bipolaron formation overcomes the loss in
kinetic energy. While the former can be estimated in

the atomic limit as 4EP ssee, e.g., Ref. 9d, the latter is given
here byW=4t—the kinetic energy of the two electrons at
l=0. Sincel can also be written in the forml= 1

2s4EP/Wd,
we expectlc=0.5. For larger phonon frequenciesv̄@1, the
lattice energy plays an important role and gives rise to the
additional criterion 2ÎEP/v.1 for the existence of a small
bipolaron.5

For Ū.0, a state with two weakly bound polarons is
stable for weak enough el-ph interaction. Interestingly, start-
ing from a small bipolaron, a crossover to anintersite
bipolaron—with the two electrons being localized most
likely at neighboring lattice sites—takes place at a critical

value Ūc.
13,24,25This state has been shown to have a much

smaller effective mass than an on-site bipolaron,25 and may
therefore exist as a mobile quasiparticle in real systems.
Phase diagrams of the intersite bipolaron have been reported
in one24,25and two dimensions.29 For v̄=1, the region where
such a state exists in one dimension is quite accurately de-
scribed by U,2EP at weak el-ph coupling, and by
U,4EP at strong coupling.25

If 2EP@U the two electrons can overcome the on-site
repulsion and form a small bipolaron. As we shall see below,
the competition between Hubbard repulsion and attractive
interaction due to the electron-lattice coupling depends criti-
cally on the phonon frequency. A summary of the different
bipolaron states together withsapproximated conditions for
their existence is given in Table I.

We would like to mention that very interesting physics
can also be deduced from the bipolaron band dispersion
ssee Ref. 9 and references thereind. Although the latter
can be studied, in principle, within our variational approach,
the subtle effects originating from the retarded nature
of the el-ph interaction9 could not be addressed in a
satisfactory way.

A. Quantum Monte Carlo

To eliminate the error,sDtd2 because of the Suzuki-
Trotter approximation, we extrapolate the QMC results
to Dt=0. In contrast, this error is expected to be relatively
large son the order of a few percentd in the calculations of
de Raedt and Lagendijk because of the use of a rather small
number of Trotter slicessL=32 at b=5, so thatDt<0.16;
see Ref. 28d. Here we have performed simulations for
three different values ofDt, typically 0.1, 0.075, and 0.05.
The error bars in the following figures are usually as small
as the linewidth and will not be shown if smaller than
the symbols used.

TABLE I. Conditions for the existence of different singlet bipolaron statesssee textd. Here “wc” and “sc”
denote weak coupling and strong coupling, respectively.

U=0 U.0

Large bipolaron Small bipolaron Two polarons Intersite bipolaron Small bipolaron

l,0.5 l.0.5 U.2EP swcd U,2EP swcd U!2EP

2ÎEP/v,1 2ÎEP/v.1 U.4EP sscd U,4EP sscd
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Owing to the increased numerical effort compared to the
one-electron case,7 we shall only present results forNø12.
Fortunately, finite-size effects on, e.g., the kinetic energy, are
already very small for this cluster size, as illustrated by Fig.
1sbd for the most critical parameters. As expected, the largest
changes with N occur near the crossover to a small
bipolaron.7 Similar behavior has been found for the correla-
tion functionrsdd.

We define the effective kinetic energy of the two
electrons as

Ēk = Ek/s− 4td. s31d

In Fig. 1sad we depictĒk as a function of the el-ph coupling

for different values ofv̄ and Ū, at bt=10.This value of the
inverse temperature is twice as large as in previous work,28

yielding results sufficiently close to the ground stateto reveal
the effects of bipolaron formation.

Figure 1sad reveals a strong decrease ofĒk nearl=0.5 for

small phonon frequencies andŪ=0. With increasingv̄, the
crossover becomes less pronounced and shifts to larger val-
ues ofl. For the same value ofv̄, the crossover to a small
bipolaron is sharper than the small-polaron crossover in the
Holstein model with one electronssee, e.g., Ref. 7d. The
small but finite kinetic energy, even for strong el-ph interac-
tion, is a result of undirected, internal motion of the two
electrons inside the phonon cloud. For a finite on-site repul-

sion Ū=4, Ēk remains fairly large up tol<1 sfor v̄&2.0d,
in agreement with the strong-coupling resultlc=1 for
Ū=4 ssee discussion in Ref. 9d. At even stronger coupling,
the Hubbard repulsion is overcome and a small bipolaron
is formed. Again, we see that the critical coupling increases
with increasing phonon frequency. Note that the kinetic
energy has also been calculated by ED on clusters of up
to 12 sites,20,23,24 but results for v̄,1 were restricted
in the accessible range ofl. In the regime where ED is
applicable, a very good agreement has been found with
our QMC data.

The nature of the bipolaron state is revealed by the corre-
lation function rsdd defined in Eq.s21d, which gives the
probability for the two electrons to be separated by a dis-
tancedù0 and, therefore, represents a direct measure for the
size of the bipolaron. Clearly, we have the sum ruleodrsdd
=1. As pointed out, e.g., by Marsiglio,19 the phonon fre-
quency determines the degree of retardation of the el-ph in-
teraction and, thereby, sets the maximal allowed distance be-
tween the two electrons compatible with a bound state. In the
sequel, we shall focus on the most interesting case of small
phonon frequencies, which has often been avoided in previ-
ous work for reasons outlined in Sec. II.

Figure 2sad showsrsdd as a function ofl for Ū=0. Start-
ing from the noninteracting statesl=0d with r=1/N, we see
a pronounced increase ofrs0d nearl=0.5. For largel*2,

FIG. 1. sad Normalized kinetic energyĒk fEq. s31dg from QMC
as a function of the el-ph couplingl for different values of the

phonon frequencyv̄ and the Hubbard repulsionŪ. sbd Dependence

of Ēk on the cluster sizeN. Here and in subsequent figures QMC
results have been extrapolated toDt=0 ssee textd, error bars are
suppressed if smaller than the symbol size, and lines are guides to
the eye.

FIG. 2. Correlation functionrsdd fEq. s21dg from QMC as a

function of el-ph couplingl for different values ofd. sad Ū=0, sbd
Ū=4. Inset: Correlation functionrsdd as a function of the distance
d of the electrons for differentl.
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we havers0d<1 andrsdd<0 for d.0, characteristic for the
on-site bipolaron. The decrease of the spatial extent of the
bipolaron with increasing el-ph interaction is better illus-
trated in the inset of Fig. 2sad, where we depictr as a func-

tion of d. For finite on-site repulsionŪ=4, an extended bi-
polaron state is stabilized for smalll fFig. 2sbdg, whereas a
small bipolaron is found forl=2. Additionally, we see that
for l=1, the electrons are most likely to occupy neighboring
lattice sitesfintersite bipolaron, see also inset in Fig. 2sbdg.

As pointed out earlier, a crossover from a small to an
intersite bipolaron to two weakly bound polarons takes place
as a function of the Hubbard interaction. Since the latter
competes with the retarded el-ph interaction, the phonon fre-
quency is expected to be an important parameter. In Fig. 3,
we show the kinetic energy and the correlation functionrsdd
as a function ofŪ. We have fixed the el-ph coupling to

l=1. Starting from a small bipolaron forŪ=0 fsee Fig.
2sadg, the kinetic energy increases with increasing Hubbard
repulsion, equivalent to a reduction of the effective bipolaron
mass.25,26 Although the crossover is slightly washed out by
the finite temperature in our simulations, there is a well-

conceivable increase inĒk up to Ū<4, above which the

kinetic energy begins to decrease again. The increase ofĒk
originates from the breakup of the small bipolaron, as indi-

cated by the decrease ofrs0d in Fig. 3sbd. Close toŪ=4, the
curves forrs0d and rs1d cross, and it becomes more favor-
able for the two electrons to reside on neighboring sites. The
intersite bipolaron only exists below a critical Hubbard re-
pulsionUc. As discussed at the beginning of this section, the

latter is given byUc=2EP si.e., hereŪc=4d at weak el-ph
coupling, and byUc=4EP at strong coupling. For an inter-
mediate valuel=1, as in Fig. 3, the crossover from the in-
tersite state to two weakly bound polarons is expected to
occur somewhere in between, but is difficult to identify ex-
actly from the QMC results.

Figure 3 further illustrates that the crossover becomes
steeper with decreasing phonon frequency. In the adiabatic
limit v̄=0, it has been shown to be a first-order phase
transition,15 whereas forv̄.0 retardation effects suppress

any nonanalytic behavior. At the sameŪ, Ēk increases with
v̄ because for a fixedl, the bipolaron becomes more weakly
bound. For the same reason, the crossover to an intersite
bipolaron—showing up in Fig. 3 as a crossing ofrs0d and

rs1d—shifts to smaller values ofŪ.
Let us now consider the effect of temperature. While the

kinetic energy shows a similar dependence as in the one-
electron case—with the crossover being smeared out at high
temperatures—it is much more interesting to look atrsdd. In
Figs. 4sad–4scd we plot rsdd at different temperatures, for
parameters corresponding to the three regimes of a large,
small, and intersite bipolaron, respectively.

1. Large bipolaron

For the parameters chosensŪ=0,l=0.25d, the two elec-
trons are most likely to occupy the same site, but the bipo-
laron extends over a distance of several lattice constantsfFig.
4sadg. Clearly, in this regime, the cluster sizeN=12 used here
is not completely satisfactory, but still provides a fairly ac-
curate description as can be deduced from calculations for
N=14 snot shownd. Nevertheless, on such a small cluster, no
clear distinction between an extended bipolaron and two
weakly bound polarons can be made. As the temperature
increases frombt=10 to bt=1, the probability distribution
broadens noticeably, so that it becomes more likely for the
two electrons to be further apart. In particular, for the highest
temperature shown,rs0d has reduced by about 30% com-
pared tobt=10.

2. Small bipolaron

A different behavior is found for the small bipolaron,
which exists at stronger el-ph couplingl=1.0. Figure 4sbd
reveals thatrsdd peaks strongly atd=0, whereas it is very
small for d.0 at low temperatures. Increasing the tempera-
ture, we observe thatrsdd remains virtually unchanged up to
bt=3. Only at very high temperatures does there occur a
noticeable transfer of probability fromd=0 to d.0. At the
highest temperature shown,bt=0.5, the two electrons have a
nonnegligible probability for traveling a finite distance
d.0 apart, although most of the probability is still contained
in the peak located atd=0.

FIG. 3. sad Normalized kinetic energyĒk and sbd correlation
functionsrs0d ,rs1d from QMC as a function of the Hubbard repul-

sion Ū for different values of the phonon frequencyv̄.
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3. Intersite bipolaron

Finally, we consider in Fig. 4scd the intersite bipolaron,

which has been found above forŪ=4 andl=1.0 fFig. 2sbdg.
At low temperatures,rsdd takes on a maximum ford=1. For
smaller values ofbt, the latter diminishes, until atbt=1,
the distribution is completely flat, so that alld are equally
likely.

The different sensitivity of the bipolaron states to
changes in temperature found above can be explained
by their different binding energies. The latter is given by
DE0=E0

s2d−2E0
s1d, whereE0

s1d andE0
s2d denote the ground-state

energy of the model with one and two electrons, respectively.

These quantities can be calculated using the present method
as well that presented in Ref. 7.

Generally, the thermal dissociation is expected to occur at
a temperature such that the thermal energykBT=sbTd−1 be-
comes comparable toDE0, in accordance with our numerical
data. The large and intersite bipolarons are relatively weakly
bound as a result of the rather small effective interaction
Ueff<U−2EP ssee discussion in Ref. 9d. The binding ener-
gies areDE0<−s0.32±0.08dt and −s0.28±0.08dt, respec-
tively, so that we expect a critical inverse temperature
bt<2.5−5,37 in agreement with Figs. 4sad and 4scd. In con-
trast, the small bipolaron in Fig. 4sbd has a significantly
larger binding energyDE<−s3.43±0.09dt and, therefore, re-
mains stable up tobt<0.3.

Since the thermal dissociation of intersite bipolarons has
been proposed to explain the activated dc conductivity in the
paramagnetic state of the manganites,2,3 we would like to
comment on the relation of our findings to this theory. In-
stead of the Holstein-type model used here, Alexandrov and
Bratkovsky2,3 argue in favor of a model with long-range
el-ph interaction and assume that charge carriers are Op
holes rather than Mnd holes, so that the double-exchange
mechanism does not come into play.38 An intersite bipolaron
in their theory is formed by two holes residing on neighbor-
ing oxygen ions. Furthermore, they also include a nearest-
neighbor Coulomb repulsionV<EP between electrons. In
the present case, the latter would, most importantly, reduce
the binding energy of the intersite state, thereby leading to a
lower temperature for dissociation. For sufficiently largeV,
intersite bipolaron formation is expected to be completely
suppressed. A closer investigation of this issue in the frame-
work of the Holstein-Hubbard model may be carried out us-
ing a generalization of the present method.

In total, a quantitative comparison of our numerical re-
sults to the work of Refs. 2 and 3, and to the 3D manganites,
appears to be not justified because of the simplifications
made and the different model studied in the present work.

B. Variational approach

Although the above QMC approach is limited to finite
temperatures and relatively small clusters, the variational
method of Sec. V yields ground-state results on much larger
systems. It becomes exact in several limits. First, forl=0
si.e., no el-ph couplingd, we obtain the exact solutiongi j =0
for all i , j . Second, asv→`, no phonons can be excited so
that the use of a zero-phonon basis is justified. Similarly, in
the classical limitv=0, the phonons do not have any dynam-
ics and the variational determination of the displacement
fields allows one to obtain exact results for anyl. In con-
trast, the HLF approximationssee Sec. Vd generally overes-
timates the displacement of the lattice at a given site in the
presence of an electron, even forv=`. Finally, the varia-
tional approach becomes exact in the nonadiabatic strong-
coupling limit l ,v→`. Since the two-electron problem is
diagonalized exactly without phonons, the above statements
hold for any value of the Hubbard repulsionU.

To scrutinize the quality of the variational method, we

started by comparing the ground-state energy forŪ=0 as a

FIG. 4. Correlation functionrsdd from QMC as a function ofd
for different inverse temperaturesb, N=12, andv̄=0.4.
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function of el-ph coupling for different values ofv̄, to the
most accurate approach currently available in one dimension,
namely, the variational diagonalization.25 We find a
good agreement over the whole range ofl. As expected from
the nature of the approximation, slight deviations occur for
v̄&1.

Despite the success in calculating the total energy—being
the quantity that is optimized—one has to be careful not to
overestimate the validity of any variational method. To re-
veal the shortcomings of the current approach, we show in

Fig. 5 the normalized kinetic energyĒk= teff fsee Eqs.s25d
ands31dg as a function of el-ph coupling, and for differentv̄.
We have chosenN=25 to ensure negligible finite-size ef-
fects. In principle, Fig. 5 displays a behavior similar to the

QMC data in Fig. 1sad. There is a strong reduction ofĒk near
l=0.5 for v̄=0.4, which becomes washed out and moves to
largerl with increasing phonon frequency. Compared to the
exact QMC results in Fig. 1sad, the crossover to a small
bipolaron is much too steep in the adiabatic regime, regard-
less of the fact that the variational results are forT=0. This is
a common defect of variational methods. Moreover, for
v̄=0.4−2.0, the variational kinetic energy is too small above
the bipolaron crossover compared to the QMC data, whereas

for v̄=4, the decay ofĒk with increasingl is too slow.
The reason for the failure is the absence of retardation

effects, which play a dominant role in the formation of bipo-
laron states. The increased importance of the phonon
dynamics—not included in the variational method—for the
two-electron problem leads to a less good agreement with
exact results than in the one-electron case.7 In particular, our
variational results overestimate the position of the crossover
sFig. 5d compared to the valuelc=0.5 expected in the adia-
batic regime. Nevertheless, the method represents a signifi-
cant improvement over the simple HLF approximation be-
cause of the variational determination of the parametersgi j .
This is illustrated in Fig. 5, where we also show the HLF

resultĒk=exps−EP/vd for v̄=0.4 and 4.0. In contrast to the
variational approach, the HLF approximation yields an expo-

nentially decaying kinetic energy for all values of the phonon
frequency. Although such behavior actually occurs in the
nonadiabatic limitv→`, the situation is different for small
v̄ fsee Figs. 1sad and 5g. Thus the HLF approach cannot
reproduce the physics of bipolaron formation for small and
intermediate phonon frequencies, whereas the variational
method presented here accounts qualitatively for the depen-
dence on the phonon frequency.

Next, we wish to study the influence of Coulomb repul-

sion Ū. Similar to Fig. 3, we takel=1, so that an on-site

bipolaron state is formed atŪ=0. For small phonon fre-
quency v̄=0.4, Fig. 6 reveals a sharp crossover near

Ū=2.5 si.e., at a smaller value ofŪ than in the QMC results
of Fig. 3d, the reason again being the neglect of the retarded
nature of the effective el-el interaction. As in the QMC re-
sults, the Coulomb repulsion breaks up the on-site bipolaron,
leading to an increase of the kinetic energy. Moreover, the
curve for rs1d peaks at the crossover point, indicating the
existence of an intersite bipolaron in this regime. A similar
picture is found for larger phonon frequencyv̄=4, also

shown in Fig. 6, although the changes with increasingŪ are
much more gradual than forv̄=0.4.

Finally, we report in Fig. 7supper paneld the effective
interactionUeffsdd between the two electrons as a function of
their relative distanced, given by vd fEq. s3dg. We have

chosenv̄=0.4 andŪ=4, the same parameters as in Fig. 2sbd.
For l=0.75, the finite Coulomb repulsion stabilizes
two weakly bound polarons, as illustrated by the results
for rsdd shown in the inset of Fig. 7. AlthoughUeff is
repulsivespositived for d=0, the two electrons can form a
bound state by traveling a finite distance 1ød&4 apart. This
is still true for l=1, for which the HLF approach yields
Ueffs0d=U−2EP=0. Nevertheless, the two electrons experi-
ence an attractive interaction and form an extended bipo-
laron. Finally, for even stronger couplingl=1.25, the
phonon-mediated el-el interaction has overcome the on-site
repulsion, so thatUeffsd=0d,0. At the same time, the size of
the bipolaron has collapsed to a single site. This crossover is

FIG. 5. Variational results for the normalized kinetic energyĒk

as a function of the el-ph couplingl and for different phonon fre-
quenciesv̄. Also shown are results of the HLF approximationssee
textd.

FIG. 6. Variational results for the normalized kinetic energyĒk

and the correlation functionsrs0d and rs1d as a function of the

on-site repulsionŪ.
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also well visible in the lower panel, which displays the varia-
tionally determined lattice distortionsgd. It is worth men-
tioning that the values ofUeffs0d in Fig. 7 are larger than the
strong-coupling predictionU−2EP for all values ofl consid-
ered. This may be attributed to the overestimated bipolaron
binding energy in the atomic limit.

As pointed out in several places, the shortcomings of the
variational approach presented here are a result of the miss-
ing dynamical phonon effects. The present approach may be
further improved by making an ansatz for the eigenstates of
the untransformed Hamiltonians1d of the form

uCkl =
1

N
oi j op

eipxi+sk−pdxj

3 sd̃p
s1dn†hgs1dj + d̃p

s2dn†hgs2djdui, jl,

with ui , jl defined as in Eq.s11d, two canonical transforma-
tions depending on the displacement fieldsgi j

s1d andgi j
s2d ssee

Sec. IIId, and additional variational parametersd̃p
s1d ,d̃p

s2d.
Thereby, one can take into account lattice distortions not
centered at the sites of the electrons, which become impor-
tant asv̄→0 and which reproduce to some degree the effect
of retardation.

VII. CONCLUSIONS

We have studied the Holstein-Hubbard bipolaron with
quantum phonons by extending a quantum Monte Carlo
method previously developed for the Holstein polaron.7 In its
present form, the method is limited to one-dimensional clus-
ters. However, in contrast to other approaches, it allows one
to perform accurate calculations also for small phonon fre-
quencies and finite temperatures.

We have studied the dependence of bipolaron formation
on the phonon frequency and the Hubbard repulsion. Our
results underline the importance of the phonon dynamics,
which has often been neglected in previous work. Moreover,
we have presented for exact results for the effect of tempera-
ture on the bipolaron state in the important adiabatic regime.
Thermal dissociation of bipolarons has been observed at
temperatures where the thermal energy becomes comparable
to the binding energy.

Two interesting open issues are the effect of nearest-
neighbor Coulomb interaction, as well as that of dimension-
ality. Although the latter cannot easily be addressed with the
current approach, one may instead extend the promising
work of Ref. 28 to finite phonon frequencies.

Finally, we have proposed a variational ansatz based on a
canonical transformation with variational parameters. The
latter represents a significant improvement over standard ap-
proximations. In particular, it qualitatively accounts for the
dependence on the phonon frequency.
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