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The residual electrical resistivity in dilute alloys of nonmagnetic transition metals is calculated within Mott’s
two-band model without using the electron-impurity interaction as a small parameter. The linear dependence
between reduced residual electrical resistivity and square of modulus of the nondiagonal element of the
scattering T matrix is found for row transition metals dilute alloys. Experimental and calculation results are
compared.
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I. INTRODUCTION

It is well known that in the majority of dilute alloyssup to
5 at.% of impurityd of transition metal residual electrical re-
sistivity sRRd, r is linear with impurity concentrationc.1–3

The specific contribution of impurity atoms to RRsrc
=dr /dcd value essentially depends not only on the solvent
type but also on the type of impurity. One can see that within
classical Linde’s and Friedel’s rules, the calculation of these
contributions leads to unreasonably high values of RR.4,5 The
reasons are the single-band conductivity model and theweak
interaction limit used in RR calculations.

It was shown5 that the conductivity in transition metals
and their alloys is realized mainly via highly mobiles elec-
trons, which scatter not only within thes band, but transit to
a partially filledd band as well. This process results in im-
mobilization of some fraction ofs electrons into thed band
and according to Mott it is the main mechanism explaining
the high resistivity of transition metals.5 The probability of
this interband scattering process is proportional tod-band
density of statessDOSd at the Fermi level and consequently
the resistivity is proportional to the ratio ofd-band DOS to
s-band DOS. The correlation between thed-band DOS value
and resistivity values is evidence pointing to the validity of
Mott’s two-band conductivity model application. Experimen-
tal data on transition metals and their alloys resistivity dem-
onstrate such a correlation:sid the temperature resistivity co-
efficients are proportional to thed-band DOS in pure
transition metals;6 sii d RR maxima in concentration depen-
dence in transition metal continuous solid solutions are
shifted toward the metal having a higherd-electron DOS.7,8

Also, the correlation betweenrc and the solventd-electron
DOS is seen in dilute alloys as wellsFig. 1d.

On the other hand, Mott’s two-band conductivity model
experimental confirmations follows, for example, from high-
frequency conductivity data extrapolated to zero frequency:
the ratio ofs to d conductivities is about 10sRef. 9d; there-
fore the conductivity in transition metals and their alloys is
realized mainly via highly mobiles electrons. The contribu-
tion of d electrons to total conductivity is very low and thus
might be neglected. Consequently, our opinion is that Mott’s
two-band conductivity model may well be applied to the
transition metals dilute alloys RR calculation.

At the present timeab initio sKKR-CPA, LMTO, and oth-

ersd methods are used for transition metal alloys kinetic
properties calculations by some authors.10,11 These methods
demonstrate excellent results of energy spectrum and DOS in
metallic alloys calculations but may be applied to calculation
of conductivity only in a simple case of the single-band
model. The use of this model in the case of the multiple
bands conductivity model is rather complicated and have a
lot of unsolved problems up until now. The most moot point
is an equivalence between the electron transport time and the
one-electron level relaxation time. If using this approach one
has to introduce a number of relaxation times in accordance
with possible scattering processes, the definition of this value
is a fairly difficult problem by itself and has no solution
within the approaches ofab initio methods at the present
time. The opportunity to take into account the interband tran-
sitions was discussed in the pioneer Butler’s work.10 Indeed,
Butler and the authors following him put into operation a
complementary approximation for taking into account an in-
terband transition that allows a rather rough estimation only.

Moreover, some principal things cannot be found within
the relaxation time approximation. For example, one cannot
postulateab initio the rule for the summation of several re-
lation relaxation times. According to the commonly used
rule, one has to summarize independently conductivities in
several bands in analog to the parallel connection of several
isolated conductors. Actually these conductorsss and d

FIG. 1. The correlation between the specific contribution of im-
purity atoms to RR and solventd-electron DOS on the Fermi level.
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bandsd cannot be considered as isolated and it will be shown
in the present paper that the resulting conductivity of a tran-
sition metal alloy is not identical to the conductivity of con-
nected in parallel “isolated” electron conductive bands. It is
impossible to obtain this principal result in the framework of
the relaxation time approximation.

In this paper we will formulate an approach and obtain the
kinetic equation within the two-band conductivity model for
the case of anarbitrary electron-impurity interaction and
perform results of RR calculations for a number of transition
metal dilute alloys in the simple model-Thomas-Fermi
screened potential approximation.

II. THE MODEL

Let us consider a one-electron Hamiltonian describing
scattering ofs and d electrons by a Coulomb field of ran-
domly distributed A- and B-type ions in a binary alloy. Intra-
and interband transitions of conduction electrons are the re-
sult of scattering of the type

Ĥ = o
l

Elal
+al +

1

N
o
n,l,l8

exps− iskW − kW8,rWnddBl,l8sndal
+al8,

s1d

whereEl is the energy of electron with quantum numberl,
which includes band indexj s j =s,dd and wave vectorkW; rWn is
a radius vector of a crystal lattice site with the numbern. The
Bl,l8snd is the configurationally dependent part of electron
energy:

Bl,l8snd = nsndflll8d j ,j8 + lll8s1 − d j ,j8dg, s2d

where coefficientnsnd=aAsndcB−aBsndcA describes the ran-
dom distribution of ions at crystal lattice sites:aAsBdsnd=1, if
an ion at siten is of theAsBd type and 0 in the other case.
Matrix elementslll and lll8 characterize the intensities of
intra- and interband electron transitions, respectively,

lll8 =
1

V0
E drW cl

*DUsrWdcl8, s3d

wherecl are the solvent electron wave functions,V0 is unit
cell volume, andDUsrWd=UAsrWd−UBsrWd is an interaction en-
ergy.

One can include an expression definings-d hybridization,
but it is well known that it only means a renormalization of
nonperturbedone-electron energy level values, i.e., does not
contribute to perturbation and can be incorporated withEl. It
is seen that by accounting for the hybridization the initials
andd bands transform into news1 andd1 bands. But for the
sake of simplicity let us use previous symbols, i.e.,s andd.

It has been shown6 that a system of kinetic equations de-
fining the nonequilibrium additionsf l to equilibrium Fermi
distribution functionsf l

0 in the linear to external electrical
field approximation for two-band conductivity model can be
deduced without using the relaxation time limit. The Swen-
son’s identity law12 for the generalized scattering probability
Wll8 in time units,

Wll8 = uTll8u
2 − o

l9

Wll9uGl9u
2uTl9l8u

2, s4d

to the first order in concentrationc written as Wll8snd
= uTll8u

2 sin theweak interactionlimit Wll8<uBll8u
2d. Tll8 is the

matrix element of the totalT-scattering matrix andGl =sz
−Eld−1 does the diagonal part of resolvent operator of Hamil-

tonian Ĥ, Eq. s1d. Since the configuration averaging of the
one siteT-matrix elements in a dilute alloy is,utll8sndu2.c
=c·uTll8u

2 sRef. 13d, in single-electron and one-site approxi-
mations one obtains the following expression for kinetic
equations in the framework of the two-band conductivity
model:

2cpHo
kW8

dsEkWs − EkW8sduTkWs,kW8su2sfkWs − fkW8sd + dsEkWs − EkW8dd

3uTkWs,kW8du2sfkWs − fkW8ddJ = e"sFW ,vWkWsd
]fkWs

0

]EkWs
, s5d

wheree is the electron charge,FW is an external electric field,
and yW l is an electron velocity with quantum numberl. The
equation ford-band electrons can be obtained by simple in-
dex replacements↔d in s5d. The problem can be solved by
putting the nonquilibrium additionsf l in the form of the
right-hand side part ofs5d:

f l = e"sFW ,vW ldCl

]f l
0

]El
, s6d

whereCl are the coefficients to be found. Such substitution
transforms kinetic Eq.s5d into a system of algebraic equa-
tions for Cl coefficients:

FCkWs

CkWd
G = FIkWss+ JkWsd LkWsd

LkWds IkWdd + JkWds
G−1F1

1
G , s7d

wherefClg is a matrix column ofCl coefficients and

IkW j j = c
V0

s2pd3 E dkW8dsEkW j − EkW8 jduTkW j ,kW8 ju2s1 − cossvWkW j,vWkW8 jdd,

JkW j j 8 = c
V0

s2pd3 E dkW8dsEkW j − EkW8 j8duTkW j ,kW8 j8u
2,

LkW j j 8 = − c
V0

s2pd3 E dkW8dsEkW j − EkW8 j8d

3uTkW j ,kW8 j8u
2U vWkW8 j8

vWkW j
UcossvWkW j,vWkW8 j8d. s8d

The first integral describes intraband electron scattering
within a j band. The second and third integrals refer to in-
terband scattering processes,j → j8 and j8→ j , respectively.
Systems7d yields

CkWs =
IkWdd + JkWds+ LkWsd

sIkWss+ JkWsddsIkWdd + JkWdsd − LkWsdLkWds
. s9d

CoefficientCkWd is obtained by thes↔d index replacement.
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As follows from s6d ands9d, the nonequilibrium additions
f l to equilibrium Fermi distribution functions fors and d
electrons essentially depend on both intra- and interband
transitions.

To calculate coefficientsCkW j one has to define the squared
modulus of nondiagonal elements of the scatteringT matrix.
It is reasonable to use the common definition of the one
electronT matrix,

1

N
o
n,l,l8

exps− iskW − kW8,rWnddTll8sndal
+al8 =

1

N
o
n,l,l8

exps− iskW

− kW8,rWndd 3 FBl,l8snd + o
l9

Bl,l9sndGl9Bl9,l8snd

+ ¯ Gal
+al8. s10d

It is impossible to sum up the rows10d without simplifying
assumptions, so we use the quasilocal approach15 in the fol-
lowing form:

E drW cl
*VdsrWdcl8 =

1

pV0
E

0

p

dQE drW cl
*DUsrWdcl8 = l j j 8,

s11d

where l j j 8 is the quantity averaged over angles between

wave vectorskW andk8W . Then the power series ins10d can be
summed up exactly, since the interaction matrix elementsBll8
depend on the band indexes only.

Let us determine the Green’s functionfFg and interaction
matrix fBg as double row matrices on band indexes, whose
elements are not dependent on the wave vector:

fFg = FFs 0

0 Fd
G, fBg = Flss lsd

lds ldd
G , s12d

where

Fj =
1

N
o
kW

1

z− EkW,j
s13d

is Green’s function of an electron in thej band.
Note that the power series ins10d is a geometric progres-

sion of matricess12d, which can be easily summed up:

fBg + fBgfFgfBg + fBgfFgfBgfFgfBg + ¯ = fBgsfIg − fFg

3fBgd−1. s14d

As a result one obtains the squared moduli of elements of
the T matrix:

uTssu2 =
1

A
ulsss1 − Fdlddd + lsdFdldsu2,

uTsdu2 =
1

A
ulsdu2, uTdsu2 =

1

A
uldsu2

uTddu2 =
1

A
uldds1 − Fslssd + ldsFslsdu2, s15d

where

A = us1 − Fslssds1 − Fdlddd − lsdFsldsFdu2. s16d

Straightforward calculations usings15d and s16d are rather
difficult. Since the probability of scattering in thes band is
sufficiently low, i.e., gssEFd!gdsEFd, the relationship
ul j j 8Fsu!1 is valid and allows rewritings15d ands16d in the
simplified form:

uTssu2 =
1

A
ulsss1 − Fdlddd + lsdFdldsu2,

uTsdu2 =
1

A
ulsdu2, uTdsu2 =

1

A
uldsu2, uTddu2 =

1

A
ulddu2,

and

A = u1 − Fdlddu2. s17d

One can see that elements of theT matrix in a dilute alloy
are defined via Green’s functions of solventd electrons and
interaction matrix elements calculated with electron wave
functions assigned to the solvent.

Taking into account substitutions6d, the expression for the
electrical current can be written as

JW = 2
e2"

3
FWo

j

nj E dE Clvl
2]f l

0

]El
gjsEd, s18d

wherenj andgjsEd are the concentration of electrons in thej
band and the DOS in thej band, respectively.

One obtains that the main result for electrical conductivity
after integrations18d at zero temperature is

s = 2
e2"

3
Fnsvs

2gssEFd
Idd + Jds+ Lsd

sIss+ JsddsIdd + Jdsd − LsdLds

+ ndvd
2gdsEFd

Iss+ Jsd+ Lds

sIss+ JsddsIdd + Jdsd − LsdLds
G . s19d

This result corresponds to the conductivity summation
rule of connected in parallel “nonisolated” conductorsss and
d bandsd. One can see from a later equation that the analog to
parallel connection of several “isolated” conductors usually
used for a resistivity calculation of the system with many-
band conductivity character is not valid. It is to be noted that
a similar result was derived in earlier works6,14 for many-
band conductivity models.

III. RESULTS AND DISCUSSION

It is well known that scattering probabilities are propor-
tional to the DOS in accepting bands andgssEFd!gdsEFd.
According to Mott’s model approximation, i.e.,Lsd=Lds=0
swhich is equivalent to a statement that thed band is a trap
for s-conduction electronsd the contribution ofs intraband
scattering to the total scattering probability can be neglected
compared withs-d scattering. Hence the main contribution to
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the RR in dilute alloy comes from theJsd integral, which
corresponds tos-electrons transfer from ans band to ad
band:

Jsd= c
V0

s2pd3 E dkW dsEkWFj − EkW8 j8dU l

1 − Fdl
U2

. s20d

The final expression for ther in this approximation is the
following:

r = c
6pm

e2"nsEF
SgdsEFd

gssEFd
DU l

1 − Fdl
U2

. s21d

It should be emphasized thatrc turns out to be dependent,
not only on the imaginary part of the Green’s function at the
solvent Fermi level but on its real part as well.

Within the weak interaction approach, i.e., uTj ,j8u
2

<ul j j 8u
2, the s→d transitions make the dominant contribu-

tion to RR leading to the following expression, typical for
classical Mott’s model:

r , c
gdsEFd
gssEFd

ulsdu2. s22d

The main difference betweenstrong and weak limits is
only in the presence of the denominatoru1−Fdlu including
the solvent Green’s function.

Let us consider some of the simple cases—the Thomas-
Fermi screened potential approximation of the interaction be-
tween the conduction electron and impurity atoms. Accord-
ing to this approach the matrix elements of the electron-
impurity interaction in the plane-wave representation are

DUsrd =
eDZ

4p«0

e−qr

r
, s23d

whereq is inverse screening length andDZ is the relative
excess electric chargesREECd of an impurity ion.

Moreover, one can neglect the difference between aver-
aged interaction matrix elements of the intensities of intra-
and interband electron transitions, i.e.,lsd<ldd=l, under-
standing that it is a sufficiently rough approximation. After
averagings11d over angles betweenkW andkW8 one obtains

l = Se2DZ

«0V0
D 1

qÎ4kF
2 + q2

. s24d

As is seen froms24d ands21d, the dependence of therc on
the impurity type is described only by the REEC of the im-
purity ion. The other parameters of the system are deter-
mined by the solvent.

The REECDZ of impurity ions in nontransition metals is
commonly taken as the difference between the solute and
solvent valencies.1,4 But for transition metals the valency can
be unambiguously defined only in intermetallic compounds.
It has been proposed16 to take the valency of all transition
metals in simple metal solvents equal to 2. This assumption
seems to be meaningless for the case of transition metal al-
loys. Thus it is noteworthy thatDZ has another physical
sense.

We think that two factors may determine the REEC value
in transition metal alloys. The first is solvent lattice deforma-
tion caused by impurity ion embedding and the second is
network excess charge resulting from an impurity ion in a
solvent cell.

One way to estimate the REEC value is theab initio
LDA-method,17 which was applied to the problem in the
following manner.

The first step is standard calculation of an energy structure
and a DOS of pure metal solvent under the condition that the
charge flow through the unit cell surface equals zero. The
second step is the direct calculation of an REEC of the sys-
tem under consideration. The background of the latter calcu-
lation was as follows. An impurity atom was immersed into
the solvent cell consisting of 20 atoms assuming that this
impurity ion cannot change the solvent wave functions and
Fermi surface significantly. The effective charge of the cell,
i.e., charge flow through the surface, then became nonzero
due to the presence of the impurity atom and could be ob-
tained using the solvent wave functions.

The second method to estimate the REEC value is the
semi-empirical procedure described in Appendix A. This
method was used to check theab initio calculation results.
The REEC values obtained for a number of impurities and
solvents are presented in the Table I.

It is obvious that the REECDZ,1 in all considered di-
lute alloys of transition metals. It means that the valencies of
alloy components are approximately equal and this result
agrees qualitatively with Harrison.16

In isoelectronic metal alloys, such as Nb–Ta, Ta–Nb,
V–Nb, Nb–V, V–Ta, Mo–W and W–Mo, a correlation be-
tween under-sover-d size deformation effect parameters
s1/adsda/dcd swherea is the alloy lattice parameterd, and the
REEC value could be expected. Actually, the quantities
s1/adsda/dcd, calculated on the basis data,18 were found to
be proportional to corresponding REEC values. However in
nonisoelectronic metal alloys such a correlation cannot be
found. The cause might be an essential difference between
electron configuration of solvent and impurity ions. There-
fore one has to take into account both factors: the lattice
deformation and electronic structure modification in the ma-
trix solvent.

Let us consider the Nb-solvent case. The obtained values
of DZ for Ta, V, W, and Mo impurities had approximately
equal absolute values but opposite signs if the mentioned

TABLE I. The calculated values of the REEC charge of differ-
ent solutes in various solvent metals.

Impurity

Matrix solvent

V Nb Mo Ta W

Ti 0.371 −0.237

V 3 −0.13 −0.2 −0.152

Nb 0.13 3 −0.17 −0.067 −0.18

Mo 0.17 3 0.12 −0.041

Ta 0.2 0.067 −0.12 3 −0.161

W 0.3 0.18 0.041 0.161 3
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metals were considered in turn as a solvent or solute:
DZNb–Ta=−DZTa–Nb ssee Table Id.

This fact allowed us to assume the REEC as a universal
constant for each pair of metals. SuggestingDZ additivity,
one can obtain it for every pair of metals. For example,
DZMo–Ta=−DZTa–Mo=DZNb–Ta−DZNb–Mo. It is easy to under-
stand using Fig. 2.

Using the results for REEC values ands23d, one can per-
form the RR calculation. As seen from expressions23d, r is
proportional to the squared modulus of a nondiagonalsd
T-matrix elementul / s1−Fdldu2 and DOSd electrons at the
Fermi level. So the linear relationship betweenrg srg is r
normalized tod electrons DOS at the Fermi leveld and the
squared modulus of a nondiagonalsd T-matrix element
should be verified experimentally. One can see the compari-
son of calculation results and experimental normalized RR
values for some V-, Nb-, Mo-, Ta-, and W-based alloys in
Fig. 3.

In more detail, the results of calculations of RR for V-,
Nb-, Mo-, Ta-, and W-based alloys were compared with ex-
perimental data in Table II.

Minimal values of RR were found in the isoelectronic
Nb–Ta, Ta–Nb, Mo–W, and W–Mo alloys having the lowest
values ofDZ and the electron-impurity interaction constant
sulFu<0.03–0.1d. In this case perturbation theory can be
applied for the calculation of RR. In the other alloys the
intensity of the electron-impurity interaction is sufficiently
high sulFu<0.2−0.8d and the latter approach is not valid.
For example,ulFu=0.27 and 0.16 in V–Nb and Nb–V iso-
electronic alloys, respectively, since thed-electron DOS at
the Fermi level of the host metal andDZ have sufficiently
high values.

The typical difference between RR experimental and cal-
culated values is 10%–15% in the majority of dilute alloys.
But in Mo–V and W–V alloys, the ratio of calculatedsusing
s23dd to experimental values exceeds 4. It should be noted
that in W and Mo the ratio of DOS ofd and s electrons is
only about 4, i.e., sufficiently low for the application of the
Mott’s approximation. RR calculations performed according

to s19d without this approximation yields 0.26 and
0.21mV cm/at.% in Mo–V and W–V alloys, respectively.
These values agree satisfactorily with the experimental data.

IV. CONCLUSION

It is demonstrated that in dilute alloys of transition metals
the reduced residual electrical resistivitysRRd is a linear
function of squared nondiagonalsd T-matrix elements calcu-
lated with plane wave functions.

The approximate values of relative excess electric charge
sREECd obtained by this method can be used for a prelimi-

TABLE II. Experimental data and results of calculation of RR
for V-, Nb-, Mo-, Ta-, and W-based alloyssmV cm/at.%d.

Impurity

Matrix solvent

V Nb Ta Mo W

Ti Exp 1.35 1.26 0.80

Calc 1.20 1.21 1.59 2.16 2.00

V Exp 0.34 0.65 0.32

Calc 0.29 0.67 1.23 1.09

Nb Exp 0.75 0.20 0.40 0.51

Calc 0.63 0.13 0.46 0.62

Ta Exp 1.10 0.19 0.38 0.51

Calc 1.23 0.14 0.26 0.40

Mo Exp 1.23 0.80 0.45 0.04

Calc 1.88 0.82 0.48 0.04

W Exp 0.90 0.91 0.65 0.08

Calc 2.00 1.29 0.99 0.05

FIG. 2. The calculated REEC values for a row of impuritiessTa,
V, W, and Mod in a Nb solvent.

FIG. 3. The experimental data for the relationship between the
specific contribution of impurity atoms to RR and the squared
modulus of nondiagonalsd T-matrix elements for various 3d alloys
ssquaresd and their approximationssolid lined.
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nary prediction of therc values of any transition metal im-
purity in any transition metal solvent.
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APPENDIX

To determineDZ in a transition metal alloy, the following
semiempirical procedure was developed. Using the experi-

mental data forrc and expressionss21d and s23d, one can
restore the REEC values for a number of alloys.

According to Skorcheletti19 the inverse screening length
in the rigid spheres model can be replaced by the inverse
covalent radius. The latter was calculated according to the
simple empirical procedure based on the solvent metal peri-
odical table number.22 The calculated values of the inverse
covalent radius and the other band and energy parameters of
the electronic structure of pure transition metal solvents20,21

used in calculations ofrc are presented in Table III. The real
parts of Green’s functions were calculated using the Leman
representation according to the known DOS functions com-
puted from the first principles. Thes-electron DOS at the
Fermi level was calculated within a free electron
approximation.16
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the real and imaginary parts of the Green’s function, respectively.

Parameter V Nb Mo Ta W

EFseVd 10.36 9.22 10.95 9.73 12.35

gdsEFdss/eV at.d 1.9 1.65 0.59 1.61 0.55

rkovsnm−1d 12.11 14.06 13.15 13.64 13.01

ResGdseV−1d 0.17 0.77 −0.5 0.8 0.01

ImsGdseV−1d −3.21 −2.86 −0.78 −1.77 −0.3
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