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Nonequilibrium dynamics below the super-roughening transition
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The nonequilibrium relaxational dynamics of the solid-on-solid model on a disordered substrate and the
sine-Gordon model with random phase shifts is studied numerically. Close to the super-roughening temperature
Tg our results for the autocorrelations, spatial correlations, and response function as well as for the fluctuation
dissipation ratio agree well with the prediction of a recent one-loop renormalization-¢RB)pcalculation,
whereas deep in the glassy low-temperature phase substantial deviations occur. The change in the low-
temperature behavior of these quantities compared to the RG predictions is shown to be contained in a change
of the functional temperature dependence of the dynamical expafi®ntvhich relates the ageof the system
to a length scalel(t): z(T) changes from a lineal dependence close @, to a 1/T behavior far away from
Tg- By identifying spatial domains as connected patches of the exactly computable ground states of the system
we demonstrate that the growing length scél¢) is the characteristic size of thermally fluctuating clusters
around “typical” long-lived configurations.
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I. INTRODUCTION ing a flat phase at low from a logarithmically(thermally)

Desoit forts th derstandi f ibri rough one abovd,. The presence of disorder is known to
q espite Tﬁny ed orz edunl erstan ”t1g N r_lor;_eqtm :j.”umsignificantly modify the nature of the transitié?r'?The so-

ynamics or disordered and glassy systems in finité dimenz o 4 superroughening transition occurs at a temperature
sions remains a challenging problem. In particular, in glasse.

; 4 : > ¥ =T,/2=2/m. AboveTg, where the disorder is irrelevant on
and spin glasses the aging process displays a very rich phg?

I d i th tical At al rge length scales, the surface is logarithmically rough
nomenology demanding new theoretical concepfut al- again, although below, the system exhibits a glassy phase
ready less complex—and apparently less glassy—syste

i here the pinning disorder induces a stronger roughness of
2”2{; r?]ss’)drsoergfrﬁ?ert;itt'gon:nu(ftr?]tgd Zgizmase.\:]en F;]lgr?omghe interface. In the continuum limit, nedi, this SOS
y reveat |l ling and unexp } aging p . model (1) is in the same&equilibrium) universality class as
ena. One of the most intriguing questions in this context i

AR oo ) She sine-Gordon model with random phase shifts, the so-
whether the out-of-equilibrium dynamics is essentially fully called Cardy-OstiundCO) model?

determined by a coarsening processquestion that even
arises in the more complex spin-glass situatipdescribable
by a growing length scale that characterizes essentially all Heco= J dX[Ve(x)]? - Acod2a{e(x) - &) ]}, (2)
out-of-equilibrium processes. In this paper we will consider a

disordered system in which this question has yet to be clarignare o(X) €]

fifd,dang for which the answer we find will reveal a non- _q 5.1 is 2 uniformly distributed quenched random-phase
stanhdard scenario. variable, uncorrelated from site to sit®¢,being the strength

Among glassy systems_, there is a w_|de interest in d|sp 'S the disorder. The modéPR) arises in various contexts like
dered elastic systems, which cover a wide range of physmq e XY model in a random magnetic fielsvithout vortices

isr:ttu?ftlons riﬁngilngr(;‘rc;md Vr?lrte;i élgstt'?esl |ntr3l:]pelrconéd;c30rs,or in vortex physics where it describes a two-dimensional
eraces sordered mag pr electron glassesio (2D) array of flux lines pinned by pointlike disord¥rThe

which nonequilibrium effects are experimentally relevant'low-temperature glassy phagiee., belowT,) of these mod-
Here, we investigate the nonequilibrium relaxational dynam- . : 9 ) .
ics of a solid-on-solid(SOS model on a disordered sub- els(1) and(2) is described by a finite-temperature fixed point

) ; . . i with a free-ener Xpon which is an
strate, defined on a two-dimensional square lattice and d associated with a free-energy exponemto, chisa

ribed by the followina elastic Hamiltonian in term feéxact statement due to the statistical tilt symmétry.
scribed by the _0 owing efastic Hamiltonia erms o Although these models have been extensively studied,
height variabledy;:

both analytically® and numerically,/-2° these works have
mainly focused on the equilibrium properties. Among them
the static roughness of the interface has been investigated
thoroughly and for the dynamics the dynamical exponent
where n; are unbounded discrete variables, i.e, z!1821The latter was found to depend continuously Bn
€{0,+£1,+2,...} andd,[0,1 are uniformly distributed and computed using the renormalization grd&®&) up to
quenched random offsets, uncorrelated from site to site. lIone loop in the vicinity ofT,, where the fixed point is con-
the absence of disorder, i.ed;=0, the model exhibits a trolled by the small parameter=(T,—T)/T,. Only recently,
roughening transition in the same universality class as théhe nonequilibrium relaxational dynamicglefined by a
Kosterlitz-Thouless transitiohat a temperaturd, separat- Langevin equationof the Cardy-Ostlund modéR) was in-

-, +c0[ is a continuous variable anéx)

Hsos= 2 (h—h)?  h=n+d;, (1)
(i)
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vestigated analyticalff in the perturbative regimér<1). 1
Using the RG this study focused on the the two-tirftes,) C(r,) = PE (i (1) = (i) Ny (1) (4)
correlation and response functions. The autocorrelation and !

local response function were found to scald/dg and char-  from which we measure the dynamical exporenh (3) and
acterized. by asymptotically algebraic scaling fun_ctions with(4), the angular brackets and overbars mean an average over
an associated decay exponent that depends continuously o”pe thermal noise and, respectively, over the disorder. When
and was calculated perturbatively up to one loop order. F"studying the CO mode(2) the corresponding correlation

nally, the associated fluctuation dissipation réf®R) inthe  ctions are defined by Eq8) and(4) with the substitution
large time separation limit was found to be nontrivial andh-(t)—><p-(t)
1 I "

alsoT dependent. . .
In this paper we intend first to numerically test this analy- These two quantitie§(3) and (4)] are straightforwardly

sis nearT,, then to go beyond the perturbative regime andcomputed from our simulation, which stores at each time
9 ; tept the value of the height fielt};(t) on each site. Typi-
explore the lowT dynamics where one expects to observe & - - ) i .
stronger signature of the logarithmic free-energy landsape Cally: in our simulations we compuig(t.t,) by averaging
as suggested by the static valuessf0. Furthermore, having ©OVer 64(32) different realizations of the thermal noise for a
determined these different nonequilibrium dynamical properdiven configuration of the disorder and then averaging over
ties, we propose to relate them to a real-space analysis of t#>6 (128 different disorder samples fdr=64 (respectively,
equilibration process of the thermal fluctuations in the sysl-=128. We observed that the main fluctuations in the com-

tem. Their quantitatively precise study is possible due to aPutation of the correlations were coming from the average
algorithmt®20 that allows one to compute the exact groundover the disorder. Therefore, we have estimated the error

state of(1). bars from the sample-to-sample fluctuations of the thermal

The outline of the paper is as follows. In Sec. Il, we give average value ii3) and(4). o _
some details of our simulations and present the definitions of We are also interested in the violation of the fluctuation
the dynamical two-times quantities we will focus on. In Sec.dissipation theoreni=DT) associated withocal fluctuations
Ill, we present our numerical results for these quantities and3 for which we have to consider the associated local linear
establish a comparison with the analytical predictions of Reff€SPONSeR(t, t,,)

22 (some details of this comparison are left in the Appehdix

Section 1V is devoted to a physical discussion, based an ag- Sh;(t)
ing scenario in real space. Finally we draw our conclusions R(tt)=\ — /, ©)
in Sec. V. fi(tw)

Il. SIMULATIONS AND DEFINITIONS wheref;(t,) being an infinitesimal force applied at siteat

) _ time t,,. The dynamical rules are then modified by adding a
We perform a numerical study of the nonequilibrium re-orm = f;n, to the original Hamiltonian equatiofl). Nu-

laxational dynamics of these model¥) and (2) on @ 2D mgrically, it is more convenient to calculate instead the inte-
square lattice with periodic boundary conditions using 8grated response

standard Monte Carlo algorithm. Although the SOS model is
by definition a discrete model, the CO modg), which is a tw

continuous one, needs to be discretized for the purpose of the p(tty) = f dsR(t,s). (6)
simulation. We will use the discretized version of the gradi- 0

ent in (2), with ¢(x) — ¢; andi being the site index. The In order to isolate the diagonal component of the response
value of the displacement fielg, is itself discretized into function, we used the standard stratég§®we simulate two
4096 intervals of widthA¢ between 4. Except when we replicas of the system, one without an applied force and an-
explicitly mention it, the system is initially prepared in a flat other in which we apply a spatially random force to the sys-
initial condition [n;(t=0)=0 or ¢;(t=0)=0]. At each time tem from timet=0 to timet=t,. This force field is of the
step, one site is randomly chosen and a move n;+1 or  form f;=fye, with a constant small amplitudé, and a
n,—n;—1 is proposed with equal probabilitffor the CO  quenched random modulatief= £ 1 with equal probability,
model, the fieldg; is incremented or decremented by anindependently at each site The integrated respong#t,t,)
amountA¢). This move is then accepted or rejected accorddis then computed as
ing to the heat-bath rule. Our data were obtained for a lattice

of linear sizeL=64 orL=128, and a time unit corresponds to 1 <hi(t)>fi - (h(v)
L? time steps. p(tty) = PE — Pl (7)
We will first study the connected autocorrelation function : !
C(t,t) where(hi(t));, means the thermal average in the presence of

1 the force fieldf;. We have used a numerical value ff
C(t-tw)zpz (hi@®hi(tw) = (hiOXhi(tw), (3 =0.3 and have checked that we were indeed probing the
! linear response regime. Our numerical data g¢r,t,) are
which is a two-times quantity allowing to characterize agingaveraged over 6432) independent thermal realizations for a
properties. Then we will consider the spati@bo-poiny con-  given disorder configuration and the random fiefg$or L
nected correlation function =64 (respectivelyL =128 and then averaged over 512 dif-
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ferent disorder realizations. The error bars are estimated in
the same way as for the correlation functions. We point out
that instead ofp(t,t,) many studies, e.g., in spin glasses,
focus onx(t,tw)=ﬁwd§€(t,s). In our model in which one-
time quantities, such ad(t,t), grow without bounds wheh
increases, there may be a regime in which the integral ver
in the definition ofy(t,t,,) is actually dominated by the latest
timeg® s and thus depends only very weakly on the waiting
time t,. Therefore, in order to disentangle the off-diagonal
part of the response itself the computation gif,t,) (7),
which does not suffer from the aforementioned peculiarity, is
better suited.
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When the system is in equilibrium the dynamics is time-
translation invarianfTTI) and two-times quantities, such as
C(t,t,) or p(t,t,), depend only on the time differentet,,.
Moreover,C(t,t,) and the respons&(t,t,) are related by
the fluctuation dissipation theoretRDT)

FIG. 1. Connected correlation functidattt,t,) as a function of
t—t,, for different waiting timest,. The inset shows the plot of
C(ty,ty) —C(t,t,) as a function of-t,, for the same different wait-
ing times, which exhibits the quasiequilibrium regime. Hefe,
=0.63T,.

3, Cltt) =TR(L ). (8)

-Nz
C(t,tw)~<—> , >, (11

When the system is not in equilibrium, these properties do t,

not hold any more and it has been proposed to generalize the

FDT to nonequilibrium situations by defining a fluctuation NOt€, however, that one cannot exclude logarithmic correc-
dissipation ratidFDR) X(t,t,),%7 tions at low temperature where the decay exponent becomes

very small. In Fig. 3, we plot the value of the decay exponent
Nz for different temperatures. In the high-temperature
phase, T>Tg, whereA=z=2, one expectd/z=1 indepen-
dentof T (note that the high-temperature phase is critical and
, . o as such also displays aging beha%#y. For T<T, the pres-
such thatX(t,t,)=1 in equilibrium (8) and any deviation once of disorder reduces the decay exponéat which now
from unity being a signature of an out of equilibrium situa- gepends continuously on temperature. In the vicinityTgf

tion. In this paper, we will investigate this FDR®) for the  4ne gbserves a rather good agreement with the perturbative
(nonequilibrium relaxational dynamics following a sudden RG computation to one lodp

quench at=0. Of particular interest is the limiting value

T _ l?tWC(t,tW)
X(tty) Rty

9

% =1-e%7+0O(),
where yz=0.577 216 is the Euler constant. With the RG re-
sult z=2+2e"er+O(7) this corresponds ta=2+0(7).

Note that the simulations nedg, T/T;=0.8, i.e., in the
weak disorder regime, have been performed using the
random-phase sine-Gordon formulatiq®) of the SOS

X = lim limX(t,t,,). (12)

twﬂoot*}OC

(10)

IIl. RESULTS
A. Correlation function

1. Autocorrelation function
0.1 T T

Figure 1 shows the decay of the connected correlation bz 16—
functionC(t,t,) for different waiting times,, and for a tem- tty/_igg o
=256 ~m—

w0

peratureT=0.63T,; they show a cleat,, dependence. We
note that the quantit¢(t,,t,) depends also om,, before
saturating to its equilibrium value fag,— o (which depends
on the system sizk). This explains why one does not ob-
serve a “quasiequilibrium” regime, whet#t,t,)=C(t-t,)
whent-t, <t,, for the relatively small waiting times showed
in Fig. 1. This quasiequilibrium regime can, however, be
observed if we plot(t,,t,) —C(t,t,), as shown on the inset
of Fig. 1.

In the aging regime, fot-t,~ O(t,), these curves for
different waiting timeg,, fall on a single master curve when  giG. 2. Connected correlation functidit, ) as a function of
we plotC(t,t,) as a function ot/t,, (Fig. 2). In the large time ¢/t for different waiting times at temperatufie=0.63T,. The dot-
separation regime>t,, these data are well fitted by a power- ted line is the result of the fit11), taking into account the data
law decay points witht/t,,> 10.

x

Cit.t,)

0.001 L L
1 1000

t,,
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FIG. 3. Decay exponent/z as a function ofl /Ty. The dashed FIG. 5. Autocorrelation functior(t,t,) as a function oft—t,,

lined indicates the exact value for>Tg. The solid line shows the  for different large waiting timeg,,, at (very) low temperatureT
result of the one-loop RERef. 22 given in(12). Importantly, this =0.15T,. For shortt-t,, this quantity shows an inflection point.
curve is drawn without any fitting paramet@p=2/m being exactly  The inset shows the same quantity Tor 0.63T,, which exhibits a
known. qualitatively different behavior for-t, <t,,.

model, for which the asymptotic regime is reached moresxponentz. Indeed, this scaling formil1) can be written as
quickly for these temperatures. The inverse is, of course, true

at low temperature. When it was possible, we have compared Clit) ~ L |™ L) ~ 112 14
for a given temperature the asymptotic propertie€ @ft,,) (t.tw) Lty | ® ' (14)
using the SOS modé€l) to the CO model2). We show the o

result of this comparison fof=0.63T, in Fig. 4. thus defining a length scalé(t) that can be further analyzed

One observes that both formulations are in good agreeby measuring how the spatial correlations are growing in the
ment concerning the/t,, scaling form and are in reasonable system(see the next paragraphThe functional shape of
agreement concerning the value of the exponetz thus  C(t,t,) that we determined suggests thatTtslependence is
confirming the universality of this property. However, the mainly contained in the decay exponent within the the aging
amplitude itself does not seem to be universal. regime where(t-t,) ~ O(t,). It is remarkable that its most

At lower temperature the perturbative calculation fails toprominent feature, the/t, scaling and the asymptotically
predict the correct behavior of/z in Fig. 3 we observe a algebraic scaling form with &-dependent decay exponent, is
change in itsT dependence beloW=0.8T,. In this regime  already captured by the one-loop RG calculation of Ref. 22.

one obtains a good fit of the decay exponent by By contrast, one observes that the quasiequilibrium regime
N (t-t,) <t, shows a much stronger dependence. At low
—~AyT, A,,=0.85+0.04 (13 temperatureT<Ty/2 the autocorrelation functiorc(t,t,)
z

displays an inflection point at small time differencet,,. In

If one naively assumes that the one-loop RG calculation Fig- 5, whereC(t,t,) as a function oft-t, is shown in a
=2 is still valid at low temperature, then this would alreadylinear-log plot for different large waiting times,, one ob-
indicate a 17 behavior of the dynamical exponentWe will ~ Se€rves a qualitative change of behavior, which could suggest
come later to this point where we explicitly compute this @ finite limiting value lim_..lim, _..C(t,t,). However, on the
time scales explored here, we have not identified a clear
signature of such a behavior. Nevertheless, this point de-
serves further investigation of the equilibrium properties at
e ] low temperature, where some discrepancies between

s ] numeric$®?° and analytical predictiod® were already

T found.

0.1

ipoD

0.01

Ctty)

2. Two-point correlation function

In Fig. 6 we show the two-point correlation functiéf)
) for a temperatur@=0.47T,4 (andL=64) for different times
" ae&h'ﬂl . t. Ast grows spatial correlations develop in the system. More
0,001 . , e precisely, as shown in Fig. T(r,t) scales as
1 10 100 1000

Ha Clr t) = ]—{L} L(t) ~ V2. (15)

L(t)
FIG. 4. Connected correlation functidgit, t,,) obtained with the
SOS model(filled symbols and with the CO Hamiltoniarfopen  The value ofz that gives the best data collapse leads to our
symbolg as a function ot/t,, for differentt,,. Here T=0.63T,. first estimate of the dynamical exponent. The logarithmic
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FIG. 6. Spatially connected correlation functi@{(r,t) as a

function of for different timest. Here T=0.47T,, FIG. 8. Growing length scal&(t) computed from(17) for dif-

ferent temperatures. The solid lines are guides to the eye.

behavior forr < £(t), C(r,t)~In £(t)/r is in agreement with  C(r,t) decays sufficiently fast at large(we checked that it
the constraint imposed by the statistical tilt symmetryactually decays exponentialljNote also that the sum it17)
(STS,%5 which fixes the equilibrium behavior of the con- iS bounded td /2 due to periodic boundary conditions. In
nected two-point correlation function to Fig. 8 we showed the value d@f(t) computed with(17) for
different temperatures. One obtains a rather good fit of these
curves(Fig. 8) by a power lawZ(t) ~t4D, thus obtaining a
value of theT-dependent dynamical exponent in good agree-
ment with the value obtained by collapsing the different
which is identical with the pur@.e., disorder-free behavipr  curves in Fig. 7. One notes also thAtt) approaches an
We also checked that the amplitude of the |OgarithmiC behaVa|gebraiC growth after a preasymptotic regime, which in-
ior of C(r,t) for r/L(t)<1 is in good agreemerwithin a  creases with decreasing temperature. Figure 9 shows our es-
few percent with Eq. (16). timate for 14(T) as a function ofT. As expected, the dy-
namical exponent is a decreasing function of the
temperature. One expects tizat2 for T>T, and that it be-
Another way to estimate the dynamical exponent is tocomesT dependent belowly with z=2+2e"7+O(7%) as
determine the time-dependent length scélg) itself. For  predicted by a one-loop RG calculatidr?At high tempera-
that purpose, and given the scaling form previously comture T>T, and in the vicinity ofT, it is numerically rather
puted(15), we estimatel(t) via a the space integral of the difficult to extract a reliable estimate for the dynamical ex-

2 T
limC(r,t) ~ - —Inr, 16
t%( ) (2m)?2 T, (16

3. Dynamical exponent

spatial correlatiorn® ponent from(15) or (17) due to finite size effects. Therefore
L2 L2 - we restrict ourselves here to lower temperatures0.8T,
j dr C(r,t) :f dr 7t/ ()] ~ L(I)J du F(u), [s'e.e Ref. 18 for a numerical computationzT) in the VI
0 0 0 cinity of Tgy]. For temperaturd=0.7T,, the value ofz is

still in reasonable agreement with the RG prediction. Around
the valueT =0.63T,, wherez=4, the curve 1%T) shows
where we assumed in the last step that(t) <1 (which is  an inflection point, below which Z/decreases linearly with
indeed the case on the time scales considered hakthat T. In this regimez(T) is well fitted by

17)

0.35 T

0.07 T 3 1/z + m
* t=10% —— 03 | RG -~ A
0.06 | =0 T ’ o’
B, =100 >
005 F t=10" ¢ - 0.25 - ol '?’ -
*’L /r
0.04 | o, . L o2r ) -
= - ] /
5 003r 015 | -
002 |
01 | H g
0.01 |
0.05 - G .
ol
\ 0 1 1 1 1 1 1 1
001 p 10 0 01 02 03 04 05 06 07 08
I,/t1/z T/Ta
FIG. 7. Spatially connected correlation functi@{r,t) as a FIG. 9. 1/Z(T) as a function ofT/Ty. The dashed line, which
function of r/tY2 with 1/z=0.17+0.01 for different times. Here shows the result of the one-loop R&efs. 11,2}, is drawn without
T=0.47T,. any fitting parameter.
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FIG. 10. Integrated response functipft,t,) as a function of
t-t,, for different waiting times,,. Here T=0.47T,,.

*

T x
z(T) ~ 4? forT<T, (18
which, given(13), shows also thax =2 is still a good esti-
mate at lowT. This behaviorzec 1/T is compatible with an
activated dynamics over logarithmic barriers, i. e.,

Arrhenius-type behaviotty,~ €%/ with B__~log Ly,

Assuming that the largest barriers, which dominate the low

temperature dynamics, encountered in this nonequilibriu

energy exponen#=0 233 Interestingly, this change of behav-
ior of z at a value ofz,.=4, above whichz<1/T (18), is

reminiscent of the related case of a particle in a one
dimensional disordered potential with logarithmic correla-

tions, where such a behavior was obtained analytiéally.

should be mentioned that a dynamical exponent that varies
like 1/T has also been found in other disordered systems,

such as in spin glass€s! and in random ferromagnets.
Finally, although (18) suggests the existence of a well-
definedtypical relaxation time, one expects the full distribu-
tion of the barrier heights to be very brdaénd needs prob-
ably further work to be investigated.

B. Integrated response function

In this section, we focus on the integrated respdiiselin
Fig. 10 we show a plot op(t,t,) as a function of the time
differencet-t,, for different waiting timeg,,. Here too, one
observes a clear waiting time dependence.

These curves for different waiting timggsfall on a single
master curve if one plots them as a functiori /df,, as shown
in Fig. 11. As suggested on this log-log pl&tg. 11), p(t,t,)
takes the following power-law decay:

t -Nz
p(t,tW)~(—) , t>t,.

tw

(19

an
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FIG. 11. Integrated response functipft,t,) as a function of
t/t,, for different waiting timeg,, at T=0.47T,.

of p(t,t,) andC(t,t,) are also fully compatible with previous
one-loop RG calculations. As we will see, this has important

implications for the FDR as discussed in the next paragraph.

C. Fluctuation dissipation ratio

In order to characterize the deviation from the equilib-
rium, in this section we compute the FDRt,t,) [Eqg. (9)].

) . . _"'IEorT>Tg the disorder is irrelevant, and the FDR is expected
relaxation process have the same scaling as the equilibriu

ones, this logarithmic behavior is also consistent with a freefore

'® be identical to the FDR of the pure case, which we there-
consider first. In the pure model, the aucorrelation and

the response function can be computed analytically. In the

out-of-equilibrium regimet,, <t<L? (remembering thatz

=2 for the pure cageone has

Rourd bt )—#L t>t
Purem e T,2m2t -ty a
T T+t
Courdtity) = In( = ) 20)
purd bt Ty2m? \Jt-t, (
Using these expressiort20) together with(9), one obtains

that X(t,t,) =X[C(t,t,)], which allows one to write the rela-
tion defining the FDR(9) in an integrated form using the
definition of p(t,t,) [Eq. (6)]

ty
TPpure(tatw):J ds%uricpurétrs)]ascpure(tvS)
0

= 5kpuric(tatw)] - 5\(purd:cpure(tvo)]r (21

with 9, Xoud W) =XpurdU). Cpudt, 0) is expected to be small;
one can extract;(pu,e[C(t,tW)] from the slope of the curve
Tppudt,ty) versusCp,dt,t,) in a parametric plot, provided
t, is sufficiently large such that the curves for differept
collapse. In Fig. 12 this parametric plGppe VErsusCpyre is
shown. For large values df,,. One expects to recover the

Note that the decay exponent, within the accuracy of the dat&DT and a slope of value unity. On the other handCgas.

presented here, is the same as the one of the correspondidgcreases all these curves converge to a same master curve

autocorrelation functio€(t,t,) [Eq. (12)]. Thist/t, scaling

Xourd C), Which, using(20) can be exactly computed for the

form, together with the relation between the decay exponerpure model
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FIG. 12. Parametric plot of the integrated response function FIG. 13. Parametric plot of the integrated response function
Tp(t,t,) as a function ofC(t,t,) for different waiting timeg,, and  Tp(t,t,) as a function of(t,t,,) for different waiting timeg,,. Here
T=1.1T,. The solid line is the result for the pure case as given byT=0.47T,. The solid line corresponds to a value Xf=1/z (24),
Eqg.(22) and does not contain any fitting parameter. The dashed lin@lthough the dashed one corresponds{ie=1/2, thus showing a
shows the slope corresponding to the nonviolated FDT. clear deviation from the pure case. The dotted line shows the slope

corresponding to FDT.

C

A ey+1 T

XourdC) = yIn , = .
pure( )=y 2 Y (277)2Tg

(22 X* = 3 +0(7) (24

As one can see in Fig. 12, our numerical results are in good|yqe toT. .22 Although a precise comparison to this RG pre-
agreement with the exact calculation. An important point iSyiction ingthe vicinity of T,, where the deviations from the
that the slope at the origin gives the asymptotic value of they e case are expected to be small, is difficult at this stage
FDR Xoe Eq. (10 such that Tppudt,tw)~Xowe  (requiring a study on longer time scalese can see in Figs.
X Cpurdt, tw) When Cpdt,t,) —0. As is obvious from Eq. 13 and 14 that our data are still in reasonable agreement with
(22) for the pure model, one ha@urezllz, therandom-walk  the one-loop relatioi24).
value? independenbf the temperature.

For a finite size system, one expects to recover the equi-

o . . - -, . IV. COARSENING OR GROWING FLUCTUATIONS?
librium dynamical regime for large but finite waiting times

ty>tgq and, in particular, the restoration of the FO3) The behavior we obtained for the two-point correlation
reflected byX(t,t,)=1. Therefore, as predicted by the ana-functionC(r,t) allowed us to identify a growing length scale
lytical solution, the parametric curve &fp versusC will L(t) on which the system gets equilibrated. To go further,

progressively move to the right with increasifgconverg-  one would like to relate this length scaf#t) to the size of

ing in equilibrium(t,,— ) to a straight line passing through spatially correlated structures, such as domains or droplets.

the origin. We first explored the idea that at low temperature, the non-
We now turn to the cas& < Ty when the disorder is rel- equilibrium dynamics could be understood as a coarsening

evant. Given the/t, scaling forms we have obtained for process reflected in a spatially growing correlation with the

C(t,t,) (Fig. 2 and forp(t,t,) (Fig. 11) one expects also in

the disordered case to hapé,t,)=X[C(t,t,)]. Indeed, as 0.6 T T T T T

shown in Fig. 13 the parametric pldp versusC for different

t, is qualitatively similar to the curve obtained for the pure

case. In particular, the properpyt,tw)zf([C(t,tW)], together 04 | .

05k 8 -

with Eq. (14) yields, in the nonequilibrium regime n
&:’ 03 o .
X(t.t,) x( £0 ) (23) 02 ; °
= . 2 |- ul <
W, ﬁ(tw) 8
01 " -
Moreover, our datdFig. 13 are consistent with a finite lim-
iting value[as defined in Eq(10)] X*>0 also in the pres- 0 o 0'2 0'4 0'6 ola '1 ”
ence of disorder, although the asymptotic value of this quan- ’ - ) ’

tity is very difficult to estimate numerically. This fact is

qualitatively in agreement with RG predictions. In contrastto  FIG. 14. Comparison betweeti (open symbolsand 1% (filled
the pure model, and according to Ref. 22, this valfiede-  symbolg. The value of 1z for T=1.1T4 shown here is the exact
pends continuously of as one.
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FIG. 16. Size distributioPy,(S,t) (see definition in the texfor
different timest. Here T=0.47T,,.

bution Py(S,t) for one realization of the disorddand for
different realizations of the thermal nojse

As shown on Fig. 16P(S,t) starts to develop a peak at
a rather large valu€ (t) on the earlier stage of the dynamics
(this peaks also develops if we start with a random initial
configuration. It turns out thatS'(t) is the size of the largest
connected flat cluster of the ground-state configuratiBn
=CSt On the time scales presented here, as tilmayrowing,
this peak remains stabf (t) = C® implying that the system
is not coarsening. At later times, as suggested by simulations
on smaller systems, this peak progressively disappears and
the distribution becomes very flat. We also checked that the
mean size of these connected clusters is not directly related

FIG. 15. (Color online Snapshot of the height field relative to t0 £(t).
the ground statemi(t):ni(t)—n? for T>Tg in the left panel and’ One has, however, to keep in mind that we are computing
=0.47T, in the right panel. Different colors correspond to different the connectedcorrelation functions, i.e., we measure the
values of m(t):mi(t)=—2 (green, m(t)=—-1 (white), m(t)=0 thermal fluctuations of the height profile around its mean
(black and mi(t)=+1 (blug), and so on. Note that fof>Ty the  (typical) value(h;(t)). Therefore, we believe that these con-
configuration att=1C° is already decorrelated from the onetat nected correlations are instead related to the broadening of
=10°, whereas foiT <T, large domains in white and black persist thjs “stable” peak Fig. 16), i.e., the fluctuations around this
and change only slowly in time. typical state at time. The slow evolution of the typical con-

figuration, compared to the one of thermal fluctuations

ground state(GS). Interestingly, computing the GS of the around it, is corroborated by the one-loop calculaf®®,
SOS model on a disordered substréteis a minimum cost-  which shows thath;(t))(h;(t,)) decays as
flow problem for which exists a polynomial algorithm and "
can therefore be computed exacfly® After determining S — -
one GSn? (note that the GS, which is computed with free i) Chitw) ~ T(t—) +0(), (25
boundary conditions, is infinitely degenerated because a glo- v
bal shift of all heights by an arbitrary integer is again 8GS i.e., much slower than the connected ¢(® and(12)].
we define for each timé the height differencam;(t) =n;(t) To characterize more precisely the fluctuations of this
-n;(0) and identify the connected clustgdomaing of sites  cluster, we have followed the following protocol: after a time
with identicalm;(t) using a depth-first search algorithm. Note t;~ 100 we store the configuration of the largest connected
that for comparison to the ground state, the Monte Carlccluster. Then, for each timg we compute the distribution
simulations are performed here using free boundary condiPL'?éme{S,t) of the size of the connected clusters that were
tions. part of this cluster at tim¢ but not at timet (the subscript

In Fig. 15 we show snapshots of these domainsTor “flat” refers to theflat initial condition). In Fig. 17, we show
>T, in the left panel andl <T in the right one. Starting a plot ongﬁ‘;ple{S,t) for a temperatur@=0.47T,, for differ-
from a random initial configuration one can for< T, very  ent timest.
quickly (t=100 identify large domains that evolve only It decays as a power law for small siz&sand this power
very slowly at later times. On the other hand for T, the  law behavior extends to larger and larger valueSaft is
configurations decorrelated very quickly. To make this analy-growing. Although these data already give some interesting
sis more quantitative, we determined the cluster size distrinsight on how the thermal fluctuations equilibrate in the
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FIG. 17. Size dlstrlbutlorPdro%%gS,t) (symbolg for different
timest. The solid lines represemgrop|q{8,t) (see the definition in FIG. 19. S“Pffrimeﬁsvt) with @=1.9+0.1 as a function o§/t22
the texi at the same corresponding times. H&re0.47Tg. with 2/z=0.26+0.03. Here the initial condition is the ground state

andT=0.3Tj,.
system, it turns out to be very hard to obtain good statistics
for larger values o8in this way. In order to perform a more o5, droplet of sizes>r? gives a contribution toC(r,t)

precise quantitative analysis of this distribution we identify, proportional toS, one obtains, given the distributiof26)
alternatively, these “droplets” by initializing the system in with =2

the ground state itsetii(t=0)=n". At low temperature, and

on the time scales explored here, one expects that the ground *

state represents a gopod approximation (F))f a typical co%ﬁgu- Clr.t) = JZ dSSEope(St) = In LI/, LM/ <1,

ration, i.e.,(n;(t))=n’. Again we compute the distribution '

P(‘frﬁple{S, t) of the sizes of the connected clusters with a com- @7
mon value ofm(t) #0. As shown in Fig. 17PG5 (S,t)  which is consistent with the behavior we obtained in Fig. 7
determined in this way coincides very well wi '?f,p|e{8,t). and Eq.(16). This scaling form(26) thus establishes a rela-

Moreover, the calculation d?grﬁplegs,t) is much easier and tion betweenl(t) and the typical size of compact excitation
allows for a more precise analysis. around a “typical” configuration, evolving more slowly.
In Fig. 18, we show a plot 0P§5,{(S,t) extending to
larger times for a temperatur€=0.3Tg. It turns out, as
shown in Fig. 19, thaPgy5 (S,t) obeys the scaling form V. CONCLUSION
1 S In conclusion, we have performed a rather detailed analy-
GS - S — '
Paropie(S) = s droplet< £2(t))' @=1.9%0.1, (26) g of the nonequilibrium relaxational dynamics of the SOS

model on a disordered substratt), and of the related
wherea is independent ol within the accuracy of our data Cardy-Ostlund model2). Close to the super-roughening
and L(t) ~tY2 The value ofz in (26) is in good agreement temperatureT, our results for the autocorrelations, spatial
with the one extracted from the two-point correlation func-correlations, and response function as well as for the fluctua-
tion C(r,t)=F[r/L(t)] (15). Furthermore, considering that tion dissipation ratidFDR) agree well with the prediction of
a recent one-loop RG calculatiéh,whereas deep in the
glassy low-temperature phase substantial deviations occur.

2
5 tt==183 x The aging features obtained perturbatively, characterized
01 L s . = 5 by at/t,, scaling of local correlation and response functions
with a temperature-dependent decay exponent, carries over
001 L into the low-temperature regime, ?nc]uding a _nontrivial
& I temperature-dependent fluctuation dissipation raticasso-
& ciated with these correlation and response functions. The
0.001 F change in the low-temperature behavior of these quantities
I compared to the RG predictions turns out to be contained in
0.0001 E a change of the functional temperature dependence of the
I dynamical exponere(T), which relates the ageof the sys-
1e-05 tem with a length scal€(t); z(T) changes from a lineaf

1% dependence close @, to a 1/T behavior far away fronT.

This is a clear indication of an activated dynamics over loga-
FIG. 18. Distribution of the size of the clusteP§s (S,t) asa  rithmic barriers in this marginal glass phasee., 6=0).
function of Sand for different times. Here, the initial condition is  Given the strong similarity of the behavior nfwvith the one
the ground state an®i=0.3T,,. found for the related model of a particle in a one-
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dimensional disordered potential with logarithmic APPENDIX: COMPARISON WITH RG CALCULATIONS
correlationg® an open question remains whether this dy- NEAR T,

namical crossover admits a static counterparts as found in . . . .
P In this appendix we establish the connection between the

that modef? o . : .
The growing length scale(t), increasing algebraically quantities(in Fourier spacecomputed analytically in Ref. 22
' and the ones in real space computed numerically in the

with the age of the system, turned out to be connected to the . :
. . . . present paper. We give here the details for the connected
typical size of the fluctuations around metastable configuraZ

tions with long lifetime in which the system gets trappedich?rrelit'%n functlorCt(tt,tW) éEq.7(3)1), t_he tehxtenstlor_1 LO
immediately after a quench into the low-temperature phaset. e integrated respong&t,t,) [Eq. (7)] being then straigh-

In contrast to a standard coarsening process, where the gro#\?—rward' In Ref. 22, the analytlcal pre_dlctlons focused on the
ing length scale represents the typical size of domaimgch  [0llowing connected correlation function:
are identified as spatial regions strongly correlated with one - = = =
of the ground states of the systgmwe encounter here a C(t,tw) = (Ng(H)hg(tw)) = (ha(D)){hg(tw)), (A1)
scenario in which already soon after a temperature quench A ) ) )
theses domains are actually very large, but do not grow furvhere hq(t) is the Fourier transform, with respect to the
ther and are destroyed by fluctuations of increasing spatiaiPace variable, of the fielbi(t) [Eq. (1)]. Using RG along
extent. Moreover, these fluctuations themselves can be agaife line of fixed points nedr, this correlation functiortA1)
identified as connected patches of ground state, or dropletdvas computed up to ord€ (7). It takes the following form:
The emergir_lg picture _f(_)r the e_lgi_ng dynamics below the A T/t \k

super-roughening  transition ~within  the glassy low- ct,t,) = _2<_> Fo(Qi(t—t,), ),
temperature phase thus differs from various well-established g°\ty
aging sceanrios in glasses, spin glasses, and other disordered
systems: As pointed out above, the approach to equilibrium 6c =T+ O(7), (A2)
iS not a coarsening process as it occurs in other disordered
systems, such as the random ferromagnktalso differs  whereyg is the Euler constant, given in the text, and with the
from the aging process encountered in finite dimensionafisymptotic behavior in the large time-separation limit
spin glasses, which also display coarseffifgwith domains
that can straightforwardly be identified because of the exis- Fe( _ Feu(v) -2

clv,u) = +0OU™). (A3)
tence of the Edwards-Anderson order parameter. On the u
other hand, the aging scenario revealed for this system ap- ) .
pears to be far from being as complex as in mean-field spin "€ connected autocorrelation functidtt,t,) [Eq. (3)] we
glasse<. It is more reminiscent of the dynamics of a random COmpute here is related té1) through
walk in a one-dimensional energy landscape, the Sinai

2
model, in which the walker displacement also increases only tt)= dq CO(t t
C(t,ty) 3CA(t )
logarithmically with time due to the existence of deep traps (2m
with exponentially long trapping time$. T (t\% [ dq
With regard to our observation that these traps in the dis- = (277)2<t_) f ?Fc[qz(t—tw),t/tw]. (A4)
W

ordered SOS model can be identified with configurations

roughly made of large patches of the ground state, it i%erforming the change of variable=ci(t-t,), (A4) be-
tempting to describe the aging process here as a diffusion i

a coarse-grained configuration space consisting of height mes

profiles composed like a jigsaw puzzle of ground-state do- T /t\%("dv

mains of optimized shap@nost probably flat pieces of con- Clt,ty) = 2\ f ch(v,t/tw), (A5)
W 0

stant height with energy-minimizing boundapieBhe escape
from a deep energy minima proceed, according to what our
numerical analysis indicates, via the thermal activation o

larger and larger patches, each intermediate configuratiomtegral overv. Using the asymptotic behaviéA3) one ob-

again be.mg mgtgstable with some finite sqrv!val time. Th'stains(the remaining integral over being well defineglin the
process is reminiscent of the energy-weII-W|th|n-energy-wellIarge time-separation limitt
W

picture proposed in Ref. 37, and, in our view, further studies
would be worthwhile to develop this analogy in more detail. ( t )&;—lj‘m dv

here we have taken the IRespectively, the UY cutoff to
(respectively, tox) and checked the convergence of the

C(t,t,) ~ T

Py Fe=(v), (A6)

t o U
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