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We present a variational study of the two- and three-dimensional Wigner crystal phase of large polarons. The
method generalizes that introduced by S. Fratini and P. QuémeraisfMod. Phys. Lett. B12 1003 s1998dg. We
take into account the Wigner crystal normal modes rather than a single mean frequency in the minimization
procedure of the variational free energy. We calculate the renormalized modes of the crystal as well as the
charge polarization correlation function and polaron radius. The solid phase boundaries are determined via a
Lindemann criterion, suitably generalized to take into account the classical-to-quantum crossover. In the weak
electron-phonon coupling limit, the Wigner crystal parameters are renormalized by the electron-phonon inter-
action, leading to a stabilization of the solid phase for low polarizability of the medium. Conversely, at
intermediate and strong coupling, the behavior of the system depends strongly on the polarizability of the
medium. For weakly polarizable media, a density crossover occurs inside the solid phase when the renormal-
ized plasma frequency approaches the phonon frequency. At low density, we have a renormalized polaron
Wigner crystal, whereas at higher densities the electron-phonon interaction is weakened irrespective of thebare
electron-phonon coupling. For strongly polarizable media, the system behaves as a Lorentz lattice of dipoles.
The abrupt softening of the internal polaronic frequency predicted by Fratini and Quemerais is observed near
the actual melting point only at very strong coupling, leading to a possible liquid polaronic phase for a wider
range of parameters.
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I. INTRODUCTION

As it was first proposed by Wigner last century1 the long-
range Coulomb interaction is able to stabilize a crystal of
electrons, which eventually melts upon increasing the den-
sity at a quantum critical point. Experiments done on
heterostructures2 and quantum Monte Carlo simulations con-
firm this scenario.3,4 The presence of impurities is known to
stabilize the crystal phase in two dimensions.5 Another
mechanism that could help the stabilization of the crystal
phase is the effect of a polar material. As a single electron
moves in a polar crystal, it polarizes its environment creating
a new quasiparticle: a Fröhlich large polaron, with an en-
larged effective mass.6,7 One expects then an enlargement of
the Wigner crystal phase.

Interesting properties of the liquid phase in polar doped
semiconductors arise also due to the interaction with the po-
larization, as, for example, the mixing between plasmons and
longitudinal opticalsLOd phonons.8 Such a mixing can be
explained by assuming a long-range interaction between the
carriers and optical lattice vibrations of the Fröhlich type.9

The resulting coupled LO-phonon-plasmon modessCPPMsd
are found in polar semiconductorssn-type GaP orp-type
GaAsd.10 Another interesting playground for this kind of
physics is the surface polaron, i.e., electron close to the sur-
face of a polar crystal, which has been intensively studied
especially for intermediate electron-phonon couplinga, as in
InSb wherea,4.5,11 or in AgCl wherea,3.12 It has been
also observed that the gate materialssSiO2, Al2O3 in organic
thin films in field transistorsd are polar dielectrics and the
interaction between the electrons and the surface phonons of
the polar dielectric is relevant.13

The aim of this work is to study the stabilization of the
Wigner crystal phase and its properties in the presence of a

polarizable medium. We consider a general model in which
the key feature is the presence of long-range interactions that
arise from direct Coulomb interactions between electrons
and from the polarizable medium.

The presence of long-range interactions, high polarizabil-
ity, and low carrier density is also a common feature of high-
temperature superconductors. Of course, in these materials,
short-range interactions and lattice effects play an important
role. Nonetheless, polarons have been detected by optical
measurements in the antiferromagnetic insulating phase of
both super-conducting and parent cuprates.14–16 Moreover,
some evidence of strong electron-phonon coupling effects
has been given recently in the underdoped regime.17 An in-
teresting physics is introduced when studying these materials
by the fact that the carrier concentration can be varied from
very low to sufficiently high density. Prediction on optical
properties and more specifically the behavior of the so-called
midinfrared bandsMIRd by varying the doping has been pro-
posed according polaronic models18,19,31as well as its inter-
pretation as charge ordering in stripes.20 A similar behavior
has been also found in the optical properties of potassium
doped barium bismutate.21

When we consider a system composed of many interact-
ing large polarons we are faced with the problem of screen-
ing of both electron-electronse-ed and electron-phononse-
phd interactions as we increase the carrier density. A density
crossover is therefore expected when the doping concentra-
tion is varied so that the plasma frequency approaches the
optical longitudinal phonon frequencyvLO.

At high density, phonons cannot follow the much faster
plasma oscillations of the electron gas and therefore they do
not contribute to the screening of the e-e interactions. On the
other hand, the electronic density fluctuations screen the e-ph
interaction leading to the undressing of the electrons from
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their polarization clouds. As a consequence, the polaronic
mass renormalization is hugely reduced.22 In this case, the
plasma frequency of the pure electron gasvP

2 =4pe2r /m is
renormalized by the high-frequency dielectric constant«`

vP,H
2 =

vP
2

«`

. s1d

In the high-density region, the self energy has been studied
by a perturbative approach for weak e-ph couplingsmpol

.md in the metallic phase.22 The validity of this approach is
ruled by the condition ofvLO

2 !vP
2 /«`, since in this regime

vP
2 /«` is representative of electron-density fluctuations. In

this case, the electron screening weakens theeffectivee-ph
coupling constant and it is argued that the perturbative ap-
proach is suitable also for semiconductors that have interme-
diate values of thebare e-ph coupling in the low doping
phase. The same results have been obtained at weak and
intermediate couplings by a ground-state study.23 An ap-
proach that is able to span the strong e-ph coupling regime
has been presented in Ref. 24, where an untrapping transition
is found by increasing the density via the plasmon screening
of the e-ph interaction. There it is concluded that there is no
polaron formation at high density, irrespective of the strength
of the bare e-ph coupling constant.

At low density, the phonon energy scalesphonon-
frequencyd exceeds the electronic energy scalesplasma fre-
quencyd. In this limit, the phonons can follow the oscillations
of the slower electrons and they screen the e-e interaction.
Thus, the frequency of the electron collective modes is renor-
malized by the static dielectric constant«0. Moreover, in the
case of intermediate and strong e-ph coupling, polarons are
formed25 so that the appropriate expression for the general
renormalized plasma frequency becomes

vP,L
2 =

m

mpol

vP
2

«0
, s2d

where mpol is the polaron mass. In the case of GaAs, the
mass renormalization because of the e-ph interaction is neg-
ligible, and usually Eq.s2d is used to interpret the experi-
mental data withm, the band mass of the carriers, in place of
mpol.

10

In Ref. 26 an approximation is developed that allows one
to study a system of many interacting large polarons in the
intermediate- and/or low-density regime for weak and inter-
mediate coupling strengths. The phonon degrees of freedom
are eliminated by a generalized Lee-Low-Pines
transformation27 obtaining an effective pair potential be-
tween electrons, which is nonretarded, with a short-range
attractive term and a long-range Coulomb repulsive term,
statically screened by«0. The role of the inverse polarizabil-
ity parameterh=«` /«0 is evident in Ref. 26. In the case of
h!1, which is hereafter reported as the high-polarizability
regime, repulsive interaction and the retarded phonon-
mediated attractive interaction are comparable, leading to a
softening of the energy of the collective modes at a finite
value of the wave vectork, signaling a charge-density wave
instability. The attractive interaction term between the elec-
trons plays a crucial role also at very low density where the

ground state can be bipolaronic below a certain value of the
polarizability parameter35 or can undergo a solid-liquid phase
transition similar to the Wigner crystallizationsWCd.28 In
Refs. 29 and 30, a large polaron crystalsLPCd is studied
using a path-integral scheme. In Ref. 30, forh=1/6 shigh-
polarizability regimed, the authors conclude that in the weak
and intermediate e-ph coupling regimes atT=0 the LPC
melts toward a polaron liquid, but in the strong coupling
regime a phonon instability appears near the melting. The
authors argue this behavior from the softening of a long
wavelength collective mode due to the e-e dipolar-
interaction. A study that shows the presence of a long-range
order is not necessary for this kind of scenario has been
presented in Ref. 31 for a simplified model of a classical
liquid of interacting dipoles, which are the polarons treatedà
la Feynman. The dipolar modesinternal frequencyd is renor-
malized by the mean field of the other dipoles, and it is
shown to soften as the density increases, leading to the dis-
sociation of the dipolespolarond.

The present work generalizes the approach of Ref. 30
using a formalism that allows one to span from a high-sh
!1d to low-polarizability regimesh.1d. We calculate the
boundaries of the solid phase in three as well as in two di-
mensions. We also calculate, within the solid phase, the cor-
relation function between the electron density and the charge
polarization density. Our results confirm the relevant role of
the parameterh in the strong e-ph coupling regime. Accord-
ing to the values of this parameter, two distinct behaviors are
found:

sid the high-polarizability regime in which we found a
scenario similar to that of Ref. 30, i.e., the melting of the
crystal is driven by the instability of the internal polaronic
mode. Interestingly our more quantitative prediction push the
instability-driven melting toward very strong couplings,
leaving the possibility of a liquid polaronic phase for a wider
range of parameters.

sii d the low-polarizability regime, studied here even at
strong coupling, in which we found that the undressing tran-
sition argued in the liquid phase24 occurs also in the solid
phase. Nonetheless e-ph interaction is able to stabilize the
crystal against the liquid phase even for moderately polariz-
able mediums.

This paper is organized as follows: in Sec. II we illustrate
the model and the approximations used, we introduce the
quantities of interest, and we also discuss the Lindemann
criterion used to determine the transition temperature. In Sec.
III, we present the results in the three-dimensionals3Dd case.
In Sec. IV, the results of the two-dimensionals2Dd case are
compared to the those in 3D. The conclusions are reported in
Sec. V. Appendices contain technical details of the calcula-
tions.

II. MODEL AND METHOD

A. The model

The model describes a system ofN interacting electrons
in a D-dimensional space, which are coupled to longitudinal
sundispersedd optical phonons. The Hamiltonian of the
model is a generalization of that introduced by Fröhlich for a
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single large polaron32 to N-large polarons.22 We consider
electrons as distinguishable particles. This approximation is
justified inside the solid phase, where the overlap between
the wave functions of different localized electrons is
negligible.33 Using the path integral technique34 phonons can
be easily traced out taking advantage of their Gaussian na-
ture, and we end up with the following partition function:29

Z = R p
ı

DfrWıstdge−s1/"dSef f, s3d

where r means the functional integration over all cyclic
space-time paths of the particlesrWıstd between zero andb
=" /kBT. The effective electron action reads

Sef f = SK + Se−e + Se−ph−e
self + Se−ph−e

dist + SJ, s4d

where

SK =E
0

b

dto
ı

1

2
murẆıstdu2, s5d

Se−e =
e2

2«`
E

0

b

dto
ıÞ j

1

urWıstd − rW jstdu
, s6d

Se−ph−e
self = −

vLOs1 − hde2

4«`
E

0

b

dtE
0

b

dso
ı

Dost − sd
urWıstd − rWıssdu

,

s7d

Se−ph−e
dist = −

vLOs1 − hde2

4«`
E

0

b

dtE
0

b

dso
ıÞ j

Dost − sd
urWıstd − rW jssdu

,

s8d

SJ = b
serJd2

2«0
VE drW

r
−E

0

b

dto
ı
E drW

e2rJ/«0

urWıstd − rWu
. s9d

Heree2 is the electron charge,m is the electron band mass,
andV is the volume.serJd is the static jellium charge density.
The integration of phonons leads to the appearance of re-
tarded e-e interaction terms Eqs.s7d ands8d, where the pho-
non propagator is

Dostd =
coshsvLOfb/2 − tgd

sinhsbvLO/2d
. s10d

Using polaronic unitssp.u.d s"vLO for energy, 1/vLO for
imaginary timet andÎ" /mvLO for lengthsd Se−ph−e becomes
proportional to the dimensionless e-ph coupling constanta
defined as

a =
e2

Î2

1 − h

«`

Î m

"3vLO
, s11d

whereasSe−e will be proportional to the e-e coupling con-
stant

ae =
Î2e2

«`

Î m

"3vLO
, s12d

the ratio ae/a=2/s1−hd is thus solely determined byh
=«` /«0; whenh.1 the Coulomb repulsion overwhelms the
attraction mediated by phonons, while they become compa-
rable forh!1. Therefore, in the Fröhlich model, the inverse
polarizability parameter rules the relative weight between the
repulsive and attractivesphonon-mediatedd interactions. This
attraction can lead to a bipolaronic ground state asa
.acshd.35 Roughly speaking, this condition implies strong
couplingsa.ac and high polarizability h,hc, where ac
=9.3 andhc=0.131 in 3D, ac=4.5 andhc=0.158 in 2D
case.35 We have investigated the system for two values ofh,
representative, respectively, of the high- and low-
polarizability regimes and several values of the e-ph cou-
pling a. We choose, respectively,h=1/6 as in Ref. 30,
which givesae/a=2.4 andh=0.90519 so that the coupling
ae/a is increased by a factor of ten.36 For these values ofh,
no bipolaron ground state exists.

B. Harmonic variational approximation in the solid phase

We generalize the harmonic variational approach origi-
nally introduced in Ref. 29 to study the modelfEq. s4dg. First
of all we recall here the variational theory in the path-integral
formalism. Let us consider a suitable trial actionST, which
depends on some variational parameters. SubstitutingSef f
with ST in Eq. s3d we obtain the partition functionZT for the
trial action and the free energy associated with itFT
=−kBT ln ZT. Then the exact free energy can be expressed as

F = FT − kBT lnke−s1/"dDSlT, s13d

whereDS=Sef f−ST and the mean valuek…lT is

k¯lT =
1

ZT
R p

ı

DfrWıstdgs¯de−s1/"dST. s14d

The variational free energy is obtained by a cumulant expan-
sion of the logarithm appearing in Eq.s13d. At first order in
DS it reads

FV = FT +
1

b
kDSlT, s15d

whereFVùF. To define a suitable trial action we proceed in
two steps, as in Ref. 29. First we treat the self-interaction
term Se−ph−e

self of Eq. s7d a la Feynman.37,38 Therefore, we
substituteSe−ph−e

self with SFeyn

SFeyn=
sv2 − w2dmw

8 o
ı
E

0

b

dtE
0

b

dsDVst − sdurWıstd − rWıssdu2

s16d

v andw are the two variational parameters. The variational
propagatorDVstd is given by Eq.s10d with w replacingvLO.
We remind thatSFeyn Eq. s16d can be obtained by integrating
out an action where each electron interacts elasticallyfKT

=msv2−w2dg with a fictitious particle of massMT

=mfsv2/w2d−1g. Then v is the internal frequency and 1/m
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=1/m+1/MT is the reduced mass of the two-particle system.
As a second step, we treat theSe−e, SJ Eqs. s6d and s9d

and the distinct partsSe−ph−e
dist d Eq. s8d of Sef f in Eq. s4d by

means of a harmonic approximation. Expressing the position
of the electrons around the Wigner lattice points asrWı=uW ı

+XW ı, whereXW ı are the vectors of the Bravais latticesbcc in
3D, hexagonal in 2Dd and omitting the constant terms of the
solid-phase potential energy, we obtain the following har-
monic variational action:

ST = SK + SFeyn+ SJ
H + Se−e

H + Se−ph−e
H,dist , s17d

where

SK =E
0

b

dto
ı

1

2
muuẆ ıstdu2, s18d

Se−J
H + Se−e

H =E
0

b

dto
ı

1

2
m

vW
2

«0
uuW ıstdu2

+E
0

b

dt
e2

2«`
o
ıÞ j

uW jstdIı juW ıstd, s19d

Se−ph−e
H,dist = −

vLOe2

4«̄
o
ıÞ j
E

0

b

dtE
0

b

dsDost − sduW jssdIı juW ıstd.

s20d

In Eq. s19d, the Wigner frequency is defined as usual in 3D
asvW,3D

2 =vP
2 /3 ffor the 2D case see Eq.sB14d in Appendix

Bg. The force constantsfIı jgab are obtained through a har-
monic expansion for the Coulomb potentialssee Appendix
Bd. In our calculations, we neglect the anharmonic terms in
DS of Eq. s15d, therefore we get

FV = FT +
1

b
kSe−ph−e

self − SFeynlT. s21d

We have minimizedFV/N varyingw, v at given a density
and temperature, keepinga and h fixed. Minimization is
constrained by a convergence condition on the Gaussian in-
tegrals appearing inFV. The constrained minimization pro-
cedure is described in Appendix C.

So far, the discussed scheme appears very similar to the
one of Ref. 29. However, we stress that theFV, which we
have minimized to obtain the variational parameterv andw,
contains the heterointeraction termsSe−e

H andSe−ph−e
H,dist , which

are not included in the minimization procedure of Ref. 29.
Moreover, we have also used thewhole trial action ST Eq.
s17d to calculate the mean electronic fluctuation, which we
have used in the Lindemann rule, as explained in Sec. II C.

C. Lindemann rule and phase diagrams

To determine the solid-liquid transition we use the phe-
nomenological Lindemann criterion, suitably generalized to
take into account the classical-to-quantum crossover39

kuuW u2lef f

dNN
2 = g2shqd. s22d

In the left-hand sideslhsd of Eq. s22d we have the Lindemann
ratio between the mean fluctuation of the electrons around its
equilibrium position and the nearest-neighbor distancedNN.
When it exceeds a critical valuefright-hand sidesrhsd of Eq.
s22dg, the solid melts. In Eq.s22d k…lef f is the average taken
over Sef f Eq. s4d. The average is carried out at the zeroth
order in the cumulant expansion as an average overST Eq.
s17d.

Contrary to the classical liquid-solid transition, where the
Lindemann rule predicts the full melting line using a con-
stantg=gcl, in the case of a quantum crystal an interpolating
formula for g is necessary to determine the melting line as
obtained by comparing the free energies of the two phases
calculated using quantum simulations.3 Hence the analytic
expansion of the quantum corrections to the classical free
energy respect to the quantum parameterhq and the zero-
temperature melting density provides the interpolating func-
tion frhs of Eq.s22dg for gshqd.39 hq is defined for the pure
electron gas as the ratio between zero point and thermal ac-
tivation energies as

hq =
"vp

2kBT
. s23d

We have chosen for the functiongshqd the form of Refs.
40,41

gsT,rsd = gq −
gq − gcl

1 + Ahq
2 . s24d

Formula s24d has a single interpolation parameterA,
which we take asA=1.62310−2 in 3D40 andA=3310−2 in
2D.41

The chosen value ofgcl=0.155 is such that the classical
transition linessT=2/Gcrsa.u.d are recovered in both the 3D
sGc=172 from Ref. 40d and 2DsGc=135 from Ref. 41d cases.
The valuegq=0.28 is chosen to reproduce the zero tempera-
ture quantum transition in 3Dsrs=100 a.u.from Ref. 40d
and 2Dsrs=37 a.u.from Ref. 41d.

Roughly speaking, the transition curve is limited by the
classical lineT=s2/Gcd1/rs and the quantum melting 1/rs

=1/rc. The actual transition curve is a smooth interpolation
between these two limiting behaviors. Of course, the precise
knowledge of the interpolation formulasi.e., the knowledge
of parameters appearing in itd is critical only for the deter-
mination of the transition line at high temperaturesssee Fig.
1d.

We note that the particular values of the parameters enter-
ing in Eq. s24d depend on the kind of statisticssboson, fer-
miond and on the system parameters only via the ratiohq.

42

This parameter depends on the mass of the particles viavp,
which measures the zero point energy of the oscillator, which
eventually melts.43 Therefore, to generalize the Lindemann
criterion to the interacting large polaron system we are left
with the alternative of choosing between the electron and the
polaron effective mass in Eqs.s23d and s24d.

The polaron exists as a well-defined quasiparticle when
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both kBT!"vLO
44 and "v̄P!"vLO. The second condition

relies on the effectiveness of the e-ph interaction, as ex-
plained in the introduction. Therefore, if both conditions are
fulfilled, we have to replacevP in Eq. s23d by v̄P given by
Eq. s2d. In this case, between the classicalshq.0d and quan-
tum meltingshq→`d, we have a polaronic Wigner crystal.
This is the case of the high polarizabilitysh=0.17d.

For low polarizabilitysh=0.9d, a crossover occurs inside
the solid phase when"v̄P,"vLO and the coupling is inter-
mediate or strong, as it will be discussed, in detail, later on.
In this case, we still have a classical melting of polaronic
quasiparticles, but the quantum melting involves the un-
dressed electrons. In the classical regimeslow densityd, the
transition line does not depend appreciably on the quantum
parameter, asg attains its classical limitshq→0d. In the
quantum regime at high density and low temperaturesshq
→`d the functiong Eq. s24d saturates to its quantum value
gq and the densityrc of the quantum melting does not depend
of the choice for the quantum parameterhq. Instead, a pro-
nounced dependency on the actual value of the quantum pa-
rameter is expected in the calculation of the melting line at
high temperatures and intermediate densities.

For h=0.9 we choose the high-density estimatevP/Î«`

as the plasma frequency entering in Eq.s23d. This choice

produces, in the intermediate temperature and/or density re-
gion, an upward deviationsFig. 1, lower paneld from the
classical slope. This is a drawback of our approximation,
which is, however, correct at low temperatures for both low
and high density.

We finally discuss to which extent we use the Lindemann
criterion in 2D and, more generally, on the applicability of
the harmonic theory in 2D. This is related to the well-known
problem of the existence of two-dimensional crystalline
long-range order at finite temperature.45 In a pure electron
gas, forT=0, this problem does not arise and the properties
of the system in the harmonic approximation have been stud-
ied extensively.46,47 The general statement for the classical
impossibility of 2D crystalline long-range order was first
pointed out by Peierls.48 Landau49 gave a general argument
according to which fluctuations destroy crystalline order,
possessing only a one- or two-dimensional periodicity. The
first microscopic treatment of the problemsnot valid in case
of Coulomb interactiond is due to Mermin:45 his proof is
based on Bogolyubov’s inequality, which leads to the con-
clusions that the Fourier component of the mean density is
zero for every vectork in the thermodynamic limit. Moti-
vated by the interest of the 2D electron gas, Mermin’s proof
was critically re-examined for the long-range potential.50,51

We discuss here the argument of Peierls for the 2D electron
crystal. The mean-square thermal fluctuations of a generic
classical particle diverges in two dimensions for an infinite
harmonic crystal. At low density, we havehq.0 and the
mean electronic fluctuation can be approximated by the clas-
sical value

ku2lCl,WC=
DkBT

2mvP
2 M−2, s25d

M−2 =E dvr svd
vP

2

v2 , s26d

whereM−2 is the dimensionless second inverse moment of
the density of the statessDOSd of charge fluctuation normal
modes in the pure WCfrsvdg. Since long-wavelength acous-
tical vibrational modes scale asv=csk, the DOS is given at
low energies byrsvd,v for v→052 and the integral Eq.
s25d diverges logarithmically. However, a lower cutoff in the
frequency spectrum, which exists for a large but finite system
studied in the laboratory52 or in a computer simulation,4,53

removes the logarithmic divergence. We have chosen a cut-
off frequency that corresponds to a fixed number of particles
N.53105. The dependence of the cutoff is discussed in
Appendix A. There and later on it is shown that our results
are cutoff independent for low temperatures and density near
the quantum critical point. Therefore we will discuss 2D case
only in this region.

D. Correlation functions and polaron radius

We now introduce the correlation functions between the
electron and the polarization densities for a system withN
electrons and a measure of the polaron radius.

The polarization density vector of the medium is associ-
ated to the optical-phonon modesQqW through the relation7

FIG. 1. Phase diagrams for a 3D LPC forh=0.17supper paneld
andh=0.9 slower paneld. Atomic unitssa.u.d are used for tempera-
ture andrs ssee textd. Solid phase is enclosed below transition lines.
In both the upper and lower panels, the continuous bold curve is the
pure WC transition line and solid line gives the classical melting. In
the upper panel, the dashed line is the renormalized classical
melting.
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PW srWd = o
kW

i
vLO

Î4p«̄V

kW

uku
eikWrWQkW . s27d

The induced charge density is defined by7

nisrWd = −
1

e
¹W · PW srWd. s28d

Correlation between a given electron and the induced charge
density can be defined as

C1srW8,rWd =
kr1srWdnısrW8dl

kr1srW8dl
s29d

with r1srWd=dsrW−rW1d. In Eq. s29d we have chosen the appro-
priate normalization for the correlation function betweenone
electron and the polarization. Integrating out the phonons we
arrive at the following expression in which we express all
quantities in terms of averages weighted by the effective ac-
tion fEqs.s4dg

C1srW8,rWd =
1

«̄
E

0

b

dt
vLO

2
Dostd

kr1srWdrsrW8,tdlef f

kr1srWdlef f

. s30d

In Eq s30d rsrW8 ,td is the path density defined by

rsrW8,td = dfrW8 − rW1stdg + o
ıÞ1

dfrW8 − rWıstdg, s31d

where we have explicitly separated the contributionr1srW8 ,td
due to the electron 1 from the remainder. The first contribu-
tion in rhs of Eq.s31d gives rise to a self term in the corre-
lation function Eq.s30d given by

C1
self =

1

«̄
E

0

b

dt
vLO

2
Dostd

kr1srWdr1srW8,tdlef f

kr1srWdlef f

. s32d

Note that in the limit of a single isolated polaron, this corre-
lation function reduces to the one evaluated in Ref. 44. As-
suming an electron at originsrW=0d, we haveC1

self depending
only on rW8. The radial-induced charge densitygsrd can be
defined as

gsrd = rD−1E dDV C1
selfsrWd. s33d

Using this function, we can define, as a measure of the
polaronic radius, the square root of the second moment of
gsrd

Rp = FE
0

`

dr r2gsrdG1/2

. s34d

The actual calculation for the mean values appearing in
Eq. s32d are carried out at the zeroth order of the variational
cumulant expansion. Explicit calculations are reported in Ap-
pendix E.

III. RESULTS IN 3D

Here we compare the lowsh=0.9d and high sh=1/6d
polarizability cases in 3D. For each polarizability, the

electron-phonon coupling constanta spans from weak to
strong coupling regime:a=1, 3, 5, 7, 9, 11, 13, 15. Phase
diagrams obtained through the Lindemann criterion are
shown in Fig. 1 where the solid-liquid transition lines of the
LPC are compared to that of the pure Wigner crystal. Density
is expressed in terms of the adimensional parameterrs

3

=ao
3/ fs4p /3drg, where ao is the Bohr radius withsm

=me,«`=1d. A common feature of both the low- and high-
polarizability cases is the enlargementin density scaleof the
solid phase as far as e-ph coupling increases. However, in
both cases, the solid phase cannot be stabilized for any den-
sity by increasing the e-ph interaction, and the quantum
melting point saturates at a maximum value when the e-ph
coupling is very strong. To illustrate this different behavior it
is worth introducing a simplified model.

A. Simplified model

In the simplified model, introduced in Ref. 30, the elec-
trons interact with each other and withall the fictitious par-

ticles shRW ıjd with massMT, which represent the polarization
of the medium. After integration of the fictitious particles, we
obtain the effective electronic LagrangianLeq. The effective
harmonic LagrangianLeq generated by the simplified model
corresponds exactly to the Lagrangian of the actionST Eq.
s17d with the parameterw=vLO. This approximation restricts
the space of variational parameters and therefore gives rise to
a worse estimate for the free energy. Nonetheless, it allows
one to describe the physics of the system in a simplified
fashion.

Each WC branch is splitted in two branches for the LPC
and the frequencies of the system are given by the two roots
V±

2svs,kWd sEqs. s24d and s25d of the work30d, wherevs,kW are
the WC frequencies with wave vectorkW and branch indexs.
The expression for the mean fluctuationku2leq of electrons
around their equilibrium value in the simplified model is
easily obtained by insertingw=vLO in the variational expres-
sion ku2lT fsee Appendix D, Eqs.sD2d–sD4dg. The V±

branches give rise to a natural splitting of contributions to
the fluctuation

ku2leq

dNN
2 =

ku2l+

dNN
2 +

ku2l−

dNN
2 . s35d

In the low-density regime of the simplified model,30 i.e.,
when phonons are much faster than density fluctuations, the
spectrum can be decomposed into the renormalized WC fre-

quencies Ṽ−svs,kWd and the polaronic optical frequencies

Ṽ+svs,kWd, which can be obtained by expanding the general
solutionsV±

2svs,kWd with respect to the parameteres,kW defined
as

es,kW = vs,kW
2 /s«0v

2d, s36d

which is small forall frequenciesvk,s of WC normal modes
at the low-density regime.

The first part of the spectrum represents thelow frequen-
cies associated with the oscillation of the center of mass
smpol=m+MTd of the two-particle system, i.e., the electron
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and its relative fictitious particlespolarizationd, whereas the
second part of the spectrum describes the dipolar modes as-
sociated with the internal motion of the oscillating electron-
fictitious particle systemsFig. 1 of Ref. 30d. Dipolar modes
are weakly dispersed around the frequencyvpol fEq. 25 of
Ref. 30g defined as thek=0 mode of the polaronic branches.
This represents the internal frequency of oscillation of the
electron inside its polarization well.

B. Classical and renormalized quantum melting

Now let us consider the classical transition. This transition
is located in the low-density regime of the simplified model.
Using the low-density expansion for the spectrum

fṼ−svs,kWd , Ṽ+svs,kWdg, it is possible to associate each term,
ku2l+ and ku2l−, to a definite degree of freedom of the two-
particle system, i.e., to the fluctuation of the center of mass

ku2l− .E dvr svd
"D cothF"SÎ m

«0mpol
Dv/2kBTG

2mpolSÎ m

«0mpol
Dv

s37d

and to the fluctuation associated with the internal dipolar

mode withrW =uW −RW T and reduced massm

ku2l+ . S MT

m+ MT
D2 "D

2mvpol
cothS"vpol

2kBT
D . s38d

In this case we can easily estimate the ratio between elec-
tronic fluctuations in LPC and WC by taking into account
only the renormalized WC spectrum, i.e., the fluctuation as-
sociated with the center of mass Eq.s37d. Using Eq.s25d we
haveku2lLPC/ ku2lWC=1/e0 then by Lindemann criterion Eq.
s22d and by Eq.s25d at a given density, the critical tempera-
ture ratio also equals 1/e0

TLPC
Cl

TWC
Cl =

1

«0
. s39d

Therefore, the slope of the classical transition line is lowered
by the same factor, as can be seen in Fig. 1supper paneld,
where«0 is appreciably large.

The quantum melting is ruled by the zero point fluctua-
tions of the electronic oscillations. A zero temperature esti-
mate for the pure WC gives

ku2lWC =
"D

2mvP
M−1, s40d

M−1 =E dvrsvd
vP

v
, s41d

whereM−1 is the dimensionless inverse moment of the WC
DOS. If we consider only the renormalized WC spectrum
Eq. s37d, and we take into account Eq.s40d, we get for the
LPC

ku2lQ,LPC

ku2lQ,WC
= Sm«0

mpol
D1/2F rs

rssWCdG3/2

, s42d

then using Lindemann criterion we obtain at the quantum
critical point srs−rcd

rcsWCd
rc

=
mpol

m«0
. s43d

Eq. s43d generalizes the result of the Ref. 29 where the Lin-
demann rule was discussed within a mean-field approach.

At high polarizabilityku2l−, Eq.s37d is the leading term in
the mean electronic fluctuationku2leq Eq. s35d near the quan-
tum melting for small and intermediate couplingsaø7. In
this case, the quantum melting density scales as Eq.s43d.
Note that at weak coupling the mass renormalization is
weak, but phonon screening through«0 dominates, leading to
quantum melting at lower densities than in a purely elec-
tronic Wigner crystalsupper panel of Figs. 1 and 2d. At low
polarizability Eq.s43d is valid up toa.3 sFig. 2d.

On increasing the coupling,mpol scales as,a4 in strong
coupling and Eq.s43d predicts a divergence of the quantum
melting density. As shown in Figs. 1 and 2, the quantum
melting density saturates to ana-independent value at strong
coupling, and the prediction of Eq.s43d is no longer valid.

FIG. 2. Zero-temperature phase diagram in the 2Dsopen sym-
bolsd and 3D ssolid symbolsd cases. In 2Da has been scaled ac-
cording the zero density limit. Circles are the scaled quantum melt-
ing rc vs e-ph coupling constanta. The dashed line is the
renormalized quantum melting transition curve from Eq.s43d. Up-
per panel:h=0.17. Triangles locate the softening ofvpol. Lower
panel:h=0.9. The shaded area encloses the crossover region inside
the solid phase.
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We will see in Sec. III C that deviations from the prediction
of Eq. s43d arise from different reasons in low- and high-
polarizability cases.

C. High polarizability: Softening of internal mode

This is the case in which the polarization gives a large
contribution to the total interaction energy of the system. The
system can be thought of as being composed by interacting
dipoles that are made by electrons surrounded by their polar-
ization.

In the case of strong e-ph coupling we observe a satura-
tion of the critical quantum melting density. In Fig. 3 the
electronic fluctuation is reported fora=13. Contrary to the
small-intermediate coupling case,ku2l+ Eq. s38d is now the
leading term near the quantum melting. The melting density
given by Eq. s43d is not a good estimate because of the
contribution of polaronic optical modes, which is now im-
portant at the quantum melting. The same scenario of Ref. 30
is recovered: the optical polaronic frequencies drive the melt-
ing at strong coupling and high polarizability. Moreover we
note thatku2l+,s1/vpold and, as density approaches a criti-
cal valuevpol softens, inducing an abrupt increase of electron
fluctuation that is dominated by the termku2l+ ssee Fig. 3d.
The same behavior forvpol is reported in Ref. 30 and ex-
plained in terms of the attractive interaction between the po-
larons spolarization catastrophed. We stress, however, that
employing a more quantitative Lindemann criterion together
with a self-consistent variational calculation of all Feyn-
mans’ parameters we get quantum melting in a region in
which vpol do not actually soften. As a result the softening of
internal polaronic frequency approaches quantum melting
only asymptotically for very largea sFig. 2d.

Saturation occurs to value ofrc, which seems to lie in the
high-density regime where our approach could be question-
able. We must stress, however, that in the pure electron gas,
the parameterrs is a measure ofboth coupling and density.
Indeedrs can be obtained from the ratio of the Fermi energy
to the mean Coulomb interaction, even if scaled with the

band mass and the dielectric constant of the host medium,
which are anyway fixed, i.e., not density dependent. If we
introduce another coupling into the system, as the e-ph inter-
action, the two concepts are distinct. Global interaction is not
only a function of the density but is also a function of the
e-ph couplinga. Now in the high-polarizability case, po-
larons are well defined as quasiparticles and we can use
mpolsad as effective mass while the repulsive interactions are
screened by«0 in the low-density regime. Only in this case
we can introduce a measure of thecoupling through the pa-
rameterrs

* =smpol/«0mdrs. For the low-polarizability case the
last assumption is not valid as explained onward. The values
of rs

* at the quantum meltingsrc
*d are reported in Table I.

When the couplinga,7 the quantum melting can be esti-
mated thru Eq.s43d, which meansrc

* . rcsWCd=100; that is,
the coupling parameterrc

* tends to the value of the Wigner
crystal melting of a 3D electron gas. On the contrary, in the
strong e-ph coupling the values of the effective coupling pa-
rameterrc

* are much bigger than those of the densityrc due to
the huge enhancement of polaron mass.

Of course the exchange effectsat the crystal melting are
relevant and can be taken into account only phenomenologi-
cally in our harmonic approximationssee Ref. 42 and discus-
sion in Sec. II Cd. However in the solid phase we must note
that these effects are ruled in LPC by the parameterrs

* rather
thanrs making them much more negligible than those at the
same density in the pure electron gas. To realize this fact we
assume that the localized electronic wave function is a
Gaussian of variances, then the overlap between two
of these functions at distancers is proportional to
exps−rs

2/4s2d. Now s in the harmonic approximation can be
extimated ass2=1/2mpolvW, wherevW

2 =vP,L
2 /3 is the LPC

Wigner frequency andvP,L
2 is given by Eq.s2d. Then it is

then obvious thatrs
2/4s2=Îrs

* /2, a result that can be com-
pared to the same for electron gas33 in which appearsrs and
a different coefficient because of a more elaborate variational
procedure. Taking into account the data in Table I, we see
that the exchange effects are,a fortiori, negligible in a first
approximation in the case of the strong e-ph coupling, where
the quantum melting occurs at a huge coupling parameterrc

* .
In Fig. 4 we show the behavior of the polaron radius as a

function of density. Although in the solid phase it remains
almost constant, when approaching the melting density it
suddenly increases. This behavior can be understood by tak-
ing into account that the polaron radius is essentially deter-

FIG. 3. The Lindemann ratiossolid lined and the functiong
sdashed lined for h=0.17 anda=13, T=1.10−5sa.u.d. Contribu-
tions d±

2=ku2l± /dn.n.
2 of the simplified model Eq.s35d are also

shown. The inset shows the abrupt slope increase of the termd+
2.

TABLE I. The critical value at the melting of the densitysrcd
and couplingsrc

*d parameters as function ofa for high polarizability
h=0.16.

a rc rc
*

1 510 99.8

3 334 99.3

5 168 99.5

7 46 99.8

9 20 197.5

11 15 452.2
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mined by the diffusion in imaginary time of the electron path
defined in Eq.sC16d fsee also Eqs.sE4d andsE7dg. Its maxi-
mum value occurs att=b /2, which diverges at the softening
of the polaronic frequencysvpol,0d. Polaronic clouds tend
to overlapsFig. 4, lower paneld. However, the polaronic na-
ture of each particle of the LPC is preserved up to quantum
melting.

D. Low polarizability: Crossover in solid phase

In this regimesh,1d, the repulsive interactions among
electrons overwhelm the attractive interactions due to the
polarizability of the background, as can be seen by the rela-
tive weight of e-e and e-ph interaction coupling constant
Eqs. s11d and s12d. However, self-trapping effects are still
present at least at strong coupling and at low density, where
electrons are localized.

Equations43d quantitatively describes quantum melting in
the low-polarizability case only at weak couplingsaø3d.
Whena exceeds this value, a crossover between a polaronic
and nonpolaronic phase is found inside the solid phase and
the estimate of Eq.s43d no longer describes quantum melt-
ing.

The low-density regime, introduced in Sec. III C, is found
only for the classical part of the crystal phase, where the
polarization follows adiabatically the electron and the solid
phase is a Wigner crystal made of polarons with an effective
mass determined by the e-ph interaction, in the way dis-
cussed for high polarizability.

As far as the density increasessinside the solid phased, we
observe that the two-energy scale,vLO of phonons andvP,L
and Eq.s2d of the renormalized WC frequencies, come close
and we found a crossover regioninside the solid phase,
where the electrons and polarization modes are mixed as in
the liquid phase CPPMsFig. 1 of Ref. 9 and Fig. 1 of Ref.
10d. An example of the general situation is given in Fig. 5.

To estimate the density dependence of the LPC frequen-
ciesV±svs,kd, let us substitutevs,kW with the plasma frequency
vP. Results are reported in Fig. 6, which illustrates the den-
sity crossover. In the low-density limitsrs→`dV−=vP,L fEq.
s2dg, while V+ converges tovpol.v, the internal frequency
for an single polaron. In this case, the electrons are far apart,
and the “external” harmonic field generated by the surround-
ing electrons of the crystalline array is weaksKe,e2/ rs

3d.

FIG. 4. Polaron radius in polaronic unitssupper paneld and po-
laron radius scaled withrs slower paneld vs s1/rsd sa.u.d for different
a andh=0.17 at low temperaturesT=5310−3 p.u.d. Filled points
refer to the solid phase.

FIG. 5. Frequencies of the system in the simplified model as a
function of kW along the directions100d, for a=5 and h=0.9, at
1/rs=2310−2 and atT=1.8310−5sa.u.d. Density is close to the
quantum melting.sV−fvacug ,V+fvacugd result from the splitting of
vacuss,kd the acoustical WC branch.sV−fvoptg ,V+fvoptgd result
from the splitting of the high-frequency WC optical branchfEqs.
s44d and s45dg. For comparison the pure WC frequenciessdotted
linesd are shown.

FIG. 6. Filled points are the typical frequencies of the simplified
model obtained withvs,k=vP for a=5 andh=0.9. The solid line is
the low-density renormalized plasma frequencyfEq. s2dg. Dashed
line the high density renormalized plasma frequency Eq.s1d. Ar-
rows mark the crossover regionssee textd.
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Therefore the frequency of electron oscillationsvP
2 ,Ke/md

can be lower than that of the phononsvLOd, and the polar-
ization follows the electron oscillation. The polaron vibrates
as a whole with a lower frequencyKe/mpol,vP

2sm/mpol«0d.
The polarization charge distribution is undisturbed as a first
approximation, so that the value of the internal polaronic
frequencys,vd of an electron inside its polarization well
does not change.

By increasing the density, we approach the opposite limit
of a strong external field. Now the frequency associated to
this field is too large and the polarization cannot follow the
electron oscillation, so that each electron becomes undressed
from its polarization cloud. In this caseV+ approaches
vP/Î«`, the high-density renormalized plasma frequency
fEq. s1dg, while V−.Î«` /«0vLO=vTO is the characteristic
renormalized frequency of the polarization. We note that at
low densityV− gives a measure of the frequency of carrier
density fluctuations, whereas in the opposite limit of high
density, the same role is played byV+.

As we can see from Fig. 6, the crossover amplitude is
determined by the conditionsvP,H.vTO and vP,L.v. It is
interesting to compare our Fig. 6 to Fig. 1 of Ref. 9. We note
that the asymptotic boundary given there by the phonon fre-
quencyvLO here it is played by the internal frequency.

The renormalization crossover of the plasma frequency
from the low- to high-density regime does not imply the
melting of the crystal. Indeed, it is observed within the
boundary of the solid phase estimated by Lindemann crite-
rion. This behavior is even more clear once we consider the
fluctuations of the position of the electrons that enter in the
Lindemann criterion.

The leading term for the Lindemann ratio at the classical
melting isd−

2=kuuu2l−/dNN
2 , which is associated with the fluc-

tuation of the center of massfEq. s37dg. Of course, in the
classical region quantum fluctuations are ineffective; the
electrons and its polarization cloud behave as a single clas-
sical particle with massmpol. The termd+

2=kuuu2l+/dNN
2 asso-

ciated with the internal polaronic frequenciesfEq. s38dg is
indeed negligible.

To analyze the high-density region where we eventually
meet the Lindemann criterion for quantum melting, we note
that the conditiones,kW @1, wherees,kW is defined in Eq.s36d,
can be fulfilled by the majority of normal modes at high
density. Of course, long wavelength acoustical and even “op-
tical” modes in 2D have vanishing energies, but their spectral
weight is low enough to be neglected in the following con-
siderations. ExpandingV±svs,kd in 1/es,kW we get

V− .Î«`

«0
vLO, s44d

V+ .
vs,kW

Î«`

. s45d

In Fig. 5 the general solutionsV±svs,kd are shown for all
branches of the simplified model near the quantum melting.

The branchessV−fvoptg ,V+fvoptgd that result as splitting
of optical model of the Wigner crystalvoptss,kd are well

described by an approximation of Eqs.s44d and s45d.
The frequency dispersionssV−fvacug ,V+fvacugd of the

modes, which originate from the splitting of acoustical
branches of the Wigner crystal, are also reported. Although at
short wavelength, the dispersion approaches the estimates
given in Eqs.s44d and s45d the long wavelength part of the
spectrum is conversely described by the low-density expan-

sion Ṽ±.
Thus we have that at the quantum melting the low-energy

part of the spectrum still behaves as in the low-density re-
gime. The modes depicted in the lower part of Fig. 5 belongs
to this part of the spectrum.

A measure of the wave vector below which we have this
behavior can be obtained by the conditiones,kW =1. The asso-
ciated energy scale is given byvc

2=mvLO
2 / s«0mpold. Contrary

to the low-density regimefEqs.s37d ands38dg, it is not pos-
sible to associate each term of the fluctuation Eqs.sD3d and
sD4d with a definite degree of freedom. However, expanding
the electron fluctuation with respect to the parameteres,kW for
the frequenciesvs,k,vc and with respect to the parameter
1/es,kW for the frequenciesvs,k.vc and using Eq.s35d, the
electron position fluctuations can be approximated by

ku2l− . E
0

vc

dvrsvd
"D cothF"SÎ m

mpol«0
Dv/2kBTG

2mpolSÎ m

mpol«0
Dv

,

s46d

ku2l+ . S MT

m+ MT
D2 "D

2mvpol
cothS"vpol

2kBT
DE

0

vc

dvrsvd

+E
vc

`

dvrsvd
"D

2m
v

Î«`

cothS"
v

Î«`

/2kBTD . s47d

Note that the interpretation of the fluctuations associated
with electronic motion in this case is different from that valid
at low density. In particular the high energy contributionfthe
second term of Eq.s47dg represents a Wigner crystal-like
fluctuation with a low-energy cutoff. This is the largest con-
tribution to the fluctuation at quantum melting and does not
depend on e-ph interaction.

Indeed the leading term of fluctuations at quantum melt-
ing is ku2l+. This is due to the vanishing of the spectral
weight associated with the low frequenciesv,vc at high
densityfEq. s46dg.

The saturation of the quantum melting point can be seen
in the phase diagram of Fig. 1slower paneld. Two comments
are needed. First, in the case of very low e-ph coupling, the
density crossover does not occur inside the solid phase.
Therefore, these arguments do not apply. The quantum melt-
ing point depends on the e-ph coupling as we have discussed
in the previous section. However a saturation of the quantum
melting density is observed clearly in Fig. 1 for intermediate
and strong coupling. As a second point we have to emphasize
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that the quantum melting densityis not that of a purely elec-
tronic Wigner crystal.

This fact can be explained by writing the total electron
fluctuation as the sum of the two termsku2lHi and ku2lLow

whereku2lHi is the contribution to fluctuations of modes hav-
ing energies higherslowerd thanvc. We note from Eq.s47d
that in both LPC and WC casesku2lHi are the same. But
although in the WC case the two terms are of the same order
ku2lLow.ku2lHi in the LPC caseku2lLow! ku2lHi as far as the
density increases. This is due to the renormalization of the
low-energy frequencies. Therefore, the electronic fluctuation
in the LPC increases more slowly with density than those of
the WC. At a given density, the electronic fluctuation of the
WC is greater than those of the LPC and this explains the
shifting of the quantum melting toward higher densities.

The crossover is also evident in the polaron radius. In the
upper panel of Fig. 7 we plot the polaron radius as defined by
the Eq.s34d. We see that for any value of the e-ph coupling,
the polaron radius tends to decrease as far as the density is
increased. We recall that as far as the renormalized plasma
frequencyfEq. s2dg exceeds the phonon frequency, we enter
in a region in which the polarization is adiabatically slow
compared to the electronic motion. Therefore, the electronic
charge appears as a static distribution whose radius decreases
on increasing the density and the polaron radius follows this
trend. The crossover is evident by scaling the polaron radius
with rs, as reported in the lower panel of Fig. 7 at interme-
diate and stronga. Note that as in the high-polarizability
case at the transitionRp/ rs.0.475.

It is possible to estimate the high-density limit of the ra-
dial distribution of the induced charge. Using the condition

vo!v /Î«` we have the following expression valid at low
temperatureskBT!"vod sfor details, see Appendix Ed

g̃srd .
1

«̄3 r

"

mvLO

S1 − erfÎ r2

ku2l
D +

2r2

ku2l

e− r2

2ku2l

s2pku2ld3/24 .

s48d

The first term of Eq.s48d takes into account quantum
charge fluctuations that are relevant at small distances,
whereas the remaining term is a classical contribution com-
ing from the static charge distribution. Note that only the first
term depends on the e-ph interaction. Therefore, the polaron
radius tends to the same high-density asymptotic value for
different values of the e-ph couplinga ssee upper panel of
Fig. 7d.

As a last point we note that the crossover condition,
roughly estimated asvP,vLO,s1−hd2/a2,0.01/a2,
shifts toward higher densities as the e-ph coupling constanta
is reduced. In the weak coupling regime it lies in the liquid
phase where RPA approaches in both the 3D case22,54and 2D
case55 can be applied. It is also worth remarking that for high
polarizability and for all coupling, the polaronic crossover is
located in the liquid phase according to the highest value of
vLO,0.7/a2.

IV. 2D CASE

The results obtained in the 2D case are qualitatively simi-
lar to the 3D case. Both the crossover phenomenon in the
low-polarizability case and the softening of the polaronic
frequency in the high-polarizability case are observed. Re-
sults are reported in the zero-temperature phase diagram of
Fig. 2. In this figure, we compare the phase diagrams in 2D
and 3D by scaling appropriately the 2D e-ph coupling con-
stant following the single polaron results of Ref. 56:a3D
=s3p /4da2D. 2D and 3D melting curves scale well according
to the zero-density scaling for all studied cases. A discrep-
ancy is found in the the high-polarizability strong e-ph cou-
pling softening ofvpol. Let us first discuss the scaling at
finite density.

In our variational scheme, the DOS of the WC is the
peculiar difference between the 2D and 3D cases. To see this
explicitly let us compare the e-ph interaction termsSe−ph−e

self .
Assuming polaronic units we get:

1

b

kSe−ph−e
self lT,3D

3N
= − sad

Î2

6
E

0

b/2

dt
Dostd

Îsp/2dd3Dstd
, s49d

1

b

kSe−ph−e
self lT,2D

2N
= − S3p

4
aDÎ2

6
E

0

b/2

dt
Dostd

Îsp/2dd2Dstd
,

s50d

where the imaginary time diffusiondstd fEq. sC16dg is itself
a functional of the DOS. We note from Eqs.s49d and s50d
that the free-energy functional scales explicitly as in the
single polaron case56 by scaling the coupling constanta.

FIG. 7. Polaron radius in polaronic unitssupper paneld and po-
laron radius scaled withrs slower paneld vs s1/rsd sa.u.d for different
a in the caseh=0.9 at low temperaturesT=5310−2 p.u.d. Filled
points refers to the solid phase.
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Related to the different 2D and 3D DOS we note the differ-
ent behavior of the frequencies of the normal modes. Nota-
bly, the “optical” branches go to zero as,Îk at long
wavelengths.52 As in the 3D case, the frequencies of the LPC
are split in to four branchessFig. 8d V±fvacuss,kWdg and
V±fvoptss,kWdg according to the same equation of 3Dssee Fig.
8d, where the 2D value forvW is given in Appendix BfEq.
sB14d.

Let us discuss the deviation from the the scaling at strong
coupling, which we see from Fig. 2 in the density of the
softening of the polaronic frequencyvpol. Actually we ob-
serve that a steep fall of the variational parametervsrsd oc-
curs as density increases determining the softening ofvpol.
Peculiar features of the DOS enter in the variational deter-
mination ofvsrsd as can achieved by the following argument.
First of all we assume thatw is very close to the valuevLO at
strong coupling. Then we note that as in the 3D high-
polarizability case the renormalized plasma frequency is
much less than the phonon frequency, and the discussion
which follows Eq. s36d holds for all densities lower than
critical density of the softening. In this case the spectrum is
composed by the low-energy branchessrenormalized WCd
and by the polaronic branches weakly dispersed aroundv
ssee also Fig. 8d. Using this result at low temperaturessb

→`d, the condition for the extrema ofFV reads

1 −
1

v3/2Î vP
2

v«o
M2 + gsa,h,rs,vd = 0, s51d

where the first and second terms are the derivative ofFT fEq.
sC13dg and g is the derivative of Eqs.sC14d, sC15d, and
sC17d. As vsrsd→0 for rs. rc the second term acquires im-
portance and DOS enters in the second momentM2. How-
ever there are other terms that are divergent asv→0 coming
from the explicit form of the functiong.

V. CONCLUSIONS

We have studied the behavior of a low-density electron
gas in the presence of a polarizable medium, where polaronic
effects may play a relevant role. To determine the transition
line, we have used a generalized Lindemann criterion, which
reproduces correctly the pure electron gas quantum melting.
Because the amplitude of quantum fluctuations depends on
the e-ph renormalized plasma frequency, the Lindemann rule
has been critically reexamined and adapted to the polaron
crystal. This procedure allows one to determine, quantita-
tively, the phase diagram of the model and to extend the
study of the model to the low-polarizability case. We have
also studied the 2D case, showing that the dimensional de-
pendence is not crucial to determining the nature of the
quantum melting within in our harmonic variational scheme.
The scaling predicted for the e-ph coupling constant at zero
density does apply as well at nonzero density up to quantum
melting. A notable difference instead is in the position of the
softening density of the polaronic frequency, which in 3D is
much closer to melting than in 2D case. This suggests that
the heterointeractions are less effective to destabilize the di-
polar crystal in 2D. However other possible mechanismsslat-
tice effects, structural disorder, or impuritiesd can cooperate
with the localization, together with the interactions between
the electrons, and lead to the formation of a pinned Wigner
crystal. In this case the melting cannot be predicted by the
Lindemann rule, but a similar dipolar instability due to the
long-range interaction between the electrons can still drives
the melting.

While the weak e-ph coupling regime is similar for both
low- and high-polarization cases, the strong coupling sce-
nario is qualitatively different.

In the high-polarizability regime, we have recovered the
incipient instability that was found in previous studies near
the solid phase29,30 and also in the liquid phase.31 In com-
parison to previous work, we have found that this regime is
restricted to very large values of the couplinga.10, leaving
an interesting intermediate region of coupling in which po-
larons may exist in the liquid phase. This region can, in
principle, be explored with nonperturbative numerical tech-
niques, e.g., path integral Monte Carlo. Work along this di-
rection is currently in progress.

In the low-polarizability regime, a crossover occurs inside
the solid phase when the renormalized plasma frequency ap-
proaches the phonon frequency. At low density, we still have
a LPC, whereas at higher densities the electron-phonon in-

FIG. 8. 2D case. The eigenfrequencies of system along the di-
rection s10d for h=0.9 anda=2.12. 1/rs=8310−3sa.u.d , T=2.5
310−5sa.u.d. Density is close to the classical liquid-solid transi-
tion. Upper panel: The frequencies of polaronic branch weakly dis-
persed around the polaronic frequencyvpol.v sdashed lined.
Lower panel: The renormalized Wigner crystal branchesspointsd
and the pure WC branchessdashed linesd.
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teraction is weakened irrespective of thebare electron-
phonon coupling. In this case, polaron clouds overlap and the
polaron feature of the crystal is lost. The crossover from
polaronic svP,vLOd to nonpolaronicsvP.vLOd character
has been observed in weakly coupled systems, such as GaAs
in the liquid phase, and analyzed in terms of RPA.22,55In this
system it occurs aroundrs,0.6−0.7, while for ZnOa is if
larger, shifting the crossover tors,7. Finding a system with
low polarizability and a larger e-ph coupling is difficult be-
cause it implies very lowvLO:a,s1−hd /vLO ffrom Eq.
s11dg. However in surfaces of InSb, ana=4.5 has been pre-
dicted together withh=0.8811 leading to the possible obser-
vation of the crossover inside the solid phase.

We also note that our low-polarizability scenario of den-
sity crossover inside the solid phase bears some resemblance
to that found for ripplonic polaron systems.58,59Although the
electron-ripplon interaction in these systems is different from
the Fröhlich type, resonances in the absorption spectrum ob-
served by Grimes and Adams,60 their explanation at low
density61 relys on the same qualitative arguments developed
in the present work. Recent works on high-density ripplonic
polaron systems realized on a helium bubbles predicts also in
this case a mixing between plasmon and polaron modes.62

Finally, we remark that we have obtained an appreciable
stabilization of the crystal phase even for the intermediate
regimea,3–5 in low-polarizability cases. We conclude that
the general result that e-ph interaction effects can stabilize
the Wigner crystal phase could motivate experimental studies
on two-dimensional electronic devices involving polarizable
media. To this aim a layered configuration is advised even
with some warnings.63 In a 2D heterostructure the use of a
perpendicular electric field63 could not only increase the po-
laron effect but also tune it, as was shown in the case of
charged helium surfaces.64
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APPENDIX A: LOW-ENERGY CUTOFF IN 2D

The 2D DOS function can be defined as

rsvd = o
s=1,2

E
VB

d2k dsv − vs,kd, sA1d

whereVB is the volume of the first Brillouin zones1 BZd. Let
us consider a small fraction« of the plasma frequencyvP. At
long wavelengthsk=0d, we have the 2D dispersion laws for
the acoustical mode asv1skd.c1k, while the “optical”
v2skd.c2

Îk.46 As a consequence the behavior of the DOS
for v.0 is

E
0

2p

duE
0

ks«d

dk kdsv − c1kd =
2p

c1
2 v, sA2d

E
0

2p

duE
0

ks«d

dk kdsv − c2
Îkd =

4p

c2
4 v3. sA3d

Introducing the scaled frequencyx defined asv=vPx and
the quantum parameterhq Eq. s23d, the thermal electronic
fluctuation is expressed as an average on the DOS as

ku2l =
"

m
K cothshqxd

x
L

DOS
, sA4d

=
"

m
E dx rsvPxdF 1

hqx
2 + hqsa0 + a2shqxd2 + …dG .

sA5d

Since rsvPxd,x for x→0, the average in Eq.sA4d con-
verges for any ofx2n with nù0 in the the expansion Eq.
sA5d. In the n=−1 term we consider the infrared cutoffxc,
giving

K 1

x2L
DOS

. E
xc

«

dx
s2p/c1

2dvP

x
+E

«

dx
rsvPxd

x2

.
2pvP

c1
2 lnS «

xc
D +E

«

dx
rsvPxd

x2 . sA6d

This term diverges logarithmically asxc→0. However,
hq→` as we approach the quantum region. The electronic
fluctuation turns out to be cutoff independent if

K 1

x2L ! hq
2ka0 + a2shqxd2 + ¯ l. sA7d

We have chosen for the cutoff frequencyxc=vmin/vP
.5310−5 so that the condition Eq.sA7d is fulfilled around
hqsT,rsdù10, which corresponds to a large region inside to
the solid phase. By the relation for acoustical long-wave ex-
citation vmin=c1kmin and kmin=2p / srs

ÎNd, the number of
electrons isN=5.243106. Our inverse second moment of
DOS isM−2=12.5 sc.f., Ref. 53,M−2=8.16 forN=1024d.

APPENDIX B: HARMONIC VARIATIONAL
APPROXIMATION

We expand in the harmonic approximation the terms

Se−e, Se−J, Se−ph−e
dist fEqs. s6d, s8d, and s9dg. Let rWı=RW ı+uW ı,

whereRW ı is the lattice point of the crystal anduW ı is the elec-

tronic displacement fromRW ı, and set DuW ı,jst ,sd=uW jssd
−uW ıstd andRW j ,ı=RW j −RW ı. The static terms give

Se−e
o shRW ıjd + Se−J

o shRW ıjd + Se−ph−e
o,dist shRW ıjd =

SWC
o shRW ıjd

«0

sB1d
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the e-ph interaction does not change the equilibrium posi-
tions of the pure electronic crystalsWCd, which corresponds
to the minimum of the potential energy.

The sum of the dynamical parts in the harmonic approxi-
mation gives

Se−e
H + Se−J

H + Se−ph−e
H,dist =E

0

b

dto
ı

hVJfuW ıstdg + Ve−efuW ıstdgj,

sB2d

where

VJfuW ıstdg = −
e2rJ

«0
E dDrF 1

uuW ıstd − rWu
−

1

r
G , sB3d

Ve−efuW ıstdg =
e2

2
E

0

b

dsFst − sdo
jÞı

Uj ,ıst,sd, sB4d

Uj ,ıst,sd =
1

2
DuW ı,jst,sd · ĪsRW j ,ıdDuW ı,jst,sd, sB5d

Fst − sd =
dst − sd

«`

−
vLO

2«̄
Dost − sd, sB6d

fĪı jgab =
dab

uRW j ,ıu3
− 3

fRW j ,ıgafRW j ,ıgb

uRW j ,ıu5
. sB7d

From now we drop on the doubles , t indexes inDuW ı,j. To
evaluate the integral in Eq.sB3d and the sums on indexj in
Eq. sB4d, we consider a sphereSR of radiusRs sa disk in 2Dd
centered on siteı. We first sum on indexj and then we
perform the limitRs→`. Finally, we sum on indexı in Eq.
sB2d.

1. 3D case

By Gauss’s lawfwith the conditionVJs0d=0g, we have

VJfuW ıstdg =
1

2
m

vW
2

«0
uuW ıstdu2, sB8d

where the Wigner frequency isvW
2 =vP

2 /3. Because ofVJ is
independent of the size ofSR, Eq. sB8d does not change in
the limit Rs→`.

To evaluate the sum in Eq.sB4d with the conditionRj
,Rs, we remind that we have two self termsfsi , id ands j , jdg
and two distinct termsfsi , jd ands j , idg in Eq. sB5d. The two
self terms give the same contribution, as can be easily
checked if we first carry on the limitRs→` and then the
sum on indexj and ı. They vanishes because of cubic sym-
metry of the lattice. When the two distinct termsfsi , jd and
s j , idg of Eq. sB5d are inserted into Eq.sB4d and the limit
Rs→` is taken, we obtain the termVe−esuıd of Eq. sB2d

Ve−efuW ıstdg =
e2

2 o
jÞı
E

0

b

dsFst − sduW jssdĪsRW j ,ıduW ıstd.

sB9d

Summing on indexı and integrating on variablet fEqs.
sB8d andsB9dg, we obtain the termsSe−J

H , Se−e
H , Se−ph−e

H,dist Eqs.
s19d and s20d.

2. 2D case

In 2D the interaction potentialVJ
Rsud of a uniform posi-

tively charged disk of radiusRs fEq. sB3dg is

VJ
Rsud = −

e2rJ

«0
E

0

2p

duFsud, sB10d

where

Fsud = ÎRs
2 + u2 − 2Rsu cossud − u − Rs

+ u cossudln
Rs − u cossud + ÎRs

2 + u2 − 2Rsu cossud
uf1 − cossudg

.

In the limit Rs→`

lim
R→`

VJ
RsuW ıd = lim

su/Rd→0

e2

«0
rJ

p

RS
uı

2 = 0 sB11d

since the total electric field of an infinitely charged disk is
perpendicular to the disk.

Then we have to evaluate the sumsfEq. sB5dg. The two
distinct termsfsi , jd and s j , idg give the identical resultfEq.
sB9dg of the 3D case, while the self termsı ,ıd is written as

1

2
uW ıS o

RW j,R

jÞı

Iı jDuW ı = uW ıD̄uW ı. sB12d

The matrixD in 2D is defined as sum of the matricesĪsRW jd
fEq. sB7dg on hexagonal lattice pointsRW j. Contrary to the 3D
case, the matrixD is not zero in 2D case. By the lattice
symmetry, the off-diagonal elements are zero while the diag-
onal terms are equal to the local potential, which acts on
each electron

e2

2
E

0

b

dsFst − sdD̄aauuW ıstdu2 =
1

2
m

vW
2

«0
uuW ıstdu2, sB13d

where we use as definition 2D Wigner frequency

vW
2 =

e2

m
lim
R→`

o
jÞı

Rj ,ı,R

1

2Rj ,ı
3 s2Dd. sB14d

For an hexagonal lattice of nearest-neighbor distancedNN,
we haveo jÞıs1/2Rj ,ı

3 d=5.517 09/dNN
3 . Summing on indexı

fEqs. sB9d and sB13dg, we obtain the terms
Se−J

H , Se−e
H , Se−ph−e

H,dist fEqs.s19d and s20dg.
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3. Normal modes

The WC normal modes are defined as

uW ı =
1

ÎN
o
kW,s

«̂kW,sqkW,se
ikWRW ı, sB15d

where the vectorskW belongs to the 1 BZ of the reciprocal
lattice, «̂kW,s are eigenvectors with eigenvaluevkW,s

2 of the dy-

namical matrixM̄, which is defined as

M̄ab = dabvW
2 +

e2

m
o

RW ıÞ0

ĪabsRW ıdeikW·RW ı. sB16d

Inserting the WC normal modes of Eq.sB15d into Eqs.s16d
ands18d–s20d, we express the harmonic variational actionST
as

STshqs,kWstdjd = o
s,kW
E

0

b

dtLs,kstd, sB17d

where the Lagrangian is

Ls,k =
1

2
muq̇kW,sstdu2 +

1

2
m

vkW,s
2

«0
uqkW,sstdu2

+
mwsv2 − w2d

8
E

0

b

dsDVst − sduqkW,sstd − qkW,sssdu2

+
mvLOsvkW,s

2 − vW
2 d

8«̄
E

0

b

dsDost − sduqkW,sstd − qkW,sssdu2.

sB18d

APPENDIX C: VARIATIONAL FREE ENERGY FV

The first term of the variational free energyFV fEq. s21dg
is the free energyFT associated with the partition function of
the trial actionZT. This is calculated as the functional inte-
gral fEq. s3dg, whereSef f fEq. s4dg is replaced byST fEq.
s17dg. The second term ofFV is the mean valuefEq. s14dg of
the difference betweenSe−ph−e

self fEq. s7dg andSFeyn fEq. s16dg.
We start by changing the dynamical variables of integra-

tion from huW ıstdj to hqs,kWstdj. By reality condition we have
q−kW,s=qkW,s

* and«̂−kW,s=−«̂kW,s; we must sum onlykW vectors in the
upper half spaceskz.0d of 1 BZ

uW ı =
1

ÎN
o

s,kW,kz.0

«̂kW,ssqkW,se
ikWRW ı − qkW,s

* e−ikWRW ıd. sC1d

Therefore, the real and imaginary part ofqs,kW for all k with
skz.0d of the 1 BZ are the actual independent variables and
the Jacobian of canonical transformation isJ=2DN

ZT =E J p
s,kW,kz.0

Dfqs,kW
RestdgDfqs,kW

Imstdge−STfhqs,kWstdjg. sC2d

Using the periodicity conditionfqs,kWs0d=qs,kWsbdg, we have
the following Fourier expansionfvn=s2p /bdng:

qs,kW,n =
1

b
E

0

b

dt qs,kWstde−ivnt, sC3d

qs,kWstd = qs,kW,c + dqs,kWstd, sC4d

qs,kW,c =
1

b
E

0

b

dt qs,kWstd,

dqs,kWstd = o
n=−`

nÞ0

`

qs,kW,ne
ivnt, sC5d

where we have separated the mean value of path on the
imaginary time Eq.sC4d scentroidd from the fluctuation
around it Eq.sC5d. The actionSTshqs,kWstdjd is quadratic in
hqs,kW,nj, therefore, we can separate Eq.sC2d in two Gaussian
integrals

ZT = ZT,cZT,dq, sC6d

ZT,c =E p
s,kW,kz.0

dqkW,s,c
Re dqkW,s,c

Im

p"2/mkBT
e−ST

chqs,kW,cj

=E p
s,kW,kz.0

dqkW,s,c
Re dqkW,s,c

Im

p"2/mkBT
e−smuqkW,s,cu2/kBTv

s,kW
2

/«0d

= p
s,kW

kBT

"vs,kW/Î«0

. sC7d

Hence, after we omit the classic termZT,c fEq. sC7dg

ZT,dq =E p
nÞ0

s,kW,kz.0

dqkW,s,n
Re dqkW,s,n

Im

pkBT/mvn
2 e−dSThdqs,kWstdj

=E p
nÞ0

s,kW,kz.0

dqkW,s,n
Re dqkW,s,n

Im

pkBT/mvn
2 e−sm/kBTdsuqkW,s,nu2/ls,kW,nd

= p
nÞ0

s,kW,kz.0

vn
2ls,kW,n, sC8d

where

ls,kW,0 =
1

vkW,s
2 /«0

, sC9d

ls,kW,n = o
g=1

3
Ag

vn
2 + Vg

2 , sC10d
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A1 =
sV1

2 − vLO
2 dsV1

2 − wT
2d

sV1
2 − V2

2dsV1
2 − V3

2d
scyclic perm . g = 1,2,3d,

sC11d

the frequenciesVg
2 sg=1, 2, 3d are the opposite of the roots

of cubic

P3szd = z3 + a2z
2 + a1z+ a0 sC12d

a2 = v2 + vLO
2 +

vkW,s
2

«0
+

vkW,s
2 − vW

2

«̄

a1 = vLO
2 v2 +

vkW,s
2

«0
svLO

2 + w2d + w2
vkW,s

2 − vW
2

«̄

a0 =
vLO

2 w2vkW,s
2

«0
.

The Gaussian integrals Eq.sC8d are convergent ifls,kW,n are
positive numbers∀ss,kW ,nd. This condition is fulfilled ifVg

2

are all positive. The numerical minimization of the varia-
tional free energy has been made enforcing this constraint.
Performing the infinite product in Eq.sC8d we have

ZT,dq = Fsinhs"vLO/2kBTd
"vLO/2kBT

GDNFsinhs"w/2kBTd
"w/2kBT

GDN

· p
s,kW,g

"Vg,s,kW/2kBT

sinhs"Vg,skW/2kBTd

and finally we substitute the sum onskW i ,sd with the integral
on the WC DOSrsvd in the free energyFT

FT

DN
= − kBTlnFsinhS"vLO

2kBT
DsinhS "w

2kBT
DG

+ kBTE dvrsvdo
g=1

3

lnFsinhS"Vgsvd
2kBT

DG .

sC13d

To calculate the mean value ofSe-ph-e
self fEq. s7dg in 3D we

use the following identity57

E E
0

b

dtdsDost − sd E d3q

s2pd3

4p

q2 keiqW·fuW ıstd−uW ıssdglT

= − 2bE
0

b/2

dt
Dostd

Îsp/2dd3Dstd
, sC14d

while in 2Dsq2=q'
2 +qz

2d

E E
0

b

dtdsDost − sd E d2q'

s2pd2

2p

q'

e−s1/2dd2Dst−sdq'
2

= − 2bSp

2
DE

0

b/2

dt
Dostd

Îsp/2dd2Dstd
, sC15d

wheredDstd is the imaginary time diffusion in the LPC de-
fined ass3D or 2Dd

dDstd =
kuuWstd − uWs0du2lT

D
. sC16d

The mean value ofSFeyn fEq. s16dg is

kSFeynlT/N

= − D
mwsv2 − w2d

8
E E

0

b

dtdsDTst − sddDst

− sd. sC17d

To obtain Eqs.sC14d, sC15d, andsC17d we have used

keiqW·fuW ıstd−uW ıssdglT = e−s1/2ddDst−sdq2
. sC18d

We will demonstrate Eq.sC18d in the next section.

1. Calculation of Šexp̂ iq¢ ·†u¢ ı„t…−u¢ ı„s…‡‰‹T

From Eqs.sB15d and sC5d we have

iqW · fuW ıstd − uW ıssdg = o
s,kz.0

nÞ0

fqkW,s,nJs,k,n
* st − s,qWd + c.c.g,

sC19d

Js,k,n
* st − s,qWd =

i
ÎN

qW · «̂kW,sseivnt − eivnsdeikWRW ı, sC20d

then we have

kexpsiqW · fuW ıstd − uW ıssdgdlT =
1

ZT,dq
E p

nÞ0

s,kW,kz.0

dqkW,s,n
Re dqkW,s,n

Im

pkBT/mvn
2 e−sm/kBTdsuqkW,s,nu2/ls,kW,nd+qkW,s,nJ

kW,s,n
*

+c.c.= p
s,kz.0

nÞ0

e−skBT/mdls,kW,nuJkW,s,nu2

= e−s1/2ds1/Ndo
s,k

uq̂ · «̂kW,su
2dvs,k

st−sdq2
= e−s1/2ds1/NDdo

s,k
dvs,k

st−sdq2
= e−s1/2ddDst−sdq2

, sC21d
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where the component of frequencyvs,k of the imaginary time
diffusion dDstd is fAg=Agsvs,kd ,Vg=Vgsvs,kdg

dDstd =
1

ND
o
s,k

dvs,k
std

=
1

ND
o
s,k

"

mo
g

Ag

Vg
2

coshsbVg/2d − coshsVgfb/2 − tgd
sinhsbVgd

.

sC22d

APPENDIX D: MEAN ELECTRONIC FLUCTUATION

The relation between the mean electronic fluctuation and
the imaginary time diffusiondDstd Eq. sC16d is

dDstd =
2

D
fkuuWs0du2l − kuWstd ·uWs0dlg sD1d

comparing Eq.sD1d and Eq.sC22d for dDstd and inserting
the DOS function, we have

sT
2 =

kuuW u2l
D

=E dvrsvdo
g=1

3
"Agsvd

2mVg
2svd

cothSbVgsvd
2

D .

sD2d

If we fix w=vo, we haveV3=vo for one solution of the
cubic polynomial Eq.sC12d and by Eq.sC11d we have also
A3=0. The other two terms give

ku2l+ =E dvrsvd
V1

2 − vLO
2

V1
2 − V2

2

"D

2mV1
cothS "V1

2kBT
D , sD3d

ku2l− =E dvrsvd
V2

2 − vLO
2

V2
2 − V1

2

"D

2mV2
cothS "V2

2kBT
D . sD4d

Note that if we take a single Wigner frequency being repre-
sentative of the electronic spectrumfrsvd=dsv−vWdg we
recover the results of Ref. 29.

APPENDIX E: POLARON RADIUS

We now calculate the density-density correlation function
of the Eq.s32d for the variational harmonic actionST. We
assume that the equilibrium position of the reference electron
ı=1 is the origin. With the same method to obtain Eqs.
sC21d, we performed the following Gaussian integrals for the
density distributionr1srWd

kr̂1srWdlT =E dDq

s2pdDeiqWrWekeiuW1qWlT =
e−r2/2sT

2

f2psT
2gD/2 sE1d

and

ke−iqWuW1eiqW8suW1std−uW1dlT = e−ssT
2/2dq2

e−sdstd/2dqW8 · fqW8 + qWg.

sE2d

Inserting Eq.sE2d into Eq. s32d, we have the density-density
correlation function in the imaginary-time for theı=1 elec-
tron

kr1srWdr1srW8,tdlT = kr̂1srWdlT
e−furW − rW8 + sdstd/2s2drWu2/2,2stdg

f2p,2stdgD/2 ,

sE3d

where

,2std = dDstdF1 −
dDstd
4sT

2 G . sE4d

We note that the function of Eq.sE3d does not depend only
on the relative distancerW8−rW but also on the distance of
electron from its localization position in the crystal. Then Eq.
s32d becomes

C1,T
self =

1

«̄
E

0

b

dt
vLO

2
Dostd

kr1srWdr1srW8,tdlT

kr1srWdlT

. sE5d

We assumerW=0 selectron in its lattice pointd and then obtain
the variational radial-induced charge density

gTsrd =
pvLO

2«̄
s2rdD−1E

0

b

dtDostd
e−r2/2,2std

f2p,2stdg3/2. sE6d

By Eq. s34d we obtain the variational polaron radius

Rp,T = FD
vLO

2
E

0

b

dtDostd,2stdG1/2

. sE7d

1. High density limit

The characteristic length,2std defined in Eq.sE4d is ex-
pressed in terms oft-dependent positional fluctuationsdDstd
fEq. sC16dg, which is an integral of a functiondvs,k

std
weighted by the DOSrsvd of the Wigner latticefEq. sC22dg.
To have an estimate of this integral we replace the integra-
tion by inserting an average frequency in the functiondvs,k

.
We choosevP/Î«` because it is the typical frequency of the
electronic fluctuation in the crystal for the high-density re-
gime fEq. s47dg. Moreover, we consider the low-temperature
limit skBT!"vP/Î«`d. Then from Eq.sE4d we get the fol-
lowing estimate for,2std:

,2std .
"

mvP/Î«`

s1 − e−2svP/Î«`dtd. sE8d

The characteristic time scale of electronic diffusion in imagi-
nary time is tel=svP/Î«`d−1. The rising time is tel

=1/s2vP/Î«`d. Therefore, we have approximately

,2std .
"

m
t st ! teld,

,2std .
"

2m
vP

Î«`

st @ teld.

Now in the variational polaron radiusRp,T of Eq. sE7d an-
other time scale appearstph=vLO

−1 , but at high densitytph
@tel. Now we can separate the lowest time scaletel contri-
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bution in the imaginary time integral so that we can approxi-
mate the integral in Eq.sE7d as

E
0

tel

dtDostd
e−fr2/2,2stdg

f2p,2stdg3/2 . Dos0dE
0

tel

dt
e−sr2/2 "

m
td

f2p,2stdg3/2

=
m

2p"

1

r
S1 − erfÎ r2

ku2l
D

E
tel

b

dtDostd
e−fr2/2,2stdg

f2p,2stdg3/2 .
e−S r2/"

mvP/Î«`
D

s2pku2ld3/2E
tel

b

dtDostd

.
e−r2/2ku2l

s2pku2ld3/2.

Collecting these results we get Eq.s48d.
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