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Local scale invariancé_Sl) has been recently proposed as a possible extension of the dynamical scaling in
systems at the critical point and during phase ordering. LS| has been ajméedilia to provide predictions
for the scaling properties of the response function of nonequilibrium critical systems in the aging regime
following a quench from the high-temperature phase to the critical point. These predictions have been con-
firmed by Monte Carlo simulations and analytical results for some specific models, but they are in disagree-
ment with field-theoretical predictions. By means of Monte Carlo simulations of the critical two- and three-
dimensional Ising model with Glauber dynamics, we study the intermediate integrated response, finding
deviations from the corresponding LSI predictions that are in qualitative agreement with the field-theoretical
computations. This result casts some doubts on the general applicability of LSI to critical dynamics.
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I. INTRODUCTION Equation(1) is basically obtainedfor example within the

A . _.__.renormalization-group approaéit by exploiting the fact
The nonequilibrium dynamics of systems at the CrItICaIthat, at the critical point, the response function transforms

point has been recently the subject of a renewed interest d%variantly under dilatations in space—bx and time

to i_ts similarities with t_he aging phenomena qccurring in &, b It is possible toprove under quite general assump-
var_lety of glassy materialsee Re_fs. 1-3 for rew_eWsln the. tions, that the covariance of static correlation functidos
typical scenario ..thef system is prepared_ In the .h'gh'suitable operatojsunder a scale transformation—bx ex-
temperature eqU|I|t.)r.|um state. Then, at tima0, It 1S tends to conformal transformations, resulting in strong con-
quenched to the qutlcal temperature. Due to _the critical straints on the functional form of the associated scaling func-
dynamics, after this sudden thermal perturbation the System s It is then natural to address the question whether an
undergoes a neverending relaxation towards the equilibriumy, 5,5 extension carries over to the case of dynamic scal-
state. Interesting scaling properties of this evolution are "®hg with 2+ 1, where the dilatation factors in space and time

\{ealed by two-time quantities such as the correlation f,uncére different.(In strongly anisotropic systems the role of the
tion Cx(t,5)=(¢x(t)¢o(s)) and the linear response function time is formally played by a special direction in sp&&his

Re(t,9)= &(¢e(1))/ SMo(S)|n=0, Whereg(t) is the order param-  possibility has been recently investigated, leading to the
eter at the poink and timet, andhy(s) is the conjugated field  jdentification of a group of local scale transformations which
at times<'t and positionx=0 (here translational invariance generalize the dynamic scalid§.The covariance of the dy-
is assumed namic correlation functiongof suitable operatojsunder

In thermal equilibriumC andR depend ort-s and they  such a group is called Local scale invariaficgl). The con-
are related by the fluctuation-dissipation theorem, whereas iglitions under which the dynamical scaling implies LSI have
the present case they are nontrivial functions of both timesnot yet been established beyond the specific tase. In
This is the so-called aging regime. In particular, in the the absence of such a general result one can heuristically
dynamical scaling regime> 7y, and t—s> 7y, Where  assume Sl and then check whether its predictions are actu-
Tmicro IS SOME microscopic time, the autoresponse functiomilly confirmed. For the response function in aging systems
R<o is expected to scale % [see Eq(1)] LSI yields’ 810

Rx:O(tyS) = AR(t - S)_(a+l)(t/5)0~7:R(S/t)- (1) ];(FL_SI)(U) =1. (2)

The scaling functionFg(v) is universal in the sense that it This prediction has been found in excellent agreement
depends only on the universality class of the statistical syswith Monte Carlo simulations of two- and three-dimensional
tem, provided one fixes the nonuniversal constédgto have  |sing models and the three-dimensiondY model, with
Fr(0)=1. The exponent is related to the initial-slip expo-  Glauber dynamics, both at and beldw(Refs. 7 and 11-13

nent of the magnetizatiér(equivalently to the autocorrela- In all these simulations the measured quantity has been either
tion exponerit \, as #=1+a-\/z), whereasa=2p/(vz)  the autoresponse functioR,_o(t,s) or some related inte-
=(d-2+mn)/z. Here B, v, and  are the usual static critical grated responses. Moreover the predicti@hhas been also
exponentsd is the number of space dimensions, arid the  confirmed by analytical results for spherical models with
dynamic critical exponent. nonconserved order paramét&r and for the two-

1098-0121/2005/718)/1804014)/$23.00 180401-1 ©2005 The American Physical Society



RAPID COMMUNICATIONS

M. PLEIMLING AND A. GAMBASSI PHYSICAL REVIEW B 71, 180401R) (2009

dimensionalXY model in the spin-wave approximatié. Il. THE INTERMEDIATE INTEGRATED RESPONSE
These findings strongly support the idea that LSI is actually We consider the susceptibilitg<t)
realized at the critical point, providing constrains on the form '
of scaling functions. s
For the spatial dependence of the response function LSI x(t,s) = duRy=o(t,u), (7)
predict$ s/2
which is the integrated linear response of the order parameter
R((t,5) = Reeg(t, 9D (|x|(t = 5)7), (3)  to a spatially homogeneous field switched on during the time
) o ) _ i interval [s/2,s]. This integrated response, corresponding to

where the functiorb satisfies dfractiona) differential equa-  the jntermediate protocol proposed in Ref. 11, presents some
tion whose general solution is reported in Ref. 8. advantages over the more commonly studied thermorema-

In_stead of studying numerically [ocal quantities, one can,ant susceptibilityprr(t, ) = fdURo(t,u) and zero-field-
consider global ones such as the time-dependent total Ord%oling susceptibility szc(t,s):ftstquo(t,U)- As first

— Ad — H
parametemM (t) = [d%¢,(t) = dq-o(t) (q is the wave vector - 5 pog 18p7ry IS in general hampered by the pres-

The linear response df(t) to a homogeneous fieltl(s) oo of a finite-time correction that originates from the re-
applied at twge s<t is given by &M(1)/8H(S)lu=0  sponse to a change in the initial condition. Indeed, at the
=Ry=0(t,5) =JdXR(t,s). This quantity, for nonconserved |ower integration limit the necessary conditions for the dy-

dynamics, is expected to scale’as namical scaling regime are not fulfilled and the scaling func-
R R tion (4) cannot be used in that regime. As discussed in Ref.
Ry=0(t,5) = Ag(t = 8) @D 9%(1/s) P (sit), (4) 19 a similar remark applies t,rc close to the upper inte-

gration limit, which contributes with a leading term that is
where the nonuniversal constaotg is fixed requiring independent of the waiting timg the expected scaling part
}—R(O):]-; andﬁfR(u) is a universal scaling function. From being only a subleading correction. These problems with the

o . applicability of the scaling fornt4) are not encountered for
Eq. (3) one can work out the prediction of LSI for this sus- the intermediate integrated resporige
ceptibility, finding

The expected scaling behavior gft,s) can be worked

]A:(RLSI)(U) _ 5 out from Eq.(4), g
— 1 y-atdlz §) 7

and A= Ag [ dd(x). In spite of the support to the LS x(ts) = AL (t FAs, ®
prediction Eq.(2) provided by the result of Monte Carlo
simulations of some critical lattice models, recent field-
theoretical FT) computation$®suggest the presence of cor- R 1 R
rections to Eq(2). For the universality class of models ih F(v) = Bélf dw(1 —ow) @Y (uw),  (9)
dimensions withN-component order parameter, short-range 2
interactions withO(N) symmetry, and purely dissipative dy- andB,=(1-21)/(1-6), so that 7 (0)=1. The prediction
namics(model A of Ref. 17, it has been predicted of LSIothat follows from’Eq.(S) o g)iven by

wherefélf}lRBa,

FEN () =1 - EcyAf(v) + O(), (6) FLS(y) = By LF.(1-61+a-dz2-6:)

1-6
where cy=3(N+2)/[8(N+8)?] and e=4-d>0. Af(v) o1 _
=f(0)-f(v)>0(0<v<=1) is a monotonically increasing and —275F(1-61+a-diz2-6v/2)],
regular function of order of unity, whose expression can be (10

founq in Ref' 16. In part_icular Edb) Wi.th N:l. p_rovides, in .whereas the FT prediction is obtained from K@), with 6
the dimensional expansion, an analytic prediction for the unl-_o(e) 2=2+0(2), and n=0(&)

versal scaling function of the Ising model with Glauber dy-

namics. Note thaF" =75V +0(e?), i.e., the prediction of F ) 2 (v ,
LSI coincides with the Gaussian approximation for the scal- s =1 ‘620N;f dudf(u)+0(e’). (11
ing function. This observation accounts for the agreement v @) vl2

between LSI and the analytical results for spherical models \ye study the intermediate integrated resporige by
with 2<d<4, mentioned above. Indeed, apart from non-simylating Ising models on square and on cubic lattices. The
mean-field exponents, they typically display Gaussian unigystems are thereby prepared in a completely uncorrelated
versal scaling functions. . initial state and then quenched at tirte0 to the critical

The discrepancy betweest " and F&*" casts some point. The temporal evolution is realized using the standard
doubts on the effective realization of LSI at the critical point heat-bath algorithm. At timé=s/2 a spatially constant field
and calls for a more careful analysis of the results obtainedvith strengthH=0.05] (J being the strength of the nearest-
by Monte Carlo simulations, given that no discrepancy isneighbor couplings is applied. This external field is
emerging from the data presented in the past. switched off att=s. We checked that for this field strength
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FIG. 1. Rescaled intermediate integrated response/v<gor
different waiting timess computed in the critical Ising model i@ s/t
two and(b) three dimensions. In both cases a perfect data collapse
is observed. The LSI prediction lies systematically above the nu- FIG. 2. Comparison of the numerically obtained scaling func-
merical data for larger values sft, whereas the two-loop correc- tions ﬁ?X with the theoretical predictions ife) two and (b) three
tion shifts the theoretical curve closer to the data. Error bars arelimensions. Corrections to LS| are clearly observed for this quan-
smaller than the sizes of the symbols. The insets display the powetity in both cases. Ina) error bars are comparable to the symbol
law increase ofy as a function oft/s for fixed values ofs. In the  sizes.
inset of (a) we also probe the linear-response regime. Solid lines
have been obtained with the field strengdlr0.05], whereas the lar behavior is observed in two and three dimensions: for a
symbols fors=200 ands=100 result from simulations wittH  fixed value of the waiting times the susceptibility rapidly
=0.025 and H=0.1J, respectively. The measured susceptibility displays a power-law increase as a functiort/sf with ex-
does not depgnd oH, showing that we are well within the linear- ponent(d—\)/z[see Eq(8)]. Its measured values in two and
response regime. three dimensionf0.1862) and 0.1082), respectively are in

excellent agreement with the expected values 0.185 and

we are well within the linear-response regime, as shown i9.108, obtained by using the known values afd
the inset of Fig. (a). The data discussed in the following are =2:1.60d=3:2.78 andz(d=2:2.17d=3:2.04 37
free from any finite-size effects and have been obtained for The scaling behavio(8) is tested in the main images of
systems consisting of 450450 spins in two dimensions and Fig. 1. Plottingt®%Zy as a function ofs/t yields a remark-
80x 80X 80 spins in three dimensions. Typically, we aver- able data collapse. The scaling functions so obtained can be
aged over 50 000 different runs with different realizations ofcompared with the available analytical predictions. In par-

the thermal noise. . . ticular, assuming the well-known values of the critical expo-
The temporal evolution of the integrated response nents appearing in Eqs) (Refs. 3 and Y, one determines
1/ the nonuniversal constam from the smalls/t behavior of

X(I,S):— Es(t) . t>s (120  t¥9%. Then the predlct|on of LSI and FT are given by

A NCA e "]-';"S' "D where ]—'“‘S') is provided in Eq.(10)

is shown in the insets of Fig. 1 in two and three d|menS|onsW"fh 6=0.38,2=0.115 ind=2 and §=0.14,a=0.506 ind
HereS(t) e {-1, + 1} is the value of the Ising spin located at =3. The numerical estimate & is obtained through Eq.
the lattice sita at timet. The sum in(12) is over alln sites  (11) with N=1, e=2 and 1 in two and three dimensions,
and(--) indicates the average over the thermal noise. A simitespectively, corresponding to its Padé approxinand],

180401-3



RAPID COMMUNICATIONS

M. PLEIMLING AND A. GAMBASSI PHYSICAL REVIEW B 71, 180401R) (2009

which does not differ significantly from the approximant of the dynamic response function in nonequilibrium critical
[0,2]. The comparison shows that the LSI curv@sack Ising models. Previous numerical studies did not reveal any
lines) systematically lie above the numerical data for largersystematic deviations from the LSI prediction when comput-
values ofs/t. Including the two-loop correction coming from ing local quantities. Recent field-theoretical calculations,
field theory shifts the theoretical curvégray lineg closer  however, yielded a two-loop correction to the LSI prediction.
to the data. This provides a numerical evidence for thdn the present work we have studied the nonequilibrium re-
existence of corrections to LSI in critical nonequilibrium sponse of the total order parameter to an homogeneous ex-
systems. ternal field, i.e., we have investigated a global quantity. It has

Finally, we show in Figs. @) and Zb) the scaling func- been realized recently that in the usually studied integrated
tion F,(s/t) obtained from the data of Fig. 1 after a multi- résponses, the thermoremanent susceptibility, and the zero-
plication by(s/t)* and a proper normalization. Corrections field-cooling susceptibility, additional terms appear that
to the LSI predictions are clearly revealed in this quantity™ake the study of the dynamical scaling pa., the aging

both in two and three dimensions. Analyzing the scaling_pa“) notoriously difficult. We therefore propose to study the

. . intermediate integrated response where the field is onl
function 7, (s/t) seems therefore to be the appropriate wayg itched on duringg a time ineterv@isIZ,s], with 0<s<t, t y

to highlight diffe_rences between the theoretical predictionsoemg the time at which the resulting magnetization is mea-
and the numerical data. I_nlyh_edlzmpre common.approachsured’ and 0 the time at which the quench to the critical point
where Fhe rescaled susceptibiliy XIS plottgd aga_lnSt/s, occurs. Looking at this quantity we have indeed identified
corrections are hardly detectable in three dimensions. corrections to the LSI prediction. In addition, we observe
that the field-theoretical two-loop correction brings the theo-

[l. CONCLUSIONS retical curve closer to the numerical data.

Local scale invariance proposes to generalize dynamical
scaling to local space- and time-dependent scale transforma-
tions, leading to several predictions for dynamical correla- We thank Pasquale Calabrese and Malte Henkel for in-
tion and response functions. Some of these predictions hawpiring discussions. The numerical work has been done on
been verified in the past through exact solutions of solublehe IBM supercomputer Jump at the NIC Jili¢Rroject
models and through numerical simulations of nonsolubleHer1Q. M.P. acknowledges the support by the Deutsche
ones. In this paper we have focused on the scaling functionSorschungsgemeinschaft through Grant No. PL 323/2.
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