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Gregory Schehr
Theoretische Physik, Universitat des Saarlandes, 66041 Saarbriicken, Germany
(Received 25 November 2004; published 26 May 2005

We investigate analytically the low temperature behavior of the specific @gay for a large class of
guantum disordered models within mean field approximation. This includes the vibrational modes of a lattice
pinned by impurity disorder in the quantum regime, the quantum sphexigain-glass and a quantum Heisen-
berg spin glass. We exhibit a general mechanism, common to all these models, arising from the so-called
marginality condition, responsible for the cancellation of the linear and quadratic contributidh#ithe
specific heat. We thus find for all these models the mean field r@g(JTDocT3.
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I. INTRODUCTION contribution to C,(T). A later numerical solution of the
saddle point equatidh claims instead the absence of this
While they have been experimentally observed severdinear contribution and a low behaviorC,(T) = T2
decades agb,the anomalous low temperature thermody- A class of models for which such mean field methods
namical properties of disordered and glassy systems remainiave been applied with some success, e.g., to compute cor-
formidable theoretical issue. In particular, measurements ofelation functions®%are disordered elastic systems, which
the specific heat,(T) in a variety of glasses including struc- cover a wide range of physical situations such as charge
tural glasse$,disordered crystaor spin-glassésshow a  density waves® electron glasse¥;® and flux lattices®-22
linear behaviolC,(T) =T at low temperature. Such a behav- for which the quantum regime is relevant. In the elastic limit,
ior is often explained by the standard two-level systemgvhere topological defects can be neglected, which is for in-
(TLS) phenomenological argumehilthough this TLS ar-  Stance the case in the so-called Bragg glass phase, these sys-
gument is very appealing, and successful in many situationd€™M$ have been studied, both in the clas$iGaid quanturt?

. . . L ; 23
it appears extremely hard to vindicate it from a microscopig!Mit; Using the Gaussian variational approximatit**to
description. the replicated Hamiltonian. In this framework, the specific

The computation of the specific heat of a disordered sysbeat has been studied both in the clas$fcahd quantum

imel2.25 imi i i
X . . YRR _regime==<°In the quantum limit, of interest here, the specific
tem starting from & microscopic Hamiltonian is a very com heat has been computed in a semiclassical expansion in pow-

pIicqted task. In this respect, impqrtant progress has beg s of i, keeping# /T fixed, similar to the aforementioned
achieved by' recent developments in mean field _methods H/s expansior?. At the leading order, the cancellation of the
quantum spin-glasse$ and related modefS, allowing for  jinear and quadratic terms i6,(T) was also obtainet??5
the description of low lying excitations in quantum glasses.g surprisingly, the analysis of the next to leading order

However, even in this solvable limit, the analytical compu-gpawed that these cancellations also 0@&um. view of these
tation of C,(T) is still intricate and the question whether this egy|ts?11.25it js important to know whether there is a gen-
TLS argument is confirmed or not by Mean Field calcula-eral property, within this mean field approach, leading to the
tions is still a subject of controversj:? cancellation of the linear term i@,(T).

In Ref. 8, a quantum extension of the spheripagpin In this paper, we identify a general mechanism, common
model was studied. In the marginal spin-glass phase, chara@ all these models, relying on the marginality condition,
terized by a one step Replica Symmetry BreakiRSB)  which leads to the cancellation of the linear and quadiatic
ansatz together with the marginality conditith* some in-  T) contribution toC,(T) at low T. This leadsjndependently
dications were found for a linear behavior of the specificof any semiclassical expansion nor numeyricsC,(T) « T3,
heat, although its lowl' behavior was not extracted analyti-  The organization of the paper is as follows: In Sec. II, we
cally. The authors of Ref. 9 have studied a mean field theoryntroduce the different models we will be interested in, and
of an SU2) quantum Heisenberg spin-glass. Using a semi+ecall the main properties of the saddle point equations. Sec-
classical expansion in B with Sthe size of the spins, the tion Il is devoted to the lowT expansion itself: we first
specific heat was obtained analytically to lowest order in theexhibit the nontrivial lowT structure of the variational equa-
marginal spin glass phase, also described by a one step R3S, therefore extending the previous analysis of Refs. 8—10
solution. At this order, the linear and quadratic terms of theat finite T, and then turn to the computation of the specific
low T expansion ofC,(T) were found tecance] leading to a heat. Finally, we draw our conclusions in the last section.
cubic behaVioer(T) T3 (these cancellations were found to II. MODELS AND MEAN FIELD APPROXIMATIONS
occur in the related model of a quantum lIsing spin-glass at
the lowest order in a similar semiclassical expan3iofihe A. Quantum periodic elastic manifold in a random potential
expansion to next order appeared to be rather intricate, and it (Model 1)
was arguedithat the accidental cancellation identified to low-  We consider a collection of interacting quantum objects of
est order does not occur to this next order, yielding a lineamassM whose position variables are denotedR,, 7). The
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equilibrium positionsR; in the absence of any fluctuations
form a perfect lattice of spacing. Interactions result in an
elastic tensorP,, 5(q) which describes the energy associated
to small displacements, the phonon degrees of freedom. Im-
purity disorder is modeled by aindependent Gaussian ran- Go5(0, ) = COPSap = O, 5
dom potentiaIU(x) directly coupled to the local density . . L
p()=3,8(x-R ~u(R., 7). We will describe systems in the which mlne|pm|zes the variational free energf'®=F,
weak dlsorder regima/R,<1 whereR, is the translational +(11pA)S SO>S0' whereF, denotes the free energy com-
correlation length, e.g., in a Bragg glass phase where theuted with &. In the limit k—0, we denoteG(q, w,)
condition |u,(R;, 7)-u,(R+a,7)|<a holds, no dislocation =Gaa(d,w,) and parametriz&,..,(q, »,) by G(q,u), where
being present. The system at equilibrium at temperafure 0<u<1, which is w, independent® Similarly we take
=1/p is described by the partition functio@=Tre™ " B, (7)=([u,(x, ) —Uy(x,0)]3/mwith B(7) andB(u) which is

EG (a, 0‘)n)ua(q wn)ub( q,~ wp),
Zﬁﬁ qab o

= [DuDIle " with the HamiltonianH=Hp+Hgis: rindependent. The best trial Gaussian actinis obtained
1(q)? by breaking the replica-symmetryRSB).1®> A previous

Hon== J + 2 u(Qd, AQug(-0), analysid® revealed indeed the existence of a breakpaijnt
2)q M ap such thato(u)=o(u.) for u=u.. In d>2, where there is a

full RSB solution,o(u) is a continuously varying function of

g u for u<u.. In d=2, for the single cosine model, there is
Hdis:fd XU(X)p(x,u(x)), (1) instead a(margina) one step RSB solution such thafu)
=0 for u<u,.
and its associated Euclidean quantum action in imaginary Using the variational approach, it has been shown in
time 7 detaif® that the specific heat is obtained from the

Bhi T-derivative of internal energyH) per unit volume, which,
-9II,u] :f dff iI1,(g,7)d,u,(g,7) —H, (2)  independently of the RSB scheme, can be written in terms of
0 q the saddle point solution:

dr(F(B(7)

whgrey(q,r) and its copjugated mo.mentuﬁﬁ(q,r) sati;fy 1 cP+3 +1(w,) 1 (B
periodic boundary conditions, of perig@gh, along ther axis. Hy==> f 2 hf
One denotes by,= [ [d’%/(2m)] integration on the first q COP+ 2 + Moy +1(wy)
Brillouin zone. We will focus here on the case of internal We

dimensiond= 2. For simplicity we illustrate the calculation -F(B)) —f dw(F(B(w)) - F(B)), (6)
on an isotropic system witfb,, 5(q) =cc?s, and denote dis- 0
order correlations

0

where F(X)=V(X) = (X/2)V' (X), V(X)=—p2SAg
U(x)=0, UXUKX)=A(Xx-X"). ©)] X exp(—-XK2/2), w.=Bu.. In (6), the quantities entering this

expression are determined by the variational equations:
The disorder average is performed using the replica trick P Y d

Z*=[DueSed" and integrating overII, after some o (Bh o R
(wp) = f dr(1 - cogw,7)(V'(B(7)) -V'(B)), (7)

manipulations? one obtains the following replicated action

Sep= Sont Suis With:

= | dixdrsS (V,ug)? + i(aTua)Z, o _ f 1
Sph f 2 a U2 l=-4v (B)JZ(E)I Jn(X) - a (Cq2+x)n' (8)

0

with the definitions

Stis =~ = J dxdrdr’ X R(Us(x, ) — Up(X, 7)),
2h s

2 1
= — , 9
ﬁ% fq Cq2+Mwﬁ+2+|(wn) ©
R(U) = p2>, Ag codK - u). (4)
K
N ~ 2 1-cogw,7)
Here v=y\c/M is the pure phonon velocity and\g B(T):—Ef Y 2+En+ o)’ (10
=[deX*A(x) denote the harmonics of the disorder cor- BnJqcC ®n @n

relator at the reciprocal lattice vectoks and p,~a~? the The breakpointv,, in d>2, is determined by
average areal density. “ '

Given the complexity of the replicated acti®y,, it has (J(3))3~
been proposed to study it within the Gaussian Variational We(2) =4— Jo(3) v (B). 11
Method (GVM).10:1523|t s implemented by choosing a trial 3
Gaussian actiolk, parametrized by &x k matrix in replica  We finally quote the following useful relation, valid for a full
spaceG,t(q, wp): RSB solution, obtained by combining E@®) and Eq.(11):
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W.6B + 2 =0, 12 1—
¢ T2 12 Qanl(7=17) = N(Sa(T) Sp(7')), (17
where § stands for an infinitesimal variation. An analysis of
the stability of the variational solution reve&ishat Eq.(8)  Wherea, b are replica indices. In the limk— 0, one denotes
coincides with the vanishing of the transverse eigenvalu€aa(7)=0q(7) and parametrize€,.,(7) by q(u) which is
(replicon) of the Hessian matrix. This property, the so called -independent. Following the authors of Ref. 8, we will work
marginality condition holds automatically in this problem with dimensionless quantities, by redefining the imaginary
ford=2. _ _ _ _ ~ time 7=J7/A and Matsubara frequencies,=fw,/J (in the
As first noticed in Ref. 10 and further investigated in following we will drop all hats in order to simplify the no-
Refs. 12 and 25, the solution of the variational equations Ca[btions) We also introduce the paramelé;ﬁZ/(Mﬁ) which
it;]e oarganllzjzgt:? ana(:gpft;zlo;?ék ((aef;::;ng[ﬁ V@'SXE&VEVEE ?hna(tjt_ measures the strength of quantum fluctuations. The phase
g any qu& i~ T on=0" ~en B - diagram of(14) in the'-T plane was fountito be character-
this cpndmon describes gaplessexcnatl_on spectrum char- ized by a linel',(T) separating a paramagnetM), associ-
acterized by the low frequency behavior of the self-energyated to a diagonal matri®,()=qy() 8y, from a spin-glass

(7) IO(w“)x|w”|+O(wﬁ) leading to the analytic continuation (SO phase at lowT, which we focus on here. The saddle

” i +\ — 17 HY ’ .

lo(w) <o, where | (w,— 'w.+0 )= (w)“l.(“’)' Thus one point equations describing this SG phase is solved by a one
expects a power law behavior of the specific heatatTom 105 RSB ansafzshown to be exact as in the classical case
Sec. I, we will compute analytically the low expansion of such thay(u)=0 for u< m andg(u)=gga for u>m, m being '
the internal energys). the breakpoint. The internal energy, as a function of the

saddle point solution is given By
B. Quantum spherical p-spin glass model (Model I1)

7 p +2
We consider a quantum extension of the spherpeapin (H) = SF Sf dr(gf (9 - &) - pT,BmCEA
glass model as studied in Refs. 8 and 26, an interacting sys- 0

tem of N continuous spins;, 1<i <N. This quantum exten- p+2 (#

sion consists in considering a continuous spias an opera- - Tf dr(gf(7) — gEp) (18)
tor associated to a spatial coordinate and introducing its 0

conjugated momenturm; which satisfies standard commuta- with the saddle point equations

tion relations

B
S _P - =1y _ gpl
[s.s]=[mm]=0, [msl=-ias;. (19 e = 2[0 dr(1 - coswnm)(ag (7) = tea). (19
Following this quantization procedufeee Ref. 7 for alter- 1+x
native quantization rules of multispin Hamiltonianthe Z’:BBmCﬂkl—E, (20)
quantump-spin glass model is then described by the follow- 2 Xp
ing Hamiltonian: and the definitions
7 . =1 ) Y S 21
H[ﬂ'aS,J]:m*“ > ‘ Jil,...,ipsl"'sip- (14 dea 3% w? = ' 0
i< < F +7' +3(wp)
where we denoter?=-ar, with =(mq, ... ,m\) (Similarly
for & and di the spherical traint 1 cosw,T
or s* ands) and impose the spherical constrain Qd(T)‘QEA=/—32 - n~ _ (22)
" F”+z’ +3(wp)

1 N
N (=1 (15)
=1 The breakpoint is determined by

In (14), the coupling constanty; ;, are random variables, B 2 —pi2
independently distributed according to a Gaussian distribu- BM=Xp p(X, + 1) Oga - (23)

tion of zero mean and variance

Combining (20) and (23), one obtains the following useful
jzp_, identity:
veodp 2NPL (16)

2
I 1 2

= 2. 24
_ _ _ _ _ 72 p(1 +Xp)qEA (24)
This model(14) is then studie®lusing the formalism of the ) . ] .
guantum action in imaginary time) together with the use Notice that thep-spin model is related to the random mani-
of replicas to implement the average over the disofdéy. ~ fold problem (Model I): the internal energy(18) and the

After some manipulations, one obtains, in the lilit-c a  Variational equatiori19) are indeed formally recovered from

saddle point equation for the order parameter Egs. (6) and (7) by settingd=0 and f/(x):—%(l—(x/Z)).
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However here, as it was found in other one step RSB ) 1 )
solution?° one obtains a one parameter family of solutions, Qa7 7) = 5(Sal7) - ST )s, (29
indexed byx, (or equivalently by the breakpoimh). There

are then two different ways to determine'® In the statics, \yhere(---)s stands for an average computed with the action
m is usually determined by minimizing the free energy: thlsseﬁ_ Using Z\ﬁbosonic representation of the spin oper&tior

is the so-calledequilibrium criterion. The excitation spec- terms of Schwinger bosons, ;=b'b,—S3, ; with the con-
trum of the equilibrium SG state is gaped, yielding aSpeCiﬁCstraintE b'b =SN this modeﬁ(ZGL)y gan b“g described ana-
heat which vanishesxponentiallyat low T. Alternatively,m Iytically (iln Cim‘é limit N— o which then constitutes a mean
is determined by imposing the vanishing of the replicon ei-g, 4 theory of the fully connected modeéR6) where the

gen(\j/_a_lug,’mwhich leads to the so-calledharginality spins have the symmetry $2). In this limit, the original
conditio self-consistent equatiof29) reduces to an equation for the
boson Green’s functiog2®(7) = —(TbA(n)b™(0)). In the limit

k—0, one parametrizeg;?¥7) by E(r)—@, such that
It has been showhusing a Keldysh mean field approd€h i .G(n=0 at T=0 and, G**%(7) by —g(u), which is

and performing qnalyticqllcontinuation. to imaginary time, ~independent. The phase diagram(26) in the T-S plane
that the marginality conditiori25) gives indeed the correct 45 peen established in the langdimit.® A line S.(T) sepa-

solution from the dynamical point of view, i.e., if one con- rates a paramagnetic phase, described by a diagonal matrix in

siders, in an infinite system, the large waiting time limit— i ab( ) = 5. 4 wh |
where time translational invariance and equilibrium fluctua-"ePlica SPac&®(7)=9,,G(7), and where several crossovers

tion dissipation theorem hold—and finally takes the limit of Were found to occur in the quantum regithésom a spin
a vanishing coupling to the thermal bath. glass phase, which we focus on here. In this SG phase, the

Moreover, this marginal value of, was found to be the saddle point equations are solved by a one step RSB ansatz,
only one compatible with gaplessexcitation spectrurfin  Such thag(u)=0 for u<xandg(u)=g for u>x, x being the
the T=0 limit, it was indeed shown that, in the low fre- Preakpoint andj=g. The starting point of our computation
quency limit i(wn)oc|wn|+(9(w2) Therefore, one expects of the specific heat is the expression for the internal energy
n- d

that the specific heat of the marginally stable SG state varP®' unit volumé

ishes as a power law. In Sec. Ill, we show how to extract 2(E - _ 7
analytically the lowT behavior of the marginally stable SG  (H)=- Ef dr(G(n) - 9)X(G(- N —g)*— Eﬁ(x— 1g*
state. 0

Xo=p—2. (25)

(30
C. Quantum SW(N) spin-glass (Model III)

. . . ' ig terms of the saddle point solution
We consider the Heisenberg quantum spin-glass, define

by the following Hamiltoniarf:® . B _ ~ ~
X(ivy) = sz dr(e™"n" = 1)((G(7) - 9*G(- 1 -9) +¢°),
0

1
H NN% %S S, (26) -

where the original spin symmetry group &)is extended to 1/1
SU(N) (Ref. 6 and the largeN limit is taken. These\V spins BX= —<— - ) (32)
occupy the sites of a fully connected lattice. (26), the JF\6
coupling J;; are random variables, independently distributed e
according to a Gaussian distribution of zero mean and variith the definitions
ance ~

_ g=S+G(r=0),

J=2 (27)
Using the imaginary time path-integral formalisiwe will E(iy )= (33)
setA=1 from the beginning for this modeltogether with v N
replicas to implement the average over the diso(@@, the v =~ = X(ivy)
model is mapped, in the infinite range limit, onto a self-
consistent single site problem described by the attion wherew, is a bosonic Matsubara frequency. Similarly to the

2 (# sphericalp-spin model(19—23), one obtains a one param-
=S - — | drds _ ) N, (28 eter family of solutions, parametrized 16y, or equivalently
=S 2N 7 Qa7 T)S(7) - Sul), (28) by the breakpoink. Here also, if one chooses tleguilib-
rium criterion, the excitation spectrum is gapped. Instead, if
whereS; is the Berry phase imposing the spin commutationone imposes the vanishing of the replicon eigenvalue, one
relations® together with the self-consistent equation: obtains themarginality conditior?
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Bh _
0 =0g= (34 f dr coswnn) (H(B(7) - H(B) = C+ O(TY), (35

1
\“‘”3 0

where here, and in the following;® stands for agenerig¢
Using an expansion in B—similar to the semiclassical ex- quantity independent of (it may however depend on the
pansion for the elastic manifdid—it has been shown Matsubara frequengyIndeed, the gapless structure of the
explicitly® that the marginality conditiof34) is the only one  spectral function suggests that only even powers should
compatible with a gapless excitation spectrum, such thagnter this expansio(85). But as shown in detail in Appendix
S(w) o w+O(w?), where 3(v,——iw+0")=3(w)+i3"(w). A One can check explicitly that the teriT2 vanishesThis
Although the connexion between this Matsubara formalismProPerty (35) is rather independent of the structure of the
using the marginality conditiori34) and the true Hamil- Vvariational equations, only requirintf(w)=w at low fre-
tonian dynamics in real time at the mean field level has noflUency. _

yet been established for the present case, the study of similar FOr the other model discussed he@§), one could not
one step RSB solutions for which this connection has beefNOW & so general statemeB6) involving any function’,
done®?7 suggests tha34) gives indeed the correct solution due to the absence of the symmeitry— —iv;, of the Green’s
from the dynamical point of view. On physical grounds, in function G(iv,) (33), which renders the calculations more
the present case of the ordered phase of a quantum SG wislubtle. Nevertheless, with the same assumptions as above

continuous symmetry, this choice seems also natural as ofgat the complete self-energyg/ 8+3(iv,) (33) is indepen-

indeed expects a gapless excitation specéfum. dent of T, with i(ivn)oc|vn|+(’)(v,21), for the particular inte-

Although the specific heat in the equilibrium SG state Is involved h h A dix B f
vanishes exponentially at low, we focus here on the low g;&;;bmvo ved here, one can shdsee Appendix B for more
d 1

behavior ofC,(T) in the marginal staté34), which is instea
expected to vanish as a power I&w.

B ~

f dr(G(D) - 9)A(G(- 1) —g)*— g*) = C*+ O(T%,
0

Ill. LOW TEMPERATURE ANALYSIS

B . ~ ~
In this section, we compute the low temperature expan- J de7((G(7) - 9)4(G(- 1) - g) +g°) = C+ O(T*).
sion of the internal energy for the different models presented ~0
before, from which we directly obtain the specific heat (36)

C,(T). To do so, we start by deriving some general identities, ) ) )
These properties are very useful tools to investigate the

which form the background of our analysis. The finite tem—I T behavi f phvsical tities in th del
perature behavior of the internal energy requires the lowPW ! Pehaviors of physical quantities in these models.

temperature expansion of the saddle point equations, which

we then present in detail. For that purpose, we will use the B. Variational equations
notation, for any quantity of intere, Q==_,T"Q". We
finally turn to the behavior o€,(T) in the last paragraph of
this section.

We now turn to the lowT expansion of the saddle point
equations for the three different models.

1. Model |

A. General properties Most of the properties presented here, and their extension
to the spin-glass modeld4) and(26), have been suggested
We first focus on the two first problems evocated H&je by the expansion in powers &f keepingg? fixed. We will
and (14), which show, formally, a strong similarity. In par- shortly remind here the main features of the semiclassical
ticular, at variance with Model 11(26), these two systems expansion of the variational equatiof¥s and(8). We use the
exhibit a two point Green’s functiofiL0) and (22) which is  notation, for any quantityQ=3}_/i“Q(B%). Although at
invariant under the transformatiom,— -w,. We focus on  |owest order, the complete solution of the variational
the low T behavior of integrals over imaginary timewhich  equation® shows that®, andly(w,) are independent of,
enter both the variational equation and the computation of,, and|,(w,) becomeT dependent at the next orc&rAt

the internal_energ){. We will use the notations of the diSOHOW temperature the fo||owing structure W&xp“cmy ob-
dered elastic Hamiltoniafi7) and (11), the transposition to  tained

the p-spin model being straightforward.
We first suppose that andl(wp), as a function ofv,, are 0. (T 2 @ .
independent oT, i.e.,>=0, On>0 and similarly forl (w,) =37+ Py 217+ O((Trh)7), (37
with 1(w,) ~|w,|+O(w?). Then, as shown in Appendix A,
one has the low temperature expansion, for any function T\2
Z&gztggztogs(r;' be expanded as a power serie around O, |1(wn)=|(10)(wn)+(£> I(lz)(wn)+0((T/ﬁ)4),

184204-5
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1P (wp) == (18,052, (38)

such that the finite temperature correction2gf1,(w,,) are

«T* for w,#0. It was also noticed that the peculiar term

(38), once inserted ifB (9), generates odd powers ®f the

lowest one being?, in the low T expansion at higher order

in the expansion irk. We extend here these properti@s)

and (38) independently on the semiclassical approximation,
We show indeed that the following expansion, up to orde

O(TY:
3 =304+ 7252 4+ 350

(@) =1(w,) = (1= 8,0)(T22@ +T35B), (39

with 19(w,) ¢ |w,|+O(w?), is a consistent solution of the
variational equation§7) and(8). To do so, we compute the

low T expansion of the r.h.s. of the equation f¢®,) given

the forms(39). We thus need an extension of the general
property(35), when2, andl(w,) have the form given in Eq.

(39). As shown in Appendix A, the low behavior of such
integrals overr (35) are in that case given by

ph ~
f d7coq w,7)(H(B(7)) — H(B))

0
= C+ 271 8, o(T?2 @ + T2 @) (X ) H/ (B?) + O(TY).
(40)
If one applies this general formul@0) with H=2V'(B) to
the r.h.s. of Eq(7), one obtains up to orde?(T?),

2371 o~ "
gﬁ)dﬁl—coa%ﬂxvxsm»—V%BD

=CM+4(1 - 5,0)(TRP + TE9)3,(39)

XIS OV (B@) (41)

=C- (1-6,0(T22@ +T3309), (42)

r
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Bh
f d7cogwn7)(H(dy(7) — H(gga))
0
H/ (0)
=C%= 6,02 + T%2')- (z—,(<(3>E)Az— +O(TH.
(44)

Thus applying(44) with H(X)=(p/2)XP™! yields the lowT
expansion of the r.h.s. of the variational equati@f) up to
order O(T?),

B
gfo dn(1 - cogw,7) (g (n) - g4
p(p-1) : (2 (GER)"
=C¥- T(l - 5n,o)(T22 4Tz (3)) (zEr'((\O))z
_ st P-1 2,1(2) 4 T35/(3)
=C -—1+X(1—5n,o)(Tz +T32¥), (45)

p

where we have used, in the last line, the identis). Thus,
one sees o1i45) that the expression given in E43) is a
consistent solution of19) providedx,=p-2, i.e., the solu-
tion is marginally stablé€25).

3. Model 1l

For this model, we show that, similarly to the two previ-
ous ones, a consistent solution of the variational equations
(31) is given, up to orde®(T*) by

g= g(0> + ng(z) + ng(s),

(i) =S 0) + 3 (3o~ DTG + 7o), 46)

with SO(ip,) = |p,|+O(12). To show the consistency of this
solution (46), we perform the low temperature expansion of
the r.h.s. of the equation foi(i v,) (31) given (46). One
obtains up to orde©(T%),

where, in the last line, we have used the marginality condi-
tion (8) at T=0. This relation(41) thus shows explicitly the
consistency of the lowl expansion(39) proposed for the
exact solution of the variational equations. Importantly, al-
though the general property shown aba¥€) holds inde- =C+ (8,0~ D30I(T?g? + T3g?). (47)

pendently of the saddle point equation, a solution such aggain this expansiof47) shows that the structure exhibited

B _ _ ~
? f dre™ = D{@() - 9AG(- 1) - g) + &
0

(39 is consistenprovided the marginality condition holds
2. Model 1l

in (46) is a consistent solution of the ;/ariational equation
(31) provided d=1/0, i.e., ®=0x=1/y3, the marginality

. : . ._condition (34).
Inspired by the previous analysis, we show that a consis- 39

tent solution of the variational equations for the quantum

p-spin model(19) and (20) is given, up to orde®(T?#) by

7' = Z/(O) + TZZI(Z) + T3Z/(3)'

S(w) =3(w,) - (1-6,0(TZ? +T320), (43

with SO () o< |wy| + O(w?). This is shown by using the gen-

C. Specific heat: Low temperature expansion
We now turn to the computation of the low temperature
behavior of the specific heat.
1. Model |
Our starting_point is the expression for the variational

eral lowT expansion, an extension 6f0) to the present case internal energyH) given in (6). We first analyze the low

(43),

temperature behavior of the first term(®), namely the sum
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over Matsubara frequencies. Importantly, we notice that, in C,(T) T3+ O(TY. (54)

this sum, the contribution of the modeg,=0 is independent o ) ) )

lows to avoid ambiguities coming from the analytic continu- €xtract by the method presented here, it has been explicitly
ation of such a terme(1-4, ) in (38). We can thus safely computed at the lowest order in the aforementioned semi-

transform this discrete sum in an integral: classical expansion and it was found to be nonZéro.
EEJ cP+3 + 1wy 2. Model II
B Jq cor+3+ Mwﬁ”(wn) We analyze the lowl behavior of the internal energy
g within the variational method18) of the quantump-spin
:J _wthDOS(w)fB(w)v (48)  model. We treat separately the two lines(b8). Using (44),
— T one obtains
p p -1 p-1
c ., ~| drlag (7)) —ags)
- S ol"(w) 4Jo
v
ppos(®) = ) - 1) (q@)p-2
c - , st 12202+ 303 PP~ 1) (Gga) 4
q<cq2_?w2+2+| (w)2+(1 (w))z) =C=(TZ¥9+TZV) 4 2Oy +O(TY).
(49) (55)

Using this expansion and the identit24) one obtains that
the quadratic and cubic terms in the IGwexpansion of the
first line in (18) cancel providedk,=p—-2 (25):

where ppog(w) is the density of states. Using thagog(®)
=p% (@) + T () (39), together with the low frequency
behaviorp\%.= w?, one obtains straightforwardly 5
~ Z_’ P p-1¢ _ AP-1y = st 4
g [ ofestim 5 +4fo dr(gf (7 ~ ) =C+O(TH.  (56)
Bn ch2+2+Mwﬁ+|A(a)n)

=C'+ O(T%. (50
We now focus on the second line @8). Using(44), one has

One performs the lowW expansion of the second term (i), immediately
the integral overr, using the property40) which holds for p+2(#
the solution of the variational equations we have fo(3@): - Tf dr(g§(7) — gBa)
0
" @ p(p+2) (GNP
o TEEIITEE) = (T2 @4 T ) =2 = G +O(T).
= C+ 2125 @ + T3 O) 3,3 O)F ' (B) + O(T). S

(51  Finally combining(23) with (24), one obtains the expansion

of the remaining term ir{18) up to orderO(T?):
One finally tackles the analysis of the last term(@), the g 18) up (™

integral overw, by using the property thd(w) is indepen- p+2 _ plp+2 2 @12+ 7T ©
dent of T for w<w,?® T BMeg, =~ 2 702 (dEn

L

" (58)
JO dwF(BW)) - F(B)) Collecting the different contributions t@ (55), (57), and

58), one obtains
- CSt+ W((:O)(TZB(Z) + T3B(3))F/(B(O)) + O(T4) ) (52) ( )

(Hy=c*+0(T% (59)

This property(52) is then obvious for a full RSB solution _ _ -
whereB(w;)=B and was showas to hold also for the mar- Which leads to the low temperature behavior of the specific
ginal one step RSB solution it=2. heat

Using the consequence of the marg!nality cond_itﬂﬂ)ﬂ), _ C,(T) o< T3+ O(TH). (60)
one thus sees clearly that the quadratic and cubic contribu-
tions to this lowT behaviorcancelbetween Eq(51) and Eq.
(52). And this yields 3. Model 11l

@ =CS'+ O(T%). (53) The lowT expansion of the internal energy of the Heisen-
berg spin-glass moddB0) is performed using the relation
This results in the low temperature behavior of the specifidderived in Appendix B which, given the solution of the varia-
heat: tional equations we have found, yield
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N L g . 4 ality condition. And it is worthwhile to notice that the physi-
- EJ d(G(7) -9(G(- 1 -9)°-g] cal picture associated to this marginal stability criterion,
0 which enforces théquantum dynamics along the flat direc-
=C+2J0g(g?T2+g®T3 + O(T%. (61) tions of the free energy landscape, seems qualitatively differ-
ent from the argument stemming from TES.

The expansion of the last term {80) is straightforwardly For the case of manifolds, our result, within the Gaussian
computed using the relatioi32) Variational Approximation also applies to nonperiodic elastic
72 1 structures, e.g., domain walls, when they can be solved by a
- E,3)(94: Cst— Jg(o)(6 - @)(g(Z)T2+ g®T) + O(TH. full RSB ansatzor its limiting case of a marginal one step

RSB). And although this mean field approach is always an
(62 approximation for the periodic case, it becomes exact for the
nonperiodic one, in the limit where the number of compo-
nents of the displacement field becomes infinite, as it is for
the sphericap-spin-glass mode(14), in the limit N— o, or
for the Heisenberg spin-glass mod&6) when bothN, N
—o0. An outstanding question remains to know whether and
how this result is modified away from mean field, which
C,(T) o« T3+ O(TH). (63)  clearly deserves further numerical and analytical investiga-

tions.
For this model too, the amplitude of the cubic term has been

computed in a 1%, semiclassical, expansion, and found to be
nonzero’

Thus combining Eq(61) and Eq.(62), one sees that the
quadratic and cubic terms come with a prefact®r-3L/0,
which thus vanishes for the marginally stable solution, cor
responding t@® =0 x= 1/4/3. This yields the low temperature
behavior of the specific heat
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cific heat of a rather wide class of quantum disordered sysDYGLAGEMEM'

tems with continuous degrees of freedom, using a mean field

approximation, including disordered elastic systemsdin ~ APPENDIX A: LOW TEMPERATURE EXPANSION FOR
=2, the sphericalp-spin-glass and the Heisenberg spin- MODEL | AND MODEL II: DETAILED

glass. For all these models, we have obtained that the Mean CALCULATIONS

Field approximation yields the loW behavior C,(T) T3 ) . .
(54), (60), and (63). For the quantunp-spin model, our re- In this appendix, we s_how some general properties of the
sult is at variance with the linear behavior claimed from theIOW temperature expansion of multiple sums over Matsubara

previous analysis in Ref. 8. There, the variational equationgrquenc'es' We will use herg the notations of the glasﬂc
were solved in th@=0 limit. This solutiorf at T=0, which is manifold (7)-(11) (the extension to the quanturp-spin

recovered by the present analysis, exhibits the low frequencgpt)(]leI being straightforwajd

behavior of the self-energ® ¥(wy,) = |w,| (43), which in
turns leads to the low temperature behavior of the Edwards-
Anderson parametquA—q(E(),l=O(T2). One would thus To begin with, we restrict ourselves to the case where
conclude® from this low T behavior together with the ex- andl(w,) as a function ofw, do not depend on temperature
pression for the internal energ$8), that(H)=Cs+O(T?) at T, for all w, including the mode»,=0. We also assume the
low T. However, as we have shown here, a thorough comlow frequency behaviol(w,) ~ |w,| + O(w}) (7). Here we are
putation of the coefficient of this quadratic contribution to interested in the low temperature expansion of the following
(H) (which was not performed in Ref)8hows that it actu- quantity (35):

ally vanishes. In addition, we have shown that the cubic J«Bﬁ

1. Afirst stage with multiple Matsubara sums

contribution to(H) also vanishe$59). For the Heisenberg
spin-glass model, the cancellation of the linear terrT (i)
obtained here is in agreement with the numerical solution o
the saddle point equation of Ref. 11. And the nontrivial struc
ture of the saddle point solution elucidated h&t6), which
plays a crucial role in the cancellation of thHé term in
C,(T), could help to clarify numerically the status of the

dr(H(B() - H(B)). (A1)

0
Ins we will see, the first nonvanishing finite temperature cor-
rection isa priori of order T2 we show that this contribution
in fact cancels for anysmooth enoughfunction H(X). To
show this cancellation, we show the following property, for

any integem:
quadratic contribution t&,(T) obtained in Ref. 11. y 9
This mean field resulC,(T)= T2 is at variance with the pho . 4
linear behavior commonly expected from two-level systéms. o dr(B(n)™~B") = C+ O(T"). (A2)

As we have shown, the cancellation of the linear and qua-
dratic contributions te&,(T) strongly relies upon the margin- We introduce the notation
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K(wp) =31 (Maj+3 + (wp)). (A3)

Inserting the definitions oB (9) andNB(r) (10) in (A2), one

obtains

Bh
f d=(B(n)™-B™

0

(2n)™

k~k
(Bﬁ)mnlz'n k21 1)kck
B
Xf dr Cos(wnlf) e COE(wnkT)
0
X K(wn,) - K(wn)K(wn_) -+ K(an ), (Ad)

where C',‘n:m!/((m—k)!k!). Performing the integral over,
using the property of paritik(w,) =K(-w,), this expression
can be written as

Bt
f d=(B(7)™-B™)

0

= - 2/3,(3)mB™ L+ > (- 1kCK

k=2
(2h)
2 K(wn) " K(wp, )
B, et .
X K(wn, + -+ +wp_)B™ . (A5)

We now focus on the low temperature expansion of the mul
tiple sum over Matsubara frequencies. In that purpose, w

use the spectral representation of the Green’s function:

1 __Fd_wA( 1
Cq2+Ma)ﬁ+E+|(wn)_ &) '

I”((D)
(et = Mw? +3 +1"(w)* + (I"(@)?’

Ag, ) = (A6)

where the spectral functioA(q, w) is the imaginary part of
the retarded function and we remintw,— —iw+0")

=1"(w)+il"(w). All the temperature dependence is then con-

tained in the different Bose factors:

(,Bﬁ k 1 2:nk ) K(wnl) o K(wnk_l)K(wn + o wnk—l)
-1 k
= % f de; - --de A(e) -+ Alg) (A7)
1 1 1
x (Bﬁ)k_lnl,.%k,l fwn, — € . fon + o +iog |~ €

1
:;( f de; - --de A(e) - -- Alg)(Tgler) — fele)) (A8)

PHYSICAL REVIEW B 71, 184204(2005

X (fg(€p) — fple— €1))(fp(€s) — fale— €1 €)) -+
(fgle-1) — felek—€1— €= - — 2))
, A9
&~ (et +ec1) (A9)

where A(w)=[,A(q,») and fg(e) is the Bose factor. This
expressionfA7) has a very interesting structure which allows
us to extract simply the term of ord@&f. Indeed, considering
the low temperature expansion of the following tefwhich

is analogous of a Sommerfeld expansion in the fermionic
case for any function(x) with H(u)=0

I 2
fdeH(é)fB(f_M):_f déH(€)+<%—> 71—32|'|'(M)+(9(T4)

(A10)

notice of course that the assumptidf(x=0) is of course
crucial here(A10). This expansiofA10) allows us to write
formally the Bose factor, when inserted in an integral over
frequencye:

2
fale—pw)=-0(-e+p)+ (%—) %25(6—;00# o,
(A11)

where §(x) is the step functiofd(x)=1 for x>0, 6(x)=0 if
x< 0], and the notatior, stands for a derivative acting on
the function which enters multiplicatively witfs(e) the in-
tegral overe. This form (A11) is very suitable to extract the
coefficient of the term of orde®(T?) in (A7). Indeed, using
(A11), one discovers irfA7), that only the terms where the
Bose factors havenly one frequencyn their argument do
gontribute to ordeiO(T?). If we expand, for instancég(e,
—€,—€) in (A7) one obtains, fok=3

1 721
(BhY 3

X {A(q) o Ald (= 6= &) + 0(- &)

f de; -+~ deed(— e+ €+ €)d,,

X(=0(-€) + 0(— g+ €))
(—0-€)+O0(-g+e+e+

e~ (e1+ - +€c1)

+ € ))

(A12)

Because of the functiof(e,—e;—€,), one must take the de-
rivative of the terms&ek(—e(—ez)+0(—ek+ €) =—0(—€g+e€)
(which isa priori the only nonvanishing termwhich yields

1 q#
(Bh)?2 3

de; - ded(— e+ €1+ €) (- €+ €1)

X A(el)  Algd(= 0= e) + 6= &) -+

(—O0-€g-)+O0—g+e+tet - +e)
—(e+ - + )

=0.

(A13)

We can easily generalize this mechanism to Bose factors
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having more than 3 frequencies in their arguments. The case © T\27 ) 4
of Bose factors having 2 frequencies in their argument has to B=BT+2h( ] SA (0) +O(T7). (A18)
be treated separately. This one, ifg(e.—¢€;) in (A7) yields
ﬂz Using these behaviors, one obtains
1 1
de; - ded— e, + €)d B
(Bh)2 3 J € de (= e+ €) 5k|:~’4(61) A(e) f dr(B(™ - B
0
X (= 0(=e) + 0(- &)
2
X(=0(- €g) + 0~ e+ €1+ €)) - = CS'+ (%) (— (Zh)le(E)A’(O)gm(m— 1)(BO)m™2

COC ) O et atet -+ EH))} . (A14)

_ (el 4 oo+ ek—l) + (Zﬁ)ZZCﬁ,‘Jl(E)A’(O)g(B(O))m_z + (2h)3Cﬁ1

Here again, one has to take the derivatiﬂg(—ﬁ(—el)

+6(—¢))=—5(—¢), which yields X T(m— Z)A’(O)g(B(O))m‘3+ 2 (2h)K(= DK
k=3

( Bz)zﬂz ! f de; - - deS(— €+ €) 8(— ek)[A(el)---A(ek) -
X CKk— A (0) Jie (BO)™ 4+ > (2h)k+1(- 1)k
X(—0(-€)+0(—etete): - k=3
(CO-e)tO-etretet - +e) | _ -
(et o) } =0, X Cl(m- k) T A(0) T (BO)m k- 1) +O(TY. (A19)
(A15)

First, we notice that the two first termsT? just cancel and

where we have used(0)=0. We conclude from this analy- moreover

sis that only the Bose factors having only one frequency in  m m-1
their argument, such dg(e;),fg(e), ... docontribute to the > (2h)k(- 1)"C"<k A'(0) Jiey(BOY™K 4> (21)
coefficient of ordefT? in (A7). Notice that they all give the k=3 k=3
same contribution, thus the low temperature expansion of

(A7) can be written fok=3 X (~ 1)kck(m_ k)(zﬁ)ZA/(O)jk(B(O))m—k—l)
m 3
2 K(wn) o K(‘J"nk )K(wn Tt Wn, ) T m
<Bﬁ>k e o B = 5A'<0)<— (28)°3C3T,(BO) ™3+ X (- 1) (2)*
k=4
=Tt (Bﬁ)z ZA0)Tr+ OB,
X Tia(BO)™HKCE — (m—k + 1)(:3*))
1
Tk = ? f de; - deA(ey) - Al (- O(— &) + 0(— €)) —_ (Zh)Sm(m H(m-2) .A (0)j2(B(O))m—3 (A20)

2

X (= 0= €) + (= &t &) This identity(A20) combined with(A19) yields finally to the

X(—0(-e) +0(— g+ e te)): - announced property

(O0-eD+t0-eteatet - +e)
—(&1+ - + 61

Bh
,  (Ale) f dr(B(n)™-BM = CS'+ O(T%) (A21)
0

where we have used(-€)=—A(e) to treat the ternfg(e) i as announced in the te@5).
(A7). For the particular cask=2, one has

2 A'(0) Ale) 2. Handling the peculiar term <(1-4;, o)
2 K(w, )2 =T+ 2 f O(T4) . . .
B 1 (Bh) We now consider the extension of this prope21) to
the case wher& +I(w,) now depend orT, and are of the
=Tt ——K( A’ 0) +0(87%. form (39). We want to follow the same steps as previously
2 (,B’fi)2 ( ) © B (A21), and use the spectral representation of the Green func-

(A17)  tion. Therefore, we need in principle to know the analytical
continuation of the termx(1-4,,) in (39). In order to avoid
where we have usefldeA(e)/ e=mJ;(2). Finally, we need this ambiguity, we start by isolating the term(1-4,0) in
the low T expansion oB (9): (39):
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APPENDIX B: HEISENBERG SPIN GLASS: LOW

S+ 1(0n) =X+ C(L= o) +1(wn), TEMPERATURE EXPANSION

~ 5 1. General properties
(wp) ~ |wp| + O(e}), ] ]
We present here the detailed analysis of the low tempera-

ture behavior of integrals over imaginary time of the form

2 = 2(0) + Tzz(z) + T3E(3) + O(T4), (30)
B ~
C=-TEP-T58+0(T9, I= J dri(G(n-9%G(-n-9*-g¢".  (BL)
0
T(wy) =1%w,) + O(T4, (A22)  We first consider the case where the Green's funagiom,),

as a function ofiy, is independent oflf. Similarly to the
analysis performed in Appendix A, we develop the integrand

wherel(w,,) is defined such that there is no more ambiguity ! : -
concerning its analytical continuation. We want to study the!l (B_l) and perform the integral over: we are then left W_'th

T dependence of integrals over imaginary time suckAds multiple sums over I\{Iatsuba_ra frequer_mes. Depen_dlng on
when the solution of the variational equations are of the fornjhe number of Green's functions they '”V‘?'Ve' the integral
(39). In order to extract the quadratic and cubic terms in this?Ve" 7 generates 4 different types of terms:

expansion, we follow the previous analysis, except that, here, 4

the modew,=0 has to be treated separat€B9). Notice I=>1,

however that this ambiguity does not exist for the computa- i=1

tion of é(r) (10). We analyze the low behavior of(A5) in

the following way: L= S Glin)Gr)GliraGiin +iv,-ivy),
gh N 1 Bh B A A B ivg,ivpivg
f dr(B(n)"-B" = f dr(B(n™ - B + sh(B" - B"), .
0 ~ . ~.. ~ .. .
° a23) T,=- ZQEEVZ [Giv)Clivp)Glivy +iv,)
o, ) +G(iv)Gliv)Glivy —ivy)],
B= [—32 Ji(S+C+Ma?+ (). (A24)
n 1 ~ ~ ~
T5=2¢° 2 [2G(iv)* + Gliv)G (- ivy)],
Using the previous propert)A21), one has simply vy
B R — 30, =
% f drB(A™-BM=C+O(T)  (A25) T4=-4gG(1n=0). B2)
0 We follow the standard analysis and use the spectral repre-

. . - sentation of the Green’s function to handle these terms
and the leading corrections at finite temperature are then

iven by th d term iA23), ~ ? do 1
given by the second term iA23) Bliv,) = _f =2 p(w)——, (B3)
) § , c c k e T vy~
B(B™-BM =~ i cm(— f ) B™ -
k=1 « B q (Cq2 +2)(Cq2+E+C) p(w) =—Im g(l vy — a)+i0+). (B4)

— 25 (2 3% (3 0
= 20(TE® + TR ) 3,(20) Performing then, the sums over the Matsubara frequen-
xm(B@)™L+ O(T* (A26) cies, we are left with the same kind of structure as found in
A the previous model§A7),
sinceB©=B®, and more generally, one can write, for any 4
wp and any functiort{(X) the generalization ofA21) to this I,= i4 f d51d52d63d64H p(&)(fa(ey) — falen) (fe(ey)
case(39) ™ =1

Bh ~ (fg(eg) — fgler + €2~ €4))
f dr codw,n) (H(B(7) - H(B)) EREC) (B5)
0

Under this form, we analyze straightforwardly the low tem-

— (st 25 (2) 4+ T3% 3
= Co 208,021 + T°X) perature behavior, using the property demonstrated previ-

X J,(EO)YH'(BO) + O(T* (A27)  ously that only Bose factors witbne frequency in their ar-
gument do contribute to this sum. Using the expansion
as quoted in the tex@0). (A10), we obtain up to orde©(T%),
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1 4 One obtains in a similar way the expansionZaf writing
1= v d61d€2d€3d64H p(€)
i=1 2
-9
X (= 0= €1) + 0= )(~ O= &) + B e+ &) 1= [ deenteinie
v (- +i-a-ete) « 4fB(€2) - fg(ey) N 2fB(el) -fe(- &) (B11)
E4+E3+62_€1 €1~ € €l+62
4
+ Tzﬁp'(O) f de;dexdesp(er) ple)p(€s) from which we obtain the lowl expansion:
(- 8- &) + 0 €, + &) 29”
X (= 6(- &) + 6 &) - —, T,=C+ T2 p'(0) | deydesplepler) (B12)
eate—¢€ 3
(B6)
where we have used the relatifwhich is valid although _ e - 0Ce)  He) - 0 e)
p(e) is not an odd functioh €&— € 6§+e
2 012 .1 (A (i —
| datesenteppieaivten +pi- ea- < - o= ) * TG F P0G i, =0, (819
(- 0(- &) + 0(— €, + €3)) where we have useﬁUep(g)/e: w@(ivnzq). As Z}(i v,) does
X ~ =0. (B7) not depend ofT, one obtains the expansionBf up to order
&Ete—q

Indeed, one shows this relatigB7) by noticing that the step T,=Ct- T24w[g(°)]2p’(0)§(i v, =0)+O(T%. (B14)

functions reduce the interval of integration ég>0, ,>0,
€,<0 ande;<0, €,<0, €,>0. A simple permutation of the Finally, collecting the quadratic contributions i(B6),

integration variables then lead to the relati@v). (B10), (B12), and(B14) yields
The analysis ofZ, requires the lowl expansion of,
B
— - 207 2 _ 4= 4
g=S+ j d—ep(e)fB(e) = g(O) + ngl),(o) + O(T4), = fo dr(G(n)-9AG(-1-9)°-g']= Co+ o(T)
o
(B8) (B15)
7, can be written as as announced in the tef@6).
1 Using the same method exposed previously, we study the
I,=29— f dedexdezp(er) per) ple3) T dependence of the integral ovemwhich enters the varia-
™ tional equation of this modeB1),
y {(me) ~ faleg)(fale) = foles — 1)) s
6t e~ € J= f dre ™ T(G(7) - 9)A(G(- 1) - 9) +¢°]. (B16)
0
(fg(ey) — felea)(faler) — fuler — €)))
+ (B9) . .
€— 6~ € As previously, after we have performed the integrals owver

in (B16), we have to handle exactly the same integrals as in

from which we obtain the lowT expansion up to order 75, I3, I,. The mechanism of cancellation of the quadratic

-4
o), term is again at work herfnotice however that, given that
4 the integrand is here a polynom of degree 3, the terms like
Z,=C"- Tzﬁp'(o) f de,deydesp(€)p(er)p(€s) (B7) are not present hefeThis yields
~ — st 4
(—9(—€)+0(—E+6)) J=C +O(T) (Bl?)
X (= 0= e) + o)
ERCE as given in the text36).
) 1
+ 297p 0) de;dexp(e)ple) 2. Handling the peculiar term «(1-4;, o)

3r B2
p We generalize these properties to the case where the so-
0-e)-0(-e) _O(e) - 0(—e) lution of the variational equations is of the form shown in
x| 4 -2 (B10)  Eq. (46). We use here the same strategy as presented in Ap-
pendix A. We isolate the mode,,=0 as in(A23) and(A24),

€€ ete
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and given tha@(r)—g) or (E(—T)—g) do not depend on this
iv,=0 mode, one obtains straightforwardly,

Bh - ~
7= J dd @) - 92C(- 1) - 9 - ¢*]

0

Q)
— st 4jg<o>(ng(z> +g%9T +O(T%, (B19)

PHYSICAL REVIEW B 71, 184204(2005
B -
J= f dre™"T(G(7) - 9)*(G(- 1) - g) + ¢°]
0
(B19)

=CSt+ 5n,0?(-r29(2) +g9T%) + O(T4,

as announced in the tefd?7) and (61).
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