
Nonlocal electron-phonon correlations in a dispersive Holstein model

Marco Zoli*
Istituto Nazionale Fisica della Materia, Dipartimento di Fisica, Universitá di Camerino, 62032, Italy

sReceived 16 September 2004; published 27 May 2005d

Due to the dispersion of optical phonons, long range electron-phononse-phd correlations renormalize down-
wards the coupling strength in the Holstein model. We evaluate the size of this effect both in a linear chain and
in a square lattice for a time averagede-ph potential, where the time variable is introduced according to the
Matsubara formalism. Mapping the Holstein Hamiltonian onto the time scale we derive the perturbing source
current which appears to be nontime retarded. This property permits to disentangle phonon and electron
coordinates in the general path integral for an electron coupled to dispersive phonons. While the phonon paths
can be integrated out analytically, the electron path integrations have to be done numerically. The equilibrium
thermodynamic properties of the model are thus obtained as a function of the electron hopping value and of the
phonon spectrum parameters. We derive thee-ph corrections to the phonon free energy and show that its
temperature derivatives do not depend on thee-ph effective coupling, hence, the Holstein phonon heat capacity
is strictly harmonic. A significant upturn in the low temperature total heat capacity overT ratio is attributed to
the electron hopping which largely contributes to the action.
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I. INTRODUCTION

Theoretical investigation on the effects of nonlocality in
electron-phononse-phd coupling1,2 has grown considerably
during the last years in conjunction with the large interest for
organic molecular crystals,3 carbon nanotubes,4,5 and con-
ducting polymers exhibiting polaronic properties. In the Su-
Schrieffer-HeegersSSHd Hamiltonian6 the electronic hop-
ping is accompanied by a relative displacement between
adjacent atomic sites that causes a nonlocale-ph coupling
with vertex function depending both on the electronic and
the phononic wave vector. This feature leads to peculiar
static and dynamical properties7 for the SSH model which
also displays dimension dependent mass behavior for the
acoustical polarons.8,9 In a path integral investigation of the
equilibrium thermodynamics we have shown10 that the
purely electronic hopping dominates the low temperature
thermodynamics as it is responsible for a characteristic up-
turn in the heat capacity overT ratio pointing to a glassylike
behavior in the one dimensional chain. Moreover, phonon
anharmonicities induced bye-ph interactions can be large in
the SSH model due to the time retarded nature of the per-
turbing source current.11

In the Holstein model, the coupling of electrons to disper-
sionless optical phonons is essentially local and the elec-
tronic energy at a lattice site linearly depends on the atomic
displacement at that site.12 Thus, in the strong coupling re-
gime, the unit comprising electron plus induced lattice defor-
mation is generally a small objectson the lattice scaled un-
dergoing a sizeable mass renormalization. Large
adiabaticities may, however, induce a spread in the real space
for the Holstein polaron which accordingly becomes lighter.
This effect is more pronounced in higher dimensionality.13

On the other hand, the dispersive nature of the phonon spec-
trum is recognized as a fundamental feature of the Holstein
model as it allows for finite values of the electronic site jump
probability while a dispersionless model would lead to un-

physical divergences.12,14 Also ground state properties such
as electron bandwidth and effective mass are more properly
evaluated versus dimensionality within a dispersive model.
In this paper we investigate to which extent the realistic as-
sumption of dispersive phonons may induce nonlocal corre-
lations which consistently renormalize the effectivee-ph
coupling both in one and two dimensions. We emphasize that
the model and the results hereafter presented, being valid for
any coupling strength, are independent of the existence of
small polarons in the system.

Unlike the SSH model, the Holstein electron hopping
does not induce a shift in the atomic displacement. Thus the
perturbinge-ph current does not depend on the electronic
paths and, along the time scale, it turns out to be intrinsically
local. Applying space-time mapping techniques15 we show
that this feature allows an elegant path integral formulation16

of the Holstein partition function in which electron and dis-
persive phonon coordinates appear to be decoupled. Section
II outlines the Hamiltonian model while the path integral
method is described in Sec. III. The results of our work are
reported on in Sec. IV and some final remarks are given in
Sec. V.

II. THE DISPERSIVE HOLSTEIN MODEL

We consider the dimension dependent Holstein
Hamiltonian consisting of:sid one electron hopping term,
sii d an interaction which couples the electronic density
sf l

†f ld to the phonon creationsbl
†d and annihilation sbld

operators at a given sitel, siii d dispersive harmonic optical
phonons

H = He + He-ph + Hph,

He = − t o
kl,ml

f l
†fm,
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He-ph = go
l

f l
†f lsbl

† + bld,

Hph = o
q

vsqdbq
†bq, s1d

the first sum is overz nearest neighbors,t is the tight binding
overlap integral.bq

† is the Fourier transform ofbl
† andvsqd is

the frequency of the phonon with vector momentumq. g is
the e-ph coupling in energy units.

The phonons operators can be written in terms of the iso-
tropic displacement fieldun as

bl
† + bl =

1

N
o
q

Î2Mvsqdo
n

expfiq · sl − ndgun, s2d

where M is the atomic mass. Then, thee-ph term in s1d
transforms as follows:

He-ph =
g

N
o
q

Î2Mvsqdo
l,n

f l
†f lun expfiq · sl − ndg. s3d

The sum overn spans allnth neighbors sites of thel
lattice site in any dimensionality. Thus, although the Holstein
Hamiltonian assumes a locale-ph interaction, the dispersive
nature of the phonon spectrum clearly introducese-ph real
space correlations which renormalize the dimension depen-
dent effective coupling. Fourier transforming the atomic dis-
placement field and taking the lattice constantuau=1, from
Eq. s3d we obtain for a linear chain and a square lattice,
respectively,

Hd
e-ph =

g

N3/2o
l

f l
†f l o

q,q8

Î2Mvsqd expsiq8 · ld 3 uq8Sdsq8 − qd,

S1Dsq8 − qd ; 1 + 2o
n=1

n*

cosfnsq8 − qdg,

S2Dsq8 − qd ; 1 + 2o
n=1

n*

fcosnsqx8 − qxd + cosnsqy8 − qydg

+ 2 o
m,n=1

n*

hcosfmsqx8 − qxd + nsqy8 − qydg

+ cosfmsqx8 − qxd − nsqy8 − qydgj. s4d

While, in principle, the sum overn should cover all theN
sites in the lattice we introduce the cutoffn* which will
allow us to monitor the behavior of the coupling as a func-
tion of the range of thee-ph correlations. Note that in one
dimensions1Dd, the integern numbers the neighbors shells
up to n* while in two dimensionss2Dd, the n* =1 term in-
cludes the second neighbors shell, the sum up ton* =2 in-
cludes the fifth neighbors shells,n* =3 covers the nineth shell
and so on. Switching off the interatomic forces,vsqd=v0,
one would recover froms4d a locale-ph coupling model with
Sd;1. As no approximation has been done at this stage Eqs.
s4d are general.

Taking into account first neighbors intermolecular
forces in the Holstein molecular crystal model, the
optical phonon spectra are given in 1D and 2D, respectively,
by14

v1D
2 sqd = v0

2/2 + v1
2 + Îv0

4/4 + v0
2v1

2 cosq + v1
2,

v2D
2 sqd = v0

2/2 + 2v1
2 + Îv0

4/4 + v0
2v1

2gsqd + v1
2f2 + hsqdg,

gsqd = cosqx + cosqy,

hsqd = 2 cossqx − qyd, s5d

wherev0 and v1 are the intramolecular and intermolecular
energies, respectively.

Treating in s4d the phonon coordinates as classical vari-
ables interacting with quantum mechanical Fermion opera-
tors we assume a semiclassical version of the dispersive Hol-
stein Hamiltonian. This is the main approximation in the
model which will permit us to derive a time dependent
source current for the general electron path integral. Averag-
ing s4d on the electronic ground state we also define the
e-ph energy per lattice site

kHd
e-phl
N

= o
q

kHd
e-phlq,

kHd
e-phlq =

g

N3/2
Î2Mvsqdo

q8

rq8uq8Sdsq8 − qd,

rq8 =
1

N
o

l
kf l

†f llexpsiq8 · ld, s6d

which will be used in the next section.
While we are thus neglecting the quantum nature of the

lattice vibrations, the latter may in itself lead to retardation
effects in the ground state structure of the composite quasi-
particle made of one electron plus phonon excitations in the
adiabatic regime. Moreover, at finite temperatures, the quan-
tum lattice fluctuations are expected to influence the thermo-
dynamics of the system mainly for intermediate values of the
e-ph coupling.17

III. THE PATH INTEGRAL METHOD

Let us apply to the Holstein Hamiltonian space-time map-
ping techniques15,18 which allow us to write the general path
integral for one electron particle in a bath of dispersive
phonons. Thus we introducexstd and yst8d as the electron
coordinates at thel andm lattice sites respectively, andHe in
s1d transforms into

Hest,t8d = − thf†fxstdgffyst8dg + f†fyst8dgffxstdgj. s7d

t andt8 are continuous variablessPf0,bgd in the Matsubara
Green’s functions formalism withb being the inverse tem-
perature, hence, the electron hops are not constrained to first
neighbors sites. Accordingly, Eq.s7d is more general thanHe

MARCO ZOLI PHYSICAL REVIEW B 71, 184308s2005d

184308-2



in s1d. After settingt8=0, ys0d;0, we take the thermal av-
erages for the electron operators over the ground state of the
Hamiltonian thus obtaining ind dimensions the average en-
ergy per lattice site due to electron hopping

hestd ;
kHestdl

N
= − thGf− xstd,− tg + Gfxstd,tgj,

Gfxstd,tg =
1

b
E dk

pd expfik ·xstdgo
n

exps− i"nntd
i"nn − ek

. s8d

nn are the fermionic Matsubara frequencies and
ek =−2toi=x,y,z cosskid is the electron dispersion relation.

The spatiale-ph correlations contained ins3d are mapped
onto the time axis introducing thet dependence in the dis-
placement field:uq→uqstd. Assuming periodic atomic par-
ticle paths:uqst+bd=uqstd we can expanduqstd in NF Fou-
rier components

uqstd = u0 + o
n=1

NF

2fsRundqcossvntd − sIundqsinsvntdg s9d

with vn=2np /b.
Then, on the basis of Eqs.s6d and s9d, we identify the

perturbing source current of the Holstein model with thet
dependent averagede-ph Hamiltonian term

jstd = o
q

jqstd,

jqstd =
g

N3/2
Î2Mvsqdo

q8

uq8stdrq8Sdsq8 − qd. s10d

With these premises, we are now in the position to
write the general path integral19 for an Holstein electron in a
bath of dispersive phonons. Assuming a mixed representa-
tion, the electron paths are taken in real space while the
phonon paths are in momentum space. The electron path
integral reads

kxsbduxs0dl = p
q

kxsbduxs0dlq,

kxsbduxs0dlq =E DuqstdexpH−E
0

b

dt
M

2
fu̇q

2std

+ v2sqduq
2stdgJ E Dxstd

3expH−E
0

b

dtFm

2
ẋ2std + hestd − jqstdGJ ,

s11d

where the kinetic termsm is the electron massd is normalized
by the functional measure of integration over the electron
paths.

As a direct consequence of the time-local nature of the
e-ph interactions, the Holstein source current does not de-
pend on the electron path coordinates. Thenjqstd in s11d can

be easily integrated overt using Eqs.s9d and s10d and
noticing that

E
0

b

uqstd =
bu0

ÎN
, s12d

we get

E
0

b

dt jqstd = bu0gdsqd,

gdsqd =
g

N2
Î2Mvsqdo

q8

rq8Sdsq8 − qd. s13d

gdsqd is thus a time averagede-ph potential.
The total partition function can be derived froms11d

by imposing the closure condition both on the phonons
fEq. s9dg and on the electron paths,xsbd=xs0d. Using s13d,
we obtain

ZT = p
q
R DuqstdexpHbu0gdsqd −E

0

b

dt
M

2
fu̇q

2std

+ vq
2uq

2stdgJ 3 R DxstdexpH−E
0

b

dtFm

2
ẋ2std

+ hestdGJ . s14d

Equation s14d shows that the averagede-ph coupling
is weighed only by thet-independent componentu0 of the
displacement field. This property will prove to be essential
in the next calculations. The integration over the phonon
paths can be done analytically choosing a measure of
integration which normalizes the kinetic term in the phonon
field action

R Duqstd ;
Î2

s2lMds2NF+1dE
−`

`

du0

3 p
n=1

NF

s2pnd2E
−`

`

dsRundqE
−`

`

dsIundq

R DuqstdexpF−
M

2
E

0

b

dtu̇q
2stdG ; 1

s15d

being lM =Îp"2b /M. In the following calculations we set
M ,104 m.

Using the result20

E
−`

`

du0 expsbu0 − cu0
2d =Îp

c
expsb2/4cd, s16d

we derive
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ZT = p
q

Psqd 3 R DxstdexpH−E
0

b

dtFm

2
ẋ2std + hestdGJ ,

Psqd =
1

bvsqd
expH fgdsqdlMg2

2pvsqd2 Jp
n=1

NF s2npd2

s2npd2 + fbvsqdg2 .

s17d

Equation s17d represents the main analytical result of our
model. The exponential function inPsqd embodies the effect
of the nonlocal correlations due to the dispersive nature of
the phonon spectrum. Phonon and electron contributions to
the partition function are decoupled although the effective
potentialgdsqd carries a dependence on the electron density
profile in momentum space through the functionrsqd.

IV. ELECTRON-PHONON CORRELATIONS AND
THERMODYNAMICAL RESULTS

First we analyze the behavior of the timestemperatured
averagede-ph potential fEq. s13dg in the case of a linear
chain and of a square lattice.

Note thatuqstd in s9d is a real quantity consistently with
the closure condition on the lattice displacement path. Ac-
cordingly, froms6d fands10dg, we take a real profile also for
the electron distribution in momentum space. Setting the to-
tal electron density on a single site and definingr0 as the on
site electron density, froms6d, we write the electron profile
rq=r0 cossqd for the 1D system andrq=r0 cossqxdcossqyd
for the 2D system. Since the momentum integration runs
over qi P f0,p /2g, r0 represents in both cases the total elec-
tron density. This choice is convenient in order to normalize
the averagede-ph couplings over the same parameter both in
1D and 2D. Physically it corresponds to pin one electron on
a lattice site and to measure the effects on the potential due
to thee-ph correlations with variable range.

Let us assume low energy phonon spectra parameters,
v0=20 meV andv1=10 meV. Settingg=3, we take a strong
bare Holstein couplingg although the general trend of our
results holds for any value ofg. In Fig. 1sad, g1Dsqd /r0 is
plotted for three choices of the cutoffn* fsee Eqs.s4dg to
emphasize the dependence of the potential on thee-ph inter-
action range. The constant value of the potential obtained for
v1=0 is also reported on. While in the case of short correla-
tions sn* =4d there is a range of wave vectors in which the
effective coupling becomes larger than the dispersionless
coupling, long rangee-ph correlations substantially reduce
the effective potential with respect to the dispersionless case
and set in an oscillating behavior which makes the renormal-
ization q dependent. The potential tends to converge for the
valuen* =24 which corresponds to 48 lattice sites along the
chain.

The projections of the two dimensionale-ph potential
along they component of the wave vector is reported on in
Fig. 1sbd for three values of the cutoff on the correlation
range. Forn* =1 the correlation range is extended to the sec-
ond neighbor shell thus including eight lattice sites. For
n* =2 andn* =3 we normalize over 24 and 48 lattice sites,

respectively. Then, the three values ofn* in 2D span as many
lattice sites as the three values ofn* in 1D, respectively. This
choice permits to normalize consistently the potential for the
linear chain and the square lattice. There is a strong renor-
malization for the 2D effective potential with respect to the
dispersionless case for any value of the wave vector. By
extending the correlation range this tendency becomes more
pronounced forqy close to the center and to the edge of the
reduced Brillouin zone. An analogous behavior is found by
projecting the 2D potential along theqx axis. The 2D poten-
tial stabilizes by including the ninth neighbor shellsn* =3d in
the correlation range.

Then, an increased range for thee-ph correlations leads to
an effect which is qualitatively analogous to that one would
get by hardening the phonon spectrum: a reduction of the
effective coupling and the consequent lightening of the qua-
siparticle effective mass.21

Let us see now to which extent the momentum dependent
potential affects the thermodynamics of the system. In

FIG. 1. sad Temperature averagede-ph coupling sin units
meV Å−1 vs wave vector for a linear chain.n* represents the cutoff
on thee-ph correlations.r0 is the electron density.v0=20 meV and
v1=10 meV.g=3. The dispersionlesse-ph coupling is obtained for
v0=0. sbd Temperature averagede-ph coupling in two dimensions
vs they component of the momentum. The casesn* =1, n* =2, and
n* =3 imply that the correlation range includes the second, the fifth,
and the ninth neighbors shell, respectively. The input parameters are
as in sad.
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the total partition functionfEq. s14dg the electronic and
phononic paths have been integrated out separately as the
source current does not depend on the electronic coordinates.
The q-phonon contribution to the partition function is thus
given by Psqd in s17d, hence, the free energy due to theq
mode is

Fpsqd =
1

b
lnfbvsqdg −

1

b
lnHp

n=1

NF s2npd2

s2npd2 + fbvsqdg2J
−

fgdsqd"g2

2Mvsqd2 , s18d

where the first two terms represent the harmonic free
energyFhsqd. SinceFhsqd=b−1 lnh2 sinhfbvsqd /2gj we find
a constraint which allows us to determine the cutoff
NF=NFfvsqd ,Tg. For the 1D system, atT=1 K and for the
phonon parameters given above, we getNF,c107 with c
varying in the ranges4.2–4.5d according to theq mode.

The e-ph interactions renormalize downwards the har-
monic values for anyq asFpsqd−Fhsqd~−g2sqd /v2sqd but
the temperature derivatives of the free energy do not involve
the coupling term. Then, on general grounds, phonon entropy
and heat capacity are not affected by the strength of the
e-ph interaction and signatures ofe-ph anharmonicity should
not be expected in the equilibrium properties of the phonon
subsystem. This is a direct macroscopic effect of the local
nature of the interactions in the Holstein model. On the other
hand, lattice nonlinearities may appear in the ground state
properties of the Holstein Hamiltonian and significantly
modify the dynamical properties of the polaronic
quasiparticles.22,23

In Fig. 2, we consider the linear chain with the cutoff
n* =24 of Fig. 1sad and setr0=1. The phonon free energies
are plotted for two selected wave vectors together with the
corresponding harmonic values. It is seen that the renormal-
ization of theq-dependent free energies due to thee-ph cou-
pling is very weak. However, beingg2sqd /v2sqd~g2/vsqd,

the phonon free energy reduction may be appreciable in very
low energy phonon spectra provided that the bare couplingg
is sufficiently strong.

Next we turn to the evaluation of the electronic contribu-
tion to the total partition functionfEq. s17dg. The results
hereafter presented refer to the case of 1D electronic paths.
As the hopping energy density is related to the electron
propagatorfEq. s8dg a preliminar wave vector integration
prepareshe as a function of the path coordinates. Then, the
rDxstd integration has to be done numerically. Assuming the
periodicity conditionxstd=xst+bd, the particle paths can be
expanded inNp Fourier components

xstd , x0 + o
n=1

Np

2fRxn cossjntd − Ixn sinsjntdg,

jn = 2pn/b s19d

so that the functional measure of integration

R Dxstd ,
Î2

s2lmds2Np+1dE
−L

L

dx0 p
n=1

Np

s2pnd2

3E
−2L

2L

dRxnE
−2L

2L

dIxn,

lm = Îp"2b/m s20d

normalizes the free electron term ins17d,

R DxstdexpF−E
0

b

dt
m

2
ẋ2stdG = 1. s21d

Equations21d provides a criterion to set the cutoffL which
turns out to be~lm thus implying that the maximum ampli-
tude of the particle path coefficients becomes large in the low
temperature range. This is consistent with the physical ex-
pectation that towards high temperatures only a reduced
number of paths contributes to the action which thus tends to
the classical limit. Accordingly, the integration over each
Fourier component ins20d is carried out over a number of
pointsNL~K /ÎT and the electron hopping in the path inte-
gral s18d is weighed over a total number of electron paths
sNL+1d2Np+1. We find thatK,20 andNp=2 suffice to ensure
numerical convergence. While the free electron term only
scarcely contributes to the electronic action, the hopping de-
pendent action is dominant also at low temperatures. In fact,
according to our measure of integration, the ensemble of
relevant particle pathssover which the hopping energy den-
sity is evaluatedd is T dependent. However, given a single set
of path parameters one can monitor thehe behavior versusT.
It turns out that the hopping decreases by decreasingT but its
value remains appreciable also at low temperatures. Since
the dt integration range is larger at lower temperatures, the
overall hopping contribution to the total action is relevant
also at lowT.

The equilibrium thermodynamics of the Holstein model
can be derived froms17d. We average the phonon contribu-
tion over a set of 50 modes in the 1D Brillouin zone and take
the baree-ph couplingg=3. Phonon and electron free ener-

FIG. 2. AnharmonicFp and harmonicFh phonon free energies
for two values of the one dimensional wave vectorq=0,p /2. The
phonon spectrum parameters are as in Fig. 1sad.
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gies are plotted separately versus temperature in Fig. 3sad.
Note that in the lowT range the electron free energy has a
positive derivative both for narrow and wide band values
although the range shrinks by increasing the hopping integral
value. Fort=0.2 eV, the electron free energy gets the maxi-
mum atT,60 K while for t=4 eV, the maximum occurs at
T,13 K. This feature is mirrored in the total heat capacity

which is reported on in Fig. 3sbd for four t values together
with the phonon heat capacity normalized over the number
of modes. As noted above the latter overlaps the purely har-
monic heat capacity no matter how large thee-ph coupling
may be. Thus the Holstein phonon heat capacity does not
contain signatures ofe-ph anharmonicity. The total heat ca-
pacity overT ratio shows an upturn at low temperatures as
shown in Fig. 3scd due to the electron hopping mechanism
which has already been encountered in the study of the SSH
model.11 However, while in the latter the shape of the lowT
upturn could be tuned by the strength of thee-ph coupling in
the source action, in the Holstein model the lowT anomaly
has purely electronic origins as thee-ph effects are contained
in the phonon partition function. This also explains why the
absolute values of the Holstein heat capacity are much lower
than the SSH heat capacity throughout the whole tempera-
ture range.

V. CONCLUSIONS

In the Holstein model, thee-ph coupling is local and the
vertex function does not depend on the wave vectors. None-
theless nonlocale-ph correlations arise in the system once
the dispersive nature of the phonon spectrum is taken into
account. I have studied a semiclassical version of the one
electron Holstein Hamiltonian in which quantum mechanical
fermion operators interact with classical lattice displace-
ments. Applying the path integral method the real space in-
teractions can be mapped onto the time scale and, in the
Matsubara formalism, we have derived an analytical expres-
sion for the time averaged wave vector dependente-ph cou-
pling. Assuming a force constant intermolecular model we
have evaluated the renormalization of the wave vector de-
pendente-ph coupling, both in one and two dimensions, as a
function of the range of thee-ph correlations. In 1D, for
short range correlationssn* =4d, I find an enhancement of the
effective coupling with respect to the dispersionless coupling
in a window of phonon wave vectors. By increasingn* , the
effective coupling renormalizes downwards for anyq al-
though the reduction is larger towards the edge of the Bril-
louin zone. In 2D, the renormalization is even more pro-
nounced and takes place also for small values of the cutoff
on the correlation range.

Thus, the inclusion of thee-ph correlations in the effec-
tive coupling has an effect which is similar to that one would
obtain by enhancing the characteristic phonon frequency and
it ultimately leads to reduce the effective mass of the quasi-
particle. The Holstein polaron mass in a dispersive phonon
model is thus lighter than in a dispersionless model.

Mapping thee-ph interaction onto the time scale we also
find that the perturbing source current of the model depends
on the time only through the atomic displacement field,
hence, it is not retarded. Then, the temperaturestimed aver-
aged current is proportional to the averaged atomic displace-
ment and it does not include the electronic coordinates. This
property allows us to decouple phonon and electron degrees
of freedom in the general path integral and in the total par-
tition function. Such a disentanglement does not occur in the
Su-Schrieffer-Heeger model10 as the source current does de-

FIG. 3. sad Phonon free energyssymbolsd and electron free en-
ergies for four values of the hopping integralt. The phonon energies
and thee-ph coupling are as in Figs. 1.sbd Total selectron plus
phonond heat capacities for four values oft. The phonon heat ca-
pacity is plotted separately.scd Total heat capacities over tempera-
ture ratio.
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pend on the electron path coordinates. As a physical conse-
quence the renormalized Holsteine-ph coupling is frozen in
the phonon partition function while the electron action is
dominated by the hopping energy density. After integrating
out analytically the phonon degrees of freedom we have ob-
tained theq-dependent phonon free energy and estimated the
e-ph correctionsswith respect to the harmonic valuesd in the
thermodynamical properties. It turns out that the Holstein
heat capacity does not show any signature of phonon anhar-
monicity induced by thee-ph interactions. This marks a
striking difference with respect to the thermodynamical be-
havior of the previously investigated Su-Schrieffer-Heeger
model. On the other hand, the electron hopping energy
strongly contributes to the total action of the Holstein model
and, at low temperatures, it is responsible for a peculiar up-
turn in the heat capacity over temperaturesCV/Td ratio.

While qualitatively the latter feature had also been envisaged
in the SSH heat capacity, in the Holstein model the shape of
the broad upturn has purely electronic origins and it is not
affected by thee-ph source action. This explains whyCV/T
has a negative temperature derivative throughout the wholeT
range for any value of the hopping integral.
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