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The nonequilibrium relaxational dynamics of the solid-on-solid model on a disordered substrate and the
sine-Gordon model with random phase shifts is studied numerically. Close to the super-roughening temperature
Tg our results for the autocorrelations, spatial correlations, and response function as well as for the fluctuation
dissipation ratio agree well with the prediction of a recent one-loop renormalization-groupsRGd calculation,
whereas deep in the glassy low-temperature phase substantial deviations occur. The change in the low-
temperature behavior of these quantities compared to the RG predictions is shown to be contained in a change
of the functional temperature dependence of the dynamical exponentzsTd, which relates the aget of the system
to a length scaleLstd :zsTd changes from a linearT dependence close toTg to a 1/T behavior far away from
Tg. By identifying spatial domains as connected patches of the exactly computable ground states of the system
we demonstrate that the growing length scaleLstd is the characteristic size of thermally fluctuating clusters
around “typical” long-lived configurations.
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I. INTRODUCTION

Despite many efforts the understanding of nonequilibrium
dynamics of disordered and glassy systems in finite dimen-
sions remains a challenging problem. In particular, in glasses
and spin glasses the aging process displays a very rich phe-
nomenology demanding new theoretical concepts.1 But al-
ready less complex—and apparently less glassy—systems,
such as disordered but nonfrustrated systems2 or even pure
systems,3 reveal interesting and unexpected aging phenom-
ena. One of the most intriguing questions in this context is
whether the out-of-equilibrium dynamics is essentially fully
determined by a coarsening processsa question that even
arises in the more complex spin-glass situation4d, describable
by a growing length scale that characterizes essentially all
out-of-equilibrium processes. In this paper we will consider a
disordered system in which this question has yet to be clari-
fied, and for which the answer we find will reveal a non-
standard scenario.

Among glassy systems, there is a wide interest in disor-
dered elastic systems, which cover a wide range of physical
situations ranging from vortex lattices in superconductors,5

interfaces in disordered magnets,6,7 or electron glasses8 for
which nonequilibrium effects are experimentally relevant.
Here, we investigate the nonequilibrium relaxational dynam-
ics of a solid-on-solidsSOSd model on a disordered sub-
strate, defined on a two-dimensional square lattice and de-
scribed by the following elastic Hamiltonian in terms of
height variableshi:

HSOS= o
ki j l

shi − hjd2, hi ; ni + di , s1d

where ni are unbounded discrete variables, i.e.,ni
P h0, ±1, ±2,…j and di P f0,1f are uniformly distributed
quenched random offsets, uncorrelated from site to site. In
the absence of disorder, i.e.,di =0, the model exhibits a
roughening transition in the same universality class as the
Kosterlitz-Thouless transition,9 at a temperatureTr separat-

ing a flat phase at lowT from a logarithmicallysthermallyd
rough one aboveTr. The presence of disorder is known to
significantly modify the nature of the transition.10–12The so-
called superroughening transition occurs at a temperature
Tg=Tr /2=2/p. AboveTg, where the disorder is irrelevant on
large length scales, the surface is logarithmically rough
again, although belowTg the system exhibits a glassy phase
where the pinning disorder induces a stronger roughness of
the interface. In the continuum limit, nearTg, this SOS
model s1d is in the samesequilibriumd universality class as
the sine-Gordon model with random phase shifts, the so-
called Cardy-OstlundsCOd model13

HCO =E d2xf¹wsxdg2 − Dcosh2pfwsxd − jsxdgj, s2d

where wsxdP g−` , +`f is a continuous variable andjsxd
P f0,2pf is a uniformly distributed quenched random-phase
variable, uncorrelated from site to site,D being the strength
of the disorder. The models2d arises in various contexts like
the XY model in a random magnetic fieldswithout vorticesd
or in vortex physics where it describes a two-dimensional
s2Dd array of flux lines pinned by pointlike disorder.14 The
low-temperature glassy phasesi.e., belowTgd of these mod-
elss1d ands2d is described by a finite-temperature fixed point
associated with a free-energy exponentu=0, which is an
exact statement due to the statistical tilt symmetry.15

Although these models have been extensively studied,
both analytically16 and numerically,17–20 these works have
mainly focused on the equilibrium properties. Among them
the static roughness of the interface has been investigated
thoroughly and for the dynamics the dynamical exponent
z.11,18,21The latter was found to depend continuously onT
and computed using the renormalization groupsRGd up to
one loop in the vicinity ofTg, where the fixed point is con-
trolled by the small parametert=sTg−Td /Tg. Only recently,
the nonequilibrium relaxational dynamicssdefined by a
Langevin equationd of the Cardy-Ostlund models2d was in-
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vestigated analytically22 in the perturbative regimest!1d.
Using the RG this study focused on the the two-timesst ,twd
correlation and response functions. The autocorrelation and
local response function were found to scale ast / tw and char-
acterized by asymptotically algebraic scaling functions with
an associated decay exponent that depends continuously onT
and was calculated perturbatively up to one loop order. Fi-
nally, the associated fluctuation dissipation ratiosFDRd in the
large time separation limit was found to be nontrivial and
alsoT dependent.

In this paper we intend first to numerically test this analy-
sis nearTg, then to go beyond the perturbative regime and
explore the lowT dynamics where one expects to observe a
stronger signature of the logarithmic free-energy landscape23

as suggested by the static value ofu=0. Furthermore, having
determined these different nonequilibrium dynamical proper-
ties, we propose to relate them to a real-space analysis of the
equilibration process of the thermal fluctuations in the sys-
tem. Their quantitatively precise study is possible due to an
algorithm19,20 that allows one to compute the exact ground
state ofs1d.

The outline of the paper is as follows. In Sec. II, we give
some details of our simulations and present the definitions of
the dynamical two-times quantities we will focus on. In Sec.
III, we present our numerical results for these quantities and
establish a comparison with the analytical predictions of Ref.
22 ssome details of this comparison are left in the Appendixd.
Section IV is devoted to a physical discussion, based an ag-
ing scenario in real space. Finally we draw our conclusions
in Sec. V.

II. SIMULATIONS AND DEFINITIONS

We perform a numerical study of the nonequilibrium re-
laxational dynamics of these modelss1d and s2d on a 2D
square lattice with periodic boundary conditions using a
standard Monte Carlo algorithm. Although the SOS model is
by definition a discrete model, the CO models2d, which is a
continuous one, needs to be discretized for the purpose of the
simulation. We will use the discretized version of the gradi-
ent in s2d, with wsxd→wi and i being the site index. The
value of the displacement fieldwi is itself discretized into
4096 intervals of widthDw between ±4. Except when we
explicitly mention it, the system is initially prepared in a flat
initial condition fnist=0d=0 or wist=0d=0g. At each time
step, one site is randomly chosen and a moveni →ni +1 or
ni →ni −1 is proposed with equal probabilitysfor the CO
model, the fieldwi is incremented or decremented by an
amountDwd. This move is then accepted or rejected accord-
ing to the heat-bath rule. Our data were obtained for a lattice
of linear sizeL=64 orL=128, and a time unit corresponds to
L2 time steps.

We will first study the connected autocorrelation function
Cst ,twd

Cst,twd =
1

L2o
i

khistdhistwdl − khistdlkhistwdl, s3d

which is a two-times quantity allowing to characterize aging
properties. Then we will consider the spatialstwo-pointd con-
nected correlation function

Csr,td =
1

L2o
i

khistdhi+rstdl − khistdlkhi+rstdl s4d

from which we measure the dynamical exponentz. In s3d and
s4d, the angular brackets and overbars mean an average over
the thermal noise and, respectively, over the disorder. When
studying the CO models2d the corresponding correlation
functions are defined by Eqss3d ands4d with the substitution
histd→wistd.

These two quantitiesfs3d and s4dg are straightforwardly
computed from our simulation, which stores at each time
stept the value of the height fieldhistd on each sitei. Typi-
cally, in our simulations we computeCst ,twd by averaging
over 64s32d different realizations of the thermal noise for a
given configuration of the disorder and then averaging over
256 s128d different disorder samples forL=64 srespectively,
L=128d. We observed that the main fluctuations in the com-
putation of the correlations were coming from the average
over the disorder. Therefore, we have estimated the error
bars from the sample-to-sample fluctuations of the thermal
average value ins3d and s4d.

We are also interested in the violation of the fluctuation
dissipation theoremsFDTd associated withlocal fluctuations
s3d for which we have to consider the associated local linear
responseRst ,twd

Rst,twd =K dhistd

df istwd
L , s5d

where f istwd being an infinitesimal force applied at sitei at
time tw. The dynamical rules are then modified by adding a
term −oi f ini to the original Hamiltonian equations1d. Nu-
merically, it is more convenient to calculate instead the inte-
grated response

rst,twd =E
0

tw

dsRst,sd. s6d

In order to isolate the diagonal component of the response
function, we used the standard strategy:24,25we simulate two
replicas of the system, one without an applied force and an-
other in which we apply a spatially random force to the sys-
tem from timet=0 to time t= tw. This force field is of the
form f i = f0ei, with a constant small amplitudef0 and a
quenched random modulationei = ±1 with equal probability,
independently at each sitei. The integrated responserst ,twd
is then computed as

rst,twd =
1

L2o
i

khistdl f i
− khistdl

f i
, t . tw, s7d

wherekhistdl f i
means the thermal average in the presence of

the force field f i. We have used a numerical value off0
=0.3 and have checked that we were indeed probing the
linear response regime. Our numerical data forrst ,twd are
averaged over 64s32d independent thermal realizations for a
given disorder configuration and the random fieldsf i for L
=64 srespectively,L=128d and then averaged over 512 dif-

G. SCHEHR AND H. RIEGER PHYSICAL REVIEW B71, 184202s2005d

184202-2



ferent disorder realizations. The error bars are estimated in
the same way as for the correlation functions. We point out
that instead ofrst ,twd many studies, e.g., in spin glasses,
focus onxst ,twd=etw

t dsRst ,sd. In our model in which one-
time quantities, such asCst ,td, grow without bounds whent
increases, there may be a regime in which the integral overs
in the definition ofxst ,twd is actually dominated by the latest
times26 s and thus depends only very weakly on the waiting
time tw. Therefore, in order to disentangle the off-diagonal
part of the response itself the computation ofrst ,twd s7d,
which does not suffer from the aforementioned peculiarity, is
better suited.

When the system is in equilibrium the dynamics is time-
translation invariantsTTId and two-times quantities, such as
Cst ,twd or rst ,twd, depend only on the time differencet− tw.
Moreover,Cst ,twd and the responseRst ,twd are related by
the fluctuation dissipation theoremsFDTd

]tw
Cst,twd = TRst,twd. s8d

When the system is not in equilibrium, these properties do
not hold any more and it has been proposed to generalize the
FDT to nonequilibrium situations by defining a fluctuation
dissipation ratiosFDRd Xst ,twd,1,27

T

Xst,twd
=

]tw
Cst,twd

Rst,twd
, s9d

such thatXst ,twd=1 in equilibrium s8d and any deviation
from unity being a signature of an out of equilibrium situa-
tion. In this paper, we will investigate this FDRs9d for the
snonequilibriumd relaxational dynamics following a sudden
quench att=0. Of particular interest is the limiting value

X` = lim
tw→`

lim
t→`

Xst,twd. s10d

III. RESULTS

A. Correlation function

1. Autocorrelation function

Figure 1 shows the decay of the connected correlation
functionCst ,twd for different waiting timestw and for a tem-
peratureT=0.63Tg; they show a cleartw dependence. We
note that the quantityCstw,twd depends also ontw, before
saturating to its equilibrium value fortw→` swhich depends
on the system sizeLd. This explains why one does not ob-
serve a “quasiequilibrium” regime, whereCst ,twd;Cst− twd
whent− tw! tw for the relatively small waiting times showed
in Fig. 1. This quasiequilibrium regime can, however, be
observed if we plotCstw,twd−Cst ,twd, as shown on the inset
of Fig. 1.

In the aging regime, fort− tw,Ostwd, these curves for
different waiting timestw fall on a single master curve when
we plotCst ,twd as a function oft / tw sFig. 2d. In the large time
separation regimet@ tw these data are well fitted by a power-
law decay

Cst,twd , S t

tw
D−l/z

, t @ tw. s11d

Note, however, that one cannot exclude logarithmic correc-
tions at low temperature where the decay exponent becomes
very small. In Fig. 3, we plot the value of the decay exponent
l /z for different temperatures. In the high-temperature
phase,T.Tg, wherel=z=2, one expectsl /z=1 indepen-
dentof T snote that the high-temperature phase is critical and
as such also displays aging behavior3,28d. ForT,Tg the pres-
ence of disorder reduces the decay exponentl /z, which now
depends continuously on temperature. In the vicinity ofTg
one observes a rather good agreement with the perturbative
RG computation to one loop22

l

z
= 1 −egEt + Ost2d, s12d

wheregE=0.577 216 is the Euler constant. With the RG re-
sult z=2+2egEt+Ost2d this corresponds tol=2+Ost2d.

Note that the simulations nearTg, T/Tg*0.8, i.e., in the
weak disorder regime, have been performed using the
random-phase sine-Gordon formulations2d of the SOS

FIG. 1. Connected correlation functionCst ,twd as a function of
t− tw for different waiting timestw. The inset shows the plot of
Cstw,twd−Cst ,twd as a function oft− tw, for the same different wait-
ing times, which exhibits the quasiequilibrium regime. Here,T
=0.63Tg.

FIG. 2. Connected correlation functionCst ,twd as a function of
t / tw for different waiting times at temperatureT=0.63Tg. The dot-
ted line is the result of the fits11d, taking into account the data
points with t / tw.10.
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model, for which the asymptotic regime is reached more
quickly for these temperatures. The inverse is, of course, true
at low temperature. When it was possible, we have compared
for a given temperature the asymptotic properties ofCst ,twd
using the SOS models1d to the CO models2d. We show the
result of this comparison forT=0.63Tg in Fig. 4.

One observes that both formulations are in good agree-
ment concerning thet / tw scaling form and are in reasonable
agreement concerning the value of the exponentl /z, thus
confirming the universality of this property. However, the
amplitude itself does not seem to be universal.

At lower temperature the perturbative calculation fails to
predict the correct behavior ofl /z; in Fig. 3 we observe a
change in itsT dependence belowT<0.8Tg. In this regime
one obtains a good fit of the decay exponent by

l

z
, Al/zT, Al/z = 0.85 ± 0.04 s13d

If one naively assumes that the one-loop RG calculationl
=2 is still valid at low temperature, then this would already
indicate a 1/T behavior of the dynamical exponentz. We will
come later to this point where we explicitly compute this

exponentz. Indeed, this scaling forms11d can be written as

Cst,twd , F Lstd
LstwdG−l

, Lstd , t1/z, s14d

thus defining a length scaleLstd that can be further analyzed
by measuring how the spatial correlations are growing in the
system ssee the next paragraphd. The functional shape of
Cst ,twd that we determined suggests that itsT-dependence is
mainly contained in the decay exponent within the the aging
regime wherest− twd,Ostwd. It is remarkable that its most
prominent feature, thet / tw scaling and the asymptotically
algebraic scaling form with aT-dependent decay exponent, is
already captured by the one-loop RG calculation of Ref. 22.
By contrast, one observes that the quasiequilibrium regime
st− twd! tw shows a much strongerT dependence. At low
temperatureT&Tg/2 the autocorrelation functionCst ,twd
displays an inflection point at small time differencet− tw. In
Fig. 5, whereCst ,twd as a function oft− tw is shown in a
linear-log plot for different large waiting timestw, one ob-
serves a qualitative change of behavior, which could suggest
a finite limiting value limt→`limtw→`Cst ,twd. However, on the
time scales explored here, we have not identified a clear
signature of such a behavior. Nevertheless, this point de-
serves further investigation of the equilibrium properties at
low temperature, where some discrepancies between
numerics19,20 and analytical predictions29 were already
found.

2. Two-point correlation function

In Fig. 6 we show the two-point correlation functions4d
for a temperatureT=0.47Tg sandL=64d for different times
t. As t grows spatial correlations develop in the system. More
precisely, as shown in Fig. 7,Csr ,td scales as

Csr,td = FF r

LstdG, Lstd , t1/z. s15d

The value ofz that gives the best data collapse leads to our
first estimate of the dynamical exponent. The logarithmic

FIG. 3. Decay exponentl /z as a function ofT/Tg. The dashed
lined indicates the exact value forT.Tg. The solid line shows the
result of the one-loop RGsRef. 22d given in s12d. Importantly, this
curve is drawn without any fitting parameter,Tg=2/p being exactly
known.

FIG. 4. Connected correlation functionCst ,twd obtained with the
SOS modelsfilled symbolsd and with the CO Hamiltoniansopen
symbolsd as a function oft / tw for different tw. HereT=0.63Tg.

FIG. 5. Autocorrelation functionCst ,twd as a function oft− tw
for different large waiting timestw, at sveryd low temperature,T
=0.15Tg. For shortt− tw, this quantity shows an inflection point.
The inset shows the same quantity forT=0.63Tg, which exhibits a
qualitatively different behavior fort− tw! tw.
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behavior forr !Lstd , Csr ,td, ln Lstd / r is in agreement with
the constraint imposed by the statistical tilt symmetry
sSTSd,15 which fixes the equilibrium behavior of the con-
nected two-point correlation function to

lim
t→`

Csr,td , −
2

s2pd2

T

Tg
ln r , s16d

which is identical with the puresi.e., disorder-free behaviord.
We also checked that the amplitude of the logarithmic behav-
ior of Csr ,td for r /Lstd!1 is in good agreementswithin a
few percentd with Eq. s16d.

3. Dynamical exponent

Another way to estimate the dynamical exponent is to
determine the time-dependent length scaleLstd itself. For
that purpose, and given the scaling form previously com-
puteds15d, we estimateLstd via a the space integral of the
spatial correlations30

E
0

L/2

dr Csr,td =E
0

L/2

dr Ffr/Lstdg , LstdE
0

`

duFsud,

s17d

where we assumed in the last step thatL /Lstd!1 swhich is
indeed the case on the time scales considered hered and that

Csr ,td decays sufficiently fast at larger swe checked that it
actually decays exponentiallyd. Note also that the sum ins17d
is bounded toL /2 due to periodic boundary conditions. In
Fig. 8 we showed the value ofLstd computed withs17d for
different temperatures. One obtains a rather good fit of these
curvessFig. 8d by a power lawLstd, t1/zsTd, thus obtaining a
value of theT-dependent dynamical exponent in good agree-
ment with the value obtained by collapsing the different
curves in Fig. 7. One notes also thatLstd approaches an
algebraic growth after a preasymptotic regime, which in-
creases with decreasing temperature. Figure 9 shows our es-
timate for 1/zsTd as a function ofT. As expected, the dy-
namical exponent is a decreasing function of the
temperature. One expects thatz=2 for T.Tg and that it be-
comesT dependent belowTg with z=2+2egEt+Ost2d as
predicted by a one-loop RG calculation.11,21At high tempera-
ture T.Tg and in the vicinity ofTg

−, it is numerically rather
difficult to extract a reliable estimate for the dynamical ex-
ponent froms15d or s17d due to finite size effects. Therefore
we restrict ourselves here to lower temperaturesT,0.8Tg
fsee Ref. 18 for a numerical computation ofzsTd in the vi-
cinity of Tgg. For temperatureT*0.7Tg, the value ofz is
still in reasonable agreement with the RG prediction. Around
the valueT* .0.63Tg, wherez.4, the curve 1/zsTd shows
an inflection point, below which 1/z decreases linearly with
T. In this regime,zsTd is well fitted by

FIG. 6. Spatially connected correlation functionCsr ,td as a
function of r for different timest. HereT=0.47Tg.

FIG. 7. Spatially connected correlation functionCsr ,td as a
function of r / t1/z with 1/z=0.17±0.01 for different timest. Here
T=0.47Tg.

FIG. 8. Growing length scaleLstd computed froms17d for dif-
ferent temperatures. The solid lines are guides to the eye.

FIG. 9. 1/zsTd as a function ofT/Tg. The dashed line, which
shows the result of the one-loop RGsRefs. 11,21d, is drawn without
any fitting parameter.
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zsTd , 4
T*

T
for T ø T* , s18d

which, givens13d, shows also thatl.2 is still a good esti-
mate at lowT. This behaviorz~1/T is compatible with an
activated dynamics over logarithmic barriers, i. e., an
Arrhenius-type behaviorttyp,eBLtyp

/T with BLtyp
, log Ltyp.

Assuming that the largest barriers, which dominate the low-
temperature dynamics, encountered in this nonequilibrium
relaxation process have the same scaling as the equilibrium
ones, this logarithmic behavior is also consistent with a free-
energy exponentu=0.33 Interestingly, this change of behav-
ior of z at a value ofzc=4, above whichz~1/T s18d, is
reminiscent of the related case of a particle in a one-
dimensional disordered potential with logarithmic correla-
tions, where such a behavior was obtained analytically.23 It
should be mentioned that a dynamical exponent that varies
like 1/T has also been found in other disordered systems,
such as in spin glasses30,31 and in random ferromagnets.32

Finally, although s18d suggests the existence of a well-
definedtypical relaxation time, one expects the full distribu-
tion of the barrier heights to be very broad34 and needs prob-
ably further work to be investigated.

B. Integrated response function

In this section, we focus on the integrated responses7d. In
Fig. 10 we show a plot ofrst ,twd as a function of the time
differencet− tw for different waiting timestw. Here too, one
observes a clear waiting time dependence.

These curves for different waiting timestw fall on a single
master curve if one plots them as a function oft / tw, as shown
in Fig. 11. As suggested on this log-log plotsFig. 11d, rst ,twd
takes the following power-law decay:

rst,twd , S t

tw
D−l/z

, t @ tw. s19d

Note that the decay exponent, within the accuracy of the data
presented here, is the same as the one of the corresponding
autocorrelation functionCst ,twd fEq. s11dg. This t / tw scaling
form, together with the relation between the decay exponent

of rst ,twd andCst ,twd are also fully compatible with previous
one-loop RG calculations. As we will see, this has important
implications for the FDR as discussed in the next paragraph.

C. Fluctuation dissipation ratio

In order to characterize the deviation from the equilib-
rium, in this section we compute the FDRXst ,twd fEq. s9dg.
For T.Tg the disorder is irrelevant, and the FDR is expected
to be identical to the FDR of the pure case, which we there-
fore consider first. In the pure model, the aucorrelation and
the response function can be computed analytically. In the
out-of-equilibrium regimetw, t!L2 sremembering thatz
=2 for the pure cased, one has3

Rpurest,twd =
1

Tgs2pd2

1

t − tw
, t . tw

Cpurest,twd =
T

Tgs2pd2lnS t + tw
ut − twuD . s20d

Using these expressionss20d together withs9d, one obtains
that Xst ,twd;XfCst ,twdg, which allows one to write the rela-
tion defining the FDRs9d in an integrated form using the
definition of rst ,twd fEq. s6dg

Trpurest,twd =E
0

tw

dsXpurefCpurest,sdg]sCpurest,sd

= X̂purefCst,twdg − X̂purefCpurest,0dg, s21d

with ]uX̂puresud=Xpuresud. Cpurest ,0d is expected to be small;

one can extractX̂purefCst ,twdg from the slope of the curve
Trpurest ,twd versusCpurest ,twd in a parametric plot, provided
tw is sufficiently large such that the curves for differenttw
collapse. In Fig. 12 this parametric plotTrpure versusCpure is
shown. For large values ofCpure one expects to recover the
FDT and a slope of value unity. On the other hand, asCpure
decreases all these curves converge to a same master curve
XpuresCd, which, usings20d can be exactly computed for the
pure model

FIG. 10. Integrated response functionrst ,twd as a function of
t− tw for different waiting timestw. HereT=0.47Tg.

FIG. 11. Integrated response functionrst ,twd as a function of
t / tw for different waiting timestw at T=0.47Tg.
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X̂puresCd = g ln
e

C
g + 1

2
, g =

T

s2pd2Tg
. s22d

As one can see in Fig. 12, our numerical results are in good
agreement with the exact calculation. An important point is
that the slope at the origin gives the asymptotic value of the
FDR Xpure

` , Eq. s10d such that Trpurest ,twd,Xpure
`

3Cpurest ,twd when Cpurest ,twd→0. As is obvious from Eq.
s22d for the pure model, one hasXpure

` =1/2, therandom-walk
value,3 independentof the temperature.

For a finite size system, one expects to recover the equi-
librium dynamical regime for large but finite waiting times
tw@ tEQ and, in particular, the restoration of the FDTs8d
reflected byXst ,twd=1. Therefore, as predicted by the ana-
lytical solution, the parametric curve ofTr versusC will
progressively move to the right with increasingtw converg-
ing in equilibriumstw→`d to a straight line passing through
the origin.

We now turn to the caseT,Tg when the disorder is rel-
evant. Given thet / tw scaling forms we have obtained for
Cst ,twd sFig. 2d and forrst ,twd sFig. 11d one expects also in

the disordered case to haverst ,twd; X̂fCst ,twdg. Indeed, as
shown in Fig. 13 the parametric plotTr versusC for different
tw is qualitatively similar to the curve obtained for the pure

case. In particular, the propertyrst ,twd; X̂fCst ,twdg, together
with Eq. s14d yields, in the nonequilibrium regime

Xst,twd ; XS Lstd
LstwdD . s23d

Moreover, our datasFig. 13d are consistent with a finite lim-
iting value fas defined in Eq.s10dg X`.0 also in the pres-
ence of disorder, although the asymptotic value of this quan-
tity is very difficult to estimate numerically. This fact is
qualitatively in agreement with RG predictions. In contrast to
the pure model, and according to Ref. 22, this valueX` de-
pends continuously onT as

X` =
1

z
+ Ost2d s24d

close toTg.
22 Although a precise comparison to this RG pre-

diction in the vicinity of Tg, where the deviations from the
pure case are expected to be small, is difficult at this stage
srequiring a study on longer time scalesd one can see in Figs.
13 and 14 that our data are still in reasonable agreement with
the one-loop relations24d.

IV. COARSENING OR GROWING FLUCTUATIONS?

The behavior we obtained for the two-point correlation
functionCsr ,td allowed us to identify a growing length scale
Lstd on which the system gets equilibrated. To go further,
one would like to relate this length scaleLstd to the size of
spatially correlated structures, such as domains or droplets.
We first explored the idea that at low temperature, the non-
equilibrium dynamics could be understood as a coarsening
process reflected in a spatially growing correlation with the

FIG. 12. Parametric plot of the integrated response function
Trst ,twd as a function ofCst ,twd for different waiting timestw and
T=1.1Tg. The solid line is the result for the pure case as given by
Eq. s22d and does not contain any fitting parameter. The dashed line
shows the slope corresponding to the nonviolated FDT.

FIG. 13. Parametric plot of the integrated response function
Trst ,twd as a function ofCst ,twd for different waiting timestw. Here
T=0.47Tg. The solid line corresponds to a value ofX`=1/z s24d,
although the dashed one corresponds toX`=1/2, thus showing a
clear deviation from the pure case. The dotted line shows the slope
corresponding to FDT.

FIG. 14. Comparison betweenX` sopen symbolsd and 1/z sfilled
symbolsd. The value of 1/z for T=1.1Tg shown here is the exact
one.
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ground statesGSd. Interestingly, computing the GS of the
SOS model on a disordered substrates1d is a minimum cost-
flow problem for which exists a polynomial algorithm and
can therefore be computed exactly.19,20 After determining
one GSni

0 snote that the GS, which is computed with free
boundary conditions, is infinitely degenerated because a glo-
bal shift of all heights by an arbitrary integer is again a GSd,
we define for each timet the height differencemistd=nistd
−nis0d and identify the connected clusterssdomainsd of sites
with identicalmistd using a depth-first search algorithm. Note
that for comparison to the ground state, the Monte Carlo
simulations are performed here using free boundary condi-
tions.

In Fig. 15 we show snapshots of these domains forT
.Tg in the left panel andT,Tg in the right one. Starting
from a random initial configuration one can forT,Tg very
quickly st&100d identify large domains that evolve only
very slowly at later times. On the other hand forT.Tg the
configurations decorrelated very quickly. To make this analy-
sis more quantitative, we determined the cluster size distri-

bution PthsS,td for one realization of the disordersand for
different realizations of the thermal noised.

As shown on Fig. 16,PthsS,td starts to develop a peak at
a rather large valueS*std on the earlier stage of the dynamics
sthis peaks also develops if we start with a random initial
configurationd. It turns out thatS*std is the size of the largest
connected flat cluster of the ground-state configurationni

0

=Cst. On the time scales presented here, as timet is growing,
this peak remains stableS*std.Cst, implying that the system
is not coarsening. At later times, as suggested by simulations
on smaller systems, this peak progressively disappears and
the distribution becomes very flat. We also checked that the
mean size of these connected clusters is not directly related
to Lstd.

One has, however, to keep in mind that we are computing
the connectedcorrelation functions, i.e., we measure the
thermal fluctuations of the height profile around its mean
stypicald value khistdl. Therefore, we believe that these con-
nected correlations are instead related to the broadening of
this “stable” peaksFig. 16d, i.e., the fluctuations around this
typical state at timet. The slow evolution of the typical con-
figuration, compared to the one of thermal fluctuations
around it, is corroborated by the one-loop calculation,22,35

which shows thatkhistdlkhistwdl decays as

khistdlkhistwdl , tS t

tw
D−1/2

+ Ost2d, s25d

i.e., much slower than the connected onefs3d and s12dg.
To characterize more precisely the fluctuations of this

cluster, we have followed the following protocol: after a time
ti ,100 we store the configuration of the largest connected
cluster. Then, for each timet, we compute the distribution
Pdroplet

flat sS,td of the size of the connected clusters that were
part of this cluster at timeti but not at timet sthe subscript
“flat” refers to theflat initial conditiond. In Fig. 17, we show
a plot of Pdroplet

flat sS,td for a temperatureT=0.47Tg, for differ-
ent timest.

It decays as a power law for small sizesS, and this power
law behavior extends to larger and larger values ofS as t is
growing. Although these data already give some interesting
insight on how the thermal fluctuations equilibrate in the

FIG. 15. sColor onlined Snapshot of the height field relative to
the ground statemistd=nistd−ni

0 for T.Tg in the left panel andT
=0.47Tg in the right panel. Different colors correspond to different
values of mistd :mistd=−2 sgreend, mistd=−1 swhited, mistd=0
sblackd and mistd= +1 sblued, and so on. Note that forT.Tg the
configuration att=105 is already decorrelated from the one att
=103, whereas forT,Tg large domains in white and black persist
and change only slowly in time.

FIG. 16. Size distributionPthsS,td ssee definition in the textd for
different timest. HereT=0.47Tg.
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system, it turns out to be very hard to obtain good statistics
for larger values ofS in this way. In order to perform a more
precise quantitative analysis of this distribution we identify,
alternatively, these “droplets” by initializing the system in
the ground state itselfnist=0d=ni

0. At low temperature, and
on the time scales explored here, one expects that the ground
state represents a good approximation of a typical configu-
ration, i.e., knistdl.ni

0. Again we compute the distribution
Pdroplet

GS sS,td of the sizes of the connected clusters with a com-
mon value ofmistdÞ0. As shown in Fig. 17,Pdroplet

GS sS,td
determined in this way coincides very well withPdroplet

flat sS,td.
Moreover, the calculation ofPdroplet

GS sS,td is much easier and
allows for a more precise analysis.

In Fig. 18, we show a plot ofPdroplet
GS sS,td extending to

larger times for a temperatureT=0.3Tg. It turns out, as
shown in Fig. 19, thatPdroplet

GS sS,td obeys the scaling form

Pdroplet
GS sS,td =

1

SaFdroplet
GS S S

L2stdD, a = 1.9 ± 0.1, s26d

wherea is independent ofT within the accuracy of our data
andLstd, t1/z. The value ofz in s26d is in good agreement
with the one extracted from the two-point correlation func-
tion Csr ,td=Ffr /Lstdg s15d. Furthermore, considering that

each droplet of sizeS. r2 gives a contribution toCsr ,td
proportional toS, one obtains, given the distributions26d
with a=2

Csr,td ~ E
r2

`

dSSPdroplet
GS sS,td ~ ln Lstd/r, Lstd/r ! 1,

s27d

which is consistent with the behavior we obtained in Fig. 7
and Eq.s16d. This scaling forms26d thus establishes a rela-
tion betweenLstd and the typical size of compact excitation
around a “typical” configuration, evolving more slowly.

V. CONCLUSION

In conclusion, we have performed a rather detailed analy-
sis of the nonequilibrium relaxational dynamics of the SOS
model on a disordered substrates1d, and of the related
Cardy-Ostlund models2d. Close to the super-roughening
temperatureTg our results for the autocorrelations, spatial
correlations, and response function as well as for the fluctua-
tion dissipation ratiosFDRd agree well with the prediction of
a recent one-loop RG calculation,22 whereas deep in the
glassy low-temperature phase substantial deviations occur.

The aging features obtained perturbatively, characterized
by a t / tw scaling of local correlation and response functions
with a temperature-dependent decay exponent, carries over
into the low-temperature regime, including a nontrivial
temperature-dependent fluctuation dissipation ratioX` asso-
ciated with these correlation and response functions. The
change in the low-temperature behavior of these quantities
compared to the RG predictions turns out to be contained in
a change of the functional temperature dependence of the
dynamical exponentzsTd, which relates the aget of the sys-
tem with a length scaleLstd; zsTd changes from a linearT
dependence close toTg to a 1/T behavior far away fromTg.
This is a clear indication of an activated dynamics over loga-
rithmic barriers in this marginal glass phasesi.e., u=0d.
Given the strong similarity of the behavior ofz with the one
found for the related model of a particle in a one-

FIG. 17. Size distributionPdroplet
flat sS,td ssymbolsd for different

times t. The solid lines representPdroplet
GS sS,td ssee the definition in

the textd at the same corresponding times. HereT=0.47Tg.

FIG. 18. Distribution of the size of the clustersPdroplet
GS sS,td as a

function ofS and for different timest. Here, the initial condition is
the ground state andT=0.3Tg.

FIG. 19. SaPdroplet
GS sS,td with a=1.9±0.1 as a function ofS/ t2/z

with 2/z=0.26±0.03. Here the initial condition is the ground state
andT=0.3Tg.
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dimensional disordered potential with logarithmic
correlations,23 an open question remains whether this dy-
namical crossover admits a static counterparts as found in
that model.23

The growing length scaleLstd, increasing algebraically
with the age of the system, turned out to be connected to the
typical size of the fluctuations around metastable configura-
tions with long lifetime in which the system gets trapped
immediately after a quench into the low-temperature phase.
In contrast to a standard coarsening process, where the grow-
ing length scale represents the typical size of domainsswhich
are identified as spatial regions strongly correlated with one
of the ground states of the systemsd, we encounter here a
scenario in which already soon after a temperature quench
theses domains are actually very large, but do not grow fur-
ther and are destroyed by fluctuations of increasing spatial
extent. Moreover, these fluctuations themselves can be again
identified as connected patches of ground state, or droplets.

The emerging picture for the aging dynamics below the
super-roughening transition within the glassy low-
temperature phase thus differs from various well-established
aging sceanrios in glasses, spin glasses, and other disordered
systems: As pointed out above, the approach to equilibrium
is not a coarsening process as it occurs in other disordered
systems, such as the random ferromagnet.2 It also differs
from the aging process encountered in finite dimensional
spin glasses, which also display coarsening30,31with domains
that can straightforwardly be identified because of the exis-
tence of the Edwards-Anderson order parameter. On the
other hand, the aging scenario revealed for this system ap-
pears to be far from being as complex as in mean-field spin
glasses.1 It is more reminiscent of the dynamics of a random
walk in a one-dimensional energy landscape, the Sinai
model, in which the walker displacement also increases only
logarithmically with time due to the existence of deep traps
with exponentially long trapping times.36

With regard to our observation that these traps in the dis-
ordered SOS model can be identified with configurations
roughly made of large patches of the ground state, it is
tempting to describe the aging process here as a diffusion in
a coarse-grained configuration space consisting of height
profiles composed like a jigsaw puzzle of ground-state do-
mains of optimized shapesmost probably flat pieces of con-
stant height with energy-minimizing boundariesd. The escape
from a deep energy minima proceed, according to what our
numerical analysis indicates, via the thermal activation of
larger and larger patches, each intermediate configuration
again being metastable with some finite survival time. This
process is reminiscent of the energy-well-within-energy-well
picture proposed in Ref. 37, and, in our view, further studies
would be worthwhile to develop this analogy in more detail.
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APPENDIX: COMPARISON WITH RG CALCULATIONS
NEAR Tg

In this appendix we establish the connection between the
quantitiessin Fourier spaced computed analytically in Ref. 22
and the ones in real space computed numerically in the
present paper. We give here the details for the connected
autocorrelation functionCst ,twd fEq. s3dg, the extension to
the integrated responserst ,twd fEq. s7dg being then straigh-
forward. In Ref. 22, the analytical predictions focused on the
following connected correlation function:

Ĉqst,twd = kĥqstdĥ−qstwdl − kĥqstdlkĥ−qstwdl, sA1d

where ĥqstd is the Fourier transform, with respect to the
space variable, of the fieldhistd fEq. s1dg. Using RG along
the line of fixed points nearTg, this correlation functionsA1d
was computed up to orderOst2d. It takes the following form:

Ĉqst,twd =
T

q2S t

tw
DuC

FCsqzst − twd,t/twd,

uC = egEt + Ost2d, sA2d

wheregE is the Euler constant, given in the text, and with the
asymptotic behavior in the large time-separation limit

FCsv,ud =
FC`svd

u
+ Osu−2d. sA3d

The connected autocorrelation functionCst ,twd fEq. s3dg we
compute here is related tosA1d through

Cst,twd =E d2q

s2pd2Ĉqst,twd

=
T

s2pd2S t

tw
DuCE d2q

q2 FCfqzst − twd,t/twg. sA4d

Performing the change of variablev=qzst− twd, sA4d be-
comes

Cst,twd =
T

2pz
S t

tw
DuCE

0

` dv
v

FCsv,t/twd, sA5d

where we have taken the IRsrespectively, the UVd cutoff to
0 srespectively, tò d and checked the convergence of the
integral overv. Using the asymptotic behaviorsA3d one ob-
tainssthe remaining integral overv being well definedd in the
large time-separation limitt@ tw

Cst,twd ,
T

2pz
S t

tw
DuC−1E

0

` dv
v

FC`svd, sA6d

which, given the value ofuC fEq. sA2dg, leads to the follow-
ing one-loop result for the decay exponentl /z s11d:

l/z= 1 −egEt + Ost2d, sA7d

given in the text in Eq.s12d.
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