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We investigate analytically the low temperature behavior of the specific heatCvsTd for a large class of
quantum disordered models within mean field approximation. This includes the vibrational modes of a lattice
pinned by impurity disorder in the quantum regime, the quantum sphericalp-spin-glass and a quantum Heisen-
berg spin glass. We exhibit a general mechanism, common to all these models, arising from the so-called
marginality condition, responsible for the cancellation of the linear and quadratic contributions inT in the
specific heat. We thus find for all these models the mean field resultCvsTd~T3.
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I. INTRODUCTION

While they have been experimentally observed several
decades ago,1 the anomalous low temperature thermody-
namical properties of disordered and glassy systems remain a
formidable theoretical issue. In particular, measurements of
the specific heatCvsTd in a variety of glasses including struc-
tural glasses,1 disordered crystals,2 or spin-glasses3 show a
linear behaviorCvsTd~T at low temperature. Such a behav-
ior is often explained by the standard two-level systems
sTLSd phenomenological argument.4 Although this TLS ar-
gument is very appealing, and successful in many situations,
it appears extremely hard to vindicate it from a microscopic
description.

The computation of the specific heat of a disordered sys-
tem starting from a microscopic Hamiltonian is a very com-
plicated task. In this respect, important progress has been
achieved by recent developments in mean field methods in
quantum spin-glasses5–9 and related models,10 allowing for
the description of low lying excitations in quantum glasses.
However, even in this solvable limit, the analytical compu-
tation ofCvsTd is still intricate and the question whether this
TLS argument is confirmed or not by Mean Field calcula-
tions is still a subject of controversy.11,12

In Ref. 8, a quantum extension of the sphericalp-spin
model was studied. In the marginal spin-glass phase, charac-
terized by a one step Replica Symmetry BreakingsRSBd
ansatz together with the marginality condition,13,14 some in-
dications were found for a linear behavior of the specific
heat, although its lowT behavior was not extracted analyti-
cally. The authors of Ref. 9 have studied a mean field theory
of an SUs2d quantum Heisenberg spin-glass. Using a semi-
classical expansion in 1/S, with S the size of the spins, the
specific heat was obtained analytically to lowest order in the
marginal spin glass phase, also described by a one step RSB
solution. At this order, the linear and quadratic terms of the
low T expansion ofCvsTd were found tocancel, leading to a
cubic behavior,CvsTd~T3 sthese cancellations were found to
occur in the related model of a quantum Ising spin-glass at
the lowest order in a similar semiclassical expansion9d. The
expansion to next order appeared to be rather intricate, and it
was argued9 that the accidental cancellation identified to low-
est order does not occur to this next order, yielding a linear

contribution to CvsTd. A later numerical solution of the
saddle point equation11 claims instead the absence of this
linear contribution and a lowT behaviorCvsTd~T2.

A class of models for which such mean field methods
have been applied with some success, e.g., to compute cor-
relation functions,10,15 are disordered elastic systems, which
cover a wide range of physical situations such as charge
density waves,16 electron glasses,17,18 and flux lattices,19–22

for which the quantum regime is relevant. In the elastic limit,
where topological defects can be neglected, which is for in-
stance the case in the so-called Bragg glass phase, these sys-
tems have been studied, both in the classical15 and quantum10

limit, using the Gaussian variational approximation10,15,23to
the replicated Hamiltonian. In this framework, the specific
heat has been studied both in the classical24 and quantum
regime.12,25In the quantum limit, of interest here, the specific
heat has been computed in a semiclassical expansion in pow-
ers of ", keeping" /T fixed, similar to the aforementioned
1/S expansion.9 At the leading order, the cancellation of the
linear and quadratic terms inCvsTd was also obtained.12,25

But surprisingly, the analysis of the next to leading order
showed that these cancellations also occur.25 In view of these
results,9,11,25 it is important to know whether there is a gen-
eral property, within this mean field approach, leading to the
cancellation of the linear term inCvsTd.

In this paper, we identify a general mechanism, common
to all these models, relying on the marginality condition,
which leads to the cancellation of the linear and quadraticsin
Td contribution toCvsTd at low T. This leads,independently
of any semiclassical expansion nor numerics, to CvsTd~T3.

The organization of the paper is as follows: In Sec. II, we
introduce the different models we will be interested in, and
recall the main properties of the saddle point equations. Sec-
tion III is devoted to the lowT expansion itself: we first
exhibit the nontrivial lowT structure of the variational equa-
tions, therefore extending the previous analysis of Refs. 8–10
at finite T, and then turn to the computation of the specific
heat. Finally, we draw our conclusions in the last section.

II. MODELS AND MEAN FIELD APPROXIMATIONS

A. Quantum periodic elastic manifold in a random potential
(Model I)

We consider a collection of interacting quantum objects of
massM whose position variables are denoteduasRi ,td. The
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equilibrium positionsRi in the absence of any fluctuations
form a perfect lattice of spacinga. Interactions result in an
elastic tensorFa,bsqd which describes the energy associated
to small displacements, the phonon degrees of freedom. Im-
purity disorder is modeled by at independent Gaussian ran-
dom potentialUsxd directly coupled to the local density
rsxd=oidsx−Ri −usRi ,tdd. We will describe systems in the
weak disorder regimea/Ra!1 whereRa is the translational
correlation length, e.g., in a Bragg glass phase where the
condition uuasRi ,td−uasRi +a,tdu!a holds, no dislocation
being present. The system at equilibrium at temperatureT
=1/b is described by the partition functionZ=Tre−bH

=eDuDPe−S/" with the HamiltonianH=Hph+Hdis:

Hph =
1

2
E

q

Psqd2

M
+ o

a,b
uasqdFa,bsqdubs− qd,

Hdis =E ddxUsxdrsx,usxdd, s1d

and its associated Euclidean quantum action in imaginary
time t

− SfP,ug =E
0

b"

dtE
q

iPasq,td]tuasq,td − H, s2d

whereusq,td and its conjugated momentumPsq,td satisfy
periodic boundary conditions, of periodb", along thet axis.
One denotes byeq;eBZfddq/ s2pddg integration on the first
Brillouin zone. We will focus here on the case of internal
dimensiondù2. For simplicity we illustrate the calculation
on an isotropic system withFa,bsqd=cq2dab and denote dis-
order correlations

Usxd = 0, UsxdUsx8d = Dsx − x8d. s3d

The disorder average is performed using the replica trick
Zk=eDue−Srep/" and integrating over P, after some
manipulations,10 one obtains the following replicated action
Srep=Sph+Sdis with:

Sph =E ddxdt
c

2o
a

s¹xuad2 +
1

v2s]tuad2,

Sdis = −
1

2"
E ddxdtdt8o

ab

Rsuasx,td − ubsx,t8dd,

Rsud = r0
2o

K

DK cossK ·ud. s4d

Here v=Îc/M is the pure phonon velocity andDK
=eddxeiK·xDsxd denote the harmonics of the disorder cor-
relator at the reciprocal lattice vectorsK, and r0,a−2 the
average areal density.

Given the complexity of the replicated actionSrep, it has
been proposed to study it within the Gaussian Variational
Method sGVMd.10,15,23It is implemented by choosing a trial
Gaussian actionS0 parametrized by ak3k matrix in replica
spaceGab

−1sq,vnd:

S0 =
1

2b"
E

q
o
a,b

Gab
−1sq,vnduasq,vndubs− q,− vnd,

Gab
−1sq,vnd = cq2dab − sab, s5d

which minimizes the variational free energyFvar=F0
+s1/b"dkSrep−S0lS0

, whereF0 denotes the free energy com-

puted with S0. In the limit k→0, we denoteG̃sq,vnd
=Gaasq,vnd and parametrizeGaÞbsq,vnd by Gsq,ud, where
0,u,1, which is vn independent.10 Similarly we take

Babstd=kfuasx,td−ubsx,0dg2l /m with B̃std andBsud which is
t independent. The best trial Gaussian actions5d is obtained
by breaking the replica-symmetrysRSBd.15 A previous
analysis15 revealed indeed the existence of a breakpointuc
such thatssud=ssucd for uùuc. In d.2, where there is a
full RSB solution,ssud is a continuously varying function of
u for u,uc. In d=2, for the single cosine model, there is
instead asmarginald one step RSB solution such thatssud
=0 for u,uc.

Using the variational approach, it has been shown in
detail25 that the specific heat is obtained from the
T-derivative of internal energykHl per unit volume, which,
independently of the RSB scheme, can be written in terms of
the saddle point solution:

kHl =
1

b
o
n
E

q

cq2 + S + Isvnd
cq2 + S + Mvn

2 + Isvnd
+

1

"
E

0

b"

dtsFsB̃stdd

− FsBdd −E
0

wc

dwsFsBswdd − FsBdd, s6d

where FsXd=V̂sXd−sX/2dV̂8sXd, V̂sXd=−r0
2oKDK

3exps−XK2/2d, wc=buc. In s6d, the quantities entering this
expression are determined by the variational equations:

Isvnd =
2

"
E

0

b"

dts1 − cossvntddsV̂8sB̃stdd − V̂8sBdd, s7d

1 = − 4V̂9sBdJ2sSd, Jnsxd =E
q

1

scq2 + xdn , s8d

with the definitions

B =
2

b
o
n
E

q

1

cq2 + Mvn
2 + S + Isvnd

, s9d

B̃std =
2

b
o
n
E

q

1 − cossvntd
cq2 + Mvn

2 + S + Isvnd
. s10d

The breakpointwc, in d.2, is determined by

wc ; wcsSd = 4
sJ2sSdd3

J3sSd
V̂-sBd. s11d

We finally quote the following useful relation, valid for a full
RSB solution, obtained by combining Eq.s8d and Eq.s11d:
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wcdB + 2J2sSddS = 0, s12d

whered stands for an infinitesimal variation. An analysis of
the stability of the variational solution reveals23 that Eq.s8d
coincides with the vanishing of the transverse eigenvalue
sreplicond of the Hessian matrix. This property, the so called
marginality condition, holds automatically in this problem
for dù2.

As first noticed in Ref. 10 and further investigated in
Refs. 12 and 25, the solution of the variational equations can
be organized in an expansion in" keepingb" fixed. Expand-
ing any quantityQ asQ=on=0

` "nQnsb"d, it was shown10 that
this condition describes agaplessexcitation spectrum char-
acterized by the low frequency behavior of the self-energy
s7d I0svnd~ uvnu+Osvn

2d leading to the analytic continuation
I09svd~v, where Isvn→−iv+0+d= I8svd+ iI 9svd. Thus one
expects a power law behavior of the specific heat at lowT. In
Sec. III, we will compute analytically the lowT expansion of
the internal energys6d.

B. Quantum spherical p-spin glass model (Model II)

We consider a quantum extension of the sphericalp-spin
glass model as studied in Refs. 8 and 26, an interacting sys-
tem ofN continuous spinssi, 1, i ,N. This quantum exten-
sion consists in considering a continuous spinsi as an opera-
tor associated to a spatial coordinate and introducing its
conjugated momentumpi which satisfies standard commuta-
tion relations

fsi,sjg = fpi,p jg = 0, fpi,sjg = − i"di j . s13d

Following this quantization proceduressee Ref. 7 for alter-
native quantization rules of multispin Hamiltoniansd the
quantump-spin glass model is then described by the follow-
ing Hamiltonian:

Hfp,s,Jg =
p2

2M
+ o

i1,¯,ip

N

Ji1,. . .,ip
si1

¯ sip
, s14d

where we denotep2=p ·p, with p=sp1, . . . ,pNd ssimilarly
for s2 andsd and impose the spherical constraint

1

N
o
i=1

N

ksi
2l = 1. s15d

In s14d, the coupling constantsJi1,. . .,ip are random variables,
independently distributed according to a Gaussian distribu-
tion of zero mean and variance

Ji1,. . .,ip
2 =

J̃2p!

2Np−1 . s16d

This models14d is then studied8 using the formalism of the
quantum action in imaginary times2d together with the use
of replicas to implement the average over the disorders16d.
After some manipulations, one obtains, in the limitN→` a
saddle point equation for the order parameter

Qabst − t8d =
1

N
ksastd ·sbst8dl, s17d

wherea,b are replica indices. In the limitk→0, one denotes
Qaastd=qdstd and parametrizesQaÞbstd by qsud which is
t-independent. Following the authors of Ref. 8, we will work
with dimensionless quantities, by redefining the imaginary

time t̂= J̃t /" and Matsubara frequenciesv̂n="vn/ J̃ sin the
following we will drop all hats in order to simplify the no-

tationsd. We also introduce the parameterG="2/ sMJ̃d, which
measures the strength of quantum fluctuations. The phase
diagram ofs14d in theG-T plane was found8 to be character-
ized by a lineGcsTd separating a paramagneticsPMd, associ-
ated to a diagonal matrixQabstd=qdstddab, from a spin-glass
sSGd phase at lowT, which we focus on here. The saddle
point equations describing this SG phase is solved by a one
step RSB ansatz,8 shown to be exact as in the classical case,
such thatqsud=0 for u,m andqsud=qEA for u.m, m being
the breakpoint. The internal energy, as a function of the
saddle point solution is given by8

kHl =
z8

2
+

p

4
E

0

b

dtsqd
p−1std − qEA

p−1d −
p + 2

4
bmqEA

p

−
p + 2

4
E

0

b

dtsqd
pstd − qEA

p d s18d

with the saddle point equations

S̃svnd =
p

2
E

0

b

dts1 − cossvntddsqd
p−1std − qEA

p−1d, s19d

z8 =
p

2
bmqEA

p−11 + xp

xp
, s20d

and the definitions

qEA = 1 −
1

b
o
n

1

vn
2

G
+ z8 + S̃svnd

, s21d

qdstd − qEA =
1

b
o
n

cosvnt

vn
2

G
+ z8 + S̃svnd

. s22d

The breakpoint is determined by

bm= xpÎ 2

psxp + 1d
qEA

−p/2. s23d

Combining s20d and s23d, one obtains the following useful
identity:

1

z82 =
2

ps1 + xpd
qEA

2−p. s24d

Notice that thep-spin model is related to the random mani-
fold problem sModel Id: the internal energys18d and the
variational equations19d are indeed formally recovered from

Eqs. s6d and s7d by setting d=0 and V̂sxd=−1
2s1−sx/2dd.
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However here, as it was found in other one step RSB
solution,9,10 one obtains a one parameter family of solutions,
indexed byxp sor equivalently by the breakpointmd. There
are then two different ways to determinem.14 In the statics,
m is usually determined by minimizing the free energy: this
is the so-calledequilibrium criterion. The excitation spec-
trum of the equilibrium SG state is gaped, yielding a specific
heat which vanishesexponentiallyat low T. Alternatively,m
is determined by imposing the vanishing of the replicon ei-
genvalue, which leads to the so-calledmarginality
condition8,14

xp = p − 2. s25d

It has been shown,8 using a Keldysh mean field approach26

and performing analytical continuation to imaginary time,
that the marginality conditions25d gives indeed the correct
solution from the dynamical point of view, i.e., if one con-
siders, in an infinite system, the large waiting time limit—
where time translational invariance and equilibrium fluctua-
tion dissipation theorem hold—and finally takes the limit of
a vanishing coupling to the thermal bath.

Moreover, this marginal value ofxp was found to be the
only one compatible with agaplessexcitation spectrum.8 In
the T=0 limit, it was indeed shown that, in the low fre-

quency limit S̃svnd~ uvnu+Osvn
2d. Therefore, one expects

that the specific heat of the marginally stable SG state van-
ishes as a power law. In Sec. III, we show how to extract
analytically the lowT behavior of the marginally stable SG
state.

C. Quantum SU„N… spin-glass (Model III)

We consider the Heisenberg quantum spin-glass, defined
by the following Hamiltonian:6,9

H =
1

NNo
i j

JijSi ·Sj , s26d

where the original spin symmetry group SUs2d is extended to
SUsNd sRef. 6d and the largeN limit is taken. TheseN spins
occupy the sites of a fully connected lattice. Ins26d, the
couplingJij are random variables, independently distributed
according to a Gaussian distribution of zero mean and vari-
ance

Jij
2 = J2. s27d

Using the imaginary time path-integral formalismswe will
set "=1 from the beginning for this modeld, together with
replicas to implement the average over the disorders27d, the
model is mapped, in the infinite range limit, onto a self-
consistent single site problem described by the action5

Seff = SB −
J2

2N
E

0

b

dtdt8Qabst − t8dSastd ·Sbst8d, s28d

whereSB is the Berry phase imposing the spin commutation
relations,6 together with the self-consistent equation:

Qabst − t8d =
1

N2kSastd ·Sbst8dlSeff
, s29d

wherek¯lSeff
stands for an average computed with the action

Seff. Using a bosonic representation of the spin operatorS in
terms of Schwinger bosons,Sab=ba

†bb−Sdab with the con-
straint oaba

†ba=SN, this models26d can be described ana-
lytically in the limit N→` which then constitutes a mean
field theory of the fully connected models26d where the
spins have the symmetry SUs2d. In this limit, the original
self-consistent equations29d reduces to an equation for the
boson Green’s functionGabstd;−kTbastdb†bs0dl. In the limit

k→0, one parametrizesGaastd by G̃std− g̃, such that

limt→` G̃std=0 at T=0 and, GaÞbstd by −gsud, which is
t-independent. The phase diagram ofs26d in the T−S plane
has been established in the largeN limit.9 A line ScsTd sepa-
rates a paramagnetic phase, described by a diagonal matrix in

replica spaceGabstd=dabG̃std, and where several crossovers
were found to occur in the quantum regime,9 from a spin
glass phase, which we focus on here. In this SG phase, the
saddle point equations are solved by a one step RSB ansatz,
such thatgsud=0 for u,x andgsud=g for u.x, x being the
breakpoint andg̃=g. The starting point of our computation
of the specific heat is the expression for the internal energy
per unit volume9

kHl = −
J2

2
E

0

b

dtsG̃std − gd2sG̃s− td − gd2 −
J2

2
bsx − 1dg4

s30d

in terms of the saddle point solution

Ŝsinnd = J2E
0

b

dtse−innt − 1dssG̃std − gd2sG̃s− td − gd + g3d,

s31d

bx =
1

Jg2S 1

Q
− QD , s32d

with the definitions

g = S+ G̃st = 0−d,

G̃sinnd =
1

inn −
Jg

Q
− Ŝsinnd

, s33d

wherenn is a bosonic Matsubara frequency. Similarly to the
sphericalp-spin models19d–s23d, one obtains a one param-
eter family of solutions, parametrized byQ, or equivalently
by the breakpointx. Here also, if one chooses theequilib-
rium criterion, the excitation spectrum is gapped. Instead, if
one imposes the vanishing of the replicon eigenvalue, one
obtains themarginality condition9
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Q = QR =
1
Î3

. s34d

Using an expansion in 1/S—similar to the semiclassical ex-
pansion for the elastic manifold10—it has been shown
explicitly9 that the marginality conditions34d is the only one
compatible with a gapless excitation spectrum, such that

Ŝ9svd~v+Osv2d, where Ŝsnn→−iv+0+d=Ŝsvd+ iŜ9svd.
Although the connexion between this Matsubara formalism
using the marginality conditions34d and the true Hamil-
tonian dynamics in real time at the mean field level has not
yet been established for the present case, the study of similar
one step RSB solutions for which this connection has been
done,8,27 suggests thats34d gives indeed the correct solution
from the dynamical point of view. On physical grounds, in
the present case of the ordered phase of a quantum SG with
continuous symmetry, this choice seems also natural as one
indeed expects a gapless excitation spectrum.9

Although the specific heat in the equilibrium SG state
vanishes exponentially at lowT, we focus here on the lowT
behavior ofCvsTd in the marginal states34d, which is instead
expected to vanish as a power law.9

III. LOW TEMPERATURE ANALYSIS

In this section, we compute the low temperature expan-
sion of the internal energy for the different models presented
before, from which we directly obtain the specific heat
CvsTd. To do so, we start by deriving some general identities,
which form the background of our analysis. The finite tem-
perature behavior of the internal energy requires the low
temperature expansion of the saddle point equations, which
we then present in detail. For that purpose, we will use the
notation, for any quantity of interestQ, Q=on=0

` TnQsnd. We
finally turn to the behavior ofCvsTd in the last paragraph of
this section.

A. General properties

We first focus on the two first problems evocated heres1d
and s14d, which show, formally, a strong similarity. In par-
ticular, at variance with Model IIIs26d, these two systems
exhibit a two point Green’s functions10d and s22d which is
invariant under the transformationvn→−vn. We focus on
the lowT behavior of integrals over imaginary timet which
enter both the variational equation and the computation of
the internal energy. We will use the notations of the disor-
dered elastic Hamiltonians7d and s11d, the transposition to
the p-spin model being straightforward.

We first suppose thatS andIsvnd, as a function ofvn are
independent ofT, i.e.,Ssnd=0, ∀n.0 and similarly forIsvnd
with Isvnd,uvnu+Osvn

2d. Then, as shown in Appendix A,
one has the low temperature expansion, for any function
HsXd that can be expanded as a power serie around 0,
HsXd=ok=0

` akX
k,

E
0

b"

dt cossvntdsHsB̃stdd − HsBdd = Cst + OsT4d, s35d

where here, and in the following,Cst stands for asgenericd
quantity independent ofT sit may however depend on the
Matsubara frequencyd. Indeed, the gapless structure of the
spectral function suggests that only even powers ofT should
enter this expansions35d. But as shown in detail in Appendix
A, one can check explicitly that the term~T2 vanishes. This
property s35d is rather independent of the structure of the
variational equations, only requiringI9svd~v at low fre-
quency.

For the other model discussed heres26d, one could not
show a so general statements35d involving any functionH,
due to the absence of the symmetryinn→−inn of the Green’s

function G̃sinnd s33d, which renders the calculations more
subtle. Nevertheless, with the same assumptions as above

that the complete self-energyJg/u+Ŝsinnd s33d is indepen-

dent of T, with Ŝsinnd~ unnu+Osnn
2d, for the particular inte-

grals involved here, one can showssee Appendix B for more
detaild,

E
0

b

dtssG̃std − gd2sG̃s− td − gd2 − g4d = Cst + OsT4d,

E
0

b

dte−inntssG̃std − gd2sG̃s− td − gd + g3d = Cst + OsT4d.

s36d

These properties are very useful tools to investigate the
low T behaviors of physical quantities in these models.

B. Variational equations

We now turn to the lowT expansion of the saddle point
equations for the three different models.

1. Model I

Most of the properties presented here, and their extension
to the spin-glass modelss14d and s26d, have been suggested
by the expansion in powers of", keepingb" fixed. We will
shortly remind here the main features of the semiclassical
expansion of the variational equationss7d ands8d. We use the
notation, for any quantityQ=ok=0

` "kQksb"d. Although at
lowest order, the complete solution of the variational
equations10 shows thatS0 and I0svnd are independent ofT,
S1 and I1svnd becomeT dependent at the next order.25 At
low temperature the following structure wasexplicitly ob-
tained

S1 = S1
s0d + ST

"
D2

S1
s2d + OssT/"d4d, s37d

I1svnd = I1
s0dsvnd + ST

"
D2

I1
s2dsvnd + OssT/"d4d,
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I1
s2dsvnd = − s1 − dn,0dS1

s2d, s38d

such that the finite temperature corrections ofS1+ I1svnd are
~T4 for vnÞ0. It was also noticed that the peculiar term
s38d, once inserted inB s9d, generates odd powers ofT, the
lowest one beingT3, in the lowT expansion at higher order
in the expansion in". We extend here these propertiess37d
and s38d independently on the semiclassical approximation.
We show indeed that the following expansion, up to order
OsT4d:

S = Ss0d + T2Ss2d + T3Ss3d,

Isvnd = I s0dsvnd − s1 − dn,0dsT2Ss2d + T3Ss3dd, s39d

with I s0dsvnd~ uvnu+Osvn
2d, is a consistent solution of the

variational equationss7d and s8d. To do so, we compute the
low T expansion of the r.h.s. of the equation forIsvnd given
the forms s39d. We thus need an extension of the general
propertys35d, whenS and Isvnd have the form given in Eq.
s39d. As shown in Appendix A, the lowT behavior of such
integrals overt s35d are in that case given by

E
0

b"

dt cossvntdsHsB̃stdd − HsBdd

= Cst + 2"dn,0sT2Ss2d + T3Ss3ddJ2sSs0ddH8sBs0dd + OsT4d.

s40d

If one applies this general formulas40d with H=2V̂8sBd to
the r.h.s. of Eq.s7d, one obtains up to orderOsT4d,

2

"
E

0

b"

dts1 − cossvntddsV̂8sB̃stdd − V̂8sBdd

= Cst + 4s1 − dn,0dsT2Ss2d + T3Ss3ddJ2sSs0dd

3J2sSs0ddV̂9sBs0dd s41d

=Cst − s1 − dn,0dsT2Ss2d + T3Ss3dd, s42d

where, in the last line, we have used the marginality condi-
tion s8d at T=0. This relations41d thus shows explicitly the
consistency of the lowT expansions39d proposed for the
exact solution of the variational equations. Importantly, al-
though the general property shown aboves40d holds inde-
pendently of the saddle point equation, a solution such as
s39d is consistentprovided the marginality condition holds.

2. Model II

Inspired by the previous analysis, we show that a consis-
tent solution of the variational equations for the quantum
p-spin models19d and s20d is given, up to orderOsT4d by

z8 = z8s0d + T2z8s2d + T3z8s3d,

S̃svnd = S̃s0dsvnd − s1 − dn,0dsT2z8s2d + T3z8s3dd, s43d

with S̃s0dsvnd~ uvnu+Osvn
2d. This is shown by using the gen-

eral lowT expansion, an extension ofs40d to the present case
s43d,

E
0

b"

dt cossvntdsHsqdstdd − HsqEAdd

= Cst − dn,0sT2z8s2d + T3z8s3dd
H8sqEA

s0d d
sz8s0dd2 + OsT4d.

s44d

Thus applyings44d with HsXd=sp/2dXp−1 yields the lowT
expansion of the r.h.s. of the variational equations19d up to
orderOsT4d,

p

2
E

0

b

dts1 − cossvntddsqd
p−1std − qEA

p−1d

= Cst −
psp − 1d

2
s1 − dn,0dsT2z8s2d + T3z8s3dd

sqEA
s0d dp−2

sz8s0dd2

= Cst −
p − 1

1 + xp
s1 − dn,0dsT2z8s2d + T3z8s3dd, s45d

where we have used, in the last line, the identitys24d. Thus,
one sees ons45d that the expression given in Eq.s43d is a
consistent solution ofs19d providedxp=p−2, i.e., the solu-
tion is marginally stables25d.

3. Model III

For this model, we show that, similarly to the two previ-
ous ones, a consistent solution of the variational equations
s31d is given, up to orderOsT4d by

g = gs0d + T2gs2d + T3gs3d,

Ŝsinnd = Ŝs0dsinnd +
J

Q
sdn,0 − 1dsT2gs2d + T3gs3dd, s46d

with Ŝs0dsinnd~ unnu+Osnn
2d. To show the consistency of this

solution s46d, we perform the low temperature expansion of

the r.h.s. of the equation forŜsinnd s31d given s46d. One
obtains up to orderOsT4d,

J2E
0

b

dtse−innt − 1dfsG̃std − gd2sG̃s− td − gd + g3g

= Cst + sdn,0 − 1d3QJsT2gs2d + T3gs3dd. s47d

Again, this expansions47d shows that the structure exhibited
in s46d is a consistent solution of the variational equation
s31d provided 3Q=1/Q, i.e., Q=QR=1/Î3, the marginality
condition s34d.

C. Specific heat: Low temperature expansion

We now turn to the computation of the low temperature
behavior of the specific heat.

1. Model I

Our starting point is the expression for the variational
internal energykHl given in s6d. We first analyze the low
temperature behavior of the first term ins6d, namely the sum
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over Matsubara frequencies. Importantly, we notice that, in
this sum, the contribution of the modevn=0 is independent
of the peculiar structure ofIsvnd exhibited in s38d: this al-
lows to avoid ambiguities coming from the analytic continu-
ation of such a term~s1−dn,0d in s38d. We can thus safely
transform this discrete sum in an integral:

1

b
o
n
E

q

cq2 + S + Isvnd
cq2 + S + Mvn

2 + Isvnd

=E
−`

+` dv

p
"vrDOSsvdfBsvd, s48d

rDOSsvd =E
q

−
c

v2vI9svd

Scq2 −
c

v2v2 + S + Î8svd2 + sI9svdd2D ,

s49d

whererDOSsvd is the density of states. Using thatrDOSsvd
=rDOS

s0d svd+T4rDOS
s4d svd s39d, together with the low frequency

behaviorrDOS
s0d ~v2, one obtains straightforwardly

1

b
o
n
E

q

cq2 + S + Îsvnd

cq2 + S + Mvn
2 + Îsvnd

= Cst + OsT4d. s50d

One performs the lowT expansion of the second term ins6d,
the integral overt, using the propertys40d which holds for
the solution of the variational equations we have founds39d:

E
0

b"

dtsFsB̃stdd − FsBdd

= Cst + 2sT2Ss2d + T3Ss3ddJ2sSs0ddF8sBs0dd + OsT4d.

s51d

One finally tackles the analysis of the last term ins6d, the
integral overw, by using the property thatBswd is indepen-
dent ofT for w,wc,

25

E
0

wc

dwsFsBswdd − FsBdd

= Cst + wc
s0dsT2Bs2d + T3Bs3ddF8sBs0dd + OsT4d. s52d

This propertys52d is then obvious for a full RSB solution
whereBswc

−d=B and was shown25 to hold also for the mar-
ginal one step RSB solution ind=2.

Using the consequence of the marginality conditions12d,
one thus sees clearly that the quadratic and cubic contribu-
tions to this lowT behaviorcancelbetween Eq.s51d and Eq.
s52d. And this yields

kHl = Cst + OsT4d. s53d

This results in the low temperature behavior of the specific
heat:

CvsTd ~ T3 + OsT4d. s54d

Although the coefficient of this cubic term is very hard to
extract by the method presented here, it has been explicitly
computed at the lowest order in the aforementioned semi-
classical expansion and it was found to be nonzero.12

2. Model II

We analyze the lowT behavior of the internal energy
within the variational methods18d of the quantump-spin
model. We treat separately the two lines ofs18d. Using s44d,
one obtains

p

4
E

0

b

dtsqd
p−1std − qEA

p−1d

= Cst − sT2z8s2d + T3z8s3dd
psp − 1d

4

sqEA
s0d dp−2

sz8s0dd2 + OsT4d.

s55d

Using this expansion and the identitys24d one obtains that
the quadratic and cubic terms in the lowT expansion of the
first line in s18d cancel providedxp=p−2 s25d:

z8

2
+

p

4
E

0

b

dtsqd
p−1std − qEA

p−1d = Cst + OsT4d. s56d

We now focus on the second line ofs18d. Usings44d, one has
immediately

−
p + 2

4
E

0

b

dtsqd
pstd − qEA

p d

= Cst + sT2z8s2d + T3z8s3dd
psp + 2d

4

sqEA
s0d dp−1

sz8s0dd2 + OsT4d.

s57d

Finally combinings23d with s24d, one obtains the expansion
of the remaining term ins18d up to orderOsT4d:

−
p + 2

4
bmqEA

p = −
psp + 2d

4

z8s2dT2 + z8s3dT3

sz8s0dd2 sqEA
s0d dp−1.

s58d

Collecting the different contributions tokHl s55d, s57d, and
s58d, one obtains

kHl = Cst + OsT4d s59d

which leads to the low temperature behavior of the specific
heat

CvsTd ~ T3 + OsT4d. s60d

3. Model III

The lowT expansion of the internal energy of the Heisen-
berg spin-glass models30d is performed using the relation
derived in Appendix B which, given the solution of the varia-
tional equations we have found, yield
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−
J2

2
E

0

b

dtfsG̃std − gd2sG̃s− td − gd2 − g4g

= Cst + 2JQgs0dsgs2dT2 + gs3dT3d + OsT4d. s61d

The expansion of the last term ins30d is straightforwardly
computed using the relations32d

−
J2

2
bxg4 = Cst − Jgs0dS 1

Q
− QDsgs2dT2 + gs3dT3d + OsT4d.

s62d

Thus combining Eq.s61d and Eq. s62d, one sees that the
quadratic and cubic terms come with a prefactor 3Q−1/Q,
which thus vanishes for the marginally stable solution, cor-
responding toQ=QR=1/Î3. This yields the low temperature
behavior of the specific heat

CvsTd ~ T3 + OsT4d. s63d

For this model too, the amplitude of the cubic term has been
computed in a 1/S, semiclassical, expansion, and found to be
nonzero.9

IV. CONCLUSION

To sum up, we have computed the low temperature spe-
cific heat of a rather wide class of quantum disordered sys-
tems with continuous degrees of freedom, using a mean field
approximation, including disordered elastic systems ind
ù2, the sphericalp-spin-glass and the Heisenberg spin-
glass. For all these models, we have obtained that the Mean
Field approximation yields the lowT behavior CvsTd~T3

s54d, s60d, and s63d. For the quantump-spin model, our re-
sult is at variance with the linear behavior claimed from the
previous analysis in Ref. 8. There, the variational equations
were solved in theT=0 limit. This solution8 at T=0, which is
recovered by the present analysis, exhibits the low frequency

behavior of the self-energyS̃s0dsvnd~ uvnu s43d, which in
turns leads to the low temperature behavior of the Edwards-
Anderson parameterqEA−qEA

s0d =OsT2d. One would thus
conclude,8 from this low T behavior together with the ex-
pression for the internal energys18d, that kHl=Cst+OsT2d at
low T. However, as we have shown here, a thorough com-
putation of the coefficient of this quadratic contribution to
kHl swhich was not performed in Ref. 8d shows that it actu-
ally vanishes. In addition, we have shown that the cubic
contribution tokHl also vanishess59d. For the Heisenberg
spin-glass model, the cancellation of the linear term inCvsTd
obtained here is in agreement with the numerical solution of
the saddle point equation of Ref. 11. And the nontrivial struc-
ture of the saddle point solution elucidated heres46d, which
plays a crucial role in the cancellation of theT2 term in
CvsTd, could help to clarify numerically the status of the
quadratic contribution toCvsTd obtained in Ref. 11.

This mean field resultCvsTd~T3 is at variance with the
linear behavior commonly expected from two-level systems.4

As we have shown, the cancellation of the linear and qua-
dratic contributions toCvsTd strongly relies upon the margin-

ality condition. And it is worthwhile to notice that the physi-
cal picture associated to this marginal stability criterion,
which enforces thesquantumd dynamics along the flat direc-
tions of the free energy landscape, seems qualitatively differ-
ent from the argument stemming from TLS.4

For the case of manifolds, our result, within the Gaussian
Variational Approximation also applies to nonperiodic elastic
structures, e.g., domain walls, when they can be solved by a
full RSB ansatzsor its limiting case of a marginal one step
RSBd. And although this mean field approach is always an
approximation for the periodic case, it becomes exact for the
nonperiodic one, in the limit where the number of compo-
nents of the displacement field becomes infinite, as it is for
the sphericalp-spin-glass models14d, in the limit N→`, or
for the Heisenberg spin-glass models26d when bothN,N
→`. An outstanding question remains to know whether and
how this result is modified away from mean field, which
clearly deserves further numerical and analytical investiga-
tions.
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APPENDIX A: LOW TEMPERATURE EXPANSION FOR
MODEL I AND MODEL II: DETAILED

CALCULATIONS

In this appendix, we show some general properties of the
low temperature expansion of multiple sums over Matsubara
frequencies. We will use here the notations of the elastic
manifold s7d–s11d sthe extension to the quantump-spin
model being straightforwardd.

1. A first stage with multiple Matsubara sums

To begin with, we restrict ourselves to the case whereS
and Isvnd as a function ofvn do not depend on temperature
T, for all vn including the modevn=0. We also assume the
low frequency behaviorIsvnd,uvnu+Osvn

2d s7d. Here we are
interested in the low temperature expansion of the following
quantity s35d:

E
0

b"

dtsHsB̃stdd − HsBdd. sA1d

As we will see, the first nonvanishing finite temperature cor-
rection isa priori of orderT2: we show that this contribution
in fact cancels for anyssmooth enoughd function HsXd. To
show this cancellation, we show the following property, for
any integerm:

E
0

b"

dtsB̃stdm − Bmd = Cst + OsT4d. sA2d

We introduce the notation
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Ksvnd = J1sMvn
2 + S + Isvndd. sA3d

Inserting the definitions ofB s9d and B̃std s10d in sA2d, one
obtains

E
0

b"

dtsB̃stdm − Bmd

=
s2"dm

sb"dm o
n1,. . .,nm

o
k=1

m

s− 1dkCm
k

3E
0

b"

dt cossvn1
td ¯ cossvnk

td

3 Ksvn1
d ¯ Ksvnk

dKsvnk+1
d ¯ Ksvnm

d, sA4d

whereCm
k =m! / ssm−kd!k!d. Performing the integral overt,

using the property of parityKsvnd=Ks−vnd, this expression
can be written as

E
0

b"

dtsB̃stdm − Bmd

= − 2"J1sSdmBm−1 + o
k=2

m

s− 1dkCm
k

3
s2"dk

sb"dk−1 o
n1,. . .,nk−1

Ksvn1
d ¯ Ksvnk−1

d

3 Ksvn1
+ ¯ + vnk−1

dBm−k. sA5d

We now focus on the low temperature expansion of the mul-
tiple sum over Matsubara frequencies. In that purpose, we
use the spectral representation of the Green’s function:

1

cq2 + Mvn
2 + S + Isvnd

= −E
−`

` dv

p
Asq,vd

1

ivn − v
,

Asq,vd =
I9svd

scq2 − Mv2 + S + I8svdd2 + sI9svdd2 , sA6d

where the spectral functionAsq,vd is the imaginary part of
the retarded function and we remindIsvn→−iv+0+d
= I8svd+ iI 9svd. All the temperature dependence is then con-
tained in the different Bose factors:

1

sb"dk−1 o
n1,. . .,nk−1

Ksvn1
d ¯ Ksvnk−1

dKsvn1
+ ¯ + vnk−1

d

=
s− 1dk

spdk E de1 ¯ dekAse1d ¯ Asekd sA7d

3
1

sb"dk−1 o
n1,. . .,nk−1

1

ivn1
− e1

¯

1

ivn1
+ ¯ + ivnk−1

− ek

=
1

pk E de1 ¯ dekAse1d ¯ AsekdsfBse1d − fBsekdd sA8d

3sfBse2d − fBsek − e1ddsfBse3d − fBsek − e1 − e2dd ¯

sfBsek−1d − fBsek − e1 − e2 − ¯ − ek−2dd
ek − se1 + ¯ + ek−1d

, sA9d

where Asvd=eqAsq,vd and fBsed is the Bose factor. This
expressionsA7d has a very interesting structure which allows
us to extract simply the term of orderT2. Indeed, considering
the low temperature expansion of the following termswhich
is analogous of a Sommerfeld expansion in the fermionic
cased for any functionHsxd with Hsmd=0

E deHsedfBse − md = −E
−`

m

deHsed + ST

"
D2p2

3
H8smd + OsT4d

sA10d

notice of course that the assumptionHsm=0d is of course
crucial heresA10d. This expansionsA10d allows us to write
formally the Bose factor, when inserted in an integral over
frequencye:

fBse − md ; − us− e + md + ST

"
D2p2

3
dse − md]e + OsT4d,

sA11d

whereusxd is the step functionfusxd=1 for x.0, usxd=0 if
x,0g, and the notation]e stands for a derivative acting on
the function which enters multiplicatively withfBsed the in-
tegral overe. This form sA11d is very suitable to extract the
coefficient of the term of orderOsT2d in sA7d. Indeed, using
sA11d, one discovers insA7d, that only the terms where the
Bose factors haveonly one frequencyin their argument do
contribute to orderOsT2d. If we expand, for instancefBsek

−e1−e2d in sA7d one obtains, forkù3

1

sb"d2

p2

3

1

pk E de1 ¯ dekds− ek + e1 + e2d]ek

3FAse1d ¯ Asekds− us− e1d + us− ekdd

3s− us− e2d + us− ek + e1dd ¯

s− us− ek−1d + us− ek + e1 + e2 + ¯ + ek−2dd
ek − se1 + ¯ + ek−1d

G .

sA12d

Because of the functiondsek−e1−e2d, one must take the de-
rivative of the terms]ek

s−us−e2d+us−ek+e1dd=−ds−ek+e1d
swhich isa priori the only nonvanishing termd, which yields

1

sb"d2

p2

3

1

pk E de1 ¯ dekds− ek + e1 + e2dds− ek + e1d

3 Ase1d ¯ Asekds− us− e1d + us− ekdd ¯

s− us− ek−1d + us− ek + e1 + e2 + ¯ + ek−2dd
ek − se1 + ¯ + ek−1d

= 0.

sA13d

We can easily generalize this mechanism to Bose factors
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having more than 3 frequencies in their arguments. The case
of Bose factors having 2 frequencies in their argument has to
be treated separately. This one, i.e.,fBsek−e1d in sA7d yields

1

sb"d2

p2

3

1

pk E de1 ¯ dekds− ek + e1d]ek
FAse1d ¯ Asekd

3 s− us− e1d + us− ekdd

3s− us− e3d + us− ek + e1 + e2dd ¯

s− us− ek−1d + us− ek + e1 + e2 + ¯ + ek−2dd
ek − se1 + ¯ + ek−1d

G . sA14d

Here again, one has to take the derivative]ek
s−us−e1d

+us−ekdd=−ds−ekd, which yields

1

sb"d2

p2

3

1

pk E de1 ¯ dekds− ek + e1dds− ekdFAse1d ¯ Asekd

3 s− us− e3d + us− ek + e1 + e2dd ¯

s− us− ek−1d + us− ek + e1 + e2 + ¯ + ek−2dd
ek − se1 + ¯ + ek−1d

G = 0,

sA15d

where we have usedAs0d=0. We conclude from this analy-
sis that only the Bose factors having only one frequency in
their argument, such asfBse1d , fBse2d , . . . docontribute to the
coefficient of orderT2 in sA7d. Notice that they all give the
same contribution, thus the low temperature expansion of
sA7d can be written forkù3

1

sb"dk−1 o
n1,. . .,nk−1

Ksvn1
d ¯ Ksvnk−1

dKsvn1
+ ¯ + vnk−1

d

= Jk +
k

sb"d2

p

3
A8s0dJk−1 + Osb−4d,

Jk =
1

pk E de1 ¯ dekAse1d ¯ Asekds− us− e1d + us− ekdd

3 s− us− e2d + us− ek + e1dd

3s− us− e3d + us− ek + e1 + e2dd ¯

s− us− ek−1d + us− ek + e1 + e2 + ¯ + ek−2dd
ek − se1 + ¯ + ek−1d

, sA16d

where we have usedAs−ed=−Ased to treat the termfBsekd in
sA7d. For the particular casek=2, one has

1

b"
o
n1

Ksvn1
d2 = J2 +

2

sb"d2

A8s0d
3

E de
Ased

e
+ OsT4d

= J2 +
2

sb"d2KsSd
p

3
A8s0d + Osb−4d,

sA17d

where we have usededeAsed /e=pJ1sSd. Finally, we need
the low T expansion ofB s9d:

B = Bs0d + 2"ST

"
D2p

3
A8s0d + OsT4d. sA18d

Using these behaviors, one obtains

E
0

b"

dtsB̃stdm − Bmd

= Cst + ST

"
D2S− s2"d2J1sSdA8s0d

p

3
msm− 1dsBs0ddm−2

+ s2"d22Cm
2 J1sSdA8s0d

p

3
sBs0ddm−2 + s2"d3Cm

2

3J2sm− 2dA8s0d
p

3
sBs0ddm−3 + o

k=3

m

s2"dks− 1dk

3Cm
k k

p

3
A8s0dJk−1sBs0ddm−k + o

k=3

m−1

s2"dk+1s− 1dk

3Cm
k sm− kd

p

3
A8s0dJksBs0ddm−k−1D + OsT4d. sA19d

First, we notice that the two first terms~T2 just cancel and
moreover

o
k=3

m

s2"dks− 1dkCm
kSk

p

3
A8s0dJk−1sBs0ddm−k + o

k=3

m−1

s2"dk

3s− 1dkCm
k sm− kds2"d

p

3
A8s0dJksBs0ddm−k−1D

=
p

3
A8s0dS− s2"d33Cm

3J2sBs0ddm−3 + o
k=4

m

s− 1dks2"dk

3Jk−1sBs0ddm−kskCm
k − sm− k + 1dCm

k−1dD
= − s2"d3msm− 1dsm− 2d

2

p

3
A8s0dJ2sBs0ddm−3. sA20d

This identitysA20d combined withsA19d yields finally to the
announced property

E
0

b"

dtsB̃stdm − Bmd = Cst + OsT4d sA21d

as announced in the texts35d.

2. Handling the peculiar term Ê„1−dn,0…

We now consider the extension of this propertysA21d to
the case whereS+ Isvnd now depend onT, and are of the
form s39d. We want to follow the same steps as previously
sA21d, and use the spectral representation of the Green func-
tion. Therefore, we need in principle to know the analytical
continuation of the term~s1−dn,0d in s39d. In order to avoid
this ambiguity, we start by isolating the term~s1−dn,0d in
s39d:
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S + Isvnd = S + Cs1 − dn,0d + Ĩsvnd,

Ĩsvnd , uvnu + Osvn
2d,

S = Ss0d + T2Ss2d + T3Ss3d + OsT4d,

C = − T2Ss2d − T3Ss3d + OsT4d,

Ĩsvnd = Ĩ0svnd + OsT4d, sA22d

where Ĩsvnd is defined such that there is no more ambiguity
concerning its analytical continuation. We want to study the
T dependence of integrals over imaginary time such assA5d
when the solution of the variational equations are of the form
s39d. In order to extract the quadratic and cubic terms in this
expansion, we follow the previous analysis, except that, here,
the modevn=0 has to be treated separatelys39d. Notice
however that this ambiguity does not exist for the computa-

tion of B̃std s10d. We analyze the lowT behavior ofsA5d in
the following way:

E
0

b"

dtsB̃stdm − Bmd =
1

"
E

0

b"

dtsB̃stdm − B̂md + b"sB̂m − Bmd,

sA23d

B̂ =
2

b
o
n

J1sS + C + Mvn
2 + Ĩsvndd. sA24d

Using the previous propertysA21d, one has simply

1

"
E

0

b"

dtsB̃stdm − B̂md = Cst + OsT4d sA25d

and the leading corrections at finite temperature are then
given by the second term insA23d,

bsB̂m − Bmd = − b"o
k=1

m

Ck
mS 2

b
E

q

C

scq2 +Sdscq2 + S +CdDk

B̂m−k

= 2"sT2Ss2d + T3Ss3ddJ2sSs0dd

3msBs0ddm−1 + OsT4d sA26d

sinceBs0d=B̂s0d, and more generally, one can write, for any
vn and any functionHsXd the generalization ofsA21d to this
cases39d

E
0

b"

dt cossvntdsHsB̃stdd − HsBdd

= Cst + 2"dn,0sT2Ss2d + T3Ss3dd

3J2sSs0ddH8sBs0dd + OsT4d sA27d

as quoted in the texts40d.

APPENDIX B: HEISENBERG SPIN GLASS: LOW
TEMPERATURE EXPANSION

1. General properties

We present here the detailed analysis of the low tempera-
ture behavior of integrals over imaginary time of the form
s30d

I =E
0

b

dtfsG̃std − gd2sG̃s− td − gd2 − g4g. sB1d

We first consider the case where the Green’s functionG̃sinnd,
as a function ofinn is independent ofT. Similarly to the
analysis performed in Appendix A, we develop the integrand
in sB1d and perform the integral overt : we are then left with
multiple sums over Matsubara frequencies. Depending on
the number of Green’s functions they involve, the integral
over t generates 4 different types of terms:

I = o
i=1

4

Ii ,

I1 =
1

b3 o
in1,in2,in3

G̃sin1dG̃sin2dG̃sin3dG̃sin1 + in2 − in3d,

I2 = − 2g
1

b2 o
in1,in2

fG̃sin1dG̃sin2dG̃sin1 + in2d

+ G̃sin1dG̃sin2dG̃sin1 − in2dg,

I3 = 2g2 1

b
o
in1

f2G̃sin1d2 + G̃sin1dG̃s− in1dg,

I4 = − 4g3G̃sinn = 0d. sB2d

We follow the standard analysis and use the spectral repre-
sentation of the Green’s function to handle these terms

G̃sinnd = −E
−`

` dv

p
rsvd

1

inn − v
, sB3d

rsvd = − Im G̃sinn → v + i0+d. sB4d

Performing then, the sums over the Matsubara frequen-
cies, we are left with the same kind of structure as found in
the previous modelssA7d,

I1 =
1

p4 E de1de2de3de4p
i=1

4

rseidsfBse1d − fBse4ddsfBse2d

− fBse4 − e1dd
sfBse3d − fBse1 + e2 − e4dd

e4 + e3 + e2 − e1
. sB5d

Under this form, we analyze straightforwardly the low tem-
perature behavior, using the property demonstrated previ-
ously that only Bose factors withone frequency in their ar-
gument do contribute to this sum. Using the expansion
sA10d, we obtain up to orderOsT4d,
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I1 =
1

p4 E de1de2de3de4p
i=1

4

rseid

3s− us− e1d + us− e4dds− us− e2d + us− e4 + e1dd

3
s− us− e3d + us− e1 − e2 + e4dd

e4 + e3 + e2 − e1

+ T2 4

3p2r8s0d E de1de2de3rse1drse2drse3d

3 s− us− e1d + us− e3dd
s− us− e2d + us− e1 + e3dd

e3 + e2 − e1
,

sB6d

where we have used the relationfwhich is valid although
rsed is not an odd functiong:

E de1de2de3rse1drse2dsrse3d + rs− e3ddsus− e1d − us− e3dd

3
s− us− e2d + us− e1 + e3dd

e3 + e2 − e1
= 0. sB7d

Indeed, one shows this relationsB7d by noticing that the step
functions reduce the interval of integration toe3.0, e2.0,
e1,0 ande3,0, e2,0, e1.0. A simple permutation of the
integration variables then lead to the relationsB7d.

The analysis ofI2 requires the lowT expansion ofg,

g = S+E de

p
rsedfBsed = gs0d + T2p

3
r8s0d + OsT4d,

sB8d

I2 can be written as

I2 = 2g
1

p3 E de1de2de3rse1drse2drse3d

3 F sfBse1d − fBse3dsfBse2d − fBse3 − e1ddd
e1 + e2 − e3

+
sfBse1d − fBse3dsfBse2d − fBse1 − e3ddd

e1 − e2 − e3
G sB9d

from which we obtain the lowT expansion up to order
OsT4d,

I2 = Cst − T2 4

3p2r8s0d E de1de2de3rse1drse2drse3d

3 s− us− e1d + us− e3dd
s− us− e2d + us− e1 + e3dd

e3 + e2 − e1

+
2gs0d

3p

r8s0d
b2 E de1de2rse1drse2d

3F4
us− e1d − us− e2d

e2 − e1
− 2

use1d − us− e2d
e1 + e2

G . sB10d

One obtains in a similar way the expansion ofI3, writing

I3 =
g2

p2 E de1de2rse1drse2d

3F4
fBse2d − fBse1d

e1 − e2
+ 2

fBse1d − fBs− e2d
e1 + e2

G sB11d

from which we obtain the lowT expansion:

I3 = Cst + T22gs0d

3p
r8s0d E de1de2rse1drse2d sB12d

F− 4
us− e1d − us− e2d

e2 − e1
+ 2

use1d − us− e2d
e1 + e2

G
+ T24pfgs0dg2r8s0dG̃sinn = 0d, sB13d

where we have usededersed /e=pG̃sinn=0d. As G̃sinnd does
not depend onT, one obtains the expansion ofI4 up to order

I4 = Cst − T24pfgs0dg2r8s0dG̃sinn = 0d + OsT4d. sB14d

Finally, collecting the quadratic contributions insB6d,
sB10d, sB12d, andsB14d yields

I =E
0

b

dtfsG̃std − gd2sG̃s− td − gd2 − g4g = Cst + OsT4d

sB15d

as announced in the texts36d.
Using the same method exposed previously, we study the

T dependence of the integral overt which enters the varia-
tional equation of this models31d,

I =E
0

b

dte−inntfsG̃std − gd2sG̃s− td − gd + g3g. sB16d

As previously, after we have performed the integrals overt
in sB16d, we have to handle exactly the same integrals as in
I2, I3, I4. The mechanism of cancellation of the quadratic
term is again at work herefnotice however that, given that
the integrand is here a polynom of degree 3, the terms like
sB7d are not present hereg. This yields

I = Cst + OsT4d sB17d

as given in the texts36d.

2. Handling the peculiar term Ê„1−dn,0…

We generalize these properties to the case where the so-
lution of the variational equations is of the form shown in
Eq. s46d. We use here the same strategy as presented in Ap-
pendix A. We isolate the modeinn=0 as insA23d andsA24d,
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and given thatsG̃std−gd or sG̃s−td−gd do not depend on this
inn=0 mode, one obtains straightforwardly,

I =E
0

b"

dtfsG̃std − gd2sG̃s− td − gd2 − g4g

= Cst − 4
Q

J
gs0dsT2gs2d + gs3dT3d + OsT4d, sB18d

I =E
0

b

dte−inntfsG̃std − gd2sG̃s− td − gd + g3g

= Cst + dn,0
3Q

J
sT2gs2d + gs3dT3d + OsT4d, sB19d

as announced in the texts47d and s61d.
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