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A phenomenological treatment of domain walls based on the Ginzburg-Landau-Devonshire theory is devel-
oped for uniaxial trigonal ferroelectrics, lithium niobate and lithium tantalate. The contributions to the domain-
wall energy from polarization and strain as a function of orientation are considered. Analytical expressions are
developed that are analyzed numerically to determine the minimum polarization, strain, and energy configu-
rations of domain walls. It is found that hexagonaly walls are preferred overx walls in both materials. This
agrees well with experimental observation of domain geometries instoichiometriccomposition crystals.
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I. INTRODUCTION

Recently, considerable attention has been focused on the
phenomena of antiparallels180°d ferroelectric domains in
ferroelectrics, lithium niobatesLiNbO3d and lithium tantalate
sLiTaO3d, and their manipulation into diverse shapes on vari-
ous length scales.1 For example, optical and acoustic fre-
quency conversion devices require periodic gratings of anti-
parallel domains,2 and electro-optic devices require domains
to be shaped as lenses and prisms.3 Therefore, the structure
of domain walls in these materials has become an important
subject of study.4,5 The hexagonal unit cell and the atomic
arrangement in the basal plane are shown in Fig. 1.

From a fundamental viewpoint, the domain-wall structure
and shapes observed in these materials highlight interesting
issues relating to preferred domain-wall orientations, wall
strains, wall width, and defect-mediated changes in the local
structure of these domain walls. For example, when domains
are created at room temperature in a single crystal of LiNbO3
or LiTaO3 by external electric fields, one observes a variety
of naturally preferred crystallographic shapes exhibited by
these crystals, depending on slight variations in crystal sto-
ichiometry. These single crystals are typically either of con-
gruent composition, which are deficient in lithiumfLi/ sLi
+Nb,Tad,0.485g, or of stoichiometric composition
fLi/ sLi+Nb,Tad=0.5g. Figure 2 summarizes the temperature
and stoichiometry dependence of the two primary shapes
preferred by these crystals. Thestoichiometriccrystals of
both LiNbO3 and LiTaO3 exhibit six-sided polygonal shapes,
with domain walls parallel to the crystallographicc-glide
planessyzplaned, termed asy walls fas pictured in Fig. 2sadg.
With lithium deficiency in the crystals, the shape of the do-
mains in congruentLiTaO3 changes to triangular domains
with domain walls parallel to the crystallographicxz planes,
termedx walls as shown in Fig. 2scd. This change in domain
shape is not seen incongruentLiNbO3. When the domains
are created at higher temperaturess.125 °Cd, the congruent
LiTaO3 crystals form hexagonal domains ofy-wall orienta-
tion, the same as the wall orientations in congruent and sto-

ichiometric LiNbO3. It is also important to note that with
increasing lithium deficiency in the crystals, the regions ad-
joining domain walls show increased optical birefringence,6

strains,7 and local electric fields that extend over microns.
These phenomena have been shown to arise from aggregated
point defect complexes in the material that transition from a
frustrated to a stable defect state across a wall at room
temperature.4 At higher temperaturess.125 °Cd, these de-
fect complexes break up and the domain wall strains, optical
birefringence, and local fields disappear as well.

The above observations are driven by both crystallo-
graphic considerations and defect-mediated changes. Toward
separating these effects, this paper addresses the following
question: what are the energetically favored orientations of
domain walls instoichiometricLiNbO3 and LiTaO3 purely
from a crystallographic viewpoint. We will assume that there
is no external electric field applied and the crystal is
unclamped. Both LiTaO3 and LiNbO3 show a second-order
phase transition from a higher-temperature paraelectric phase

with space-group symmetryR3̄c to a ferroelectric phase of
symmetry R3c at Curie temperaturesTc of ,690 °C and
,1190 °C, respectively. The approach is to minimize the
invariant Ginzburg-Landau-DevonshiresGLDd free energy
for a crystal in the presence of a single 180° domain wall.
This yields the strains, wall width, and the minimum energy
orientations of this wall, which can then be compared to the
experimental observations. General conclusions can also be
drawn regarding the possible reasons for domain-shape
changes introduced by the addition of defects.

The outline of the paper is as follows. The theoretical
framework for the analysis is presented in Sec. II. The equi-
librium values of the polarization and the strain fields in the
case of a homogeneous sample without any domain walls are
derived in Sec. II B. In Sec. II C, a single domain wall is
introduced in the sample and the nature of the polarization
and strain fields in the domain wall is derived. The numerical
results are presented in Sec. III. These results are discussed
in Sec. IV, with main conclusions in Sec. V
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II. THEORETICAL FRAMEWORK

We base our analysis on the Ginzburg-Landau-Devonshire
sGLDd theory.9,10 According to the Landau theory, the phase
transition from the paraelectric phase to the ferroelectric
phase occurs as a result of symmetry breaking. In LiTaO3
and LiNbO3, the paraelectric phase belongs to the space

group R3̄c sD3d
6 d and the ferroelectric phase belongs to the

space groupR3c sC3n
6 d sloss of inversion symmetryd. The

symmetry-breaking results in the evolution of a primary or-
der parameter in the low-symmetry ferroelectric phase. In the
case of LiTaO3 and LiNbO3, the primary order parameter is
the polarization along the crystallographicz direction Pz.
This order parameter transforms as the basis function of the
G2

− irreducible representation of the prototype phase space
group, and the other two componentssPx,Pyd belong to the
G3

− irreducible representation. The area changescompression
or dilatationd of the hexagonal basal plane and the elongation

along thez-axis both belong to a one-dimensional irreducible
representation of strainG1

+. Similarly, the two shears of the
basal plane and the two shears in thex-y andy-z plane both
belong to a two-dimensional irreducible representation of
strainG3

+.
The fields of interest are the macroscopic strains and the

macroscopic polarization. The six strain components and the
two orthogonal components of the polarization other than the
primary order parameter are coupled to the primary order
parameter, and are treated as secondary order parameters in
our analysis.

Since we are interested in the macroscopic fields, we are
only interested in theG point szone centerd in the Brillouin
zone. Thus, the symmetry considerations for the free energy
reduce to the considerations of the symmetry of the point

group of the prototype phase 3m̄ sD3dd. The presence of do-
main walls can be considered as perturbations in the vicinity
of the G point. This is reflected in the free energy that cor-
responds to the gradients in the order parameters in the GLD
theory.

The approach adopted here is as follows. We first deter-
mine the free energy that must be invariant under the proto-
type point group symmetry operations. We minimize this free
energy with the polarization components as variables with
the constraint that the crystal is stress free. This gives the
equilibrium values of polarization and strain. Using the ho-
mogeneous values of the polarization and the strain compo-
nents, we then introduce an infinite 180° domain wall at
some angle to the crystallographicx-z plane. The structure of
the domain wall is obtained using variational minimization
of the total free energy under the constraints of strain com-
patibility and mechanical equilibrium.

A. Free energy

The general form of the free energy of a ferroelectric
material is given by the equation

FsPi,Pi,j,«kd = FLsPid + Fels«kd + FcsPi,«kd + FGsPi,jd,

s1d

where Pi are the polarization components and«k are the
strains in Voigt’s notation. In particular, LiNbO3 and LiTaO3

belong to the 3̄m point group. In the following analysis, the
crystallographic uniaxial direction is denoted as thez axis.

FIG. 1. sad Schematic of the hexagonal unit
cell of ferroelectric LiTaO3 sspace group R3cd,
where a and c are the lattice parameters in the
hexagonal notation.sbd The arrangement of the
atoms projected on thes0001d plane, where a
solid trapezoid is a unit cell.

FIG. 2. Piezoelectric force microscopy8 phase contrast images
of domain shapes created insad, sbd congruent LiNbO3 andscd, sdd
congruent LiTaO3. Domains insad andscd created at room tempera-
ture andsbd and sdd created at 125 °C.
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They axis is chosen such that they-z plane coincides with a
crystal-glide plane as shown in Fig. 1. Thex axis is chosen
such that thex, y, andz axes form a right-handed Cartesian
coordinate system. The free energy form that is invariant

under the point group 3m̄ consists of the following terms:
The first term is the Landau-Devonshire free energy describ-
ing a second-order phase transition,9 and is given by

FLsPid = −
a1

2
Pz

2 +
a2

4
Pz

4 +
a3

2
sPx

2 + Py
2d, s2d

wherea1 is temperature dependent and positive in the ferro-
electric phase, whilea2 anda3 are positive. Theai, given in
Table I, are related to the dielectric constants,«11 and «33,
given in Table II. The elastic free energy of the system is
given by

Fels«kd = b1«3
2 + b2s«1 + «2d2 + b3fs«1 − «2d2 + «6

2g

+ b4«3s«1 + «2d + b5s«4
2 + «5

2d

+ b6fs«1 − «2d«4 + «5«6g, s3d

where, following Voigt’s notation, «1=u1,1, «2=u2,2, «3
=u3,3, «4=u2,3+u3,2, «5=u1,3+u3,1, and «6=u1,2+u2,1, and
ui are the lattice displacements. Thebi, given in Table I, are
related to the elastic constants given in Table II. The third
term in Eq.s1d is the electrostrictive coupling between the
polarization and strain components and is given by

FcsPi,«kd = g1s«1 + «2dPz
2 + g2«3Pz

2

+ g3fs«1 − «2dPyPz + «6PxPzg

+ g4s«5PxPz + «4PyPzd

+ g5s«1 + «2dsPx
2 + Py

2d + g6«3sPx
2 + Py

2d

+ g7fs«1 − «2dsPx
2 − Py

2d + 2«6PxPyg

+ g8f«4sPx
2 − Py

2d + 2«5PxPyg, s4d

where thegi, listed in Table I, are related to the electrostric-
tive and elastic constants given in Table II. The final term in
Eq. s1d is the gradient energy of the lowest order compatible

with the 3̄m symmetry and is given by

FGsPi,jd = g1sPz,1
2 + Pz,2

2 d + g2sPz,3
2 d. s5d

Here, g1 and g2 are the gradient coefficients. To keep the
mathematical complexity tractable at this stage, we neglect
the energy contribution from the gradient of the secondary
order parameters. We will neglect the electrostrictive cou-
pling energy terms from Eq.s4d that do not involve the pri-
mary order parameterPz. Later in Sec. III C we show that
gradient terms of the typePn,n play an important role in
determining the domain shape as well. The gradient term
captures short-range interactions. However, while consider-
ing an inhomogeneous case, nonlocalsor long-ranged electric
dipole-dipole interaction must be included, in principle.11

Not including this interaction slightly changes the profile and
energetics of the domain wall.

In the presence of a domain wall at a variable orientation
to thex or y axis, it is convenient to work in a rotated coor-
dinate system as shown in Fig. 3. This coordinate system is
obtained by a proper rotation of thex and y axes about the
z-axis, such thatx→xn,y→xt, and sxn,xt ,zd forms a right-
handed coordinate system. The subscriptsn and t, respec-
tively, refer to the coordinates normal and parallel to the
domain wall. The free energy in the coordinate system is
then given by

FsPi,«k,Pi,jd

= −
a1

2
Pz

2 +
a2

4
Pz

4 +
a3

2
sPn

2 + Pt
2d + b1«3

2 + b2s«n + «td2

+ b3fs«n − «td2 + «̃6
2g + b4«3s«n + «td

+ b5s«̃4
2 + «̃5

2d + b6fs«n − «td«̃4 + «̃5«̃6gcoss3ud

+ b6fs«n − «td«̃5 − «̃4«̃6gsins3ud + g1s«n + «tdPz
2

TABLE I. Derived constants in Eqs.s2d–s4d.

Expression LiTaO3 LiNbO3 Units

a1 1/2«33 1.256 2.012 3109 Nm2/C2

a2 * derived from Eq.s11d 5.043 3.608 3109 Nm6/C4

a3 1/«11 2.22 1.345 3109 Nm2/C2

b1
1
2C33 13.55 12.25 31010 N/m2

b2
1
4sC11+C12d 6.475 6.4 31010 N/m2

b3
1
4sC11−C12d 4.925 3.75 31010 N/m2

b4 C13 7.4 7.5 31010 N/m2

b5
1
2C44 4.8 3 31010 N/m2

b6 C14 −1.2 0.9 31010 N/m2

g1
1
2sC11+C12dQ31+ 1

2C13Q33 −0.202 0.216 3109 N m2/C2

g2
1
2C33Q33+ 1

2C13Q31 1.317 1.848 3109 N m2/C2

g3 2C14Q44− 1
2sC11−C12dQ42 −2.824 −0.33 3109 N m2/C2

g4 C44Q44 4.992 3.9 3109 N m2/C2

l1 6.418 9.359 310−4

l2 −0.157 −0.4874 310−4

TABLE II. Relevant physical constants of LiNbO3 and
LiTaO3.

LiTaO3
12,13 LiNbO3

12,14 Units

Ps 50–55 70–75 mC/cm2

«11 52.7±1.1 84.3±0.8

«33 44.0±0.7 28.9±0.7

C11 2.3305±0.0004 1.9886±0.0003 31011 N/m2

C12 0.4644±0.0006 0.5467±0.0004 31011 N/m2

C13 0.8358±0.0063 0.6726±0.0093 31011 N/m2

C33 −2.7414±0.0104 2.3370±0.0152 31011 N/m2

C14 −1.067±0.0004 0.0783±0.0002 31011 N/m2

C44 0.9526±0.0002 0.5985±0.0001 31011 N/m2

Q31 −0.00485±0.0002 −0.003 m4/C2

Q33 0.016±0.007 0.016 m4/C2

Q42 0.016 ±0.0001 −0.003±0.03 m4/C2

Q44 0.056 ±0.005 0.0375 ±0.03 m4/C2
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+ g2«3Pz
2 + g3fs«n − «tdPtPz + «̃6PnPzgcoss3ud

+ g3fs«n − «tdPnPz − «̃6PtPzgsins3ud

+ g4s«̃5PnPz + «̃4PtPzd + g1sPz,n
2 + Pz,t

2 d + g2sPz,3
2 d,

s6d

whereu is the angle between thex and xn coordinate axes.
Following Voigt’s notation, «n=un,n, «t=ut,t , «3=u3,3, «̃4
=ut,3+u3,t , «̃5=un,3+u3,n, and«̃6=ut,n+un,t , ui are the lattice
displacements, andPn and Pt are polarizations along then
and t axes, respectively. The following analysis will use the
free energy in Eq.s6d.

B. Homogeneous case: Single domain state

We first consider the homogeneous case where the mate-
rial exists in a single domain state and apply the following
constraints:

]F

]Pi
= 0, s7d

]F

]«i
= si = 0, s8d

wheresi is the stress. Constraints7d specifies uniform ho-
mogeneous polarization values in the material, ands8d speci-
fies that the material is stress free. These constraints result in
the following homogeneous strains and polarizations:

«̃4 = «̃5 = «̃6 = 0, s9d

Pn = Pt = 0, s10d

Pz = Ph

= ± F a1

a2 + 4sb1c2
2 + 4b2c1

2 + 2b4c1c2 + 2g1c1 + g2c2dG1/2

,

s11d

where the subscripth refers to the homogeneous case and

c1 =
2g1b1 − g2b4

2sb4
2 − 4b1b2d

andc2 =
2g2b2 − g1b4

b4
2 − 4b1b2

. s12d

Using the homogeneous valuePz=Ph of z-axis polarization,
we obtain the spontaneous dilative strains as

«n = «t = l1 = c1Ph
2, s13d

«3 = l2 = c2Ph
2. s14d

It can be seen that in the homogeneous case, there is no
polarization in then-t plane and that the shear strains are
zero. There are two possible orientations for the homoge-
neous polarizationPh. Note thatPh is equal to the spontane-
ous polarization valuePs, as found in the literature.13,14 The
coefficienta2 in Table I was determined using Eq.s11d and
the known experimental values ofa1 and Ph at room tem-
perature for LiNbO3 and LiTaO3. The values ofl1 and l2
are, respectively,l1=6.4310−4 and l2=−1.6310−3 sfor
LiTaO3d and l1=9.36310−4 and l2=−4.8310−3 sfor
LiNbO3d, indicating that there is a homogeneous tensile
strain in the x-y plane and a homogeneous compressive
strain in thez direction.

C. Inhomogeneous case: A single infinite domain wall

We now introduce an infinite 180° domain wall in the
crystal. The position of the wall in the rotated coordinate
system is shown in Fig. 3. Thext-z plane corresponds to the
plane in the domain wall where thez component of the po-
larization vanishes. Far away from the domain wall, we as-
sume that the polarizations take a homogeneous value of −Ph
in the −xn direction and +Ph in the +xn direction. The angleu
between the normal to the domain wall,xn with the crystal-
lographic x axis defines the orientation of the wall in the
x-y plane. We will seek a quasi-one-dimensional solution,
where the polarization and strain fields are functions of only
the coordinate normal to the wallsi.e., the coordinatexnd. In
a defect free material, the St. Venant’s strain compatibility
condition must hold

¹ 3 ¹ 3 «J = 0, s15d

where«J in the above equation is the strain tensor.15 Noting
that the strains are a function ofxn only, and taking the
homogeneous values far away from the wall, Eq.s15d yields

«̃4 = 0, «t = l1, «3 = l2. s16d

Note that these strain values are valid throughout the mate-
rial, including the wall region. In addition, the divergence of
stress must be zero to ensure mechanical equilibrium, i.e.,

¹ · sJ = 0, s17d

wheresJ represents the stress tensor. Noting that the stresses
are a function ofxn only and vanish far away from the wall,
Eq. s17d yields

sn = s̃5 = s̃6 = 0. s18d

Defining D«n=«n−l1, as the deviation of the normal strain
«n from the homogeneous valuel1, Eq. s18d gives

FIG. 3. Orientation of the rotated coordinate systemsxn,xt ,zd
with respect to the crystallographic coordinate systemsx,y,zd. Also
noted is the domain-wall orientation, which is parallel to thext axis.
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3D«n

«̃5

«̃6
4 = fmijg3Pz

2 − Ph
2

PzPn

PzPt
4 . s19d

The strains«̃5 and «̃6 can also be considered as deviations
from their homogeneous values, recalling that their homoge-
neous values are zero from Eq.s9d. The matrix fmijg
=faijg−1fbijg, where

faijg = 32sb2 + b3d b6 sins3ud 0

b6 sins3ud 2b5 b6 coss3ud
0 b6 coss3ud 2b3

4 , s20d

fbijg3− g1 − g3 sins3ud − g3 coss3ud
0 − g4 0

0 − g3 coss3ud g3 sins3ud
4 . s21d

Now we minimize the total free energyF with respect to the
polarizationsPn andPt as follows:

]F

]Pi
= 0 si = n,td, s22d

where, for the present, the gradient termsPn,n, Pn,t , Pt,n, and
Pt,t have been ignored. Equations22d in combination with
Eqs.s16d ands19d–s21d yields relationships between the po-
larizationsPn, Pt, andPz as follows:

FPn

Pt
G =

PzsPz
2 − Ph

2d
a3

2 + a3sm11 + m22dPz
2 + sm11m22 − m12m21dPz

4

3Fn1a3 + sn1m22 − n2m12dPz
2

n2a3 + sn2m11 + n1m21dPz
2G . s23d

The constantsni andmi j are listed in the Appendix.
From Eq. s23d, we see that the polarizationsPn and Pt

depend onPz in a highly nonlinear manner. In order to sim-
plify these relations for further progress, we estimate the
relative magnitudes of different terms in the denominator of
the prefactor in Eq.s23d for 0øuø2p and uPzuø Ph. Using
the values of physical constants given in Tables I and II for
LiNbO3 and LiTaO3, we find that a3

2,1019

N2m4C−4, ua3sm11+m22dPz
2uø1018 N2m4C−4, and usm11m22

−m12m21dPz
4uø1016 N2m4C−4. Therefore, we retain only the

a3
2 term in the denominator of the prefactor in Eq.s23d. The

polarizationsPn and Pt simplify to odd functions ofPz and
vanish atPz=Ph. From Eq. s19d, we note that the strains
D«n, «̃5, and «̃6 are even functions ofPz and vanish atPz
=Ph,

FPn

Pt
G = fri jg3Pz

Pz
3

Pz
54 , s24d

3D«n

«̃5

«̃6
4 = ffi jg3

1

Pz
2

Pz
4

Pz
6
4 , s25d

where the matricesfri jg andffi jg are listed in the Appendix.
So far, we have minimized the total free energyF with

respect toPn andPt fEq. s22dg under the constraints of strain
compatibility fEq. s15dg and mechanical equilibriumfEq.
s17dg. This has enabled us to obtain the expressions for the
secondary order parameterssPn, Pt, and«id in terms of the
primary order parameterPz. We now perform variational
minimization of the total free energyF with respect to the
primary order parameterPz under the boundary conditions
that Pz approaches ±Ph far away from the domain wall. This
gives us the Euler-Lagrange equation,

]F

]Pz
−

]

]xn
S ]F

]Pz,n
D = 0. s26d

The partial derivative]F /]Pz is a polynomial in odd powers
of Pz as follows:

]F

]Pz
= − §1Pz + §3Pz

3 + §5Pz
5 + §7Pz

7 + §9Pz
9 + §11Pz

11.

s27d

The first two coefficients§1 and§3 are given by

§1 = a1 − 4g1l1 − 2g1f11 − 2g2l2 − g3sf11r21 + f31r11d

3coss3ud − g3sf11r11 − f31r21dsins3ud − g4f21r11,

s28d

§3 = a2 + 2g1f12 + g3sf11r22 + f12r21 + f31r12 + f32r11d

3coss3ud + g3sf11r12 + f12r11 − f31r22 − f32r21d

3sins3ud + g4sf21r12 + f22r11d. s29d

For further analysis of the order parameter, we truncate the
polynomial in Eq.s27d after thePz

3 term. On substituting for
the physical properties of LiNbO3 and LiTaO3 from Table I,
it is found that for all values of 0øuø2p , u§1u,109

Nm2C−2, u§3Ph
2u,109 Nm2C−2, u§5Ph

4u,103 Nm2C−2,
u§7Ph

6u,102 Nm2C−2, u§9Ph
8u,0.1−1 Nm2C−2, u§11Ph

10u
,10−3−10−2 Nm2C−2. Therefore the truncation of Eq.s27d is
justified. With this truncation, Eq.s27d can be rewritten as

2g1Pz,n = − §1Pz + §3Pz
3. s30d

The solution to this equation is the kink, given by

Pzsxnd =Î§1

§3
tanhSxn

2
Î§1

g1
D , s31ad

wherexn is the coordinate parallel to the domain wall normal
n. The domain wall half-widthxo is defined asxo=2Îg1/§1.
Substituting the expression forPzsxnd into the Eqs.s24d and
s25d, we get the variation of strains and in-plane polariza-
tionsPn andPt as a function ofxn. Substituting these expres-
sions intos6d, we get the total inhomogeneous free energy
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Finh. As a cautionary note, although in deriving Eq.s31ad, we
neglected the higher-order terms inPz in Eq. s27d, one can-
not do so in calculating the total free energy,Finh. As will be
seen further on, thevariation of the free energy,FDW, calcu-
lated from Eq.s31bd as a function of the domain-wall angle
u is small as compared to the mean value itself. Therefore,
the truncation of higher-order polarization terms in Eq.s25d
should be carried out with care, if at all. Theaverage
domain-wall energy per unit volumeFDW due to the addition
of a domain wall to the homogeneous single domain state
can then be calculated as

FDW =
1

Dx
E

−Dx/2

+Dx/2

sFinh − Fhddxn, s31bd

whereFinh andFh are the total free energyfEq. s6dg for the
inhomogeneous and the homogeneous states, respectively.
The integration windowDx was chosen across the wall as
Dx=4xo, wherexo is the wall half-width. This window cor-
responds to where the energy drops to 2.2% of the peak
value at the domain wall. Integration over a larger window
does not significantly increase the integrated energy. We note
that after performing the integration in Eq.s31bd, the FDW
~Îg1, where the other gradient termg2 is ignored as before.

The general solution to Eq.s30d is a kink-antikink lattice
sor a “polarization grating”d solution

Pzsxnd =Î§1

§3
Î 2k2

1 + k2snS xn

xL
,kD , s32d

wheresnsx,kd is a Jacobi elliptic function with modulusk,
and peridocity 4xLKskd, whereKskd is the complete elliptic
integral of the first kind.16 Here xL=xoÎ1

2s1+kd2 and 0øk
=P3/P4ø1 whereP3 andP4 are the two positive roots of the
equation: fo=−s§1/2dPz

2+s§3/4dPz
4 with s−§1

2/4§3dø foø0.
In the limit k→1 we recover the single kink solution of Eq.
s31ad. The domain lattice energy per period can be calculated
using Eq.s31bd with appropriate integral limits.

III. POLARIZATIONS, STRAINS, AND ENERGY
PREDICTIONS IN LiNbO 3 AND LiTaO 3 DOMAIN WALLS

Using the material constants listed in Table II, the varia-
tion of the free energy, polarization, and strains as a function

of domain-wall orientation was calculated for both LiNbO3

and LiTaO3. These results are presented and discussed be-
low.

Figure 4 shows a plot of the gradient coefficientg1 as a
function of the wall widthxo. The domain wall width, the
distance over which the polarization reverses, has been mea-
sured by Bursill and Lin to have an upper limit of 0.28 nm
using high-resolution TEM images in lithium tantalatesiso-
morphous to lithium niobated.17 Taking this as the wall width
2xo for both materials, the upper limit for the gradient coef-
ficient is estimated as 3.98310−11 Nm4/C2 and 2.53
310−11 Nm4/C2 for LiNbO3 and LiTaO3, respectively.

Since the theory does not include any energy contribu-
tions from nonstoichiometry related defects,a direct com-
parison of the properties calculated below can be made only
with the stoichiometric compositions of these materials.

Two types of walls are of special interest in these materi-
als: the six “y walls” lying in the crystallographicy-z planes
with wall normals atu=mp /3 as shown in Fig. 5sad and the
six “x walls” lying in the crystallographicx-z planes with
wall normals atu=sp /6+mp /3d as shown in Fig. 5sbd,
wherem is an integer from 0 to 5. The stoichiometric crys-
tals of both LiNbO3 and LiTaO3 possess domain orientations
with y walls. It is important to note for the rest of this paper
that the angular dependence always refers to the orientation
of the normal to the domain wall within thex-y plane.

FIG. 4. Gradient coefficientg1 as a function of wall widthxo.

FIG. 5. Hexagonal wall orientations with wall normals forsad y
walls andsbd x walls.

FIG. 6. Variation of the normalized polarization,P/Ps

=tanhsxn/xod, across a single 180° ferroelectric domain wall.
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A. Polarizations

Figure 6 shows the spontaneous polarizationP as a func-
tion of normalized distance,xn/xo, perpendicular to a domain
wall according to Eq.s31ad. This variation is the same for all
orientationsu of the domain wall in thex-y plane. The satu-
ration polarizationPs far from the domain wall is ±0.5 C/m2

for LiTaO3 sRef. 14d and 0.75 C/m2 for LiNbO3.
14 The cor-

responding plot for Eq.s32d is a square-wave pattern with
alternating kink–anti-kink-like profiles. An antikink is just
the negative profile of Fig. 6.

In the absence of a domain wall, the polarizations in the
x-y planePn andPt do not exist. However, they are nonzero
in the vicinity of a domain wall and disappear away from the
wall. The magnitude and direction of these polarizations are
dependent on the normal to the wall orientationu. This is
shown in a quiver plot in Figs. 7sad sfor LiTaO3d and 7sbd
sfor LiNbO3d, where the in-plane polarizationPin-plane

=ÎPn
2+Pt

2 is plotted as arrows. The length and direction of
the arrows, respectively, represent the magnitude and direc-

tion of the vectorPW in-plane in the x-y plane. The circle in the
plot represents the schematic of a hypothetical circular do-
main wall. Figure 7scd is a polar plot of the maximum am-

plitude of PW in-planesud for LiNbO3 and LiTaO3.

It is seen in Fig. 8sad that thex walls havePW in-plane=PW n and

in Fig. 8sbd the y walls havePW in-plane=PW t. This is shown in
Fig. 8 for LiTaO3 but is also true for LiNbO3. In addition,
these in-plane polarizations can also formin-planeantiparal-

lel domain walls in thex-y plane. ThePW n and PW t vectors
reverse directions on crossing such a domain wall along the

xn direction. The variation ofPW n andPW t as a function ofxn is
shown in Figs. 9sad and 9sbd, respectively for LiTaO3. Again,
Fig. 9 is valid for LiNbO3 as well by changing the sign and

magnitudes ofPW n andPW t for each of the curves in accordance
with Fig. 7scd.

A significant feature of these plots is that the in-plane
polarizations at thex walls are perpendicular to the wall and
oriented in a head-to-head or tail-to-tail configuration across
the walls. These domain walls must, therefore, beelectrically
charged walls. On the other hand, they walls have in-plane
polarizations that are parallel to these walls, thereby creating
unchargedwalls. Thus, thex walls must have additional
electrostatic wall energy as compared toy walls; the energy
arising from the divergence of in-plane polarization at the
wall. This is a significant feature that is further discussed in
Sec. III C.

B. Strains

In the absence of a domain wallsthe homogeneous cased,
the spontaneous strains in LiNbO3 and LiTaO3 are sid an
isotropic strain«n=«t=l1 in the crystallographicx-y plane
fsee Eq.s13dg, andsii d a normal strain«3=l2 in the z direc-
tion fsee Eq.s14dg. No shear strains existfEq. s9dg.

In the presence of a single infinite domain wall, the strains
in the domain-wall region are different from the homoge-
neous strains far away from this wall. Since the domain-wall
planet-z is considered infinite in both thet andz-coordinate
axes, the strains«t and «3 and the shear strain«̃4 in the t-z
plane of the domain wall do not change from their homoge-
neous valuesfsee Eqs.s13d, s14d, and s16dg. However, the
strain «n sstrain normal to the domain wall in the direction
xn), shear strain in then-z plane«̃5, and shear strain in then-t
plane«̃6, change from their homogeneous values by amounts
given by Eq.s25d.

The change in the normal strainD«nsud, for both LiNbO3

and LiTaO3 is shown in Figs. 10sad and 10sbd, respectively.
The strains«̃5sud and «̃6sud at the center of the wallsxn=0d
are shown as polar plots in Figs. 11sad and 11sbd, respec-
tively.

The variation of these strains as a function of the normal-
ized coordinatexn/xo perpendicular to the domain wall in
LiTaO3 is plotted in Figs. 12sad and 12sbd for x andy walls,
respectively. The corresponding plots for LiNbO3 are shown
in Fig. 13.

FIG. 7. In-plane polarizationsPin-plane for sad LiTaO3 and sbd LiNbO3. scd Shows the maximum magnitude of the in-plane polarization
for LiNbO3 and LiTaO3.

FIG. 8. sad Normal polarizationsPn andsbd transverse polariza-
tionsPt for LiTaO3. LiNbO3 shows a similar symmetry but with the
orientation of the vectors reversed.
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Some significant features are revealed in Figs. 9–13 for
both thex andy walls.

sid The shear strain«̃6=0 in then-t plane for thex-walls
as well as they walls in both materials.

sii d The shear strain«̃5 sshear strain in then-z planed is
zero for they walls in both materials. However, this strain is
nonzero for thex walls. In addition, the sign of the shear
strain «̃5 changes frompositive for the threex walls at u
=sp /2+2mp /3d , m=0,1,2 tonegativefor the threex-walls
at u=sp /6+2mp /3d , m=0,1,2.This is shown in Fig. 11sad.
Although the calculations are performed for domain walls
that are infinite in the lateral extentsalong thet axisd, if we
imagine the formation of a hexagonal domain by bringing
together the sixx walls, every adjacent hexagonal face will
have a different sign for the shear strain«̃5 as shown in Fig.
14. The above discussion is valid for both materials.

siii d The change in the normal strainD«n is negativefor
LiTaO3 and positive for LiNbO3 for all orientations of the
domain wall. Since the homogeneous strain«n in both mate-
rials is positivesnet tensile strain; see Sec. II Bd, this indi-
cates that the normal tensile strain«n in the domain wall
region islower than the bulk valuesby ,34% at the domain
walld in LiTaO3 and higher in the domain-wall regionsby
,64% at the domain walld in LiNbO3 compared to the bulk
value.

C. Free-energy anisotropy

The free energy of the domain wallFDW is numerically
calculated from Eq.s6d in combination with Eq.s31bd. This
requires a knowledge of the gradient coefficientg1, which is
not experimentally known, but was estimated earlier from
the TEM measured atomic positions asg1ø3.98310−11

Nm4/C2. For further calculations, we assume a value ofg1
=4310−11 Nm4/C2. Although the absolute magnitude of
free energy depends on the magnitude of the gradient term,
the results discussed below deal with the energy anisotropy
as a function of domain wall orientation angleu. This energy
anisotropy is characterized by the quantityDFDW=fFDWsud
−FDWs0°dg, which is calculated with respect to the minimum
free energy that occurs at they walls. The symmetry of the
dependence ofDFDW on the angleu is found to be indepen-
dent of the actual value of the gradient coefficient.

Figures 15sad and 16sad show a polar plot of the free
energyDFDW calculated by combining Eqs.s6d ands31bd, as
a function of domain-wall normal orientationu with respect
to the crystallographicx axis for LiTaO3 and LiNbO3, re-
spectively. The variation of domain-wall energy is
DFDW/Fmean,10−7, whereFmean=kDFDWsudl. Though small
in magnitude, it was confirmed that the angular variation of
DFDW shown in Fig. 15 isnot a numerical artifact, since the
polar symmetry of the energy plot was found to be insensi-

FIG. 9. Normalized in-plane polarizations as a function ofxn in LiTaO3. sad Plot of normal polarizationsPn for different anglesu. sbd Plot
of transverse polarizationsPt for different anglesu. Every fifth point is marked.

FIG. 10. Change in the normal strainD«n at the wallsxn=0d for sad LiNbO3 and sbd LiTaO3.
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FIG. 11. Strains at the wall
sxn=0d for sad «̃5 and for sbd «̃6.
Note the circle in both figures rep-
resents zero strain.

FIG. 12. The strain in LiTaO3 at sad x walls, where curve 1 isD«n for u=30 and 90°, curve 2 is«̃5 for u=90°, curve 3 is«̃5 for u
=30°, and curve 4 is«̃6 for u=30 and 90°. They walls are shown insbd, where curve 1 isD«n for u=0 and 60°, and curve 2 is«̃5 and «̃6

for u=0 and 60°. Every tenth point is marked.

FIG. 13. The strain in LiNbO3
at sad x walls, where curve 1 is
D«n for u=30 and 90°, curve 2 is
«̃5 for u=90°, curve 3 is«̃5 for u
=30°, and curve 4 is«̃6 for u=30
and 90°. They walls are shown in
sbd, where curve 1 isD«n for u
=0 and 60°, and curve 2 is«̃5 and
«̃6 for u=0 and 60°. Every tenth
point is marked.
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tive to large variations in input parameters. Changing each of
the physical constants individually in Table II did not change
the symmetry ofDFDW/Fmean. For example, changing the
coefficientsC11, C13, C33, C14, Q33, Q42, Q44, or «11 by a
factor 0.01 to 30 slightly changed the magnitude but did not
change the symmetry of the free energy. The free energy was
more sensitive to the coefficientsC12, C13, Q31, and «33,
with the symmetry changing only if the coefficients were
multiplied by a factorø0.6 or .1.5. However, the changes
in the physical constants needed to induce symmetry changes
are very large and unphysical. Furthermore our calculations
have a higher precision than the observed variation—the nu-
merical variation is,102 while calculations are carried out
to 10−16. These results give us confidence in the energy an-
isotropy plots shown in Figs. 15 and 16.

The change in free energy, given in Figs. 15sad and 16sad
for LiNbO3 and LiTaO3, exhibits a sixfold symmetry with
six energy minima at u=sp /6+mp /3d where m
=0,1,2,3,4,5.These orientations correspond tox walls, do-
main walls in the crystallographicx-z planes with the wall
normal in the ±y directions. Note that the sixfold symmetry
of the lobes preserves the mirror symmetry about the three
crystallographicy axes. We note that the six-sided hexagonal
domain, which can be formed with these six minimum-
energy domain-wall configurations,does notcorrespond to
the actual domain-wall shapes observed experimentally in

stoichiometric LiNbO3 and LiTaO3, as shown in Fig. 2.
One of the energy contributions missing in Eq.s6d is the

depolarization energy at a domain wall introduced by the
variation of in-plane polarizationPn across the domain wall
in the directionxn. In other words, an additional depolariza-
tion energy term proportional toPn,n

2 , which was originally
ignored, needs to be accounted for. This energy as a function
of distance normal to the domain wall,xn, is calculated start-
ing from Gauss’s law given as

Esxnd = −
Pnsxnd

«0
, s33d

whereEsxnd is the depolarizing field arising from the polar-
ization,Pnsxnd.18 For a one-dimensional case, where the elec-
tric field and polarization are zero at ±` for the normal com-
ponents of electric field and polarization, the energy per unit
area for a wall slice ofdxn at xn is

«0

2
E2sxnddxn =

Pn
2sxnd
2«0

dxn. s34d

The depolarization energy per unit volume of the entire wall
region is given by

Fd =
1

Dx
E

−Dx/2

Dx/2 Pn
2sxnd
2«0

dxn, s35d

which is the depolarization energy per unit volume in units
of J /m3. The integration windowDx=4xo was chosen as in
Eq. s31bd. The depolarization energy in Eq.s35d is calculated
numerically from the normal polarizationPn, shown in Fig. 9
as a function of distancexn from the wall.

Figures 15sbd and 16sbd show the depolarization energy,
DFd=Fdsud−Fds0°d. It can be seen from these plots that the
minimum energy is rotated 60° from the minimum energy
configuration shown in Figs. 15sad and 16sad. The depolar-
ization energy favorsy domain walls in the crystallographic
y-z planes with the wall normal in the ±x directions. Since
the change in the depolarization energy is larger than the
change in the domain-wall free energy, the resulting total
energy,DFtotal=DFDW+DFd, has a symmetry that favorsy
walls as shown in Figs. 15scd and 16scd.

FIG. 14. Strain«̃5 for a theoreticalx wall shown as dotted lines
in LiTaO3. The horizontal dashed line is a cut through hexagon
along thex direction. At the corners of the domain walls are high
energy points as the sign of the strain switches.

FIG. 15. Energies of domain walls in LiTaO3 relative to 0°.sad shows the normalized change in free energyDFDW, sbd shows the
depolarization energyDFd, andscd is the normalized change in the total energyDFtotal=DFDW+DFd. Note thatsbd and scd have the same
scale, whereassad does not. Units in all plots are J/m3. The dotted hexagon represents the low-energy domain-wall configuration for each
plot.
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Figure 17 shows the plot of total free energy as a function
of the gradient coefficientg1. Using the upper limit on the
width of the domain wall as 0.28 nm in LiTaO3,

17 the gradi-
ent energy is 2.53310−11 Nm4/C2. Using this value, the cal-
culated domain-wall energy,FDW, in LiTaO3 is ,60 mJ/m2

and in LiNbO3 is ,170 mJ/m2. Experimental estimates of
domain-wall energy vary. Using the activation field for the
experimentally measured exponential dependence of side-
ways domain velocity in an applied electric field incongru-
ent LiTaO3, and following the Miller-Weinreich theory,19

Gopalan et al. have estimated the wall energy to be
,35 mJ/m2.20 Following this analysis and using data for the
wall velocity in stoichiometric crystals,4 the wall energy in
stoichiometriccomposition crystalsswhich is the correct ma-
terial composition for comparison with the presented calcu-
lationsd is calculated as,9 mJ/m2. This estimate considers
only the polarization and depolarization energies and ignores
strain, coupling, and gradient energies. On the other hand,
using the curvature of a pinned domain wall under an exter-
nal field in congruent LiTaO3, and modeling the process as a
trade-off between a decrease in polarization energy and an
increase in domain-wall energy, Yang and Mohideen esti-
mated the wall energy asFDW,200–400 mJ/m2.21 Yet an-
other estimate based on optical birefringence at the domain
wall over a 3mm width in congruent LiTaO3 yields an elec-
trostatic energy of,240 mJ/m2.6 The estimation of wall en-
ergy in this study is near the lower end of experimental es-
timations.

IV. DISCUSSION

Although differences between lithium niobate and lithium
tantalate in the preceding analysis are slight, we find it im-
portant to highlight the major differences. With respect to
polarizations, each material shares the same symmetry, with
charged domains walls forx-wall orientations and uncharged
walls for y-wall orientations. However, in addition to differ-
ences in the magnitudes of the polarization, the sign of each
is different with polarization in head-to-head configuration in
LiTaO3 with domain-wall normals at 30°, 150°, and 270°,
and in LiNbO3 at 90°, 210°, and 330°. The change in the

normal strainD«n is negative for LiTaO3 and positive for
LiNbO3 for all orientations. This normal strain is lowest for
x-wall orientations in LiTaO3 and y-wall orientations in
LiNbO3.

By combining information from the polarizations, strains,
and energies of the domain walls as functions of wall angle,
comments can be made on preferred orientations. Consider-
ing only the free-energy contribution as in Eq.s6d, it is found
that the minimum-energy configuration is for thex-wall ori-
entations as shown in Figs. 15sad and 16sad. However, thex
walls are charged domain walls due to head-to-head or tail-
to-tail in-plane polarization configurations on crossing the
domain wall. Thisin-planepolarization leads to high depo-
larizing energy for thex walls, giving the total energy of the
domain walls a minimum fory-wall orientations for both
LiTaO3 and LiNbO3 as shown in Figs. 15scd and 16scd.

Considering the strain, either domain-wall orientationsx
wall or y walld has a zero«̃6 component, which is strain in
the xt-xn plane. However, the«̃5 strain, strain in thexn-z
plane, is nonzero for thex walls and contrary in sign for
adjacent hexagonal faces and is as pictured in Fig. 14. The
vertices of a hexagon formed by thesex walls would there-

FIG. 16. Energies of domain walls in LiNbO3 relative to 0°.sad Shows the normalized change in free energyDFDW, sbd shows the
depolarization energyDFd, andscd is the normalized change in the total energyDFtotal=DFDW+DFd. Note thatsbd and scd have the same
scale, whereassad does not. Units in all plots are J/m3. The dotted hexagon represents the low-energy domain-wall configuration for each
plot.

FIG. 17. Domain-wall energy per unit areaFDW as a function of
the gradient coefficientg1. The inset of the figure is an expansion of
the plot near zero, and the vertical line is the upper estimate ofg1

calculated from the domain-wall width from the literature.17
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fore be high-energy points, requiring a screwlike defect at
that site to accommodate the change in the sign of this shear
strain. On the other hand, there are no such restrictions at the
vertices of a hexagonal domain formed by they walls and
lower-energy vertices result.

The free energy and strain analysis of the crystallographic
contributions therefore supports the physical reality ofy
walls being preferred overx walls in stoichiometriccrystals
of both lithium niobate and lithium tantalate.

This analysis, however, ignores nonstoichiometric defect
complexes present in the crystal structure.4 These defects
drastically change the poling kinetics and, in the case of
lithium tantalate, also change the preferred domain-wall ori-
entation. In this case, instead of hexagonaly-wall domain
shapes seen in the stoichiometric crystals, triangularx walls
are preferred incongruentcomposition of Li0.95Ta1.01O3, as
shown in Fig. 2. It is clear that these defects in combination
with the previously highlighted differences between the crys-
tals, favor formation of triangular domains formed by one of
two sets ofx walls, as shown in Fig. 18. However, neglecting
for the moment, both the nonstoichiometric defects and the
interactions of domain walls, it is interesting to think about
the x-wall orientations. Domains withx-wall orientations
have in-plane polarization normal to the domain wall and
nonzero strain«̃5 in the xn-z plane. Since the sign of this
strain is contrary on adjacent facessas in Fig. 14d, triangles
composed of every other domain-wall orientation have the
same sign of strain on all adjacent faces eliminating the high
strain points at the corners of a hexagon formed byx walls.

Therefore, one can conclude that within this theoretical
framework, if thex walls are preferred at all, they should
occur as triangles, unless there are screwlike dislocations at
the vertices of a hexagon to facilitate a hexagonal domain
composed ofx walls. Nevertheless, the two sets ofx walls
are degenerate in energy within the free energy described,
and therefore they might be expected to occur with equal
probability. However, in congruent crystals, one of these sets
sType Id is clearly preferred over the othersType IId. The
presence of nonstoichiometric defects therefore appears to
prefer one set over the other. In order to understand this
preference, one will have to better understand the nature of
these organized point defects and their contribution to the
free energy, which is expected to be anisotropic as well. We

note that many symmetry allowed higher-order gradient en-
ergy terms exist and in the preceding analysis we have only
considered the lowest-order energy termsfEq. s5dg. Two such
higher-order terms with the proper three fold and six fold
symmetries are given as

FG:3foldsPi,jd = g2sPz,3
3 d + g3s6Pz,x

2 Pz,y − 2Pz,y
3 d s36d

FG:6foldsPi,jd = g2sPz,3
6 d + g6s2Pz,y

6 − 2Pz,x
6 + 30Pz,x

4 Pz,y
2

− 30Pz,x
2 Pz,y

4 d, s37d

where g3 and g6 are the three fold and six fold gradient
coefficients. It was noted that these terms, when included in
time-dependent Ginzburg-LandausTDGLd simulations, can
result in the evolution of hexagonal or trigonal domain
shapes.22 If the three fold term dominates, triangular domains
evolve. Similarly, hexagonal domains evolve if the six fold
energy term dominates. One possibility is that the nonsto-
ichiometric point defects influence these higher-order energy
terms to give rise to symmetries not obvious in the one-
dimensional analysis presented in this paper. The presented
model is valuable, however, in understanding the intrinsic
structure of a domain wall expected without the presence of
extrinsic defects, external fields, or higher-order energy
terms whose coefficients are not known experimentally.

The importance of the defects to the observed domain
features is further supported by the temperature effects ob-
served in the LiTaO3 system, where at higher temperatures
they walls are favored orientation as shown in Figs. 2scd and
2sdd. This indicates that the change in domain shape could be
due to the decrease or disappearance of the influence of the
defect dipoles. One of the proposed models for the defect
complex is Nb or Ta antisitessNbLi

4+ or TaLi
4+d surrounded by

lithium vacanciessVLi
− d with a charge balance of 4fNbLi

4+g
=fVLi

− g.4 At temperatures above 125 °C, the lithium vacan-
cies have high mobility, and the aggregated defect complexes
are believed to be broken up resulting in diminished defect
influence on domains and domain walls.23 At room tempera-
ture s25 °Cd, however, these defects are frozen and form
aggregated defect dipole complexes. One of the clear corre-
lations, therefore, is that changes in domain shapes in con-
gruent LiTaO3 with temperaturesas shown in Fig. 2d are
accompanied by changes in defect complexes with tempera-
ture.

V. CONCLUSIONS

The preferred domain-wall shapes of ferroelectrics
LiNbO3 and LiTaO3 have been analyzed by taking into ac-
count the free energy of the system. A theoretical framework
has been developed to analyze the polarizations, strains, and
energies associated with a domain wall of arbitrary orienta-
tion in both lithium niobate and lithium tantalate. It was
found thatx walls are charged domain walls due to head-to-
head or tail-to-tail in-plane polarizations, maximum strains,
and maximum total free energy. In contrast, they walls show
a minimum in strains, zero head-to-head or tail-to-tail in-
plane polarization, and a minimum in the total free energy.
The y walls are therefore the preferred orientations in sto-

FIG. 18. Two possible sets of triangularx walls. The dotted
walls in each case outline the hexagonalx-wall configuration for
clarity.

SCRYMGEOURet al. PHYSICAL REVIEW B 71, 184110s2005d

184110-12



ichiometric compositions, and this is supported by experi-
mental observations of such hexagonal domains composed of
y walls in the stoichiometric compositions of these materials.
This analysis does not directly consider the interaction of
multiple domain walls as well as the influence of nonsto-
ichiometric point defects present in the congruent composi-
tions of these materials. These point defects have been pro-
posed to be organized into defect complexes4 and probably
have different defect symmetries that lead to triangular do-
mains in congruent lithium tantalate. It was found that do-
mains created at temperatures higher than 125 °C in LiTaO3
formed domains composed ofy walls favored by the sto-
ichiometric crystals, instead of formingx walls normally
seen when created at 25 °C. This indicates that the nature of
the influence of the defects on the wall orientation changes
with temperature. The exact mechanism of defect-domain
wall interactions is presently unknown in these materials and
will require understanding the structure and symmetry of de-
fects themselves on the atomic scale.
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APPENDIX

The constantsni andmi j used in Eq.s23d are

n1 = − g3m31 coss3ud − g3m11 sins3ud − g4m21

n2 = − g3m11 coss3ud + g3m31 sins3ud

m11 = g3m32 coss3ud + g3m12 sins3ud + g4m22

m12 = g3m33 coss3ud + g3m13 sins3ud + g4m23

m21 = g3m12 coss3ud − g3m32 sins3ud

m22 = g3m13 coss3ud − g3m33 sins3ud. sA1d

The matricesfri jg andffi jg in Eqs.s24d ands25d are listed
below

r11 = −
n1Ph

2

a3
, r12 =

n1

a3
−

sn1m22 − n2m12dPh
2

a3
2 ,

r13 =
n1m22 − n2m12

a3
2 , r21 = −

n2Ph
2

a3
,

r22 =
n2

a3
+

sn1m21 − n2m11dPh
2

a3
2 , r23 =

n2m11 − n1m21

a3
2 ,

fi1 = − mi1Ph
2 si = 1,2,3d

fi2 = mi1 + mi2r11 + mi3r21 si = 1,2,3d

fi3 = mi2r12 + mi3r22 si = 1,2,3d

fi4 = mi2r13 + mi3r23 si = 1,2,3d. sA2d
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