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Wigner crystallization in a polarizable medium
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We present a variational study of the two- and three-dimensional Wigner crystal phase of large polarons. The
method generalizes that introduced by S. Fratini and P. Quénéfais. Phys. Lett. B12 1003(1998]. We
take into account the Wigner crystal normal modes rather than a single mean frequency in the minimization
procedure of the variational free energy. We calculate the renormalized modes of the crystal as well as the
charge polarization correlation function and polaron radius. The solid phase boundaries are determined via a
Lindemann criterion, suitably generalized to take into account the classical-to-quantum crossover. In the weak
electron-phonon coupling limit, the Wigner crystal parameters are renormalized by the electron-phonon inter-
action, leading to a stabilization of the solid phase for low polarizability of the medium. Conversely, at
intermediate and strong coupling, the behavior of the system depends strongly on the polarizability of the
medium. For weakly polarizable media, a density crossover occurs inside the solid phase when the renormal-
ized plasma frequency approaches the phonon frequency. At low density, we have a renormalized polaron
Wigner crystal, whereas at higher densities the electron-phonon interaction is weakened irrespectivaref the
electron-phonon coupling. For strongly polarizable media, the system behaves as a Lorentz lattice of dipoles.
The abrupt softening of the internal polaronic frequency predicted by Fratini and Quemerais is observed near
the actual melting point only at very strong coupling, leading to a possible liquid polaronic phase for a wider
range of parameters.
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I. INTRODUCTION polarizable medium. We consider a general model in which
As it was first proposed by Wigner last centhitiie long- the key feature is the presence of long-range interactions that
range Coulomb interaction is able to stabilize a crystal of21iS€ from direct Coulomb interactions between electrons

electrons, which eventually melts upon increasing the dendnd from the polarizable mediu_m. : : o
The presence of long-range interactions, high polarizabil-

sity at a quantum critical point. Experiments done on. _ ) .
heterostructurésand quantum Monte Carlo simulations con- 'tY: @nd low carrier density is also a common feature of high-
firm this scenarid* The presence of impurities is known to €Mperature superconductors. Of course, in these materials,
stabilize the crystal phase in two dimensiénnother short-range interactions and lattice effects play an important
mechanism that could help the stabilization of the crystarOIe' Nonethele_ss, polaro_ns have bee_n _detect_ed by optical
easurements in the antiferromagnetic insulating phase of

phase is the effect of a polar material. As_a single electro oth super-conducting and parent cuprafe® Moreover,

the Wigner crystal phase. o _ by the fact that the carrier concentration can be varied from
Interesting properties of the liquid phase in polar doped,ery |ow to sufficiently high density. Prediction on optical
semiconductors arise also due to the interaction with the poyroperties and more specifically the behavior of the so-called
larization, as, for example, the mixing between plasmons anghidinfrared bandMIR) by varying the doping has been pro-
longitudinal optical(LO) phonons® Such a mixing can be posed according polaronic mod&té®3Las well as its inter-
explained by assuming a long-range interaction between thgretation as charge ordering in strig8sA similar behavior
carriers and optical lattice vibrations of the Frohlich type. has been also found in the optical properties of potassium
The resulting coupled LO-phonon-plasmon mo@&PPMs  doped barium bismutaté.
are found in polar semiconductofs-type GaP orp-type When we consider a system composed of many interact-
GaAs.'® Another interesting playground for this kind of ing large polarons we are faced with the problem of screen-
physics is the surface polaron, i.e., electron close to the suing of both electron-electror(e-€ and electron-phonofe-
face of a polar crystal, which has been intensively studiegh) interactions as we increase the carrier density. A density
especially for intermediate electron-phonon couplin@s in  crossover is therefore expected when the doping concentra-
INSb wherea~ 4.5 or in AgCl wherea~ 312 It has been tion is varied so that the plasma frequency approaches the
also observed that the gate materi@g0,, Al,O3in organic  optical longitudinal phonon frequenay o.
thin films in field transistorsare polar dielectrics and the At high density, phonons cannot follow the much faster
interaction between the electrons and the surface phonons pfasma oscillations of the electron gas and therefore they do
the polar dielectric is relevant. not contribute to the screening of the e-e interactions. On the
The aim of this work is to study the stabilization of the other hand, the electronic density fluctuations screen the e-ph
Wigner crystal phase and its properties in the presence of iateraction leading to the undressing of the electrons from
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their polarization clouds. As a consequence, the polaroniground state can be bipolaronic below a certain value of the
mass renormalization is hugely redu@dn this case, the polarizability parameté? or can undergo a solid-liquid phase
plasma frequency of the pure electron gafs=4we’p/mis  transition similar to the Wigner crystallizatiofC).?® In
renormalized by the high-frequency dielectric constant Refs. 29 and 30, a large polaron crystaPC) is studied

2 using a path-integral scheme. In Ref. 30, #pr1/6 (high-
w2 = &. (1) polarizability regime, the authors conclude that in the weak
PH™ ¢, and intermediate e-ph coupling regimes Tat0 the LPC

elts toward a polaron liquid, but in the strong coupling

gime a phonon instability appears near the melting. The
authors argue this behavior from the softening of a long
wavelength collective mode due to the e-e dipolar-
5 p ) ; i interaction. A study that shows the presence of a long-range
a),?/sgc is representative of ele_ctron-densny quct_uatlons. Norder is not necessary for this kind of scenario has been
this case, the electron screening weakenseffiectivee-ph 5 oqented in Ref. 31 for a simplified model of a classical
coupling constant and it is argued that the perturbative apyqyiq of interacting dipoles, which are the polarons treaied
proach is suitable also for semlcom_juctprs that have intermez Feynman. The dipolar modénternal frequencyis renor-
diate values of thebare e-ph coupling in the low doping majized by the mean field of the other dipoles, and it is

phase. The same results have been obtained at weak agflon to soften as the density increases, leading to the dis-
intermediate couplings by a ground-state sttfhan ap- sociation of the dipolépolaron.

proach that is able to span the strong e-ph coupling regime tpe present work generalizes the approach of Ref. 30
has been pr_esentec_j in Ref. 24, yvhere an untrapping tranay%ing a formalism that allows one to span from a high-
is found by increasing the density via the plasmon screening, 1) to low-polarizability regime(y=1). We calculate the

of the e-ph interaction. There it is concluded that there is nQ /- oc o the solid phase in three as well as in two di-
polaron formation at h|gh density, irrespective of the Strengtr}nensions. We also calculate, within the solid phase, the cor-
of t:te Ik:)are g(—arr)]f;_;:our;rl]lgg Cﬁgﬁé?]nténer scakphonon- relation function between the electron density and the charge
f V; Idy, th Ip troni 9y PP f polarization density. Our results confirm the relevant role of

requency exceeds the €lectronic energy scgxasma ire- ., parameter in the strong e-ph coupling regime. Accord-

quency. In this limit, the phonons can follow the ospillation; ing to the values of this parameter, two distinct behaviors are
of the slower electrons and they screen the e-e mteractloqound. '

Thus, the frequency of the electron collective modes is renor- (i) the high-polarizability regime in which we found a

mahze? .bBt/ the s(;c_attm d|e(ljec';r|c conste;@t Molr.eover, Im the scenario similar to that of Ref. 30, i.e., the melting of the
fcarsr‘ﬁ ges'n ertwet {ﬁ € an ; N rriorlg e;(p ; COLi'pn'r}g’r I?r? aronns ?r ystal is driven by the instability of the internal polaronic
ormea so that the appropriale expression for the generdy, . q Interestingly our more quantitative prediction push the

renormalized plasma frequency becomes instability-driven melting toward very strong couplings,
m w|23 leaving the possibility of a liquid polaronic phase for a wider
— (2)  range of parameters.

(i) the low-polarizability regime, studied here even at
where my,, is the polaron mass. In the case of GaAs, thestrong coupling, in which we found that the undressing tran-
mass renormalization because of the e-ph interaction is negition argued in the liquid pha&eoccurs also in the solid
ligible, and usually Eq(2) is used to interpret the experi- phase. Nonetheless e-ph interaction is able to stabilize the
mental data withm, the band mass of the carriers, in place ofcrystal against the liquid phase even for moderately polariz-

o0 able mediums.

In Ref. 26 an approximation is developed that allows one This paper is organized as follows: in Sec. Il we illustrate
to study a system of many interacting large polarons in théhe model and the approximations used, we introduce the
intermediate- and/or low-density regime for weak and inter-quantities of interest, and we also discuss the Lindemann
mediate coupling strengths. The phonon degrees of freedosgfiterion used to determine the transition temperature. In Sec.
are eliminated by a generalized Lee-Low-Pineslll, we present the results in the three-dimensiai3al) case.
transformatio”’ obtaining an effective pair potential be- In Sec. IV, the results of the two-dimensior(@D) case are
tween electrons, which is nonretarded, with a short-ranggéompared to the those in 3D. The conclusions are reported in
attractive term and a long-range Coulomb repulsive term,Sec. V. Appendices contain technical details of the calcula-
statically screened by,. The role of the inverse polarizabil- tions.
ity parameterp=e./¢gq is evident in Ref. 26. In the case of
7n<1, which is hereafter reported as the high-polarizability Il. MODEL AND METHOD
regime, repulsive interaction and the retarded phonon-
mediated attractive interaction are comparable, leading to a
softening of the energy of the collective modes at a finite The model describes a system Mfinteracting electrons
value of the wave vectdk, signaling a charge-density wave in a D-dimensional space, which are coupled to longitudinal
instability. The attractive interaction term between the elec{undispersed optical phonons. The Hamiltonian of the
trons plays a crucial role also at very low density where themodel is a generalization of that introduced by Frohlich for a

In the high-density region, the self energy has been studie
by a perturbative approach for weak e-ph couplimg,,
=m) in the metallic phasé& The validity of this approach is
ruled by the condition of»?,< wd/e.., since in this regime

2
Wp L

" Mpol &0

A. The model
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single large polaroi? to N-large polarong? We consider \2e?
electrons as distinguishable particles. This approximation is A=
justified inside the solid phase, where the overlap between
the wave functions of different localized electrons isthe ratio ao/a=2/(1-7) is thus solely determined by,
negligible® Using the path integral technigtfeohonons can  =¢_ /&, when =1 the Coulomb repulsion overwhelms the
be easily traced out taking advantage of their Gaussian nadttraction mediated by phonons, while they become compa-
ture, and we end up with the following partition functi&h: rable for<1. Therefore, in the Frohlich model, the inverse
polarizability parameter rules the relative weight between the
- § 1 DIF (7)]eSers, 3) repulsive and attractivephonon-mediatednteractions. This
attraction can lead to a bipolaronic ground state s
> a(7).%® Roughly speaking, this condition implies strong
where § means the functional integration over all cyclic couplings > a. and high polarizability < 7., where a;
space-time paths of the particlegr) between zero an@  =9.3 and 7,=0.131 in 3D, a,=4.5 and 7,=0.158 in 2D
=h/kgT. The effective electron action reads case®® We have investigated the system for two valuesyof
self - repre_sent_a_\tive, _respectively, of the high- and low-
Seft= Skt Se-et Sephe T Se-phret Su (4)  polarizability regimes and several values of the e-ph cou-
pling a«. We choose, respectivelyy=1/6 as inRef. 30,
where which givesa,/ @=2.4 and5=0.90519 so that the coupling
a.l a is increased by a factor of téfFor these values of,

B .
Sk :J dr>, %m|ﬁ(7')|2, (5  no bipolaron ground state exists.
0 1

, 12
Ex ﬁ3(1)Lo ( )

B. Harmonic variational approximation in the solid phase

6 We generalize the harmonic variational approach origi-
Se-e= 26 © nally introduced in Ref. 29 to study the modE&lq. (4)]. First
€00 I#J |I’ (r)— r(T)| O ) _
of all we recall here the variational theory in the path-integral
formalism. Let us consider a suitable trial actiSp, which

o = wLo (1- 77)92 d E Do(7-0) depends on some variational parameters. Substitufing
ephre™ IF(7) =T \(o)|’ with St in Eq. (3) we obtain the partition functioy for the
trial action and the free energy associated with At
() =-kgT In Z1. Then the exact free energy can be expressed as
ist wLO(l 77)92 _Dy(1-0) F=Fr—kgTIn(e W48, (13
IS —
e-ph-e™ J f .#J IF,(7) — T, (0’)| whereAS=S.4—St and the mean valué..)t is
(8)

(7= Zi jg LI DI - s, (14
T |

e dar _ €py
S;= ( pJ) J f dTE j — Pr%o (9) The variational free energy is obtained by a cumulant expan-
|r (0= sion of the logarithm appearing in EQL3). At first order in

Here€? is the electron chargen is the electron band mass, AS it reads

andV is the volume(ep;) is the static jellium charge density. 1

The integration of phonons leads to the appearance of re- fv:fT+E<A3>Tv (19
tarded e-e interaction terms Eqg) and(8), where the pho-

non propagator is whereF,,= F. To define a suitable trial action we proceed in

two steps, as in Ref. 29. First we treat the self-interaction
cosiw, o[ BI2 - 7]) term S0, of Eq. (7) a la Feynmar?”*® Therefore, we
: : (10) bstituteSs". _ with S
sinh(Bw o/2) Substitutese_pp o WI Feyn

Do(T) =

. . . -w))mw
_Usmg pola_ronlc unltg(g.u.) (hw o for energy, 1l g for Sreyn= u J dTJ doDy(7— 0)|F,(7) - ()2
imaginary timer andv#/ma ¢ for lengths S, becomes
proportional to the dimensionless e-ph coupling constant
! (16)
defined as
v andw are the two variational parameters. The variational
B ﬁl -7 |/ m 11 propagatoDy/(7) is given by Eq.(10) with w replacingw, o.
@= b e, #lwo’ (11) We remind thaSe,,, Eq. (16) can be obtained by integrating
out an action where each electron interacts elastidadly
whereasS, . will be proportional to the e-e coupling con- =m(v?-w?)] with a fictitious particle of massM;
stant =m[(v2/w?)-1]. Thenv is the internal frequency and i/
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=1/m+1/M7 is the reduced mass of the two-particle system. {|0®ess
As a second step, we treat ti% ., S; Egs. (6) and (9) 2. Y(1q)- (22)
and the distinct partS‘;'SéH) Eq. (8) of S in Eq. (4) by NN
means of a harmonic approximation. Expressing the positioin the left-hand sidélhs) of Eq. (22) we have the Lindemann
of the electrons around the Wigner lattice pointsiasu, ratio between the mean fluctuation of the electrons around its
+X,, whereX, are the vectors of the Bravais latti¢ecc in  €quilibrium position and the nearest-neighbor distadgg

3D, hexagonal in 2Dand omitting the constant terms of the When it exceeds a critical valueght-hand sidérhs) of Eq.
solid-phase potential energy, we obtain the following har-(22)], the solid melts. In Eq22) {...)eft is the average taken

monic variational action: over Sg¢t EQ. (4). The average is carried out at the zeroth
order in the cumulant expansion as an average SyeEq.
S7= Sk + Speynt S+ S+ Sig'ﬁfev 1n A7

Contrary to the classical liquid-solid transition, where the
where Lindemann rule predicts the full melting line using a con-
stanty=1y,, in the case of a quantum crystal an interpolating
B 1 . formula for y is necessary to determine the melting line as
SK:f dr>, =m|G,(D|?, (18)  obtained by comparing the free energies of the two phases
0 "2 calculated using quantum simulatioh$lence the analytic
expansion of the quantum corrections to the classical free
B 1 o2 energy respect to the quantum paramejgrand the zero-
3:J+3:e:f dr>, —m—W|lj|(7-)|2 temperature melting density provides the interpolating func-
o 12 & tion [rhs of Eq.(22)] for y(7,).>® 7, is defined for the pure
B 2 o electron gas as the ratio between zero point and thermal ac-
+f de_E Gj(7)Z,;0,(7), (19)  tivation energies as

0 Eoo1#] o

Ng= —=. (23

2 (B (B 4 2T

H.dist _ _ @LO% TP _

Se'pre =~ e~ de doDo(7 = a)Uj(0) Lt (7). We have chosen for the functioy(7,) the form of Refs.
1#] J0 0
20 40,41
i i defi : HT 19 = yg— 219 (24
In Eqg. (19), the Wigner frequency is defined as usual in 3D ’ 9 1 +A77(21'

as g, 3p=wp/ 3 [for the 2D case see E¢B14) in Appendix . . .
B]. The force constantfZ,],s are obtained through a har- Formula (24) has a smglg .|nter£)oolat|on paramethr
monic expansion for the Coulomb potentiaee Appendix Wh'flh we take af\=1.62x 10" in 3D andA=3X 10" in

B). In our calculations, we neglect the anharmonic terms i : ) )
AS of Eq. (15), therefore we get The chosen value of,=0.155 is such that the classical

transition linegT=2/I'sr@a.u.) are recovered in both the 3D
1 (I';=172 from Ref. 4pand 2D(I'.=135 from Ref. 4] cases.
Fy=Fr+ _<S§gm_ Sreyn'T- (21)  The valuey,=0.28 is chosen to reproduce the zero tempera-
B ture quantum transition in 3Mrg=100 a.u.from Ref. 40
We have minimized~,/N varyingw, v at given a density and 2D(rs=37 a.u.from Ref. 4.
and temperature, keeping and » fixed. Minimization is Roughly speaking, the transition curve is limited by the
constrained by a convergence condition on the Gaussian ir¢lassical lineT=(2/I'))1/rs and the quantum melting Lf
tegrals appearing itFy,. The constrained minimization pro- =1/r® The actual transition curve is a smooth interpolation
cedure is described in Appendix C. between these two limiting behaviors. Of course, the precise
So far, the discussed scheme appears very similar to thenowledge of the interpolation formul@e., the knowledge
one of Ref. 29. However, we stress that thg, which we of parameters appearing in is critical only for the deter-
have minimized to obtain the variational parametemdw, mination of the transition line at high temperatufsse Fig.
contains the heterointeraction ter&§ , and SO, which 1)
are not included in the minimization procedure of Ref. 29. We note that the particular values of the parameters enter-
Moreover, we have also used thdoletrial actionSy Eq.  ing in Eq.(24) depend on the kind of statisti¢boson, fer-
(17) to calculate the mean electronic fluctuation, which wemion) and on the system parameters only via the r@;gdz
have used in the Lindemann rule, as explained in Sec. Il CThis parameter depends on the mass of the particles yia
which measures the zero point energy of the oscillator, which
eventually melt$® Therefore, to generalize the Lindemann
criterion to the interacting large polaron system we are left
To determine the solid-liquid transition we use the phe-with the alternative of choosing between the electron and the
nomenological Lindemann criterion, suitably generalized topolaron effective mass in Eq&23) and (24).
take into account the classical-to-quantum cross8ver The polaron exists as a well-defined quasiparticle when

C. Lindemann rule and phase diagrams
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. produces, in the intermediate temperature and/or density re-
4x10°} ° gion, an upward deviatiotiFig. 1, lower panel from the
a classical slope. This is a drawback of our approximation,
ax10%| : which is, however, correct at low temperatures for both low
and high density.
- We finally discuss to which extent we use the Lindemann
2x10°; criterion in 2D and, more generally, on the applicability of
the harmonic theory in 2D. This is related to the well-known
1x105H problem of the existence of two-dimensional crystalline
long-range order at finite temperatdfeln a pure electron
s E Ny gas, forT=0, this problem does not arise and the properties
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 of the system in the harmonic approximation have been stud-
11 ied extensively®4” The general statement for the classical
impossibility of 2D crystalline long-range order was first
8x10°| a=1 v pointed out by Peierl$ Landad® gave a general argument
s MN=09 g:g . according to which fluctuations destroy crystalline order,
7x10 a=7 © possessing only a one- or two-dimensional periodicity. The
6x105} 8 fﬁ? N first microscopic treatment of the probleimot valid in case
5x10°5 | BN i3 s of Coulomb interactionis due to Mermirf® his proof is
— " 5/ 7Oy e=15 e based on Bogolyubov’s inequality, which leads to the con-
4x10% “Sa \ clusions that the Fourier component of the mean density is
3x10°} /o \ zero for every vectok in the thermodynamic limit. Moti-
2x10°} / 1 * vated by the interest of the 2D electron gas, Mermin’s proof
v was critically re-examined for the long-range poteritfei
1x10°5} 'i E We discuss here the argument of Peierls for the 2D electron
0 : : : : ' crystal. The mean-square thermal fluctuations of a generic
0 0005 0.01 0'?)? 0.02° 0025 0.03 classical particle diverges in two dimensions for an infinite
s

harmonic crystal. At low density, we havg,=0 and the
FIG. 1. Phase diagrams for a 3D LPC fgr0.17 (upper pangl njealn ellectronlc fluctuation can be approximated by the clas-
and »=0.9 (lower pane). Atomic units(a.u) are used for tempera- sical value

ture andrg (see text Solid phase is enclosed below transition lines. DkaT
In both the upper and lower panels, the continuous bold curve is the <U2>C|,wc: —BZM_Z, (25)
pure WC transition line and solid line gives the classical melting. In 2mwp
the upper panel, the dashed line is the renormalized classical
melting. wh
M-p= | dop (w) 3, (26)

both kT<#Aw o** and Awp<fiw o. The second condition

relies on the effectiveness of the e-ph interaction, as eXayhere M_, is the dimensionless second inverse moment of
plained in the introduction. Therefore, if both conditions arey,e density of the statg®0$) of charge fluctuation normal
fulfilled, we have to replacep in Eq. (23) by wp given by ygqes in the pure Wp(w)]. Since long-wavelength acous-
Eq.(2). In. this case, between the cIassK:%zO). and quan- tical vibrational modes scale as=cgk, the DOS is given at
tum melting (74— ), we have a polaronic Wigner crystal. low energies byp(w)~ o for — 0°2 and the integral Eq.

This is the case of the high polarizabilifyy=0.17. (25) diverges logarithmically. However, a lower cutoff in the

For low polarizability(=0.9), a crossover occurs inside frequency spectrum, which exists for a large but finite system

the solid phase whefiwp~ A, o and the coupling is Inter- o io  in the laborato® or in a computer simulatioh%®
mediate or strong, as it will be discussed, in detail, later ON:emoves the logarithmic diveraence. We have chosen a cut-
In this case, we still have a classical melting of polaronic 9 9 ;

quasiparticles, but the quantum melting involves the un-Off frequency that corresponds to a fixed ””r.“be'f of partlcl_es
dressed electrons. In the classical regifiosv density, the N25X;05' The dependence of_the cutoff is discussed in
transition line does not depend appreciably on the quanturiPPendix A. There and later on it is shown that our results
parameter, asy attains its classical limi(7,—0). In the '€ cutoff independent for low temperatures and density near
quantum regime at high density and low temperaturgs the quantum critical point. Therefore we will discuss 2D case
— o) the functiony Eq. (24) saturates to its quantum value Only in this region.
¥4 and the density, of the quantum melting does not depend
of the choice for the quantum parametgy. Instead, a pro-
nounced dependency on the actual value of the quantum pa- We now introduce the correlation functions between the
rameter is expected in the calculation of the melting line atlectron and the polarization densities for a system With
high temperatures and intermediate densities. ~ electrons and a measure of the polaron radius.

For »=0.9 we choose the high-density estimatg/e.. The polarization density vector of the medium is associ-
as the plasma frequency entering in ER3). This choice ated to the optical-phonon mod@g through the relatioh

D. Correlation functions and polaron radius
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R oo Ko electron-phonon coupling constant spans from weak to
P(N) =2 i———=1-€“Qx. (27)  strong coupling regimea=1, 3, 5, 7, 9, 11, 13, 15. Phase

K VameV K diagrams obtained through the Lindemann criterion are
shown in Fig. 1 where the solid-liquid transition lines of the
LPC are compared to that of the pure Wigner crystal. Density
is expressed in terms of the adimensional parameier
:agl[(47r/3)p], where a, is the Bohr radius with(m

) ) ) =me,&,=1). A common feature of both the low- and high-
Correlation between a given electron and the induced charggy|arizability cases is the enlargemémtensity scalef the

The induced charge density is defined by

() ==V B, (29)

density can be defined as solid phase as far as e-ph coupling increases. However, in
(p(PIN(F)) both cases, the solid phase cannot be stabilized for any den-

Cl(r',ﬁ):l—; (290  sity by increasing the e-ph interaction, and the quantum

{pa(f")) melting point saturates at a maximum value when the e-ph

with p,(F)=38(F—Fy). In Eq. (29) we have chosen the appro- coupling is very strong. To illustrate this different behavior it
priate normalization for the correlation function betweere 1S Worth introducing a simplified model.

electron and the polarization. Integrating out the phonons we

arrive at the following expression in which we express all A. Simplified model

quantities in terms of averages weighted by the effective ac-

tion [Egs. (4)] In the simplified model, introduced in Ref. 30, the elec-

trons interact with each other and widli the fictitious par-

I Y P (p1(Np(F", 7))ets ticles ({R}) with massM+, which represent the polarization
Cy(F",1) _;_fo ds 2 Do(7) (or(Nesr (30) of the medium. After integration of the fictitious particles, we
¢ obtain the effective electronic Lagrangidh, The effective
In Eq (30) p(r', 7) is the path density defined by harmonic Lagrangiaif, generated by the simplified model
corresponds exactly to the Lagrangian of the acttynEq.
p(F",7) = 87" = Fy(D]+ X o7 =T(D)], (31)  (17) with the parametew=w, o. This approximation restricts
1#1 the space of variational parameters and therefore gives rise to

where we have explicitly separated the contributigi”,7) & worse estimate for the free energy. Nonetheless, it allows
due to the electron 1 from the remainder. The first contribu©n€ to describe the physics of the system in a simplified
tion in rhs of Eq.(31) gives rise to a self term in the corre- fashion.

lation function Eq.(30) given by Each WC branch is splitted in two branches for the LPC
and the frequencies of the system are given by the two roots
-y EdeTwD ) {p1(N (", D)ess (32) O2(ws) (Egs.(24) and (25) of the Wgr@(’), where wgy; are
el 2 °° (p1(Mett the WC frequencies with wave vectkrand branch index.

The expression for the mean fluctuati¢1u12>eq of electrons
Note that in the limit of a single isolated polaron, this corre-around their equilibrium value in the simplified model is
Iatlon function reduces to Frle one evaluated in Ref. 44. ASzasily obtained by inserting=w_ o in the variational expres-
suming an electron at origif=0), we haveC:*' depending  sjon (1), [see Appendix D, Eqs(D2)—D4)]. The Q.
only onr’. The radial-induced charge densityr) can be  pranches give rise to a natural spliting of contributions to
defined as the fluctuation

2 2 2
o(r) =1 f a0 ). (33 ey W , W) (35
dNN dNN dNN
Using this _function, we can define, as a measure of the |y the low-density regime of the simplified mod€li.e.,
polaronic radius, the square root of the second moment Qfhen phonons are much faster than density fluctuations, the
g(r) spectrum can be decomposed into the renormalized WC fre-

o 12 quenciesﬁ_(wsy,;) and the polaronic optical frequencies
f drr2g(r)
0

(34 Q. (wsg), which can be obtained by expanding the general
solutionsQZ(ws ) with respect to the parametey;; defined
The actual calculation for the mean values appearing ims
Eq. (32) are carried out at the zeroth order of the variational 5
cumulant expansion. Explicit calculations are reported in Ap- €5k = wg (8, (36)
pendix E.

R, =

which is small forall frequenciesw, s of WC normal modes
Il RESULTS IN 3D at the low-density regime.
The first part of the spectrum represents line frequen-
Here we compare the lown=0.9 and high(»=1/6) cies associated with the oscillation of the center of mass
polarizability cases in 3D. For each polarizability, the (my,=m+My) of the two-particle system, i.e., the electron
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and its relative fictitious particlépolarization, whereas the 1al
second part of the spectrum describes the dipolar modes as-
sociated with the internal motion of the oscillating electron- 12 -
fictitious particle systenfFig. 1 of Ref. 30. Dipolar modes o010t
are weakly dispersed around the frequengy [Eq. 25 of = g ;
Ref. 30 defined as th&=0 mode of the polaronic branches. g LIQUID
This represents the internal frequency of oscillation of the 2 6
electron inside its polarization well. =g
2
B. Classical and renormalized quantum melting 0
Now let us consider the classical transition. This transition 4 ‘
is located in the low-density regime of the simplified model. / - 0.9
Using the low-density expansion for the spectrum 3 LIQUID n=>u
[Q_(wsp), Qi(wsp)], it is possible to associate each term, o
(u?), and(u?)_, to a definite degree of freedom of the two- =
' . . o 2t /
particle system, i.e., to the fluctuation of the center of mass =
= SOLID
[ m = -
hD coth{h( 0 )w/ZkBT} 1
&
<U2>_zfdwp(w) ro N
2mp0.<\/m>w 13 5 7 9 11 13 15
€0Mpo

o
(37)
) ) _ _ ) FIG. 2. Zero-temperature phase diagram in the(@Pen sym-
and to the fluctuation associated with the internal dipolamols) and 3D (solid symbol$ cases. In 2D« has been scaled ac-

mode withp=0- ﬁT and reduced mass cording the zero density limit. Circles are the scaled quantum melt-
ing r. vs e-ph coupling constant. The dashed line is the
5 M+ 2 #D hwpo| renormalized quantum melting transition curve from EB). Up-
(U9, = t - (39 l:p=0.17. Triangles locate the softeni L
m+Mr/) 2uwp 2T per panel:7=0.17. Triangles locate the softening @f,. Lower

panel:»=0.9. The shaded area encloses the crossover region inside
In this case we can easily estimate the ratio between eleghe solid phase.
tronic fluctuations in LPC and WC by taking into account

only the renormalized WC spectrum, i.e., the fluctuation as- Ww? me\Y2[ ¢ 312
sociated with the center of mass E§7). Using Eq.(25) we —;‘&3 = (—°> [ s } , (42)
have(u?), pc/ (UPwc=1/¢€, then by Lindemann criterion Eq. (Wowe \NMyg r{(WC)

(22) and by Eq.(25) at a given density, the critical tempera-

ture ratio also equals & then using Lindemann criterion we obtain at the quantum

critical point (rg—r)

Tiec _ 1
=—. 39
e Meg

Therefore, the slope of the classical transition line is lowered

by the same factor, as can be seen in Figudper panel g (43) generalizes the result of the Ref. 29 where the Lin-
whereg, is appreuabl_y Ia_rge. i demann rule was discussed within a mean-field approach.
_ The quantum mel_tlng is ru_Ied by the zero point quctuaT At high polarizability(u?)_, Eq.(37) is the leading term in
2?;2 (f)c]:rt?r?eeli(r:(tar(\)/r\}g os/c(:al!anons. A zero temperature eStI'the mean electronic fluctuatia([12>eq Eq. (35) near the quan-

P 9 tum melting for small and intermediate couplings<7. In

%D this case, the quantum melting density scales as(&8).
(UWwe = M_y, (40 Note that at weak coupling the mass renormalization is
2mop weak, but phonon screening throughdominates, leading to
quantum melting at lower densities than in a purely elec-
wp tronic Wigner crystalupper panel of Figs. 1 and.2At low
M-1= d“’p(“’):’ (41) polarizability Eq.(43) is valid up toa=3 (Fig. 2.

On increasing the couplingn,, scales as-a* in strong
where M_, is the dimensionless inverse moment of the WCcoupling and Eq(43) predicts a divergence of the quantum
DOS. If we consider only the renormalized WC spectrummelting density. As shown in Figs. 1 and 2, the quantum
Eq. (37), and we take into account Eq0), we get for the melting density saturates to anindependent value at strong
LPC coupling, and the prediction of Eg¢43) is no longer valid.
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0.13 i TABLE I. The critical value at the melting of the density;.)
0.25 012 / and couplingrf:) parameters as function affor high polarizability
, CRTIP A 7=0.16.
02 & — 01 L’ -
v J— 0.095 0.1 0.105 a le le
o 1 510 99.8
© 3 334 99.3
5 168 99.5
7 46 99.8
9 20 197.5
11 15 452.2

0 0.02 0.04 006 008 01
1/r1g

band mass and the dielectric constant of the host medium,
FIG. 3. The Lindemann ratigsolid ling) and the functiony  which are anyway fixed, i.e., not density dependent. If we
(dashed ling for »=0.17 anda=13,T=1.10%(a.u). Contribu-  introduce another coupling into the system, as the e-ph inter-
tions 82=(u?./d, of the simplified model Eq(35) are also  action, the two concepts are distinct. Global interaction is not
shown. The inset shows the abrupt slope increase of thed&rm  only a function of the density but is also a function of the
e-ph couplinge. Now in the high-polarizability case, po-
We will see in Sec. Ill C that deviations from the prediction larons are well defined as quasiparticles and we can use
of Eqg. (43 arise from different reasons in low- and high- my,(a) as effective mass while the repulsive interactions are
polarizability cases. screened by, in the low-density regime. Only in this case
we can introduce a measure of tbeuplingthrough the pa-
rameterr;:(mpo,/ goM)rs. For the low-polarizability case the
last assumption is not valid as explained onward. The values
This is the case in which the polarization gives a largeof r; at the quantum meltingr.) are reported in Table I.
contribution to the total interaction energy of the system. ThéaVhen the couplingr<7 the quantum melting can be esti-
system can be thought of as being composed by interactingiated thru Eq(43), which means;zrc(WC)zloo; that is,
dipoles that are made by electrons surrounded by their polathe coupling parameterr, tends to the value of the Wigner
ization. crystal melting of a 3D electron gas. On the contrary, in the
In the case of strong e-ph coupling we observe a saturastrong e-ph coupling the values of the effective coupling pa-
tion of the critical quantum melting density. In Fig. 3 the rameten’; are much bigger than those of the densjtyue to
electronic fluctuation is reported fer=13. Contrary to the the huge enhancement of polaron mass.
small-intermediate coupling cas@s). Eqg. (38) is now the Of course the exchange effeasthe crystal melting are
leading term near the quantum melting. The melting densityelevant and can be taken into account only phenomenologi-
given by Eq.(43) is not a good estimate because of thecally in our harmonic approximatiofsee Ref. 42 and discus-
contribution of polaronic optical modes, which is now im- sion in Sec. Il G. However in the solid phase we must note
portant at the quantum melting. The same scenario of Ref. 3that these effects are ruled in LPC by the paraméteather
is recovered: the optical polaronic frequencies drive the meltthanrg making them much more negligible than those at the
ing at strong coupling and high polarizability. Moreover we same density in the pure electron gas. To realize this fact we
note that(u2)+~(1/wpo|) and, as density approaches a criti- assume that the localized electronic wave function is a
cal valuew, softens, inducing an abrupt increase of electronGaussian of variancer, then the overlap between two
fluctuation that is dominated by the terw?), (see Fig. 3. of these functions at distance; is proportional to
The same behavior fow,, is reported in Ref. 30 and ex- exp(-r2/40?). Now ¢ in the harmonic approximation can be
plained in terms of the attractive interaction between the poextimated asr?=1/2m,qwy, Wherew\z,\,:wE,YLB is the LPC
larons (polarization catastropheWe stress, however, that Wigner frequency ando%vL is given by Eq.(2). Then it is
employing a more quantitative Lindemann criterion togethetthen obvious that§/402:\xrflz, a result that can be com-
with a self-consistent variational calculation of all Feyn- pared to the same for electron §am which appears, and
mans’ parameters we get quantum melting in a region ira different coefficient because of a more elaborate variational
which w,, do not actually soften. As a result the softening of procedure. Taking into account the data in Table |, we see
internal polaronic frequency approaches quantum meltinghat the exchange effects aiefortiori, negligible in a first
only asymptotically for very larger (Fig. 2). approximation in the case of the strong e-ph coupling, where
Saturation occurs to value of, which seems to lie in the the quantum melting occurs at a huge coupling paramgter
high-density regime where our approach could be question- In Fig. 4 we show the behavior of the polaron radius as a
able. We must stress, however, that in the pure electron gafynction of density. Although in the solid phase it remains
the parameterg is a measure oboth coupling and density. almost constant, when approaching the melting density it
Indeedr can be obtained from the ratio of the Fermi energysuddenly increases. This behavior can be understood by tak-
to the mean Coulomb interaction, even if scaled with theing into account that the polaron radius is essentially deter-

C. High polarizability: Softening of internal mode
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0.6 40 O I )
0=9 —a— 35 | R
(x=11 """ b At 30 .9?.‘.?9?9'.9;9960. - Q_[O)o t(s'k)] - l
,,,,,, 0-6.o P
0.5 e o5 | TR 006 Qlog(s k)] - o
' S 69
20
o Q 15} v
o 0.4 e_l 10 | cpaaaaess e e
G .
0.3 15t
. ; Fee 0' ,9-'-":.‘:j:;:::—:—:—t—i‘lfl:l‘l:tl-&mrm-
I R Sk . . .
0.7 » 0.2 0.4 0.6 0.8 1
A o
& ka,/TC
06 A,AA g° 0
AAA,-’?’&—

° 0.5 AAAk‘;;-’ef"’b FIG. 5. Frequencies of the system in the simplified model as a
= 04} A‘A:ﬁgn"" function of k along the direction(100), for =5 and »=0.9, at
o= 03 | o 1/rg=2x 1072 and atT=1.8x 10"%a.u.). Density is close to the

: .’,e". quantum melting(Q_[wacyl, Q[ waey]) result from the splitting of
0.2 r od o= wac(S,K) the acoustical WC branchQ_[wopd, Q[ wepd) result
0.1 } a=13 - P— from the splitting of the high-frequency WC optical brandgs.

=15 ~-eene (44) and (45)]. For comparison the pure WC frequencigtted

lines) are shown.
002 0.04 0.06 0.08 0.1

/rg As far as the density increas@sside the solid phagewe
observe that the two-energy scaig o of phonons andvp
and Eq.(2) of the renormalized WC frequencies, come close
and we found a crossover regianside the solid phase
where the electrons and polarization modes are mixed as in
the liquid phase CPPNFig. 1 of Ref. 9 and Fig. 1 of Ref.
) S ) ) 10). An example of the general situation is given in Fig. 5.
mm_ed by the diffusion in imaginary time of the electron _path To estimate the density dependence of the LPC frequen-
defined in Eq(C16) [see also Eq4E4) and(E7)]. Its maxi- ciesQ.(ws)), let us substitute ; with the plasma frequency
mum value occurs at=5/2, which diverges at the softening | Results are reported in Fig. 6, which illustrates the den-
of the polarqn|c frequencywp, ~0). Polaronic clouds_ tend sity crossover. In the low-density limit,— =)Q_=wp, [Eq.
to overlap(Fig. 4,_ lower panel Hc_>wever, the polaronic na- (2)], while Q, converges tas,,=v, the internal fréquency
ture of each particle of the LPC is preserved up to quantungo - an, single polaron. In this case, the electrons are far apart,
melting. and the “external” harmonic field generated by the surround-
ing electrons of the crystalline array is wedK,~€?/r3).

FIG. 4. Polaron radius in polaronic unitspper pangland po-
laron radius scaled with, (lower panel vs (1/r) (a.u) for different
« and »=0.17 at low temperatur€r=5x 1073 p.u.). Filled points
refer to the solid phase.

D. Low polarizability: Crossover in solid phase

In this regime(7~ 1), the repulsive interactions among 12
electrons overwhelm the attractive interactions due to the 10 |
polarizability of the background, as can be seen by the rela-
tive weight of e-e and e-ph interaction coupling constant 8t

Egs. (1) and (12). However, self-trapping effects are still Q
present at least at strong coupling and at low density, where 2 6}
electrons are localized. G

Equation(43) quantitatively describes quantum melting in v(0)4
the low-polarizability case only at weak couplifig < 3).
Whena exceeds this value, a crossover between a polaronic 2r l ,,,,,,
and nonpolaronic phase is found inside the solid phase and "’Lﬂé ‘ ‘ s———
fche estimate of Eq(43) no longer describes quantum melt- 0.001 0.003 0005 0007  0.009
Ing. 1/p.32
s

The low-density regime, introduced in Sec. Il C, is found
only for the classical part of the crystal phase, where the FG. 6. Filled points are the typical frequencies of the simplified
polarization follows adiabatically the electron and the solidmodel obtained Withog .= wp for @=5 and»=0.9. The solid line is
phase is a Wigner crystal made of polarons with an effectivéhe low-density renormalized plasma frequerigy. (2)]. Dashed
mass determined by the e-ph interaction, in the way distine the high density renormalized plasma frequency @g. Ar-
cussed for high polarizability. rows mark the crossover regigaee text
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Therefore the frequency of electron oscillatiand ~K./m)  described by an approximation of Eq¢4) and (45).

can be lower than that of the phonéa, ), and the polar- The frequency dispersion§)_[wacyl, Q[wael]) Of the
ization follows the electron oscillation. The polaron vibratesmodes, which originate from the splitting of acoustical
as a whole with a lower frequendg,/myo~ wg(m/ Myoi€0)- branches of the Wigner crystal, are also reported. Although at
The polarization charge distribution is undisturbed as a firsshort wavelength, the dispersion approaches the estimates
approximation, so that the value of the internal polaronicgiven in Egs.(44) and (45) the long wavelength part of the
frequency(~v) of an electron inside its polarization well spectrum is conversely described by the low-density expan-
does not change. sion (1.

By increasing the density, we approach the opposite limit Thus we have that at the quantum melting the low-energy
of a strong external field. Now the frequency associated t@art of the spectrum still behaves as in the low-density re-
this field is too large and the polarization cannot follow thegime. The modes depicted in the lower part of Fig. 5 belongs
electron oscillation, so that each electron becomes undresseal this part of the spectrum.
from _its polarization cloud. In this cas€), approaches A measure of the wave vector below which we have this
wp/ Ve, the high-density renormalized plasma frequencybehavior can be obtained by the conditieyg=1. The asso-
[Eq. (1)], while Q_=e../eqw 0= wro is the characteristic ciated energy scale is given lyf=mw?o/ (gomMy). Contrary
renormalized frequency of the polarization. We note that ato the low-density regimgEqgs.(37) and(38)], it is not pos-
low density()_ gives a measure of the frequency of carriersible to associate each term of the fluctuation EB8) and
density fluctuations, whereas in the opposite limit of high(D4) with a definite degree of freedom. However, expanding
density, the same role is played by. the electron fluctuation with respect to the paramejgifor

As we can see from Fig. 6, the crossover amplitude ishe frequenciesos; < w, and with respect to the parameter
determined by the conditionsp = wro and wp; =v. It is 1/ef for the frequenciesvs,> w. and using Eq(35), the
interesting to compare our Fig. 6 to Fig. 1 of Ref. 9. We noteelectron position fluctuations can be approximated by
that the asymptotic boundary given there by the phonon fre-

guencyw, o here it is played by the internal frequency. m
The renormalization crossover of the plasma frequency AD coth|:ﬁ< N )w/szT]

from the low- to high-density regime does not imply the W)~ jw" dop() Mpoi€o

melting of the crystal. Indeed, it is observed within the 0 m ’
boundary of the solid phase estimated by Lindemann crite- 2Mpo m e @

rion. This behavior is even more clear once we consider the pol=0

fluctuations of the position of the electrons that enter in the (46)

Lindemann criterion.

The leading term for the Lindemann ratio at the classical ) 3
melting is 82=(|u[?)_/d2, which is associated with the fluc- w2, = ( M ) D COtI’(ﬁprI)f °dwp(w)
tuation of the center of mag&q. (37)]. Of course, in the m+Mz/ 2uwy 2kgT/ Jo
classical region quantum fluctuations are ineffective; the

electrons and its polarization cloud behave as a single clas- +f dwp(w) hD coth(h,—aL/ZkBT). (47)
sical particle with massn,,. The terms2=(|u[?),/d3,, asso- 0 o= Ve
ciated with the internal polaronic frequencigsq. (38)] is Ve

indeed negligible. . . . .
To analyze the high-density region where we eventually Note that the interpretation of the fluctuations associated

meet the Lindemann criterion for quantum melting, we notewith electronic motion in this case is different from that valid

that the conditione,z> 1, whereegj is defined in Eq(36), at low density. In particular the high energy contributjdime

can be fulfiled by the majority of normal modes at high S€¢ond term of Eq(47)] represents a Wigner crystal-like

density. Of course, long wavelength acoustical and even uopf_luctuatlon with a low-energy cutoff. This is the largest con-

tical” modes in 2D have vanishing energies, but their spectraﬁ”b“t'on to the fluctuation at quantum melting and does not

weight is low enough to be neglected in the following con—deF"':'(;‘d 3” y?_p|h ig'_[eraction. . , |
siderations. Expandin@.(wyy in 1/e.; we get Indeed the leading term of fluctuations at quantum melt-

ing is (U?),. This is due to the vanishing of the spectral
£, weight associated with the low frequencies< . at high
0= @t (44)  density[Eq. (46)].
0 The saturation of the quantum melting point can be seen
in the phase diagram of Fig.(lower panel. Two comments

Wsk are needed. First, in the case of very low e-ph coupling, the
O, =—+. (45) : o !
Ve., density crossover does not occur inside the solid phase.

Therefore, these arguments do not apply. The quantum melt-

In Fig. 5 the general solutionQ.(wsy) are shown for all ing point depends on the e-ph coupling as we have discussed
branches of the simplified model near the quantum meltingin the previous section. However a saturation of the quantum
The branchesQ_[wqy, Q[ wo,) that result as splitting  melting density is observed clearly in Fig. 1 for intermediate

of optical model of the Wigner crystab,,(s,k) are well  and strong coupling. As a second point we have to emphasize
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1.4

W< wl\e.. we have the following expression valid at low
temperaturdkgT<fiw,) (for details, see Appendix)E

I A R AN T
o == (1 erf <u2)>+<u2>(277<u2))3’2'

m(l)Lo

(48)

The first term of Eq.(48) takes into account quantum
charge fluctuations that are relevant at small distances,
whereas the remaining term is a classical contribution com-
ing from the static charge distribution. Note that only the first
term depends on the e-ph interaction. Therefore, the polaron
radius tends to the same high-density asymptotic value for
different values of the e-ph coupling (see upper panel of
Fig. 7).

As a last point we note that the crossover condition,
roughly estimated aswp~ w o~ (1-7)?/a?~0.01/a?,
shifts toward higher densities as the e-ph coupling constant
is reduced. In the weak coupling regime it lies in the liquid

0 0.01 0.02 0.03 0.04 phase where RPA approaches in both the 3D%&4and 2D
1/t casé&® can be applied. It is also worth remarking that for high
polarizability and for all coupling, the polaronic crossover is

FIG. 7. Polaron radius in polaronic unitspper pangland po-  located in the liquid phase according to the highest value of
laron radius scaled withy (lower panel vs (1/r¢) (a.u) for different ~ @Lo™ 0.7/a”.

« in the casen=0.9 at low temperaturéT=5x 102 p.u.). Filled
points refers to the solid phase.

Rp/rg

IV. 2D CASE

that the quantum melting densiiy notthat of a purely elec- . . o .
tronic Wigner crystal. The results obtained in the 2D case are qualitatively simi-

This fact can be explained by writing the total electronla@r to the 3D case. Both the crossover phenomenon in the
fluctuation as the sum of the two termis?,; and (U?), gy Iow-polannglhty case and.the_.softenmg of the polaronic
where(u?),;; is the contribution to fluctuations of modes hav- frequency in the high-polarizability case are observed. Re-
ing energies higheflowen than w,. We note from Eq(47) sylts are re.por'ted in the zero-temperature phase dlagram of
that in both LPC and WC casds?); are the same. But Fig- 2. In this figure, we compare the phase diagrams in 2D
although in the WC case the two terms are of the same ordé"d 3D by scaling appropriately the 2D e-ph coupling con-
(U)o = (U in the LPC caséu?),,,,<(u?); as far as the Stant following the single polaron results of Ref. S&ip
density increases. This is due to the renormalization of th& (37/4)azp. 2D and 3D melting curves scale well according
low-energy frequencies. Therefore, the electronic fluctuatiod® the zero-density scaling for all studied cases. A discrep-
in the LPC increases more slowly with density than those ofinCy is found in the the high-polarizability strong e-ph cou-
the WC. At a given density, the electronic fluctuation of thepling softening ofw,. Let us first discuss the scaling at
WC is greater than those of the LPC and this explains théinite density.
shifting of the quantum melting toward higher densities. In our variational scheme, the DOS of the WC is the

The crossover is also evident in the polaron radius. In th@eculiar difference between the 2D and 3D cases. To see this
upper panel of Fig. 7 we plot the polaron radius as defined bgxplicitly let us compare the e-ph interaction tenﬁﬁgw.
the Eq.(34). We see that for any value of the e-ph coupling, Assuming polaronic units we get:
the polaron radius tends to decrease as far as the density is

) i self 5 B2

increased. We recall that as far as the renormalized plasma 1 {Se-pr-eT.2D _ _(a)\_zf - Do(7) (49)
frequency[Eq. (2)] exceeds the phonon frequency, we enter B 3N 6 Jg V(7/2)dgp(7)

in a region in which the polarization is adiabatically slow

compared to the electronic motion. Therefore, the electronic (s ) 3 5 (B2 Dy(7)

charge appears as a static distribution whose radius decreases =-—&phe’T2D _ _ <—77a)\—J dTO—;,

on increasing the density and the polaron radius follows this 8 2N 4 /6 J \V(7/2)dyp(7)
trend. The crossover is evident by scaling the polaron radius (50)

with r, as reported in the lower panel of Fig. 7 at interme-
diate and strongr. Note that as in the high-polarizability where the imaginary time diffusiod(7) [Eq. (C16)] is itself
case at the transitioR,/rs=0.475. a functional of the DOS. We note from Eg&9) and (50)

It is possible to estimate the high-density limit of the ra-that the free-energy functional scales explicitly as in the
dial distribution of the induced charge. Using the conditionsingle polaron casé by scaling the coupling constant.
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4.21 — o), the condition for the extrema of, reads
4.2 2
1 (l)p
4.19 1-—5p\ _ Matdla,nrsv) =0, (51
v we,
4.18
80 417 where the first and second terms are the derivativedfEq.
g ) (C13)] and g is the derivative of Eqs(C14), (C15, and
G 4.16 (C17. As v(rgd — 0 for rg=r the second term acquires im-
4.15 portance and DOS enters in the second moref3t How-
414 ever there are other terms that are divergent-as) coming
from the explicit form of the functiory.
413 o
4.12 1 1 1 1 1 1 1
1 V. CONCLUSIONS
09 F . . .
08 | We have studied the behavior of a low-density electron
=1 PPN S gas in the presence of a polarizable medium, where polaronic
0.7 Q_[(Dopt] - . "

° 06 | QL] o gffects may play a relevant rple. T(_) determine Fhe.transm.on
8 05 L -hacy line, we have used a generalized Lindemann criterion, which
E} 0'4 [ reproduces correctly the pure electron gas quantum melting.

: L evetsesseeessasessssnescet Because the amplitude of quantum fluctuations depends on
0.3 s the e-ph renormalized plasma frequency, the Lindemann rule
0.2 ; B has been critically reexamined and adapted to the polaron
0.1 § crystal. This procedure allows one to determine, quantita-

0 — tively, the phase diagram of the model and to extend the

005115 2 25 3 35 4 study of the model to the low-polarizability case. We have
kay,/m also studied the 2D case, showing that the dimensional de-

pendence is not crucial to determining the nature of the
FIG. 8. 2D case. The eigenfrequencies of Sys’[em a|0ng the diquantum me|t|ng W|th|n in our harmonic Variational SCheme.
rection (10) for »=0.9 anda=2.12. 1f,=8x103%a.u), T=2.5  The scaling predicted for the e-ph coupling constant at zero
X 107%(a.u.). Density is close to the classical liquid-solid transi- density does apply as well at nonzero density up to quantum
tion. Upper panel: The frequencies of polaronic branch weakly dismelting. A notable difference instead is in the position of the
persed around the polaronic frequenayy=v (dashed ling softening density of the polaronic frequency, which in 3D is
Lower panel: The renormalized Wigner crystal branchgsints much closer to melting than in 2D case. This suggests that
and the pure WC branchédashed lines the heterointeractions are less effective to destabilize the di-

. ... __polar crystal in 2D. However other possible mechanigats
Related to the different 2D apd 3D DOS we note the dlffer'tice effects, structural disorder, or impuritjesan cooperate
ent behavior of the frequencies of the normal modes. Not

i 5 Auith the localization, together with the interactions between
bly, the optzlcal . branches go to zero aSYk at long the electrons, and lead to the formation of a pinned Wigner
waveler'lgt'hé. As in the 3D case,' the frequencies 9f the I‘Pccrystal. In this case the melting cannot be predicted by the
are split in to four branchesFig. 8 Q.[waas,K)] and | jndemann rule, but a similar dipolar instability due to the
Q. [wop((s,K)] according to the same equation of 8&2e Fig.  |ong-range interaction between the electrons can still drives
8), where the 2D value fom,y is given in Appendix BIEQ.  the melting.

(B14). While the weak e-ph coupling regime is similar for both
Let us discuss the deviation from the the scaling at strongow- and high-polarization cases, the strong coupling sce-
coupling, which we see from Fig. 2 in the density of the nario is qualitatively different.
softening of the polaronic frequenay,,. Actually we ob- In the high-polarizability regime, we have recovered the
serve that a steep fall of the variational parameigr) oc- incipient instability that was found in previous studies near
curs as density increases determining the softening,gf  the solid phas@3° and also in the liquid phasg.In com-
Peculiar features of the DOS enter in the variational deterparison to previous work, we have found that this regime is
mination ofv(rg) as can achieved by the following argument. restricted to very large values of the coupling- 10, leaving
First of all we assume that is very close to the value, o at  an interesting intermediate region of coupling in which po-
strong coupling. Then we note that as in the 3D high-larons may exist in the liquid phase. This region can, in
polarizability case the renormalized plasma frequency igrinciple, be explored with nonperturbative numerical tech-
much less than the phonon frequency, and the discussiamques, e.g., path integral Monte Carlo. Work along this di-
which follows Eq. (36) holds for all densities lower than rection is currently in progress.
critical density of the softening. In this case the spectrum is In the low-polarizability regime, a crossover occurs inside
composed by the low-energy branch@snormalized WE  the solid phase when the renormalized plasma frequency ap-
and by the polaronic branches weakly dispersed araund proaches the phonon frequency. At low density, we still have
(see also Fig. B Using this result at low temperaturé8  a LPC, whereas at higher densities the electron-phonon in-
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4
RS (A3)
G,

phonon coupling. In this case, polaron clouds overlap and the
polaron feature of the crystal is lost. The crossover from
polaronic (wp < w o) to nonpolaronic(wp> w o) character Introducing the scaled frequengydefined as»=wpx and
has been observed in weakly coupled systems, such as Gafie quantum parametey, Eq. (23), the thermal electronic

in the liquid phase, and analyzed in terms of RPA®In this  fluctuation is expressed as an average on the DOS as
system it occurs around~0.6-0.7, while for ZnO« is if

teraction is weakened irrespective of tlare electron- em kle) ~
de dk kd(w — c,vk) =
0 0

larger, shifting the crossover tQ~ 7. Finding a system with 5 i
low polarizability and a larger e-ph coupling is difficult be- (u?) = —<CO—M4X—)> , (A4)
cause it implies very loww o:a~(1-7)/w o [from Eg. m X DOS

(11)]. However in surfaces of InSh, an=4.5 has been pre-

dicted together withy=0.88" leading to the possible obser-

vation of the crossover inside the solid phase. _h A p(epX)
We also note that our low-polarizability scenario of den- - X plwpX

sity crossover inside the solid phase bears some resemblance

to that found for ripplonic polaron syster?fs°Although the

electron-ripplon interaction in these systems is different from

the Frohlich type, resonances in the absorption spectrum ot$ince p(wpx) ~x for x—0, the average in EqA4) con-

served by Grimes and Adarf$ their explanation at low verges for any of®" with n=0 in the the expansion Eq.

density! relys on the same qualitative arguments developedA5). In the n=-1 term we consider the infrared cutoff,

in the present work. Recent works on high-density ripplonicgiving

polaron systems realized on a helium bubbles predicts also in

this case a mixing between plasmon and polaron métes. 1 ¢ ald)w (wpX)
Finally, we remark that we have obtained an appreciable = f dy-——2—F +f dxp—;
DOS €

1
—— + nglan + ap(7))* + )}
77qX2 q q

(A5)

stabilization of the crystal phase even for the intermediate X X X X
regimea ~ 3-5 in low-polarizability cases. We conclude that 2

. . . Twp. [ & p(wpX)
the general result that e-ph interaction effects can stabilize =— In(—) +f dx———. (A6)
the Wigner crystal phase could motivate experimental studies C1 Xe € X

on two-dimensional electronic devices involving polarizable This term diverges logarithmically ag— 0. However
m_ed|a. To this aim r;\ layered configuration is advised even77q_>OO as we approach the quantum region. The electronic
with some warning&® In a 2D heterostructure the use of a fluctuation turns out to be cutoff independent if
perpendicular electric fiefd could not only increase the po-
laron effect but also tune it, as was shown in the case of
charged helium surfacég. 1
d <;> < pifag+ ag(mX)?+ ). (A7)
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APPENDIX A: LOW-ENERGY CUTOFF IN 2D

The 2D DOS function can be defined as APPENDIX B: HARMONIC VARIATIONAL
APPROXIMATION

plw=2 | ko= wsy, (AL) We expand in the harmonic approximation the terms
| e Se-er Se-a, S, [EGs. (6), (8), and (9)]. Let F,=R-+,
whereVy is the volume of the first Brillouin zongl BZ). Let whereR is the lattice point of the crystal ang is the elec-
us consider a small fractionof the plasma frequenayp. At

long wavelength(k=0), we have the 2D dispersion laws for tronic_displacement fromR,, and  set At (7, 0)=Uj(0)

the acoustical mode asy(k)=c;k, while the “optical” -l () andR;,=R;~R.. The static terms give
w,(K) =c,\k.*® As a consequence the behavior of the DOS
for =0 is o (1B
- - st oz SwelR}D)
2r (ko) - SLMRD + SR + SR === ——
f daf dk ki - ¢k) = 5 o, (A2) 0
0 0 C1 (B1)
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the e-ph interaction does not change the equilibrium posi- Summing on index and integrating on variable [Egs.

tions of the pure electronic crystalVC), which corresponds
to the minimum of the potential energy.

(B8) and(B9)], we obtain the termsy;, S, SE-9 Egs.
(19) and (20).

The sum of the dynamical parts in the harmonic approxi-

mation gives

B
She+ S+ 8o = f dr (VA[G(D]+ Ve d G (D]},
0 1
(B2)
where
. e? 1 1
Vilu(n]=- Spjfd [m-;], (B3)
Ve-di(]= f doF(r- )2 Uj (r,0), (B4
j#1
1 —
U (70)= EAU,J(T,U) -I(R; AU, j(7,0), (B5)
F(T—a):@—%t)o(r—o), (B6)
— D R JR,]
Tylop= =% -3t (B7)
ol R IRP

From now we drop on the doubte, 7indexes inAd, ;. To
evaluate the integral in EgB3) and the sums on indeixin
Eq. (B4), we consider a sphef® of radiusR; (a disk in 2D
centered on site. We first sum on indeX and then we
perform the limitR;— oc. Finally, we sum on index in Eq.
(B2).

1. 3D case
By Gauss’s lawfwith the conditionV;(0)=0], we have

2
w
ViG] = 5m 2 o) ®8)
where the Wigner frequency ISW /3 Because oV; is
independent of the size &, Eq. (BS) does not change in
the limit Rg— o°.
To evaluate the sum in EqB4) with the conditionR;
<R, we remind that we have two self terf(s,i) and(j,j)]
and two distinct termé§(i,j) and(j,i)] in Eq. (B5). The two

2. 2D case

In 2D the interaction potentiavﬁe(u) of a uniform posi-
tively charged disk of radiuR [Eq. (B3)] is

21
V(U )-—eszJ doF (), (B10)
€ 0

0

where

F(6) = VR +u2 - 2R cog ) — u— Ry
Ry~ u cog 6) + VR + u2 - 2Ry cog 6)

+ucog6)In
€9 u[1-cog6)]
In the limit Rg—
e
lim VJ(u lim —pJ—u =0 (B11)
R—o0 (WUR)—0€&Q R

since the total electric field of an infinitely charged disk is
perpendicular to the disk.

Then we have to evaluate the sufi&y. (B5)]. The two
distinct terms[(i,j) and(j,i)] give the identical resultEq.
(B9)] of the 3D case, while the self terfn,1) is written as

~6,( = 7,\6,=0q,
Rj<R

Il

(B12)

The matrixD in 2D is defined as sum of the matric%éij)

[Eq. (B7)] on hexagonal lattice poin®;. Contrary to the 3D
case, the matrixD is not zero in 2D case. By the lattice
symmetry, the off-diagonal elements are zero while the diag-
onal terms are equal to the local potential, which acts on
each electron

1
e f doF (7= o)D) |——m—|u(r>|2 (B13

self terms give the same contribution, as can be easilyhere we use as definition 2D Wigner frequency

checked if we first carry on the limiRs— < and then the

sum on index and1. They vanishes because of cubic sym-

metry of the lattice. When the two distinct terrj(s,j) and
(j,i)] of Eq. (B5) are inserted into Eq(B4) and the limit
R;— o is taken, we obtain the terivi._¢(u,) of Eq. (B2)

Ve E

J#l

B — -
dO’F(T— o)Gj(0)Z(R; )G,(7).

(B9)

(2D). (B14)

For an hexagonal lattice of nearest-neighbor distahge
we haveZ;, (1/2R’)=5.517 094} Summing on index

[Eqs (B9) and (B13)], we obtain the terms
Sty SHe, SEORt. [Egs.(19) and (20)].
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3. Normal modes Using the periodicity conditiofigsg(0) =qs(B)], we have
The WC normal modes are defined as the following Fourier expansiopw,=(2#/B)n]:
1 - 1(” .
U= =2 8k, (B15) Gskn= f dr gsk(n)e™ ", (C3)
Wig 0
where the vectork belongs to the 1 BZ of the reciprocal Asi(7) = Usg e+ SAsi(7), (C4)
lattice, £¢ s are eigenvectors with eigenvallaéS of the dy-
namical matrixM, which is defined as 1 (P
Oskc= Ef qu&IZ(T)a
_ . - 0
M s = 8o gy + E T,5(R)ER. (B16)
R#O o
5QS,|2(T): 2 QS,IZ,nelwnTr (C5)

Inserting the WC normal modes of E@15) into Egs.(16)

. . . . n=-o
and(18)—(20), we express the harmonic variational acti&n 20
as
5 where we have separated the mean value of path on the
i _ imaginary time Eq.(C4) (centroid from the fluctuation
Sr({dse(n)}) _EIZI fo drigi(7), (B17)  around it Eq.(C5). The actionSr({gsi(7)}) is quadratic in
S {0sknt, therefore, we can separate EG2) in two Gaussian
where the Lagrangian is integrals
1 1 2 ZT = ZT,CZT,(?q! (C6)
Lsk= 5 M0k T)|2+_ K, T)|2
2 2 dq q
k,s,c” k,s,c Crry -
mV\(UZ—WZ) B f H ST{qs,k,o}
+———— | doDy(7- 0)|ags(7) — Gs(0)|? skk>0 mhZmigT kaT
0
d
meO(wé,s_w\ZN) A 2 f 11 quC . & Mk s o heTol eo)
+Tfo doD K, T)_qE,s(U)| . sk,k;>0 mhemkgT
(B18) 1= (C7)
Sk ﬁwsklwso
APPENDIX C: VARIATIONAL FREE ENERGY F Hence, after we omit the classic tetf  [Eq. (C7)]
The first term of the variational free enerdy, [Eq. (21)] que qum
is the free energyt associated with the partition function of Z1 5= 11 Lk’s’;e-ésr{éqs,ﬁ(ﬂ}
the trial actionZ;. This is calculated as the functional inte- ' ns0  TKgT/Maj
gral [Eq. (3)], where Sgt; [Eq. (4)] is replaced bySt [Eq. skk,>0
(17)]. The second term afy, is the mean valugEq. (14)] of Re . Im
the difference betvveeﬁzf'gh_e [Eq. (7)] andSeeyn [EQ. (16)]. B dqlz,s,ndqlz,s,ne_(m/kBT)(lqRSnlzl}\sgn)
We start by changing the dynamical variables of integra- B o ks T/Ma? o
tion from {U,(7)} to {gsk(7)}. By reality condition we have Eks0 "
* ~ ~ > . SK, Z
O-ks=Ugs ande_g s=—&g 5 We must sum onlk vectors in the
upper half spacék,>0) of 1 BZ = [I wisin, (C8
n#0
R skk,>0
u=-—r— E sks(qkse '_q &£ IkR') (CY)
v s,k k>0 where
Therefore, the real and imaginary partaf; for all k with 1
(k,>0) of the 1 BZ are the actual independent variables and Asko= W2 Je (C9)
the Jacobian of canonical transformation)is2PN ks =0
3
_ Re, Im -Sl{gs (7] A
ZT_IJ H Dl NID[agp(n]e STliask, - (C2) Nein= > —5 1, (C10
skk>0 y=1 o+ Q5
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Q-
1:

w2 o)(QF - W)
(QF-0)(02- 0

(cyclic perm. y=1,2,3,

(C1)

the fre_quencieﬂi (y=1, 2, 3 are the opposite of the roots
of cubic

Py =2 +a, 72 +az+ay (C12
2 CRN
2 2 wk,s wk,s Wy
€p &
ws we —
K, k, w
a, = wiu?+ o S(wfo +W2) + Wz—ss_
0

wEoWZwES

ao =
€0

The Gaussian integrals E¢C8) are convergent ik, are

positive numbersl(s,k,n). This condition is fulfilled ifQi

are all positive. The numerical minimization of the varia-
tional free energy has been made enforcing this constraint.

Performing the infinite product in EGC8) we have
. [ sinh(fiw, o/ 2kgT) ]DN[ sinh(fiw/2kgT) }DN
o/ 2keT Awl2ks T
1 1), s il 2kgT
Sky Sinh(#A,, i/ 2kgT)

and finally we substitute the sum ¢k ,s) with the integral
on the WC DOSp(w) in the free energyF+

PHYSICAL REVIEW B71, 184303(2009

ff drdoDy(7- o-)J (d 9 47T<elq {G(n-G(y_

2 )3 2
,8/2
__2ﬁf

o(T)
\/(77/2)d3D(7')
while in 2D(q?=¢?% +q?)
B
ff deU'DO(T_U')f
0
Do(T)

-\ (A2
:_2'8(5>f0 d V(7/2)dyp (1)

wheredp(7) is the imaginary time diffusion in the LPC de-
fined as(3D or 2D)

(C14)

d’q, 27

—(1/2)d (7'—0')q2
e 20 L
(2 ”)2 q

(C15

(|d(n) - GO

dp(7) = D

(C16)

The mean value 0Fg.y,[Eq. (16)] is
<SFeyr>T/N

2 _ B
:—DmW(UTWZ)ff drdoD1(7- o)dp(7
0

(C1y
To obtain Eqs(C14), (C15), and(C17) we have used

-0).
(GG = g (W2dp(r0)e (C19
We will demonstrate Eq(C18) in the next section.

1. Calculation of {exp{ig-[U,(7) -G ,(a)1})T
From Egs.(B15) and (C5) we have

ﬁ =- kBTm{Sinh( tho>Sim—<h_W):| iq - [U(7) — t(o)] = 2 [qlz,s,nJ;,k,n(T_ o,4) +c.cl,
DN 2kBT 2ksT sk>0
n#0
+ kBTf dwp(w)z In{smt‘(—(Lw))]. (C19
2kgT
(C13) J;,k,n(T_ (T,ﬁ) - _/Nd élz,s(eiwnq-_ eia)n(r)eilail' (CZO)
To calculate the mean value 8§ [Eq. (7)] in 3D we v
use the following identity/ then we have
|
dof dq .
(exp(iq - [G(7) = G(0)]))7= [T e kSN e sn ek *Ksndisn ooz ] e kaTmy ¢ 130
ZT & n+0 WkBT/mwn sk,>0
sk,k,>0 n#0
— e—(1/2)(1/N)§k|d . ég’s\zdws’k(ra)qz - e—(l/Z)(l/ND)S%kdw&k(r—o)qz - e—(1/2)dD(7hzr)q2' (C21)
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where the component of frequeney) of the imaginary time
diffusion dp(7) is [A,=A (ws)) ,Q,= Q. (wsy) ]
T

1
dp(7) = ﬁzk Ao, (7)

A, coshB()./2) — coshQ,[ /2 - 7])
m< 02 sinh(BQ.,)

23k

B NDsk

(C22

APPENDIX D: MEAN ELECTRONIC FLUCTUATION

PHYSICAL REVIEW B 71, 184303(2005

[IF = 77+ (d(D1202)F21262(7)]

e
[27€3(7)]P"? '
dD(T)

(E3)
=l

We note that the function of EGE3) does not depend only
on the relative distancé’ -1 but also on the distance of
electron from its localization position in the crystal. Then Eq.

(p1(Nps(F", 7)1 ={p2(N)1

where

ez(r):do(f)[l— (E4)

The relation between the mean electronic fluctuation and

the imaginary time diffusiordy(7) Eq. (C16) is

2
dp(7) = 5[<Iﬁ(0)|2> = (d(7) - 6(0))] (D1)

comparing Eq.D1) and Eq.(C22 for dp(7) and inserting
the DOS function, we have
tr( ﬁﬂy(w)>
5 )

()
(D2)

D
If we fix w=w,, we have(;=w, for one solution of the
cubic polynomial Eq(C12) and by Eq.(C11) we have also
A;=0. The other two terms give

3

- [ donr3

hA (@)
2mO7( )

o2 =

02—’y #D h(m)
N _ 1 LO 1
(u >+—fdwp(w) 0?02 2 Dlcot 2T/ (D3)
2
" - wio hD r(mz)
=|d t . (D4
) f oplo) QZ 02 2m0," "M 27/ PV

Note that if we take a single Wigner frequency being repre
sentative of the electronic spectrup(w)=8w-wy)] we
recover the results of Ref. 29.

APPENDIX E: POLARON RADIUS

(32) becomes
1(P o ALY
cse'lef dr—2D (1) T
)y TP o,

We assume&=0 (electron in its lattice pointand then obtain
the variational radial-induced charge density

(ES

~r21202(7)

[27T€2(T)]3/2. (EG)

B
gr(r) = T2O(2r)P-1 f drD(7)
28 0

By Eg. (34) we obtain the variational polaron radius

o B 1/2
Ry7= lof f dTDo(T)fz(T)] . (E7)
0

1. High density limit

The characteristic lengtf?(7) defined in Eq.(E4) is ex-
pressed in terms of-dependent positional fluctuatiodg(7)
[Eg. (C16)], which is an integral of a functiord, (’T)
weighted by the DO$(w) of the Wigner latticd Eq. (C22)]
To have an estimate of this integral we replace the integra-
tion by msertlng an average frequency in the functd;gp

We choosewp/ e, because it is the typical frequency of the

electronic fluctuation in the crystal for the high-density re-
gime[Eq. (47)]. Moreover, we consider the low-temperature
limit (kgT< ﬁwp/\sw) Then from Eq.(E4) we get the fol-
lowing estimate fort?(7):

We now calculate the density-density correlation function

f
of the Eq.(32) for the variational harmonic actiofy. We €3(7) = I ————=(1 - 2ephEn), (E8)
wpl &

assume that the equilibrium position of the reference electron

1=1 is the origin. With the same method to obtain Egs.The characteristic time scale of electronic diffusion in imagi-
(C21), we performed the following Gaussian integrals for thenary time _is 1y= (wp/\gw) 1 The rising time is 7

density distributiorp,(r) =1/(2wp/\=..). Therefore, we have approximately

qu D e—r2/2(r$- i
<p1(|?)>T:f We'q'%e'”lqh: (272" (ED (1) = e (1< 7e),
T
and
2 f=—1 =
(e iingd' =)y (AP ARG [ + ], €5(7) = - (1> 7g).

2m——

(E2) Ve,

Inserting Eq.(E2) into Eq.(32), we have the density-density
correlation function in the imaginary-time for the 1 elec-
tron

Now in the variational polaron radiug, + of Eqg. (E7) an-
other time scale appea@h—w,_o, but at high densityr,,
> 7,. Now we can separate the lowest time scalecontri-
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bution in the imaginary time integral so that we can approxi-

mate the integral in EqEE7) as
JTeI
0

e—[r2/2€2 7]

[27m€?(T

2/2— )

°)f 2 62( T2nl?(n)]?

ﬂl(l_ . /r_Z)
2k r e (u?)

dDo(7) —~—5 ]3/2

PHYSICAL REVIEW B71, 184303(2005

P e [r%2¢3(7)] e‘(me;\fZ) P
) dTDO(T)[zﬂ_ez(T)]am = (2m(U2))32 ffa dD(7)
g TP
~ @n()*

Collecting these results we get E¢8).
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