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Nonlocal electron-phonon correlations in a dispersive Holstein model
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Due to the dispersion of optical phonons, long range electron-ph@ph) correlations renormalize down-
wards the coupling strength in the Holstein model. We evaluate the size of this effect both in a linear chain and
in a square lattice for a time averagegbh potential, where the time variable is introduced according to the
Matsubara formalism. Mapping the Holstein Hamiltonian onto the time scale we derive the perturbing source
current which appears to be nontime retarded. This property permits to disentangle phonon and electron
coordinates in the general path integral for an electron coupled to dispersive phonons. While the phonon paths
can be integrated out analytically, the electron path integrations have to be done numerically. The equilibrium
thermodynamic properties of the model are thus obtained as a function of the electron hopping value and of the
phonon spectrum parameters. We derive ¢hgh corrections to the phonon free energy and show that its
temperature derivatives do not depend onettph effective coupling, hence, the Holstein phonon heat capacity
is strictly harmonic. A significant upturn in the low temperature total heat capacityToxegio is attributed to
the electron hopping which largely contributes to the action.
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|. INTRODUCTION physical divergence:**Also ground state properties such
as electron bandwidth and effective mass are more properly
Theoretical investigation on the effects of nonlocality in evaluated versus dimensionality within a dispersive model.
electron-phonor(e-ph) coupling-? has grown considerably In this paper we investigate to which extent the realistic as-
during the last years in conjunction with the large interest forsumption of dispersive phonons may induce nonlocal corre-
organic molecular crystafscarbon nanotubes} and con- lations which consistently renormalize the effectiegoh
ducting polymers exhibiting polaronic properties. In the Su-coupling both in one and two dimensions. We emphasize that
Schrieffer-Heeger(SSH Hamiltoniar? the electronic hop- the model and the results hereafter presented, being valid for
ping is accompanied by a relative displacement betweeany coupling strength, are independent of the existence of
adjacent atomic sites that causes a nonlaeph coupling  small polarons in the system.
with vertex function depending both on the electronic and Unlike the SSH model, the Holstein electron hopping
the phononic wave vector. This feature leads to peculiadoes not induce a shift in the atomic displacement. Thus the
static and dynamical propertiefor the SSH model which perturbinge-ph current does not depend on the electronic
also displays dimension dependent mass behavior for theaths and, along the time scale, it turns out to be intrinsically
acoustical polaron®? In a path integral investigation of the local. Applying space-time mapping technigtrese show
equilibrium thermodynamics we have shd@nthat the that this feature allows an elegant path integral formuldfion
purely electronic hopping dominates the low temperatureof the Holstein partition function in which electron and dis-
thermodynamics as it is responsible for a characteristic uppersive phonon coordinates appear to be decoupled. Section
turn in the heat capacity ovdrratio pointing to a glassylike Il outlines the Hamiltonian model while the path integral
behavior in the one dimensional chain. Moreover, phonormethod is described in Sec. Ill. The results of our work are
anharmonicities induced bgrph interactions can be large in reported on in Sec. IV and some final remarks are given in
the SSH model due to the time retarded nature of the peiSec. V.
turbing source currert
In the Holstein model, the coupling of electrons to disper-
sionless optical phonons is essentially local and the elec- Il. THE DISPERSIVE HOLSTEIN MODEL
trpnic energy at a Iattige site Iingarly depends on th_e atomic \we consider the dimension dependent Holstein
displacement at that sité.Thus, in the strong coupling re- amiltonian consisting of{i) one electron hopping term,
gime, the unit comprising electron plus induced lattice defor<jiy an interaction which couples the electronic density
mation is generally a small objetn the lattice scajeun- (f'f) to the phonon creatior(b!) and annihilation (b;)

dergoing a sizeable mass renormalization. Larg&perators at a given site (i) dispersive harmonic optical
adiabaticities may, however, induce a spread in the real Spai)&onons

for the Holstein polaron which accordingly becomes lighter.
This effect is more pronounced in higher dimensionafity. H = He + HePh+ HPh
On the other hand, the dispersive nature of the phonon spec- '
trum is recognized as a fundamental feature of the Holstein

model as it allows for finite values of the electronic site jump He=—t E flem,
probability while a dispersionless model would lead to un- (I,m)
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HePh= 92 fo|(bT+ b) Taking into account first neighbors intermolecular
| R ' forces in the Holstein molecular crystal model, the
optical phonon spectra are given in 1D and 2D, respectively,

by14
HPh= > w(g)blbg, 1)
q 0Tp(0) = w2 + f + w4 + wjw; cOSq + W,
the first sum is over nearest neighborsjs the tight binding
overlap integralo s the Fourier iransform dff anda(@) IS wf(q) = w2+ 2uf + Vuifd + fulgla) + o2 +h(a)],

the frequency of the phonon with vector momentgnyg is
the e-ph coupling in energy units.

The phonons operators can be written in terms of the iso-
tropic displacement field,, as

g(q) = cosq + cosqy,

h(q) =2 coga,—qy), (5

bl + b, = 12 V2Mo(q)Y, exdig-(1-nlu,,  (2) where wy and w; are the intramolecular and intermolecular
N%q n energies, respectively.

Treating in(4) the phonon coordinates as classical vari-
ables interacting with quantum mechanical Fermion opera-
tors we assume a semiclassical version of the dispersive Hol-

h_ 9 .t . stein Hamiltonian. This is the main approximation in the
HeP :NE V2Mo(q) 2 ffiuyexdiq-(1-n)].  (3)  model which will permit us to derive a time dependent
d ln source current for the general electron path integral. Averag-

The sum ovem spans allnth neighbors sites of the  Ing (4) on the electronic ground state we also define the

lattice site in any dimensionality. Thus, although the Holsteine-ph energy per lattice site

where M is the atomic mass. Then, theph term in (1)
transforms as follows:

Hamiltonian assumes a loceldph interaction, the dispersive (HePh

nature of the phonon spectrum clearly introduegsh real +d 7 => <H§Ph>q,

space correlations which renormalize the dimension depen- N q

dent effective coupling. Fourier transforming the atomic dis-

placement field and taking the lattice constéajt=1, from g ——

Eq. (3) we obtain for a linear chain and a square lattice, (HPg = NT,zv2Mw(Q)E PqUgrSi(d’ —q),

respectively, q’

PN .

ngth%zz 112 V2Maw(q) explig’ -1) X ug Sy(a’ - a), qu=%2<fff|>exrn(iq’ 0, ©)

|

aq’

which will be used in the next section.

While we are thus neglecting the quantum nature of the
lattice vibrations, the latter may in itself lead to retardation
effects in the ground state structure of the composite quasi-
particle made of one electron plus phonon excitations in the
. B , , adiabatic regime. Moreover, at finite temperatures, the quan-
Sp(@ -q)=1+ 22 [cosn(ay — g,) + cosn(gy —ay)] tum lattice fluctuations are expected to influence the thermo-

n=t dynamics of the system mainly for intermediate values of the
e-ph coupling?’

Sip(@ —q)=1+2> cogn(q’ - g)],
n=1

*
n

+2 2, {cogm(ay - g +n(gy -~ qy)]

m,n=1
+ co§m(a, - g — (g, - o)} @) lll. THE PATH INTEGRAL METHOD
X y -
While, in principle, the sum over should cover all thé\ ~Letus apply t?gthe Holstein Hamiltonian space-time map-
sites in the lattice we introduce the cutaff which will  Ping techniqueS*®which allow us to write the general path

allow us to monitor the behavior of the coupling as a func-integral for one elgctron particle in a bath of dispersive
tion of the range of the=-ph correlations. Note that in one Phonons. Thus we introduce(7) andy(7’) as the electron
dimension(1D), the integem numbers the neighbors shells coordinates at theandm lattice sites respectively, artdf in

up ton* while in two dimensiong2D), then"=1 term in- (1) transforms into

cludes the second neighbors shell, the sum up“to2 in- e 1\ — 1 / (ot

cludes the fifth neighbogrls shells,=3 covers the nFi]neth shell He(7,7') = = t{f Ix(D]fly()] + F Ty (=) [x(D]}.  (7)

and so on. Switching off the interatomic forces(q) = w, Tand7 are continuous variablgs=[0,3]) in the Matsubara
one would recover frond) a locale-ph coupling model with ~ Green'’s functions formalism witl8 being the inverse tem-
Si=1. As no approximation has been done at this stage Eqgerature, hence, the electron hops are not constrained to first
(4) are general. neighbors sites. Accordingly, E¢?) is more general thaH®
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in (1). After setting7' =0, y(0) =0, we take the thermal av- be easily integrated over using Egs.(9) and (10) and
erages for the electron operators over the ground state of thwticing that
Hamiltonian thus obtaining i dimensions the average en-

ergy per lattice site due to electron hopping JB Ug(7) = B_@ (12)
(H(7) 0 W
h®(r) = ——— = =t{G[~ x(7),~ 7] + G[x(7), 7]},
N we get
1 (dk —ifv,
G[x(7),7] = ,Ef g expik -x(T)]zn: %. (8) J:dTJq(T) = Buggq(a),

v, are the fermionic Matsubara frequencies and
&=—2Zi-,,,cogk;) is the electron dispersion relation. g

The spatiale-ph correlations contained if8) are mapped g4(q) = @\"ZM o(0) 2 per'Su(a’ = ). (13
onto the time axis introducing the dependence in the dis- q’
placement fieldu,— u,(7). Assuming periodic atomic par- ) . _
ticle paths:ug(7+8)=Uq(r) we can expand,(7) in Ne Fou-  9d(Q) is thus a time averageetph potential.
rier components The total partition function can be derived frofd1)

N F%/ |T9[;3)smg thethcloslur(ta cond[[trl]or(l )botr(lo)onuthe E)th(;nons
. and on the electron paths(8)=x(0). Usin ,
Ug(7) = Up+ S, 2(Ru)ycogwnm) ~ (Fgsinwn)] () o obtain patets ’

n=1
with w,=2n7/ . EM_,
Then, on the basis of Eq$6) and (9), we identify the z=11 %DUq(T)eXp{BUOQd(q) _f dT[uq (7)
perturbing source current of the Holstein model with the q 0
dependent averagesph Hamiltonian term 9 2 B m.,
+ wgly ]t X ¢ Dx(r)expy — | dr EX (7)
0

(D=2 gD,
q

+ he(f)} } (14)

Equation (14) shows that the averaged-ph coupling

is weighed only by ther-independent component, of the

displacement field. This property will prove to be essential

A@ the next calculations. The integration over the phonon

Baths can be done analytically choosing a measure of
tegration which normalizes the kinetic term in the phonon

o) = <5 2Ma(@) S Uy (D Si(@’ = ). (10
q!

With these premises, we are now in the position to
write the general path integféifor an Holstein electron in a

bath of dispersive phonons. Assuming a mixed represent
tion, the electron paths are taken in real space while th
phonon paths are in momentum space. The electron pal

integral reads ield action
x(B)x(0) = [T x(BIx(0)q, 2
x(B)|x : x(B)|x q %Duq(r)=WJ’_wduo
FM N = =
<X(ﬁ)|x(0)>q :f Duq(r)ex —J d7—2[uq2(7-) X H (zwn)ZJ d(mun)qf d(jun)q
0 =1 o0

B
+w2(q)ug(r)]} J Dx(7) % Duq(r)exp[—%f dTqu(T):| =1
0
5 15
Xexp{—fo dr{gkz(7)+he(7)—jq(7)}}, 9

being \yy=\74°B/M. In the following calculations we set
(11) M~10* m.

where the kinetic ternimis the electron magss normalized Using the resuft

by the functional measure of integration over the electron w0
paths. f dug exp(buy — cl@) = \/Eexp(bZMC), (16)
As a direct consequence of the time-local nature of the — N c

e-ph interactions, the Holstein source current does not de-
pend on the electron path coordinates. Thgm) in (11) can  we derive
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B m. 25.0 T /' I T ]
ZT=H P(q) X %DX(T)EX —J dr EXZ(T) +h&7) | ¢, C e \\\ — @;=0 ]
q 0 225 7 \ -
/ \
N E // \\ ]
o)=L exp{ [gd<q>xM]2} F (e 200 \ ]
Bo(a) 2mw()? ) oo (2nm)? + [Ba(a) ] SN P R
ST \ g
(17) = '
o r * T 0
Equation(17) represents the main analytical result of our % 15.0 TR =4 \'*\.-.:
model. The exponential function (q) embodies the effect U PN ~ 4
of the nonlocal correlations due to the dispersive nature of lesE 7]
the phonon spectrum. Phonon and electron contributions to Fo- n*—|24 | (@) g
the partition function are decoupled although the effective 1000 === 1 15
potentialgy(q) carries a dependence on the electron density q
profile in momentum space through the functja(q).
225 -
IV. ELECTRON-PHONON CORRELATIONS AND i ]
THERMODYNAMICAL RESULTS . 20.0[—®;=0 _n¥og 4
First we analyze the behavior of the tinfeemperaturg i r n"=eg
averagede-ph potential [Eq. (13)] in the case of a linear o 175 o - n¥=3
chain and of a square lattice. & [T T ]
Note thatug(7) in (9) is a real quantity consistently with ~ 15.0F 7 o7 S T~
. . . Q . . ~ -
the closure condition on the lattice displacement path. Ac- &D S o]
cordingly, from(6) [and(10)], we take a real profile _also for 12.5 q _
the electron distribution in momentum space. Setting the to- o) N
tal electron density on a single site and definigagas the on Y] A P
site electron density, fron6), we write the electron profile o 0.5 1 1.5

pq=pocodq) for the 1D system ang,=p, cogq,)codqy)

for the 2D system. Since the momentum integration runs o _
overg; e [0,7/2], po represents in both cases the total elec- FIC. 1. (2 Temperature averaged-ph coupling (in units

tron density. This choice is convenient in order to normalizemEVA Vs wave vector fpr a linear chain. represents the cutoff
the averagee-ph couplings over the same parameter both in®" t€e-ph correlationsyy is the electron densityy=20 meV and
1D and 2D. Physically it corresponds to pin one electron onZézéo(ge_égn;};zfed;ﬁ;zgfﬁ EBSI?#;E'Q%ZOEES:SJEL
3)l?k:g(;e-psr:tso?:]e?att?oLnsesv?tl;lr?/;?i(:\belgig:g%n the potential du\% they component of the momentum. The casés1,n =2, and

n"=3 imply that the correlation range includes the second, the fifth,

Let us assume low energy p_honon spectra parametergy, e ninth neighbors shell, respectively. The input parameters are
=20 meV andv; =10 meV. Setting=3, we take a strong ¢ in(a).

bare Holstein couplingy although the general trend of our
results holds for any value d. In Fig. 1(a), gip(Q)/po iS  respectively. Then, the three valuesndfin 2D span as many
plotted for three choices of the cutoff [see Eqgs(4)] to lattice sites as the three valuesmfin 1D, respectively. This
emphasize the dependence of the potential orethkinter-  choice permits to normalize consistently the potential for the
action range. The constant value of the potential obtained fdinear chain and the square lattice. There is a strong renor-
w1=0 is also reported on. While in the case of short correlamalization for the 2D effective potential with respect to the
tions (n"=4) there is a range of wave vectors in which the dispersionless case for any value of the wave vector. By
effective coupling becomes larger than the dispersionlesextending the correlation range this tendency becomes more
coupling, long ranges-ph correlations substantially reduce pronounced fog, close to the center and to the edge of the
the effective potential with respect to the dispersionless caseduced Brillouin zone. An analogous behavior is found by
and set in an oscillating behavior which makes the renormalprojecting the 2D potential along tlg axis. The 2D poten-
ization g dependent. The potential tends to converge for theial stabilizes by including the ninth neighbor sheil =3) in
valuen” =24 which corresponds to 48 lattice sites along thethe correlation range.
chain. Then, an increased range for tigoh correlations leads to
The projections of the two dimensionatph potential  an effect which is qualitatively analogous to that one would
along they component of the wave vector is reported on inget by hardening the phonon spectrum: a reduction of the
Fig. 1(b) for three values of the cutoff on the correlation effective coupling and the consequent lightening of the qua-
range. Fom =1 the correlation range is extended to the secsiparticle effective mas%-
ond neighbor shell thus including eight lattice sites. For Let us see now to which extent the momentum dependent
n'=2 andn'=3 we normalize over 24 and 48 lattice sites, potential affects the thermodynamics of the system. In
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the phonon free energy reduction may be appreciable in very
low energy phonon spectra provided that the bare coupgjing
is sufficiently strong.

Next we turn to the evaluation of the electronic contribu-
tion to the total partition functiofEq. (17)]. The results
hereafter presented refer to the case of 1D electronic paths.
As the hopping energy density is related to the electron
propagator[Eq. (8)] a preliminar wave vector integration
preparesh® as a function of the path coordinates. Then, the
$Dx(7) integration has to be done numerically. Assuming the
periodicity conditionx(7) =x(7+ 8), the particle paths can be
i expanded irN, Fourier components
A P B P B B N

P
50 100 150 200 250 300 ~ ;
~ + -
Temperature (K) X(7) ~ Xo n§12[mxn cog§,7) = Tx, sin(éa7)],

1D PHONON FREE ENERGY (meV)

FIG. 2. Anharmonid~, and harmonid=" phonon free energies

for two values of the one dimensional wave veaerO,7/2. The &n=2m/p (19)
phonon spectrum parameters are as in Fig). 1 so that the functional measure of integration
= N
the total partition function[Eq. (14)] the electronic and ngx(r) ~ \—ZJA dxoﬁ (27mn)2
phononic paths have been integrated out separately as the (20N A n=1
source current does not depend on the electronic coordinates. oA oA
The g-phonon contribution to the partition function is thus Xf d%xnf dix,,
given by P(q) in (17), hence, the free energy due to the —oA oA
mode is
A= Vah2B/m (20)
1 1 s (2nm)? normalizes the free electron term (h7),
Fp(Q) e In[Bw(q)] 5 In nl:ll (2n7T)2 N [,Bw(Q)]Z Fom
ngX(T)eXp[—f dq—xz(f)] =1. (21)
_lof@h? 8 0 2
2Mw(q)?’

Equation(21) provides a criterion to set the cutoff which
turns out to bex\,, thus implying that the maximum ampli-
where the first two terms represent the harmonic frequde of the particle path coefficients becomes large in the low
energyF"(q). SinceF"(q)=p"*In{2 sinj Bw(q)/2]} we find  temperature range. This is consistent with the physical ex-
a constraint which allows us to determine the cutoffpectation that towards high temperatures only a reduced
Ne=Ng[w(q),T]. For the 1D system, af=1 K and for the  number of paths contributes to the action which thus tends to
phonon parameters given above, we dgt~cl0’ with ¢ the classical limit. Accordingly, the integration over each
varying in the rangé4.2—4.5 according to they mode. Fourier component ir{20) is carried out over a number of
The e-ph interactions renormalize downwards the har-pointsN, «K/\T and the electron hopping in the path inte-
monic values for any as Fp(q)—Fh(q)oc—gZ(q)/wz(q) but  gral (18) is weighed over a total number of electron paths
the temperature derivatives of the free energy do not involvéN, +1)?"*1. We find thatk ~ 20 andN,=2 suffice to ensure
the coupling term. Then, on general grounds, phonon entropgumerical convergence. While the free electron term only
and heat capacity are not affected by the strength of thecarcely contributes to the electronic action, the hopping de-
e-phinteraction and signatures efph anharmonicity should pendent action is dominant also at low temperatures. In fact,
not be expected in the equilibrium properties of the phonoraccording to our measure of integration, the ensemble of
subsystem. This is a direct macroscopic effect of the locatelevant particle path@ver which the hopping energy den-
nature of the interactions in the Holstein model. On the othesity is evaluatelis T dependent. However, given a single set
hand, lattice nonlinearities may appear in the ground statef path parameters one can monitor tifdehavior versus.
properties of the Holstein Hamiltonian and significantly It turns out that the hopping decreases by decreabimgt its
modify the dynamical properties of the polaronic value remains appreciable also at low temperatures. Since
quasiparticleg?23 the dr integration range is larger at lower temperatures, the
In Fig. 2, we consider the linear chain with the cutoff overall hopping contribution to the total action is relevant
n'=24 of Fig. Xa) and setp,=1. The phonon free energies also at lowT.
are plotted for two selected wave vectors together with the The equilibrium thermodynamics of the Holstein model
corresponding harmonic values. It is seen that the renormatan be derived fron17). We average the phonon contribu-
ization of theg-dependent free energies due to &aph cou-  tion over a set of 50 modes in the 1D Brillouin zone and take
pling is very weak. However, being?(q)/w?(q) =g/ w(q),  the baree-ph couplingg=3. Phonon and electron free ener-
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and thee-ph coupling are as in Figs. 1b) Total (electron plus
phonon heat capacities for four values of The phonon heat ca-
pacity is plotted separatelyc) Total heat capacities over tempera-
ture ratio.

gies are plotted separately versus temperature in K. 3
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which is reported on in Fig.(®) for four t values together
with the phonon heat capacity normalized over the number
of modes. As noted above the latter overlaps the purely har-
monic heat capacity no matter how large #aph coupling
may be. Thus the Holstein phonon heat capacity does not
contain signatures aph anharmonicity. The total heat ca-
pacity overT ratio shows an upturn at low temperatures as
shown in Fig. &) due to the electron hopping mechanism
which has already been encountered in the study of the SSH
model!! However, while in the latter the shape of the IGw
upturn could be tuned by the strength of taph coupling in

the source action, in the Holstein model the lIdwvanomaly

has purely electronic origins as theph effects are contained

in the phonon partition function. This also explains why the
absolute values of the Holstein heat capacity are much lower
than the SSH heat capacity throughout the whole tempera-
ture range.

V. CONCLUSIONS

In the Holstein model, the-ph coupling is local and the
vertex function does not depend on the wave vectors. None-
theless nonlocaé-ph correlations arise in the system once
the dispersive nature of the phonon spectrum is taken into
account. | have studied a semiclassical version of the one
electron Holstein Hamiltonian in which quantum mechanical
fermion operators interact with classical lattice displace-
ments. Applying the path integral method the real space in-
teractions can be mapped onto the time scale and, in the
Matsubara formalism, we have derived an analytical expres-
sion for the time averaged wave vector dependeph cou-
pling. Assuming a force constant intermolecular model we
have evaluated the renormalization of the wave vector de-
pendenie-ph coupling, both in one and two dimensions, as a
function of the range of the-ph correlations. In 1D, for
short range correlation®" =4), | find an enhancement of the
effective coupling with respect to the dispersionless coupling
in a window of phonon wave vectors. By increasing the
effective coupling renormalizes downwards for agyal-
though the reduction is larger towards the edge of the Bril-
louin zone. In 2D, the renormalization is even more pro-
nounced and takes place also for small values of the cutoff
on the correlation range.

Thus, the inclusion of the-ph correlations in the effec-
tive coupling has an effect which is similar to that one would
obtain by enhancing the characteristic phonon frequency and
it ultimately leads to reduce the effective mass of the quasi-
particle. The Holstein polaron mass in a dispersive phonon
model is thus lighter than in a dispersionless model.

Mapping thee-ph interaction onto the time scale we also
find that the perturbing source current of the model depends
on the time only through the atomic displacement field,
hence, it is not retarded. Then, the temperaftirae) aver-

Note that in the lowT range the electron free energy has aaged current is proportional to the averaged atomic displace-
positive derivative both for narrow and wide band valuesment and it does not include the electronic coordinates. This
although the range shrinks by increasing the hopping integrgiroperty allows us to decouple phonon and electron degrees
value. Fort=0.2 eV, the electron free energy gets the maxi-of freedom in the general path integral and in the total par-

mum atT~ 60 K while fort=4 eV, the maximum occurs at

tition function. Such a disentanglement does not occur in the

T~13 K. This feature is mirrored in the total heat capacity Su-Schrieffer-Heeger modélas the source current does de-

184308-6



NONLOCAL ELECTRON-PHONON CORRELATIONS IN A. PHYSICAL REVIEW B 71, 184308(2005

pend on the electron path coordinates. As a physical cons&V¥hile qualitatively the latter feature had also been envisaged
guence the renormalized Holstesrph coupling is frozen in  in the SSH heat capacity, in the Holstein model the shape of
the phonon partition function while the electron action isthe broad upturn has purely electronic origins and it is not
dominated by the hopping energy density. After integratingaffected by thes-ph source action. This explains wig,/T

out analytically the phonon degrees of freedom we have obhas a negative temperature derivative throughout the whole
tained theg-dependent phonon free energy and estimated thgange for any value of the hopping integral.

e-ph correctiong(with respect to the harmonic valyas the

thermodynamical properties. It turns out that the Holstein

heat capacity does not show any signature of phonon anhar- ACKNOWLEDGMENTS
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