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Local scale invariancesLSId has been recently proposed as a possible extension of the dynamical scaling in
systems at the critical point and during phase ordering. LSI has been appliedinter alia to provide predictions
for the scaling properties of the response function of nonequilibrium critical systems in the aging regime
following a quench from the high-temperature phase to the critical point. These predictions have been con-
firmed by Monte Carlo simulations and analytical results for some specific models, but they are in disagree-
ment with field-theoretical predictions. By means of Monte Carlo simulations of the critical two- and three-
dimensional Ising model with Glauber dynamics, we study the intermediate integrated response, finding
deviations from the corresponding LSI predictions that are in qualitative agreement with the field-theoretical
computations. This result casts some doubts on the general applicability of LSI to critical dynamics.

DOI: 10.1103/PhysRevB.71.180401 PACS numberssd: 05.70.Ln, 64.60.Ht, 05.10.Ln

I. INTRODUCTION

The nonequilibrium dynamics of systems at the critical
point has been recently the subject of a renewed interest due
to its similarities with the aging phenomena occurring in a
variety of glassy materialsssee Refs. 1–3 for reviewsd. In the
typical scenario the system is prepared in the high-
temperature equilibrium state. Then, at timet=0, it is
quenched to the critical temperatureTc. Due to the critical
dynamics, after this sudden thermal perturbation the system
undergoes a neverending relaxation towards the equilibrium
state. Interesting scaling properties of this evolution are re-
vealed by two-time quantities such as the correlation func-
tion Cxst ,sd=kfxstdf0ssdl and the linear response function
Rxst ,sd= udkfxstdl /dh0ssduh=0, wherefxstd is the order param-
eter at the pointx and timet, andh0ssd is the conjugated field
at times, t and positionx=0 shere translational invariance
is assumedd.

In thermal equilibriumC andR depend ont−s and they
are related by the fluctuation-dissipation theorem, whereas in
the present case they are nontrivial functions of both times.
This is the so-called aging regime.1–3 In particular, in the
dynamical scaling regimes@tmicro and t−s@tmicro, where
tmicro is some microscopic time, the autoresponse function
Rx=0 is expected to scale as1,2

Rx=0st,sd = ARst − sd−sa+1dst/sduFRss/td. s1d

The scaling functionFRsvd is universal in the sense that it
depends only on the universality class of the statistical sys-
tem, provided one fixes the nonuniversal constantAR to have
FRs0d=1. The exponentu is related to the initial-slip expo-
nent of the magnetization4 sequivalently to the autocorrela-
tion exponent5 l, as u=1+a−l /zd, whereasa=2b / snzd
=sd−2+hd /z. Hereb, n, andh are the usual static critical
exponents,d is the number of space dimensions, andz is the
dynamic critical exponent.

Equations1d is basically obtainedsfor example within the
renormalization-group approachd3,4 by exploiting the fact
that, at the critical point, the response function transforms
covariantly under dilatations in spacex°bx and time
t°bzt. It is possible toprove, under quite general assump-
tions, that the covariance of static correlation functionssof
suitable operatorsd under a scale transformationx°bx ex-
tends to conformal transformations, resulting in strong con-
straints on the functional form of the associated scaling func-
tions. It is then natural to address the question whether an
analogous extension carries over to the case of dynamic scal-
ing with zÞ1, where the dilatation factors in space and time
are different.sIn strongly anisotropic systems the role of the
time is formally played by a special direction in space.6d This
possibility has been recently investigated, leading to the
identification of a group of local scale transformations which
generalize the dynamic scaling.7,8 The covariance of the dy-
namic correlation functionssof suitable operatorsd under
such a group is called Local scale invariancesLSId. The con-
ditions under which the dynamical scaling implies LSI have
not yet been established beyond the specific case9 z=2. In
the absence of such a general result one can heuristically
assumeLSI and then check whether its predictions are actu-
ally confirmed. For the response function in aging systems
fsee Eq.s1dg LSI yields7,8,10

FR
sLSIdsvd ; 1. s2d

This prediction has been found in excellent agreement
with Monte Carlo simulations of two- and three-dimensional
Ising models and the three-dimensionalXY model, with
Glauber dynamics, both at and belowTc sRefs. 7 and 11–13d.
In all these simulations the measured quantity has been either
the autoresponse functionRx=0st ,sd or some related inte-
grated responses. Moreover the predictions2d has been also
confirmed by analytical results for spherical models with
nonconserved order parameter4,14 and for the two-
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dimensionalXY model in the spin-wave approximation.15

These findings strongly support the idea that LSI is actually
realized at the critical point, providing constrains on the form
of scaling functions.

For the spatial dependence of the response function LSI
predicts8

Rxst,sd = Rx=0st,sdF„uxust − sd−1/z
…, s3d

where the functionF satisfies asfractionald differential equa-
tion whose general solution is reported in Ref. 8.

Instead of studying numerically local quantities, one can
consider global ones such as the time-dependent total order
parameterMstd=eddxfxstd=fq=0std sq is the wave vectord.
The linear response ofMstd to a homogeneous fieldHssd
applied at time s, t is given by udkMstdl /dHssduH=0

=Rq=0st ,sd;eddxRxst ,sd. This quantity, for nonconserved
dynamics, is expected to scale as3

Rq=0st,sd = ÂRst − sd−sa+1d+d/zst/sduF̂Rss/td, s4d

where the nonuniversal constantÂR is fixed requiring

F̂Rs0d=1, andF̂Rsvd is a universal scaling function. From
Eq. s3d one can work out the prediction of LSI for this sus-
ceptibility, finding

F̂R
sLSIdsvd ; 1 s5d

and ÂR
sLSId=AReddxFsxd. In spite of the support to the LSI

prediction Eq.s2d provided by the result of Monte Carlo
simulations of some critical lattice models, recent field-
theoreticalsFTd computations3,16 suggest the presence of cor-
rections to Eq.s2d. For the universality class of models ind
dimensions withN-component order parameter, short-range
interactions withOsNd symmetry, and purely dissipative dy-
namicssmodelA of Ref. 17d, it has been predicted

F̂R
sFTdsvd = 1 −e2cNDfsvd + Ose3d, s6d

where cN=3sN+2d / f8sN+8d2g and e=4−d.0. Dfsvd
; fs0d− fsvd.0s0øvø1d is a monotonically increasing and
regular function of order of unity, whose expression can be
found in Ref. 16. In particular Eq.s6d with N=1 provides, in
the dimensional expansion, an analytic prediction for the uni-
versal scaling function of the Ising model with Glauber dy-

namics. Note thatF̂R
sFTd=F̂R

sLSId+Ose2d, i.e., the prediction of
LSI coincides with the Gaussian approximation for the scal-
ing function. This observation accounts for the agreement
between LSI and the analytical results for spherical models
with 2,d,4, mentioned above. Indeed, apart from non-
mean-field exponents, they typically display Gaussian uni-
versal scaling functions.

The discrepancy betweenF̂R
sFTd and F̂R

sLSId casts some
doubts on the effective realization of LSI at the critical point
and calls for a more careful analysis of the results obtained
by Monte Carlo simulations, given that no discrepancy is
emerging from the data presented in the past.

II. THE INTERMEDIATE INTEGRATED RESPONSE

We consider the susceptibilityss, td,

xst,sd =E
s/2

s

duRq=0st,ud, s7d

which is the integrated linear response of the order parameter
to a spatially homogeneous field switched on during the time
interval fs/2 ,sg. This integrated response, corresponding to
the intermediate protocol proposed in Ref. 11, presents some
advantages over the more commonly studied thermorema-
nent susceptibilityrTRMst ,sd=e0

sduRq=0st ,ud and zero-field-
cooling susceptibility xZFCst ,sd=es

tduRq=0st ,ud. As first
noted in Ref. 18,rTRM is in general hampered by the pres-
ence of a finite-time correction that originates from the re-
sponse to a change in the initial condition. Indeed, at the
lower integration limit the necessary conditions for the dy-
namical scaling regime are not fulfilled and the scaling func-
tion s4d cannot be used in that regime. As discussed in Ref.
19 a similar remark applies toxZFC close to the upper inte-
gration limit, which contributes with a leading term that is
independent of the waiting times, the expected scaling part
being only a subleading correction. These problems with the
applicability of the scaling forms4d are not encountered for
the intermediate integrated responses7d.

The expected scaling behavior ofxst ,sd can be worked
out from Eq.s4d,

xst,sd = Âxt−a+d/zSs

t
D1−u

F̂xss/td, s8d

whereÂx=ÂRBu,

F̂xsvd = Bu
−1E

1/2

1

dws1 − vwd−sa+1d+d/zw−uF̂Rsvwd, s9d

and Bu;s1−2u−1d / s1−ud, so thatF̂xs0d=1. The prediction
of LSI that follows from Eq.s5d is given by

F̂x
sLSIdsvd =

Bu
−1

1 − u
f2F1s1 − u,1 +a − d/z,2 −u;vd

− 2u−1
2F1s1 − u,1 +a − d/z,2 −u;v/2dg,

s10d

whereas the FT prediction is obtained from Eq.s6d, with u
=Osed, z=2+Ose2d, andh=Ose2d,

F̂x
sFTdsvd

F̂x
sLSIdsvd

= 1 −e2cN
2

v
E

v/2

v

duDfsud + Ose3d. s11d

We study the intermediate integrated responses7d by
simulating Ising models on square and on cubic lattices. The
systems are thereby prepared in a completely uncorrelated
initial state and then quenched at timet=0 to the critical
point. The temporal evolution is realized using the standard
heat-bath algorithm. At timet=s/2 a spatially constant field
with strengthH=0.05J sJ being the strength of the nearest-
neighbor couplingsd is applied. This external field is
switched off att=s. We checked that for this field strength
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we are well within the linear-response regime, as shown in
the inset of Fig. 1sad. The data discussed in the following are
free from any finite-size effects and have been obtained for
systems consisting of 4503450 spins in two dimensions and
80380380 spins in three dimensions. Typically, we aver-
aged over 50 000 different runs with different realizations of
the thermal noise.

The temporal evolution of the integrated response

xst,sd =
1

nHKo
i=1

n

SistdL, t . s s12d

is shown in the insets of Fig. 1 in two and three dimensions.
HereSistdP h−1, +1j is the value of the Ising spin located at
the lattice sitei at time t. The sum ins12d is over alln sites
andk¯l indicates the average over the thermal noise. A simi-

lar behavior is observed in two and three dimensions: for a
fixed value of the waiting times the susceptibility rapidly
displays a power-law increase as a function oft /s, with ex-
ponentsd−ld /z fsee Eq.s8dg. Its measured values in two and
three dimensionsf0.186s2d and 0.108s2d, respectivelyg are in
excellent agreement with the expected values 0.185 and
0.108, obtained by using the known values oflsd
=2:1.60,d=3:2.78d andzsd=2:2.17,d=3:2.04d.3,7

The scaling behaviors8d is tested in the main images of
Fig. 1. Plottingta−d/zx as a function ofs/ t yields a remark-
able data collapse. The scaling functions so obtained can be
compared with the available analytical predictions. In par-
ticular, assuming the well-known values of the critical expo-
nents appearing in Eq.s8d sRefs. 3 and 7d, one determines

the nonuniversal constantÂx from the smalls/ t behavior of
ta−d/zx. Then the prediction of LSI and FT are given by

Âxss/ td1−uF̂x
sLSId,sFTd, where F̂x

sLSId is provided in Eq.s10d
with u=0.38, a=0.115 in d=2 andu=0.14, a=0.506 in d

=3. The numerical estimate ofF̂x
sFTd is obtained through Eq.

s11d with N=1, e=2 and 1 in two and three dimensions,
respectively, corresponding to its Padé approximantf2,0g,

FIG. 2. Comparison of the numerically obtained scaling func-

tions F̂x with the theoretical predictions insad two and sbd three
dimensions. Corrections to LSI are clearly observed for this quan-
tity in both cases. Insad error bars are comparable to the symbol
sizes.

FIG. 1. Rescaled intermediate integrated response vss/ t for
different waiting timess computed in the critical Ising model insad
two andsbd three dimensions. In both cases a perfect data collapse
is observed. The LSI prediction lies systematically above the nu-
merical data for larger values ofs/ t, whereas the two-loop correc-
tion shifts the theoretical curve closer to the data. Error bars are
smaller than the sizes of the symbols. The insets display the power-
law increase ofx as a function oft /s for fixed values ofs. In the
inset of sad we also probe the linear-response regime. Solid lines
have been obtained with the field strengthH=0.05J, whereas the
symbols for s=200 ands=100 result from simulations withH
=0.025J and H=0.1J, respectively. The measured susceptibility
does not depend onH, showing that we are well within the linear-
response regime.
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which does not differ significantly from the approximant
f0,2g. The comparison shows that the LSI curvessblack
linesd systematically lie above the numerical data for larger
values ofs/ t. Including the two-loop correction coming from
field theory shifts the theoretical curvessgray linesd closer
to the data. This provides a numerical evidence for the
existence of corrections to LSI in critical nonequilibrium
systems.

Finally, we show in Figs. 2sad and 2sbd the scaling func-

tion F̂xss/ td obtained from the data of Fig. 1 after a multi-
plication byss/ tdu−1 and a proper normalization. Corrections
to the LSI predictions are clearly revealed in this quantity
both in two and three dimensions. Analyzing the scaling

function F̂xss/ td seems therefore to be the appropriate way
to highlight differences between the theoretical predictions
and the numerical data. In the more common approach,
where the rescaled susceptibilitysa−d/zx is plotted againstt /s,
corrections are hardly detectable in three dimensions.

III. CONCLUSIONS

Local scale invariance proposes to generalize dynamical
scaling to local space- and time-dependent scale transforma-
tions, leading to several predictions for dynamical correla-
tion and response functions. Some of these predictions have
been verified in the past through exact solutions of soluble
models and through numerical simulations of nonsoluble
ones. In this paper we have focused on the scaling functions

of the dynamic response function in nonequilibrium critical
Ising models. Previous numerical studies did not reveal any
systematic deviations from the LSI prediction when comput-
ing local quantities. Recent field-theoretical calculations,
however, yielded a two-loop correction to the LSI prediction.
In the present work we have studied the nonequilibrium re-
sponse of the total order parameter to an homogeneous ex-
ternal field, i.e., we have investigated a global quantity. It has
been realized recently that in the usually studied integrated
responses, the thermoremanent susceptibility, and the zero-
field-cooling susceptibility, additional terms appear that
make the study of the dynamical scaling partsi.e., the aging
partd notoriously difficult. We therefore propose to study the
intermediate integrated response where the field is only
switched on during a time intervalfs/2 ,sg, with 0,s, t, t
being the time at which the resulting magnetization is mea-
sured, and 0 the time at which the quench to the critical point
occurs. Looking at this quantity we have indeed identified
corrections to the LSI prediction. In addition, we observe
that the field-theoretical two-loop correction brings the theo-
retical curve closer to the numerical data.
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