PHYSICAL REVIEW B 71, 184206(2005

Residual electrical resistivity in dilute nonmagnetic alloys of transition metals
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The residual electrical resistivity in dilute alloys of nonmagnetic transition metals is calculated within Mott’s
two-band model without using the electron-impurity interaction as a small parameter. The linear dependence
between reduced residual electrical resistivity and square of modulus of the nondiagonal element of the
scattering T matrix is found for row transition metals dilute alloys. Experimental and calculation results are
compared.
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[. INTRODUCTION er9 methods are used for transition metal alloys kinetic
properties calculations by some authtté! These methods

It is well known that in the majority of dilute alloy@p to ~ demonstrate excellent results of energy spectrum and DOS in
5 at.% of impurity of transition metal residual electrical re- metallic alloys calculations but may be applied to calculation
sistivity (RR), p is linear with impurity concentratiols.'=®  of conductivity only in a simple case of the single-band
The specific contribution of impurity atoms to RR, model. The use of this model in the case of the multiple
=dp/dc) value essentially depends not only on the solvenbands conductivity model is rather complicated and have a
type but also on the type of impurity. One can see that withirlot of unsolved problems up until now. The most moot point
classical Linde’s and Friedel’s rules, the calculation of thesdS an equivalence between the electron transport time and the
contributions leads to unreasonably high values ofRRhe  one-electron level relaxation time. If using this approach one
reasons are the single-band conductivity model andviek  has to introduce a number of relaxation times in accordance
interaction limit used in RR calculations. with possible scattering processes, the definition of this value

It was showa that the conductivity in transition metals is a fairly difficult problem by itself and has no solution
and their alloys is realized mainly via highly mobieelec-  Within the approaches odb initio methods at the present
trons, which scatter not only within treband, but transit to ~ time. The opportunity to take into account the interband tran-
a partially filledd band as well. This process results in im- Sitions was discussed in the pioneer Butler's witkdeed,
mobilization of some fraction of electrons into thel band ~ Butler and the authors following him put into operation a
and according to Mott it is the main mechanism explainingcomplementary approximation for taking into account an in-
the high resistivity of transition meta¥sThe probability of ~ terband transition that allows a rather rough estimation only.
this interband scattering process is proportionaldiband Moreover, some principal things cannot be found within
density of state$DOS) at the Fermi level and consequently the relaxation time approximation. For example, one cannot
the resistivity is proportional to the ratio ofband DOS to  postulateab initio the rule for the summation of several re-
s-band DOS. The correlation between thand DOS value lation relaxation times. According to the commonly used
and resistivity values is evidence pointing to the validity ofrule, one has to summarize independently conductivities in
Mott's two-band conductivity model application. Experimen- seéveral bands in analog to the parallel connection of several
tal data on transition metals and their alloys resistivity demisolated conductors. Actually these conductdssand d

onstrate such a correlatiofi) the temperature resistivity co- 1 o B
efficients are proportional to the-band DOS in pure I ., Bk . .
transition metal§; (i) RR maxima in concentration depen- 15} I‘fp."rﬁr;ype 1%
dence in transition metal continuous solid solutions are S - 116 %
shifted toward the metal having a highg+electron DOS:8 10} —&—Nb 145
—©—Ta 1

Also, the correlation betweep, and the solvent-electron
DOS is seen in dilute alloys as wékig. 1).

On the other hand, Mott’s two-band conductivity model
experimental confirmations follows, for example, from high-
frequency conductivity data extrapolated to zero frequency:
the ratio ofs to d conductivities is about 10Ref. 9; there- I
fore the conductivity in transition metals and their alloys is ¢, |
realized mainly via highly mobiles electrons. The contribu- I %
tion of d electrons to total conductivity is very low and thus o0 .
might be neglected. Consequently, our opinion is that Mott's
two-band conductivity model may well be applied to the
transition metals dilute alloys RR calculation. FIG. 1. The correlation between the specific contribution of im-

At the present timab initio (KKR-CPA, LMTO, and oth-  purity atoms to RR and solvedtelectron DOS on the Fermi level.
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pands cannot be considered as |so_lated and it _vv_|II be shown W, =Ty 2 - D Wi |Gy 2| Ty 2, (4)
in the present paper that the resulting conductivity of a tran- ”
sition metal alloy is not identical to the conductivity of con-
nected in parallel “isolated” electron conductive bands. It isto the first order in concentratioe written as W (n)
impossible to obtain this principal result in the framework of =|Ty/|? (in theweak interactiodimit W, = |By|?). Ty is the
the relaxation time approximation. matrix element of the total-scattering matrix ands,=(z

In this paper we will formulate an approach and obtain the-E;)* does the diagonal part of resolvent operator of Hamil-

kinetic equation within the two-band conductivity model for {onjan H, Eq. (1). Since the configuration averaging of the

the case of ararbitrary electron-impurity interaction and one siteT-matrix elements in a dilute alloy is|t; (n)[2>

perform results of RR calculations for a number of tran5|t|onzc,|-|-”,|2 (Ref. 13, in single-electron and one-site approxi-

metal dilute alloys in the simple model-Thomas-Ferminations one obtains the following expression for kinetic

screened potential approximation. equations in the framework of the two-band conductivity
model:

Il. THE MODEL ZCW{E 8(Egs— Epro)| Tesire(fis— firs) + 8(Egs — Egrg)
lZ/
Let us consider a one-electron Hamiltonian describing o
scattering ofs and d electrons by a Coulomb field of ran- PR
e : . . 2 - g
domly distributed A- and B-type ions in a binary alloy. Intra- X[ Tisral (Fis = fR'd)} = eﬁ(Fkas)&?i (5)
and interband transitions of conduction electrons are the re- ks

sult of scattering of the type . = -
g yp wheree is the electron chargé; is an external electric field,

~ . 1 Loy . and y is an electron velocity with quantum numblerThe
H=2X Eaa+ < > exp-i(k-K.f)By (nafa, equation ford-band electrons can be obtained by simple in-
! nll’ dex replacemeng«<d in (5). The problem can be solved by

(1) putting the nonquilibrium additions; in the form of the

whereE, is the energy of electron with quantum number right-hand side part of5):

which includes band index(j =s,d) and wave vectok; f,, is f = eh(E.0NC (9_f|0 5

a radius vector of a crystal lattice site with the numbefhe = eh(F.0) "o, (6)

B, /(n) is the configurationally dependent part of electron . o

eﬁergy: whereC; are the coefficients to be found. Such substitution

transforms kinetic Eq(5) into a system of algebraic equa-

By (n) = v(m)[\y: &0 + Ny (1= 8501, (2)  tions for C, coefficients:

where coefficienty(n) = aa(n)cg— ag(n)c, describes the ran- ngs} ~ [Igs; Jisd Lisd ]_1[1} o

dom distribution of ions at crystal lattice sitasg)(n)=1, if Ciy Ligs g+ Jigs 1|

an ion at siten is of the A(B) type and 0 in the other case. _ _ o
Matrix elements\, and A, characterize the intensities of Where[Cy] is a matrix column ofC; coefficients and
intra- and interband electron transitions, respectively,

Q% (. o
||2“ = CW J dk 5(ERJ - EE’J)|T|ZJ,|Z’1|2(1 - Coivﬁj,vﬁrj)),

1 L
)\"l:Q_fdrl/I]AU(F)lp]r, (3)
0
Q o
wherey; are the solvent electron wave functiofik, is unit Jgjr = Cﬁ f dk' 8(Eg; = Exj) [Ty |
cell volume, andAU(r)=UA(r)-UB(F) is an interaction en- i
ergy. Q
One can include an expression defingid hybridization, L' =-c¢ 03 J dK' 8(Eg; - Egj)
but it is well known that it only means a renormalization of (2m)
nonperturbedne-electron energy level values, i.e., does not G
contribute to perturbation and can be incorporated \&jtHt ><|TEj E,j,|2 # COS(JRJ,JRW)- (8)
is seen that by accounting for the hybridization the inial ' Kj

andd bands transform into new andd; bands. But for the
sake of simplicity let us use previous symbols, iseandd.

It has been shovfrthat a system of kinetic equations de-
fining the nonequilibrium addition§ to equilibrium Fermi
distribution functionsf? in the linear to external electrical

The first integral describes intraband electron scattering
within a j band. The second and third integrals refer to in-
terband scattering processgs; j’ and |’ — j, respectively.
System(7) yields

field approximation for two-band conductivity model can be I gd + Jikds + Licsd

deduced without using the relaxation time limit. The Swen- Cis= (oot Jieg) (e + Jead) — Liodorgs. ©)
son’s identity lav? for the generalized scattering probability kss 7 YhsdtTkdd  <kd ksd-kds

W+ in time units, CoefficientCiy is obtained by thes« d index replacement.
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As follows from (6) and(9), the nonequilibrium additions , 1 5
f, to equilibrium Fermi distribution functions fos and d Tad :Z\|)\dd(1_Fs)\ss)+)\dst)\sd| ; (15)
electrons essentially depend on both intra- and interband
transitions. where
To calculate coefficient€; one has to define the squared _
modulus of nondiagonal elements of the scattefingatrix. A= (1 ~FAed(L = Fehad) = AsdFhaddl* (16)
It is reasonable to use the common definition of the onestraightforward calculations using5) and (16) are rather

electronT matrix, difficult. Since the probability of scattering in theeband is
sufficiently low, i.e., gs(Ep)<g4(Eg), the relationship
1 >, exp—i(K=K i) Ty (Ma'a, = 1 S exp-i(K |)§jj,F§|-<1 is valid and allows rewriting15) and(16) in the
Ll Ly’ simplified form:
M 1
-k ,I’n)) X |:B|Y|/(n) + % B|Y|//(n)G|HB|Hy|/(n) |T542 - ;D\SS(]- _ Fd)\dd) + )\SdFd)\dslza
| Tsd :K|)\sd| v | Tad :ZD\dsl v Tud :;|7\dd| ,

It is impossible to sum up the ro¢d0) without simplifying
assumptions, so we use the quasilocal apprSantthe fol-
lowing form: A=|1-Fg\gd?. (17)

and

. 1 (= . One can see that elements of thenatrix in a dilute alloy
Jdﬁm V() gy = —f de f dr ¢ AU s = Ny, are defined via Green’s functions of solvehelectrons and
™o Jo interaction matrix elements calculated with electron wave
(11) functions assigned to the solvent.
Taking into account substitutiai®), the expression for the
where \j;, is the quantity averaged over angles betweerelectrical current can be written as

wave vectork andk’. Then the power series if10) can be . f0
summed up exactly, since the interaction matrix elemBpts J=2—FX n, | dE GvP—g;(E), (18)
depend on the band indexes only. 3 7 s

Let us determine the Green’s functipi] and interaction

X . ; wheren; andgj(E) are the concentration of electrons in the
matrix [B] as double row matrices on band indexes, whos

%and and the DOS in theband, respectively.

elements are not dependent on the wave vector: One obtains that the main result for electrical conductivity
after integration(18) at zero temperature is
[F]=|:FS 0:|’ [B]=|:)\ss )\sd:|, (12) 2 Lot gt
0 Fyq Nds Nda o= 22 na20dEp) ddt Jas+t Lsg
3 (Iss+ ‘]sd)(ldd + st) - Ldeds
where Lt
2 ss ' vYsd ds
+ngv504(Er) . (19
c :12 1 13 I (gs+ Js)(lgg+ Jg — Lsdoas
"N v 27 This result corresponds to the conductivity summation
. . o rule of connected in parallel “nonisolated” conduct@snd
is Green’s function of an electron in theband. d bands. One can see from a later equation that the analog to
~ Note that_the power series @0 is a geometric progres- parallel connection of several “isolated” conductors usually
sion of matriceg12), which can be easily summed up: used for a resistivity calculation of the system with many-
band conductivity character is not valid. It is to be noted that
[B] +[BI[FI[B] + [BI[FI[BILFI[B] + --- =[BI([1] - [F] a similar result was derived in earlier wofKk$ for many-
x[B])L. (14) band conductivity models.
As a result one obtains the squared moduli of elements of IIl. RESULTS AND DISCUSSION
the T matrix:

It is well known that scattering probabilities are propor-
tional to the DOS in accepting bands agdEr) <g4(Ep).
According to Mott's model approximation, i.elgy=Ly4s=0
(which is equivalent to a statement that théand is a trap
for s-conduction electronsthe contribution ofs intraband
ITed?= E|)\3d|2, Tod2= 1|)\ds|z scattering to the total scattering probability can be neglected

A A compared withs-d scattering. Hence the main contribution to

1
Tsd®= ;p\ss(l ~FaNdd) + NsdFahad?,
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the RR in dilute alloy comes from thé,, integral, which TABLE I. The calculated values of the REEC charge of differ-
corresponds te-electrons transfer from as band to ad  ent solutes in various solvent metals.
band:

Matrix solvent

Qg f -
Jsg=C—= | dk (B¢ —Egir) | ——— 20 i
sd (277)3 ( ke K’ j ) 1-Fo\ (20) Impurity \% Nb Mo Ta w
The final expression for the in this approximation is the T 0371 -0.237
) Nb 0.13 X -0.17 -0.067 -0.18
_o B (Gy(Ee))| A 21) Mo 0.17 X 012 -0.041
P=Cer
NEF\gs(EF) / | 1 —Fgh Ta 0.2 0.067 -012 X -0.161
It should be emphasized that turns out to be dependent, w 0.3 0.18 0041  0.161 X
not only on the imaginary part of the Green’s function at the
solvent Fermi level but on its real part as well. We think that two factors may determine the REEC value

Within the weak interaction approach, i.e.,[T;j|> in transition metal alloys. The first is solvent lattice deforma-
~|\jjr|% the s—d transitions make the dominant contribu- tion caused by impurity ion embedding and the second is
tion to RR leading to the following expression, typical for network excess charge resulting from an impurity ion in a
classical Mott’s model: solvent cell.

One way to estimate the REEC value is thk initio
LDA-method}’ which was applied to the problem in the
- C@P\SJZ' (22)  following manner.
9s(Er) The first step is standard calculation of an energy structure
and a DOS of pure metal solvent under the condition that the

The main difference betweestrong and weaklimits is  charge flow through the unit cell surface equals zero. The
only in the presence of the denominafi-Fg\| including  second step is the direct calculation of an REEC of the sys-
the solvent Green’s function. tem under consideration. The background of the latter calcu-

Let us consider some of the simple cases—the Thomasation was as follows. An impurity atom was immersed into
Fermi screened potential approximation of the interaction bethe solvent cell consisting of 20 atoms assuming that this
tween the conduction electron and impurity atoms. Accordimpurity ion cannot change the solvent wave functions and
ing to this approach the matrix elements of the electronfermi surface significantly. The effective charge of the cell,
impurity interaction in the plane-wave representation are j.e., charge flow through the surface, then became nonzero

_ due to the presence of the impurity atom and could be ob-
eAZ g : ; :
= -— (23 tained using the solvent wave functions.

Ameg T The second method to estimate the REEC value is the
semi-empirical procedure described in Appendix A. This
method was used to check tlé initio calculation results.

[ he REEC values obtained for a number of impurities and
solvents are presented in the Table I.

It is obvious that the REE@QZ<1 in all considered di-
lute alloys of transition metals. It means that the valencies of
alloy components are approximately equal and this result
agrees qualitatively with Harriso.

e’AZ 1 In isoelectronic metal alloys, such as Nb-Ta, Ta—Nb,
A= (8 ) ) (24 v—Nb, Nb-V, V-Ta, Mo-W and W-Mo, a correlation be-
0270 tween under-(over) size deformation effect parameters

As is seen fron{24) and(21), the dependence of thgon  (1/a)(da/dc) (wherea is the alloy lattice parametgrand the
the impurity type is described only by the REEC of the im-REEC value could be expected. Actually, the quantities
purity ion. The other parameters of the system are detercl/a)(da/dc), calculated on the basis dadfawere found to
mined by the solvent. be proportional to corresponding REEC values. However in

The REECAZ of impurity ions in nontransition metals is nonisoelectronic metal alloys such a correlation cannot be
commonly taken as the difference between the solute anfbund. The cause might be an essential difference between
solvent valencie&? But for transition metals the valency can electron configuration of solvent and impurity ions. There-
be unambiguously defined only in intermetallic compoundsfore one has to take into account both factors: the lattice
It has been proposé&tito take the valency of all transition deformation and electronic structure modification in the ma-
metals in simple metal solvents equal to 2. This assumptiotrix solvent.
seems to be meaningless for the case of transition metal al- Let us consider the Nb-solvent case. The obtained values
loys. Thus it is noteworthy thafZ has another physical of AZ for Ta, V, W, and Mo impurities had approximately
sense. equal absolute values but opposite signs if the mentioned

AU(r)

whereq is inverse screening length amX is the relative
excess electric chard®EEQ of an impurity ion.

Moreover, one can neglect the difference between ave
aged interaction matrix elements of the intensities of intra
and interband electron transitions, i.2g=\gg=A\, under-
standing that it is a sufficiently rough approximation. After
averaging(11) over angles betweekandk’ one obtains

VK + a7
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FIG. 2. The calculated REEC values for a row of impuriti€s,
V, W, and Mo in a Nb solvent.

QR WNN

metals were considered in turn as a solvent or solute: FIG. 3. The experimental data for the relationship between the
AZyp_1a=~AZ7a N (SEE Table)l specific contribution of impurity atoms to RR and the squared
This fact allowed us to assume the REEC as a universanodulus of nondiagonad T-matrix elements for variousdalloys
constant for each pair of metals. Suggesting additivity, ~ (Squaresand their approximatiofsolid line).
one can obtain it for every pair of metals. For example,
AZyjo-1a= —AZ1a mo=AZnb-Ta~ AZnp-mo It IS €asy to under- to (19) without this approximation yields 0.26 and
stand using Fig. 2. 0.21uQ cm/at.% in Mo-V and W-V alloys, respectively.
Using the results for REEC values af®B), one can per- These values agree satisfactorily with the experimental data.
form the RR calculation. As seen from expressi@s), p is
proportional to the squared modulus of a nondiagostl
T-matrix elemeni\/(1-Fg4\)|?> and DOSd electrons at the IV. CONCLUSION
Fermi level. So the linear relationship betwegn(pg is p
normalized tod electrons DOS at the Fermi leyednd the
squared modulus of a nondiagonstl T-matrix element
should be verified experimentally. One can see the compal
son of calculation results and experimental normalized R
values for some V-, Nb-, Mo-, Ta-, and W-based alloys in
Fig. 3.
In more detail, the results of calculations of RR for V-, , ,
Nb-, Mo-, Ta-, and W-based alloys were compared with ex- TABLE II. Experimental data and results of calculation of RR
perimental data in Table II. for V-, Nb-, Mo-, Ta-, and W-based alloy(g.{2 cm/at.%.

Minimal values of RR were found in the isoelectronic

It is demonstrated that in dilute alloys of transition metals
the reduced residual electrical resistivifiRR) is a linear
function of squared nondiagonsd T-matrix elements calcu-

g'ated with plane wave functions.

The approximate values of relative excess electric charge

(REEQ obtained by this method can be used for a prelimi-

Nb—Ta, Ta—Nb, Mo—W, and W—Mo alloys having the lowest Matrix solvent

values ofAZ and the electron-impurity interaction constant mpyriy vV Nb Ta Mo W

(]A\F|=0.03-0.1. In this case perturbation theory can be

applied for the calculation of RR. In the other alloys the  Ti Exp 135 126 080

intensity of the electron-impurity interaction is sufficiently Calc  1.20 1.21 159 216  2.00

high (]AF|=0.2-0.9 and the latter approach is not valid. Vv Exp 034 065 0.32

For example|\F|=0.27 and 0.16 in V-Nb and Nb-V iso- Calc 029 067 123  1.09

erllec't:ronig <I':1II0y|3, frer?per(]:tively, sirllce rK‘[jtzieﬁlectronﬁ[’)'OS Iat Nb Exp 0.75 020 040 051

Ligh \Z:Irlr}le;ve of the host metal a ave sufficiently Calc 063 013 046 062
The typical difference between RR experimental and cal- '@ Exp 110 019 038 051

culated values is 10%—15% in the majority of dilute alloys. Calc 123 014 0.26 040

But in Mo—V and W-V alloys, the ratio of calculatédsing Mo Exp 123 080 045 0.04

(23)) to experimental values exceeds 4. It should be noted Calc 188 082 0.48 0.04

that in W and Mo the ratio of DOS af ands electrons is W Exp 090 091 065 0.08

only about 4, i.e., sufficiently low for the application of the Calc 200 129 099 005

Mott’'s approximation. RR calculations performed according
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TABLE lll. Solvent metal parameters used in calculatioBs:is the Fermi energygy(Eg) is the DOS of
d electrons at the Fermi levéRefs. 20 and 21 r,, is the covalent radiuéRef. 22; Re(G) and ImG) are
the real and imaginary parts of the Green’s function, respectively.

Parameter \% Nb Mo Ta w
Er(eV) 10.36 9.22 10.95 9.73 12.35
04(Ep)(s/eV at) 1.9 1.65 0.59 1.61 0.55
Moo (ML) 12.11 14.06 13.15 13.64 13.01
Re(G)(eV?) 0.17 0.77 -0.5 0.8 0.01
Im(G)(eV) -3.21 -2.86 -0.78 -1.77 -0.3

nary prediction of thep, values of any transition metal im- mental data forp, and expression§21) and (23), one can

purity in any transition metal solvent. restore the REEC values for a number of alloys.
According to Skorcheleft? the inverse screening length
ACKNOWLEDGMENTS in the rigid spheres model can be replaced by the inverse

covalent radius. The latter was calculated according to the
The authors would like to express thanks to Dr. A. Ni- simple empirical procedure based on the solvent metal peri-
kolaev for fruitful discussions and a critical reading of the odical table numbe® The calculated values of the inverse
manuscript. This work was supported by SS N 1380.2003.2;ovalent radius and the other band and energy parameters of
RFBR Grant No. N 04-02-16464, and the program of RAS the electronic structure of pure transition metal solv&ts

“Quantum macrophysics.” used in calculations gb. are presented in Table Ill. The real
parts of Green'’s functions were calculated using the Leman
APPENDIX representation according to the known DOS functions com-

puted from the first principles. The-electron DOS at the
To determineAZ in a transition metal alloy, the following Fermi level was calculated within a free electron
semiempirical procedure was developed. Using the experiapproximatiort®
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