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Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics:
Lithium niobate and lithium tantalate
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A phenomenological treatment of domain walls based on the Ginzburg-Landau-Devonshire theory is devel-
oped for uniaxial trigonal ferroelectrics, lithium niobate and lithium tantalate. The contributions to the domain-
wall energy from polarization and strain as a function of orientation are considered. Analytical expressions are
developed that are analyzed numerically to determine the minimum polarization, strain, and energy configu-
rations of domain walls. It is found that hexagoalvalls are preferred over walls in both materials. This
agrees well with experimental observation of domain geometrissoighiometriccomposition crystals.
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I. INTRODUCTION ichiometric LINDG;. It is also important to note that with

increasing lithium deficiency in the crystals, the regions ad-

Recently, conS|d9rabIe attention has be_en focus_ed on tI]Sining domain walls show increased optical birefringefce,
phenomena of antiparall€lLl80° ferroelectric domains in e L :
strains] and local electric fields that extend over microns.

ferroelectrics, lithium niobatéLiNbO3) and lithium tantalate .

. ; . o . . These phenomena have been shown to arise from aggregated
(LiTaO,), and their manipulation into diverse shapes on vari-_ . . . .

. . point defect complexes in the material that transition from a

ous length scales.For example, optical and acoustic fre-
quency conversion devices require periodic gratings of amifrustrated o a s_table defect state acros§ a wall at room
parallel domaing,and electro-optic devices require domainstemperaturé.At higher temperature(s>1.25 O, thgse de-.
to be shaped as lenses and prisrtherefore, the structure fgct c'omplexes break up 'and thg domain wall strains, optical
of domain walls in these materials has become an importarftiréfringence, and local fields disappear as well.
subject of study:® The hexagonal unit cell and the atomic ~ The above observations are driven by both crystallo-
arrangement in the basal plane are shown in Fig. 1. graphic considerations and defect-mediated changes. Toward

From a fundamental viewpoint, the domain-wall structureseparating these effects, this paper addresses the following
and shapes observed in these materials highlight interestirguestion: what are the energetically favored orientations of
issues relating to preferred domain-wall orientations, walldomain walls instoichiometricLiNbO3 and LiTaG; purely
strains, wall width, and defect-mediated changes in the locdfom a crystallographic viewpoint. We will assume that there
structure of these domain walls. For example, when domainss no external electric field applied and the crystal is
are created at room temperature in a single crystal of LiNbOunclamped. Both LiTa@and LiNbO; show a second-order
or LiTaO; by external electric fields, one observes a varietyphase transition from a higher-temperature paraelectric phase
of naturally preferred crystallographic shapes exhibited byyith space-group symmetrg3c to a ferroelectric phase of
these crystals, depending on slight variations in crystal stosymmetry R3c at Curie temperature$, of ~690 °C and
ichiometry. These single crystals are typically either of con-~1190 °C, respectively. The approach is to minimize the
gruent composition, which are deficient in lithiukhi/ (Li  jnvariant Ginzburg-Landau-Devonshif&LD) free energy
+Nb,Tg~0.485, or of stoichiometric composition for a crystal in the presence of a single 180° domain wall.
[Li/ (Li+Nb, Ta)=0.5]. Figure 2 summarizes the temperature This yields the strains, wall width, and the minimum energy
and stoichiometry dependence of the two primary shapeerientations of this wall, which can then be compared to the
preferred by these crystals. Thsoichiometriccrystals of  experimental observations. General conclusions can also be
both LiNbGO; and LiTaG, exhibit six-sided polygonal shapes, drawn regarding the possible reasons for domain-shape
with domain walls parallel to the crystallographéeglide  changes introduced by the addition of defects.
planes(yzplane, termed ay walls[as pictured in Fig. @)]. The outline of the paper is as follows. The theoretical
With lithium deficiency in the crystals, the shape of the do-framework for the analysis is presented in Sec. Il. The equi-
mains incongruentLiTaO; changes to triangular domains librium values of the polarization and the strain fields in the
with domain walls parallel to the crystallographiz planes, case of a homogeneous sample without any domain walls are
termedx walls as shown in Fig. ). This change in domain derived in Sec. Il B. In Sec. Il C, a single domain wall is
shape is not seen icongruentLiNbO3;. When the domains introduced in the sample and the nature of the polarization
are created at higher temperatu(esl25 °Q), the congruent and strain fields in the domain wall is derived. The numerical
LiTaO; crystals form hexagonal domains piwall orienta-  results are presented in Sec. Ill. These results are discussed
tion, the same as the wall orientations in congruent and stdn Sec. IV, with main conclusions in Sec. V
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FIG. 1. (@) Schematic of the hexagonal unit
cell of ferroelectric LiTaQ (space group R3¢
wherea and c are the lattice parameters in the
hexagonal notation(b) The arrangement of the
atoms projected on thé0001) plane, where a
solid trapezoid is a unit cell.

+y 4

a

Il. THEORETICAL FRAMEWORK along thez-axis both belong to a one-dimensional irreducible
representation of straifi;. Similarly, the two shears of the
We base our analysis on the Ginzburg-Landau-Devonshirpasal plane and the two shears in #ag andy-z plane both
(GLD) theory?° According to the Landau theory, the phasebelong to a two-dimensional irreducible representation of
transition from the paraelectric phase to the ferroelectrigstrainTy.
phase occurs as a result of symmetry breaking. In LiFaO  The fields of interest are the macroscopic strains and the
and LiNbG;, the paraelectric phase belongs to the spacenacroscopic polarization. The six strain components and the
group R3c (ng) and the ferroelectric phase belongs to thetwo orthogonal components of the polarization other than the
space groupR3c (CSV) (loss of inversion symmetjyy The  Primary order parameter are coupled to the primary order_
symmetry-breaking results in the evolution of a primary c,r_parameter,_ and are treated as secondary order parameters in
der parameter in the low-symmetry ferroelectric phase. In th@Ur analysis. _ o
case of LiTaQ and LiNbO;, the primary order parameter is ~ Since we are mteresteq in the macroscopic f|eI_ds, we are
the polarization along the crystallographicdirection P,. ~ ©nly interested in thd" point (zone centerin the Brillouin
This order parameter transforms as the basis function of théone. Thus, the symmetry considerations for the free energy
I'; irreducible representation of the prototype phase spackduce to the considerations of the symmetry of the point
group, and the other two componerii, Py) belong to the  group of the prototype phaser3Dy). The presence of do-
I'5 irreducible representation. The area chatm®npression main walls can be considered as perturbations in the vicinity
or dilatatior) of the hexagonal basal plane and the elongatiorof the I point. This is reflected in the free energy that cor-
responds to the gradients in the order parameters in the GLD

theory.
M 25°C Y 125°C The approach adopted here is as follows. We first deter-
o mine the free energy that must be invariant under the proto-
+y +y type point group symmetry operations. We minimize this free

energy with the polarization components as variables with
the constraint that the crystal is stress free. This gives the
equilibrium values of polarization and strain. Using the ho-
mogeneous values of the polarization and the strain compo-
nents, we then introduce an infinite 180° domain wall at

(a) (b) ,S_EE some angle to the crystallographia plane. The structure of
the domain wall is obtained using variational minimization
250C . 1250(:‘ of the total free energy under the constraints of strain com-
patibility and mechanical equilibrium.

A. Free energy

The general form of the free energy of a ferroelectric
material is given by the equation

F(Pi,Pij,e1) = FL(P) + Fei(ew) + Fe(Pi &) + Fo(Pyj),

10 pm g1

O et

(1)
FIG. 2. Piezoelectric force microscdpphase contrast images where P; are the polarization components aegd are the

of domain shapes created (@, (b) congruent LiNbQ and (c), (d) strains in Voigt's notation. In particular, LiNb{and LiTaG

congruent LiTa@. Domains in(a) and(c) created at room tempera- belong to the 6 point group. In the following analysis, the
ture and(b) and(d) created at 125 °C. crystallographic uniaxial direction is denoted as thaxis.
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PHENOMENOLOGICAL THEORY OF A SINGLE DOMAIN..

TABLE |. Derived constants in Eq$2)—(4).

Expression LiTa@ LiNbO; Units
a 1/2845 1.256 2.012 x10° Nm?/C?
a, *derived from Eq.(11) 5.043  3.608 x10° Nmé/C*
as 1/eq; 222 1.345 X10° Nm?/C?
B1 3Cas 1355 12.25 X10YN/m?
B2 3(Cu*+Cyy) 6.475 6.4 X100 N/m?
B3 3(C;1—Cypy) 4925 375 x10"N/m?
Ba Cis 7.4 75  X109N/m?
Bs 3Cas 48 3 X 1010 N/m?
Bs Cu -1.2 09  X10©9N/m?
71 3(C11+C1)Qa+3C15Qa3 —0.202  0.216 x10° N m?/C?
Y2 2C3Qa3+3C1Qa 1.317  1.848 x10° N m?/C?
¥s 2C14Qus-3(C11-C1)Qqr —2.824 -0.33 x10° N m?/C?
Ya C44Qua 4.992 3.9 X10° N m?/C?
N\ 6.418  9.359 X104
Ny -0.157 -0.4874  x10*

They axis is chosen such that tlyez plane coincides with a
crystal-glide plane as shown in Fig. 1. Thexis is chosen
such that the, y, andz axes form a right-handed Cartesian

coordinate system. The free energy form that is invariant

under the point group B consists of the following terms:

PHYSICAL REVIEW B 71, 184110(2005

Fel(e1) = Bre3+ Baley + £2)? + Bal (61— £2) + €3]
+ Baes(er t &) + ,35(8421 + 8%)
+ Bel(e1— €2)e4 + £586],

3

where, following \oigt's notation,e;=U; 5, 8,=Up 5, €3
=Ug 3, £4=Up3+Us, &5=Uy3tUsy, and eg=U;+Uy 3, and

u; are the lattice displacements. Tg given in Table I, are
related to the elastic constants given in Table II. The third
term in Eq.(1) is the electrostrictive coupling between the
polarization and strain components and is given by

Fo(Pi &) = yi(eg + £2) P + 7,83P7
+ 3l (g1~ gx)) PyP, + g6PsP,]
+ y4(esPyP, + £4P,P,)
+ ys(e1 + 82) (P + PY) + yees(P% + PY)
+ yil (g1~ &) (P~ P)z/) +2e6PPy ]
+ yalea(P; = PY) + 285PPy ], (4)

where they,, listed in Table I, are related to the electrostric-
tive and elastic constants given in Table Il. The final term in
Eq. (1) is the gradient energy of the lowest order compatible

with the 3m symmetry and is given by

Fe(Pij) = gl(Pil + Piz) + 92(P§,3)- (5

The first term is the Landau-Devonshire free energy describHere, g; and g, are the gradient coefficients. To keep the

ing a second-order phase transitfoand is given by

whereq; is temperature dependent and positive in the ferro

Fu(P) = - ZtP2+

2

a
4

a3
Py + E(P§+ P2,

)

electric phase, whiler, and a5 are positive. They;, given in
Table |, are related to the dielectric constantg, and ¢33,

given in Table Il. The elastic free energy of the system i

given by
TABLE Il. Relevant physical constants of LiNROand
LiTaOs.
LiTaO,!213 LiNbOg12:14 Units

Pe 50-55 70-75 uClen?
e11 52.7+1.1 84.3+0.8

£33 44.0+0.7 28.9+0.7

Ci1 2.3305+£0.0004 1.9886+0.0003 X101 N/m?
Cio 0.4644+0.0006 0.5467+0.0004 X101 N/m?
Cis 0.8358+0.0063 0.6726+0.0093 X101 N/m?
Ca3 -2.7414+0.0104 2.3370+0.0152 X 10" N/m?
Cis —-1.067+0.0004 0.0783+0.0002 x10' N/m?
Cus 0.9526+0.0002 0.5985+0.0001 X101 N/m?
Q31 —-0.00485%0.0002 -0.003 thc?
Qa3 0.016+0.007 0.016 fi C2
Qs 0.016 +0.0001 -0.003+0.03 4hc2
Qu 0.056 +0.005 0.0375 +0.03 hc2

S.

mathematical complexity tractable at this stage, we neglect
the energy contribution from the gradient of the secondary
order parameters. We will neglect the electrostrictive cou-
pling energy terms from Ed4) that do not involve the pri-

mary order parameteP,. Later in Sec. Il C we show that

gradient terms of the typ®,, play an important role in
determining the domain shape as well. The gradient term
captures short-range interactions. However, while consider-
ing an inhomogeneous case, nonlo@allong-rangg electric
dipole-dipole interaction must be included, in principte.
Not including this interaction slightly changes the profile and
energetics of the domain wall.

In the presence of a domain wall at a variable orientation
to thex or y axis, it is convenient to work in a rotated coor-
dinate system as shown in Fig. 3. This coordinate system is
obtained by a proper rotation of theandy axes about the
z-axis, such thak— x,,y— X, and(x,,%,2z) forms a right-
handed coordinate system. The subscriptandt, respec-
tively, refer to the coordinates normal and parallel to the
domain wall. The free energy in the coordinate system is
then given by

F(Pi,exPij)

o (¢4 (4%
== Pit P PR PY) + Brel+ Bolen+ )’

+ Bl (en— €02 + 5] + Bags(en + &)
+ Bs(25 +722) + Bel (8 — 284 + EeB6]COL30)

+ Bel (8n — £)€5 — €486]SIN(36) + 1 (e, + &) P?

184110-3
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y 2 - 2 -
Xt o dy= 71é31 Y2Ba and s = 7’;32 71,34_ (12)
2(B; = 4B1B2) Ba—4B1B2
Xn Using the homogeneous vallg=P,, of z-axis polarization,
we obtain the spontaneous dilative strains as
en= &=\ = YaP, (13)
< 5 > X
Domain 3= \p = Pp. (14)
o Wall It can be seen that in the homogeneous case, there is no
v polarization in then-t plane and that the shear strains are

zero. There are two possible orientations for the homoge-
FIG. 3. Orientation of the rotated coordinate systéex;,2) neous polarizatioP,. Note thatP;, is equal to the spontane-
with respect to the crystallographic coordinate systeny,z). Also ous polarization valu®, as found in the literatur®14 The
noted is the domain-wall orientation, which is parallel to xhaxis. coefficienta, in Table | was determined using E@.1) and
the known experimental values of and P,, at room tem-

+ vos.P2+ & —e)P.P.+%.P.P.lcog36 perature for LINbQ and LiTaG,. The values of\; and\,
7283Pz * vl (e :) veoTe -Jcos36) are, respectively\;=6.4x 104 and \,=-1.6x 1073 (for

+ vl (eq— &) PyP, —€PP,ISin(36) LiTaOs) and A\;=9.36x10*4 and \,=-4.8x1073 (for

+ 7,(ZsP.P, + 54P,P,) +91(P§n+ Pit)+92(P§3)' LiNbO,), indicating that there is a homogeneous tensile

strain in thex-y plane and a homogeneous compressive
(6)  strain in thez direction.

where ¢ is the angle between theandx, coordinate axes. _ o _
Following \oigt's notation, e,=U,, &=U, €3=Us3, £4 C. Inhomogeneous case: A single infinite domain wall
=Upgt+Uzy, €5=Un3t Uz, @ndeg=Un+Uy,, U; are the lattice We now introduce an infinite 180° domain wall in the

displacements, an#, and P, are polarizations along the  ¢rystal. The position of the wall in the rotated coordinate
andt axes, respectively. The following analysis will use the system is shown in Fig. 3. The-z plane corresponds to the

free energy in Eq(6). plane in the domain wall where triecomponent of the po-
larization vanishes. Far away from the domain wall, we as-
B. Homogeneous case: Single domain state sume that the polarizations take a homogeneous valu@,pf -

in the -, direction and P,, in the +x, direction. The angl#®
Between the normal to the domain wadl, with the crystal-
lographic x axis defines the orientation of the wall in the
x-y plane. We will seek a quasi-one-dimensional solution,
where the polarization and strain fields are functions of only
0, (7) the coordinate normal to the wdlle., the coordinate,). In

We first consider the homogeneous case where the mat
rial exists in a single domain state and apply the following
constraints:

IF_

JP; a defect free material, the St. Venant's strain compatibility
condition must hold
F -
j_:gi:o, ) VXV XE=0, (15)
&

whereg in the above equation is the strain tenSoNoting
where g is the stress. Constraiit?) specifies uniform ho- that the strains are a function of, only, and taking the
mogeneous polarization values in the material, @)dépeci-  homogeneous values far away from the wall, Ed) yields
fies that the material is stress free. These constraints result in _
the following homogeneous strains and polarizations: €2=0, &=N\;, &=\, (16)

Note that these strain values are valid throughout the mate-

4= e5=26=0, ©) " fial, including the wall region. In addition, the divergence of
stress must be zero to ensure mechanical equilibrium, i.e.,
P.=P,= 0’ 10 -
n= P (10 v.5=0, (17
P,=P, where ¢ represents the stress tensor. Noting that the stresses
1y, area function ok, only and vanish far away from the wall,
=+ * Eq. (17) yields
ay+ A Brifh + APl + 2Bty + 214 + Yoih) P 18
(11) oy =05=05=0. (18

Defining Ae,=g,—\;, as the deviation of the normal strain
where the subscrigt refers to the homogeneous case and ¢, from the homogeneous valug, Eq. (18) gives

184110-4
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Ae, pZ- p2 1

% |=[mi]| PP (19 Aey 2

€5 - i zn . ~ z
N =T , 25
Fe PP, f5 [¢Ij] P‘zl (25)

Eg PG

z

The strainsss andzg can also be considered as deviations

from their homogeneous values, recalling that their homogewhere the matricefp;; ] and[ ¢;;] are listed in the Appendix.

neous values are zero from E@9). The matrix [mij] So far, we have minimized the total free eneigywith

:[aij]_l[bij]a where respect tdP, andP; [Eq. (22)] under the constraints of strain

compatibility [Eq. (15)] and mechanical equilibriuniEq.

M . (17)]. This has enabled us to obtain the expressions for the

2(32_+'83) Po SIN(30) 0 secondary order parametdi,, P,, ande;) in terms of the

[aj]=| Bssin(B30)  2Bs  BsCcod36) |, (20)  primary order parameteP,. We now perform variational

0 Bs C0436) 235 minimization of the total free energy with respect to the
primary order parameteP, under the boundary conditions

- that P, approaches B, far away from the domain wall. This

-y —7v3Sin(30) - yzcog30) gives us the Euler-Lagrange equation,
byl O = o @ aF i( 9F ) ~0 26)
| O —1vy3coq36) y3sin(36) oP, %\ P, =Y.
Now we minimize the total free enerdywith respect to the ~ The partial derivative)F/JP, is a polynomial in odd powers
polarizationsP,, and P, as follows: of P, as follows:
JF
—— = =P, + g3P3 + g5P5 + g/P) + ggP + g1 PLL,
%:O (i=np), (22) P, S1Fz T S3F, T S5, T S7F; T SolF; T S117;
i

(27)

where, for the present, the gradient teffys,, P, Py, and  The first two coefficients; ands;z are given by
P have been ignored. Equatiq22) in combination with _ B B B
Egs.(16) and(19)—(21) yields relationships between the po- 51~ % 4y~ 271611~ 27200 = Ya(bripar  baip1)

larizationsP,,, P;, andP, as follows: XC0g36) — y3(h11p11— P31021)SIN36) — Y4h21011,
(28)
[Pn] _ PP~ P})
Py a5+ as(pgg + o) Pg + (1122 = aotto) Py S3= ap + 21010+ V3(h11p22 + Dropo1+ Pzip1ot Phap1n)
« l vy + (Vippp — Vo1 ) P2 23) X cog30) + y3(dh11p12+ D12011~ P31P22~ P32P21)
vyarz+ (vopuys + vipn) P2 | XSiN(36) + y4(Pp1p12+ P2op11) - (29

For further analysis of the order parameter, we truncate the

polynomial in Eq.(27) after theP§ term. On substituting for

the physical properties of LiNbQand LiTaG, from Table I,

it is found that for all values of & #<2, |s;|~10°
m?C™2,  [sgP2|~10° Nm?C2, |ssPp| ~10° Nm?C2,

The constants; and w;; are listed in the Appendix.

From Eq.(23), we see that the polarizatiori®, and P,
depend orP, in a highly nonlinear manner. In order to sim-
plify these relations for further progress, we estimate th
relative magnitudes of different terms in the denominator o |g7Pﬁ| ~ 10 Nm*C2, |g9Pﬁ| ~0.1-1 NMC2, |€11Pﬁ0|

the prefactor in Eq(23) for 0<¢<2m and|P,/<P;. Using " 10°3-102 Nm?C-2. Therefore the truncation of E€7) is

nggluesﬂ dphysLlic%aaléonstv?lgts gfli\rﬁn |ntr1]':tblecslzl~ar11(c)ilgl forjustified. With this truncation, Eq27) can be rewritten as
3 ! 3

NZM?C™, |ag(pas+ ppp) P2 < 10" N2mPC™*, and (i1 20,P,n=—s,P,+ s5P2. (30)
- o) P2l < 10' N°m*C™*. Therefore, we retain only the

o2 term in the denominator of the prefactor in E83). The | N solution to this equation is the kink, given by

polarizationsP,, and P; simplify to odd functions ofP, and S % [s
vanish atP,=P,. From Eq.(19), we note that the strains P,(x,) = \/Ztanr(—”\/:), (313
Ae,, €5, andgg are even functions oP, and vanish aP, S3 2 V0
=Py, wherex, is the coordinate parallel to the domain wall normal
n. The domain wall half-widthx, is defined as,=2vg;/s;.
P, Substituting the expression fét,(x,,) into the Eqgs.(24) and
{Pn} =[p; ]| P2 (24) (25), we get the variation of strains and in-plane polariza-
P; . é ' tions P, andP; as a function ok,. Substituting these expres-
P; sions into(6), we get the total inhomogeneous free energy

184110-5
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FIG. 4. Gradient coefficierdg, as a function of wall widthx,.

Finn- As a cautionary note, although in deriving Eg1a), we
neglected the higher-order termsiy in Eq. (27), one can-
not do so in calculating the total free energy,,. As will be

PHYSICAL REVIEW B 71, 184110(2005

60° +y 90

(a) (b)

FIG. 5. Hexagonal wall orientations with wall normals fay y
walls and(b) x walls.

of domain-wall orientation was calculated for both LiNDO
and LiTaQ,. These results are presented and discussed be-
low.

Figure 4 shows a plot of the gradient coefficigntas a
function of the wall widthx,. The domain wall width, the
distance over which the polarization reverses, has been mea-
sured by Bursill and Lin to have an upper limit of 0.28 nm

seen further on, theariation of the free energyFpyy, calcu-  using high-resolution TEM images in lithium tantaldtso-
lated from Eq.(31b) as a function of the domain-wall angle morphous to lithium niobajé” Taking this as the wall width

0 is small as compared to the mean value itself. Thereforegx0 for both materials, the upper limit for the gradient coef-
the truncation of higher-order polarization terms in E2p) ficient is estimated as 3.9810° 1 NmM*/C2 and 2.53
should be carried out with care, if at all. Theverage x 10711 Nm#/C2 for LiINbO; and LiTaG, respectively.
domain-wall energy per unit volunfé,y due to the addition gjnce the theory does not include any energy contribu-

of a domain wall to the homogeneous single domain statgons from nonstoichiometry related defects,direct com-

can then be calculated as parison of the properties calculated below can be made only
with the stoichiometric compositions of these materials

Two types of walls are of special interest in these materi-
als: the six ¥ walls” lying in the crystallographig-z planes
whereF;, and F;, are the total free enerd{eq. (6)] for the ~ with wall normals at9=mm/3 as shown in Fig. @ and the
inhomogeneous and the homogeneous states, respectivedjx “x walls” lying in the crystallographix-z planes with
The integration windowAx was chosen across the wall as wall normals atf=(w/6+mm/3) as shown in Fig. &),
Ax=4x,, wherex, is the wall half-width. This window cor- wherem is an integer from 0 to 5. The stoichiometric crys-
responds to where the energy drops to 2.2% of the peatals of both LiNbQ and LiTaQ, possess domain orientations
value at the domain wall. Integration over a larger windowwith y walls. It is important to note for the rest of this paper
does not significantly increase the integrated energy. We nof@at the angular dependence always refers to the orientation

that after performing the integration in E(B1b), the Fo,  of the normalto the domain wall within the-y plane.
« g4, where the other gradient tergy is ignored as before.

The general solution to Eq30) is a kink-antikink lattice
(or a “polarization grating’ solution

1 +AX/2

Fow=— Finn — Fr)dx,,
DW AX —Ax/2( inh h) Xn

(31b

K2 “ 1.0
S1 n
P,(xy) = \/— —sn(—,k), 32
0=\ VT e (32)

0.5
wheresn(x,k) is a Jacobi elliptic function with modulus,
and peridocity # K(k), whereK(k) is the complete elliptic o
integral of the first kind® Here xL=x0\/%(1+k)2 and O<k  ~ 0.0
=P3/P,=<1 whereP; andP, are the two positive roots of the
equation: fo=—(s;/2)P2+(s3/4)P2 with (-s2/4s5)<f,<O0.
In the limit k— 1 we recover the single kink solution of Eq. -0.5 1
(319. The domain lattice energy per period can be calculated
using Eq.(31b) with appropriate integral limits. 10 4

Ill. POLARIZATIONS, STRAINS, AND ENERGY -4 2 0 2 4

PREDICTIONS IN LiNbO 3 AND LiTaO 3 DOMAIN WALLS X,/ X,

Using the material constants listed in Table IlI, the varia- FIG. 6. Variation of the normalized polarizationP/P
tion of the free energy, polarization, and strains as a functiostanh(x,/x,), across a single 180° ferroelectric domain wall.
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90

60 —— LiNbO,
TN LiTaO,
1 150 30
l180 0
1 210% 330
® e (©)

FIG. 7. In-plane polarizationBin piane for (&) LiTaOz and (b) LiNbO3. (c) Shows the maximum magnitude of the in-plane polarization
for LINbO3 and LiTaG;.

A. Polarizations X, direction. The variation oP, andP; as a function ok, is

Figure 6 shows the spontaneous polarizafoas a func-  shown in Figs. €a) and 9b), respectively for LiTa@ Again,
tion of normalized distance,/x,, perpendicular to a domain Fig. 9 is valid for LINDG; as well by changing the sign and
wall according to Eq(319. This variation is the same for all magnitudes of,, andP, for each of the curves in accordance
orientationsé of the domain wall in the-y plane. The satu- with Fig. 7(c).
ration polarizatiorP, far from the domain wall is +0.5 C/fm A significant feature of these plots is that the in-plane
for LiTaO; (Ref. 14 and 0.75 C/rafor LiNbO4.** The cor-  polarizations at the walls are perpendicular to the wall and
responding plot for Eq(32) is a square-wave pattern with oriented in a head-to-head or tail-to-tail configuration across
alternating kink—anti-kink-like profiles. An antikink is just the walls. These domain walls must, thereforeeleetrically
the negative profile of Fig. 6. charged walls On the other hand, thg walls have in-plane

In the absence of a domain wall, the polarizations in thepolarizations that are parallel to these walls, thereby creating
x-y planeP,, and P, do not exist. However, they are nonzero unchargedwalls. Thus, thex walls must have additional
in the vicinity of a domain wall and disappear away from theelectrostatic wall energy as comparedytavalls; the energy
wall. The magnitude and direction of these polarizations ararising from the divergence of in-plane polarization at the
dependent on the normal to the wall orientati@nThis is  wall. This is a significant feature that is further discussed in
shown in a quiver plot in Figs. (@) (for LiTaO3) and %b) Sec. Il C.
(for_LiNbO3), where the in-plane polarizatiorP;, pjane
=\P2+P? is plotted as arrows. The length and direction of
the arrows, respectively, represent the magnitude and direc-

tion of the vectorP;, pjane in the x-y plane. The circle in the In the absence of a domain wéthe homogeneous case
plot represents the schematic of a hypothetical circular dothe spontaneous strains in LiNg@nd LiTaQ, are (i) an
main wall. Figure Tc) is a polar plot of the maximum am- jsotropic straine,=&,=\; in the crystallographic-y plane
plitude of Pjy_pand 6) for LINDO3 and LiTaQ [_see Eq(13)], and(ii) a normal straireg=\, in the z direc-
It is seen in Fig. &) that thex walls havePIn mane—P and tion[see Eq(14)]. No shear strains exi$Eq. (9)]. _
in Fig. &(b) the y walls havep. B This is shown in In the presence of a single infinite domain wall, the strains
in-plane=Ft- in the domain-wall region are different from the homoge-
Fig. 8 for LiTaO; but is also true for LiNb@. In addition, ! oW g ! g

th ool larizati IS0 famol i | neous strains far away from this wall. Since the domain-wall
ese in-plane polarizations can also famplaneantiparal- planet-z is considered infinite in both thieand z-coordinate

lel domain walls in thex-y plane. TheP, and P, vectors  axes, the strains, ande3 and the shear strai, in the t-z
reverse directions on CI’OSSing such a domain wall along th9|ane of the domain wall do not Change from their homoge-
neous valuegsee Eqs(13), (14), and (16)]. However, the
strain g, (strain normal to the domain wall in the direction
Xn), shear strain in the-z plan€ezs, and shear strain in thet
planezg, change from their homogeneous values by amounts
given by Eq.(25).

The change in the normal straixe,(6), for both LiNbO;
and LiTaG; is shown in Figs. 1@&) and 1@b), respectively.
The strainses(0) and’sg(6) at the center of the wallx,=0)
are shown as polar plots in Figs. (&l and 11b), respec-
tively.

The variation of these strains as a function of the normal-
ized coordinatex,/x, perpendicular to the domain wall in

FIG. 8. (a) Normal polarization®,, and (b) transverse polariza- LiTaOgz is plotted in Figs. 1@) and 12b) for x andy walls,
tions P, for LiTaO3. LINbO5 shows a similar symmetry but with the respectively. The corresponding plots for LiNp&re shown
orientation of the vectors reversed. in Fig. 13.

B. Strains
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Distance (xp / xo)

FIG. 9. Normalized in-plane polarizations as a functioxpih LiTaOs. (a) Plot of normal polarization®,, for different angles. (b) Plot
of transverse polarizatiorid,; for different anglesd. Every fifth point is marked.

Some significant features are revealed in Figs. 9-13 for

both thex andy walls.

(i) The shear strai@z=0 in then-t plane for thex-walls
as well as they walls in both materials.

(i) The shear straiizs (shear strain in tha-z plane is

zero for they walls in both materials. However, this strain is
nonzero for thex walls. In addition, the sign of the shear

strain z5 changes frompositive for the threex walls at 6
=(wl2+2mmx/3), m=0,1,2 tonegativefor the threex-walls
at =(w/6+2mwx/3), m=0,1,2.This is shown in Fig. 1().

C. Free-energy anisotropy

The free energy of the domain wafp,, is humerically
calculated from Eq(6) in combination with Eq(31b). This
requires a knowledge of the gradient coefficigntwhich is
not experimentally known, but was estimated earlier from
the TEM measured atomic positions gg=3.98x 107!
Nm?/C2. For further calculations, we assume a valuegpf
=4x 101 Nm*/C?. Although the absolute magnitude of
free energy depends on the magnitude of the gradient term,
the results discussed below deal with the energy anisotropy

Although the calculations are performed for domain wallsas a function of domain wall orientation angleThis energy
that are infinite in the lateral extefalong thet axis), if we  anisotropy is characterized by the quant¥py=[Fpw(6)
imagine the formation of a hexagonal domain by bringing—Fpw(0°)], which is calculated with respect to the minimum
together the six walls, every adjacent hexagonal face will free energy that occurs at tlyewalls. The symmetry of the

have a different sign for the shear strainas shown in Fig.
14. The above discussion is valid for both materials.

(i) The change in the normal straixe, is negativefor
LiTaO5; and positivefor LINbO; for all orientations of the
domain wall. Since the homogeneous strginn both mate-
rials is positive(net tensile strain; see Sec. I),Bhis indi-
cates that the normal tensile stragp in the domain wall
region islower than the bulk valugby ~34% at the domain
wall) in LiTaO5; and higher in the domain-wall regior(by
~64% at the domain wallin LINbO3; compared to the bulk
value.

6.03 -
6.02 -
6.01 -
6.00 |
5.99
5.98 -
5.99 -
6.00 |
6.01 -
6.02
6.03 -

150/

180

Agy, (1074

210X =

270

(a)

dependence akFpy,, on the anglel is found to be indepen-
dent of the actual value of the gradient coefficient.
Figures 1% and 16a) show a polar plot of the free
energyAFpyy calculated by combining Eq6) and(31b), as
a function of domain-wall normal orientatiohwith respect
to the crystallographix axis for LiTaO; and LiNbG;, re-
spectively. The variation of domain-wall energy
AFpw/! Frear~ 1077, whereF pea=(AFpw(6)). Though small
in magnitude, it was confirmed that the angular variation of
AFpyw shown in Fig. 15 inot a numerical artifact, since the
polar symmetry of the energy plot was found to be insensi-

is

-2.210+
-2.215-
150 /-
-2.220
-2.225

-2.230-180 4

Agy, (1074

-2.225+
22207 540

-2.215+

-2.2101

270

(b)

FIG. 10. Change in the normal straix, at the wall(x,=0) for (a) LiNbO3 and(b) LiTaOs.
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v;‘ FIG. 11. Strains at the wall
E (x,=0) for (a) &5 and for (b) z.
I

Note the circle in both figures rep-
resents zero strain.

05
<2 0.0 4
0.0 -ttty o0 Oy
o~ ~-0.5 -
< o5 <
|o 0.5 |o 1>
<. 0 T-1.0 A
g =
-15 4
2047 & -2.0 4
o % @ (b)
-2.5 : ; , 2.5 . r T
-4 -2 0 2 4 -4 -2 0 2 4
Distance (x5, / xp) Distance (x5, / x,)

FIG. 12. The strain in LiTa@at (a) x walls, where curve 1 ide, for #=30 and 90°, curve 2 i85 for 6=90°, curve 3 ises for

=30°, and curve 4 igg for =30 and 90°. The walls are shown irlb), where curve 1 i\e, for #=0 and 60°, and curve 2 & andzg
for 6=0 and 60°. Every tenth point is marked.

FIG. 13. The strain in LiNb@
1 at (a) x walls, where curve 1 is
4 Agy, for 6=30 and 90°, curve 2 is
‘e5 for #=90°, curve 3 ise; for
=30°, and curve 4 igg for =30
and 90°. They walls are shown in
(b), where curve 1 isAg, for 6
ol =0 and 60°, and curve 2 & and
, , , g for =0 and 60°. Every tenth

-4 2 0 2 4 point is marked.
Distance (x5 /x,) Distance (xy /x,)

Strain (10%)
Strain (104
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stoichiometric LiNbQ and LiTaG, as shown in Fig. 2.

One of the energy contributions missing in Ef) is the
depolarization energy at a domain wall introduced by the
variation of in-plane polarizatio®, across the domain wall

,,,,, in the directionx,. In other words, an additional depolariza-
SEooSSEccsmEEsE: ~ tion energy term proportional t@ﬁyn, which was originally
e I - 85 ignored, needs to be accounted for. This energy as a function
1 of distance normal to the domain wall,, is calculated start-

ing from Gauss’s law given as
y ~~ -=" y
-y, -
-

Pn(Xn)

€0

I muy

E(Xp) =~ (33

FIG. 14. Strairies for a theoreticak wall shown as dotted lines
in LiTaO3. The horizontal dashed line is a cut through hexago“whereE(xn) is the depolarizing field arising from the polar-
along thex direction. At the corners of the domain walls are high jzation P,(x,).18 For a one-dimensional case, where the elec-
energy points as the sign of the strain switches. tric field and polarization are zero atefor the normal com-
onents of electric field and polarization, the energy per unit
rea for a wall slice oflx, at x, is

Pa(X,)

€0

tive to large variations in input parameters. Changing each
the physical constants individually in Table Il did not change
the symmetry ofAFpw/Fmean FOr example, changing the 0o
coefficientsCy;, Cy3, Cas, Cia, Qs3, Quz, Qua OF €14 by @ EE (Xp)dx, =
factor 0.01 to 30 slightly changed the magnitude but did not
change the symmetry of the free energy. The free energy washe depolarization energy per unit volume of the entire wall
more sensitive to the coefficientS;,, C3, Qz;, and ez, region is given by
with the symmetry changing only if the coefficients were
multiplied by a factor<0.6 or >1.5. However, the changes
in the physical constants needed to induce symmetry changes
are very large and unphysical. Furthermore our calculations
have a higher precision than the observed variation—the nuwvhich is the depolarization energy per unit volume in units
merical variation is~10? while calculations are carried out of J/n. The integration windowAx=4x, was chosen as in
to 10°%6. These results give us confidence in the energy ankq. (31b). The depolarization energy in E@®5) is calculated
isotropy plots shown in Figs. 15 and 16. numerically from the normal polarizatid®,, shown in Fig. 9
The change in free energy, given in Figs(d5and 16a)  as a function of distance, from the wall.
for LINbO3 and LiTaG, exhibits a sixfold symmetry with Figures 1%b) and 16b) show the depolarization energy,
six energy minima at =(w/6+mw/3) where m  AFy=F4(60)—F40°). It can be seen from these plots that the
=0,1,2,3,4,5These orientations corresponddwalls, do-  minimum energy is rotated 60° from the minimum energy
main walls in the crystallographig-z planes with the wall configuration shown in Figs. 18 and 1&a). The depolar-
normal in the ¥ directions. Note that the sixfold symmetry ization energy favory domain walls in the crystallographic
of the lobes preserves the mirror symmetry about the threg-z planes with the wall normal in thextdirections. Since
crystallographig/ axes. We note that the six-sided hexagonalthe change in the depolarization energy is larger than the
domain, which can be formed with these six minimum-change in the domain-wall free energy, the resulting total
energy domain-wall configurationslpes notcorrespond to  energy,AF = AFpw+AFg, has a symmetry that favors
the actual domain-wall shapes observed experimentally iwalls as shown in Figs. 16) and 16&c).

dx,. (34)

1 (2 P2(x,)

Fd =
AXJ _ax2 2€0

dx,, (35

90

50
40
30
20
10

0,
10
20
30
40
50

FIG. 15. Energies of domain walls in LiTaO3 relative to 04 shows the normalized change in free enetfdypy, (b) shows the
depolarization energyF4, and(c) is the normalized change in the total enetsfy,o=AFpw+AFy. Note that(b) and(c) have the same
scale, wherea) does not. Units in all plots are JArThe dotted hexagon represents the low-energy domain-wall configuration for each
plot.
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400
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200 -
100 -

100
200
300

400 -

FIG. 16. Energies of domain walls in LiNkGCrelative to 0°.(a) Shows the normalized change in free enefdypy, (b) shows the
depolarization energF4, and(c) is the normalized change in the total enedyy, ., =AFpw+AF4. Note that(b) and(c) have the same
scale, wherea) does not. Units in all plots are JAnThe dotted hexagon represents the low-energy domain-wall configuration for each
plot.

Figure 17 shows the plot of total free energy as a functiomormal strainAg, is negative for LiTaQ and positive for
of the gradient coefficieng;. Using the upper limit on the LiNbOj for all orientations. This normal strain is lowest for
width of the domain wall as 0.28 nm in LiTa@’ the gradi- x-wall orientations in LiTaQ and y-wall orientations in
ent energy is 2.58 1011 Nm?*/C?. Using this value, the cal- LiNbO3.
culated domain-wall energ¥p,y, in LiTaOg is ~60 mJ/n? By combining information from the polarizations, strains,
and in LiINbOy is ~170 mJ/m. Experimental estimates of and energies of the domain walls as functions of wall angle,
domain-wall energy vary. Using the activation field for the comments can be made on preferred orientations. Consider-
experimentally measured exponential dependence of sidéng only the free-energy contribution as in E6), it is found
ways domain velocity in an applied electric fieldéongru-  that the minimum-energy configuration is for tkevall ori-
ent LiTaO;, and following the Miller-Weinreich theorl?  entations as shown in Figs. (B and 16a). However, thex
Gopalan et al. have estimated the wall energy to be walls are charged domain walls due to head-to-head or tail-
~35 mJ/nt.2° Following this analysis and using data for the to-tail in-plane polarization configurations on crossing the
wall velocity in stoichiometric crystatsthe wall energy in  domain wall. Thisin-plane polarization leads to high depo-
stoichiometriccomposition crystaléwhich is the correct ma- larizing energy for thex walls, giving the total energy of the
terial composition for comparison with the presented calcudomain walls a minimum fory-wall orientations for both
lationg is calculated as~9 mJ/n?. This estimate considers LiTaO; and LiNbQ; as shown in Figs. 18) and 16c).
only the polarization and depolarization energies and ignores Considering the strain, either domain-wall orientatian
strain, coupling, and gradient energies. On the other handyall or y wall) has a zer&g component, which is strain in
using the curvature of a pinned domain wall under an exterthe x.-x, plane. However, thé&s strain, strain in thex,-z
nal field in congruent LiTagQ and modeling the process as a plane, is nonzero for th& walls and contrary in sign for
trade-off between a decrease in polarization energy and aadjacent hexagonal faces and is as pictured in Fig. 14. The
increase in domain-wall energy, Yang and Mohideen estivertices of a hexagon formed by thesevalls would there-
mated the wall energy aBp, ~200-400 mJ/rh?! Yet an-

other estimate based on optical birefringence at the domairg~ 164 0.15
wall over a 3um width in congruent LiTa@yields an elec- % 14 ] 010 o
trostatic energy of~240 mJ/m.6 The estimation of wall en- = { 0.05
ergy in this study is near the lower end of experimental es- = 12'_ 0.00
timations. = 10 0 0.25x107
5 8-
o ]
IV. DISCUSSION TS
Although differences between lithium niobate and lithium S = —=— LiNbO;
tantalate in the preceding analysis are slight, we find it im- 2'_ +— LiTaO,
portant to highlight the major differences. With respect to 04
polarizations, each material shares the same symmetry, witl " 00 05 10 15 20
charged domains walls forwall orientations and uncharged Gradient coefficient, g, (107 Nm*C-2)

walls for y-wall orientations. However, in addition to differ-

ences in the magnitudes of the polarization, the sign of each FiG. 17. Domain-wall energy per unit ar&a,y as a function of
is different with polarization in head-to-head configuration inthe gradient coefficier;. The inset of the figure is an expansion of
LiTaO; with domain-wall normals at 30°, 150°, and 270°, the plot near zero, and the vertical line is the upper estimatg of
and in LiNbQ; at 90°, 210°, and 330°. The change in the calculated from the domain-wall width from the literatdfe.

184110-11



SCRYMGEOUREet al. PHYSICAL REVIEW B 71, 184110(2005

note that many symmetry allowed higher-order gradient en-
ergy terms exist and in the preceding analysis we have only
considered the lowest-order energy teifiag. (5)]. Two such
higher-order terms with the proper three fold and six fold
symmetries are given as

Fe:stoid(Pijj) = gz(Pis) + 93(6P§,xpz,y - 2P§,y) (36)

|

270°
Type I Type 11

Fa6foia(Pij) = gz(ng) + gG(Zng - ZPSX + BOP;xPiy
-30P2 P2 ), (37)

zx"zy

where g; and gg are the three fold and six fold gradient
FIG. 18. Two possible sets of triangularwalls. The dotted coefficients. It was noted that these terms, when included in
walls in each case outline the hexagomakall configuration for  time-dependent Ginzburg-LanddaliDGL) simulations, can
clarity. result in the evolution of hexagonal or trigonal domain
shapeg? If the three fold term dominates, triangular domains

fore be high-energy points, requiring a screwlike defect agvolve. Similarly, hexagonal domains evolve if the six fold
that site to accommodate the change in the sign of this she&hergy term dominates. One possibility is that the nonsto-
strain. On the other hand, there are no such restrictions at tHghiometric point defects influence these higher-order energy
vertices of a hexagonal domain formed by thevalls and  t€rms to give rise to symmetries not obvious in the one-
lower-energy vertices resullt. dimensional analysis presented in this paper. The presented

The free energy and strain analysis of the crystallographi@0d9| is valuable, _however, in underetandmg the intrinsic
contributions therefore supports the physical realityyof —Structure of a domain wall expected Wltheut the presence of
walls being preferred over walls in stoichiometriccrystals ~ €xtrinsic defects, external fields, or higher-order energy
of both lithium niobate and lithium tantalate. terms whose coefficients are not known experimentally.

This analysis, however, ignores nonstoichiometric defect The importance of the defects to the observed domain
complexes present in the crystal structiréhese defects features is further supported by the temperature effects ob-
drastically change the poling kinetics and, in the case of€rved in the LiTa@ system, where at higher temperatures
lithium tantalate, also change the preferred domain-wall orithey walls are favored orientation as shown in Fige)2and
entation. In this case, instead of hexagopaball domain 2(d). This indicates that th_e change in domain s_hape could be
shapes seen in the stoichiometric crystals, triangularlls ~ due to the decrease or disappearance of the influence of the
are preferred ircongruentcomposition of LjosTa, o0, as ~ defect dipoles. One of the proposed models for the defect
shown in Fig. 2. It is clear that these defects in combinatiorfOmplex is Nb or Ta antisite@\by';” or T4!) surrounded by
with the previously highlighted differences between the crysJithium vacancies(V(;) with a charge balance of[Mbj]
tals, favor formation of triangular domains formed by one of=[V{;].* At temperatures above 125 °C, the lithium vacan-
two sets ofx walls, as shown in Fig. 18. However, neglecting cies have high mobility, and the aggregated defect complexes
for the moment, both the nonstoichiometric defects and th@re believed to be broken up resulting in diminished defect
interactions of domain walls, it is interesting to think aboutinfluence on domains and domain waitAt room tempera-
the x-wall orientations. Domains withx-wall orientations ture (25 °C), however, these defects are frozen and form
have in-plane polarization normal to the domain wall andaggregated defect dipole complexes. One of the clear corre-
nonzero strairgs in the x,-z plane. Since the sign of this lations, therefore, is that changes in domain shapes in con-
strain is contrary on adjacent facéss in Fig. 14, triangles ~ gruent LiTaQ with temperature(as shown in Fig. Rare
composed of every other domain-wall orientation have theaccompanied by changes in defect complexes with tempera-
same sign of strain on all adjacent faces eliminating the higfture.
strain points at the corners of a hexagon formedkhyalls.

Therefore, one can conclude that within this theoretical V. CONCLUSIONS
framework, if thex walls are preferred at all, they should
occur as triangles, unless there are screwlike dislocations at The preferred domain-wall shapes of ferroelectrics
the vertices of a hexagon to facilitate a hexagonal domaihiNbO3; and LiTaG; have been analyzed by taking into ac-
composed of walls. Nevertheless, the two setsxfwvalls  count the free energy of the system. A theoretical framework
are degenerate in energy within the free energy describedias been developed to analyze the polarizations, strains, and
and therefore they might be expected to occur with equagnergies associated with a domain wall of arbitrary orienta-
probability. However, in congruent crystals, one of these set§on in both lithium niobate and lithium tantalate. It was
(Type ) is clearly preferred over the othéfype Il). The  found thatx walls are charged domain walls due to head-to-
presence of nonstoichiometric defects therefore appears fread or tail-to-tail in-plane polarizations, maximum strains,
prefer one set over the other. In order to understand thiand maximum total free energy. In contrast, yhealls show
preference, one will have to better understand the nature gf minimum in strains, zero head-to-head or tail-to-tail in-
these organized point defects and their contribution to thglane polarization, and a minimum in the total free energy.
free energy, which is expected to be anisotropic as well. Wdhe y walls are therefore the preferred orientations in sto-
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ichiometric compositions, and this is supported by experi- v, = = y3My 1 CO30) + y3My; SiN(36)
mental observations of such hexagonal domains composed of
y walls in the stoichiometric compositions of these materials. f11= YaMay COS36) + 5My SIN(36) + ¥aMs

This analysis does not directly consider the interaction of
multiple domain walls as well as the influence of nonsto-
ichiometric point defects present in the congruent composi-
tions of these materials. These point defects have been pro-

f12= Y3Mg3 COY36) + y3My3SIN(36) + y,Mp3

posed to be organized into defect compléxasd probably M21= Y3Myp COS36) — y3Ms, SIN(36)
have different defect symmetries that lead to triangular do- _
mains in congruent lithium tantalate. It was found that do- M22= Y3My3 COY36) =~ y3Mz3SIN(36). (AL)

mains created at temperatures higher than 125 °C in LiTaO

formed domains composed of walls favored by the sto- The matrice$p; ] and] ¢ ] in Eqs.(24) and(25) are listed

ichiometric crystals, instead of forming walls normally below

seen when created at 25 °C. This indicates that the nature of v P2 v1 (ippn— Vo) P2

the influence of the defects on the wall orientation changes Pu1=~""  Pr2= ~ 2 )

with temperature. The exact mechanism of defect-domain a3 a3 a3

wall interactions is presently unknown in these materials and )

will require understanding the structure and symmetry of de- _ V1ipo2~ Volhio _ Py

fects themselves on the atomic scale. Pr13” 2 PR
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APPENDIX

The constants; and ;; used in Eq(23) are $i3=Mizp1at Migpyy (1=1,2,3

vy = — Y3Mg1 COY36) — y3Myq SIN(36) — My $ia=Migp13+ Migpaz (1=1,2,3. (A2)
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