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Positronium in low temperature mesoporous films
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We investigate the formation and annihilation of ortho-positronium at@¥i29, the spins parallel electron
(e”)—positron(e*) bound state, in mesoporous films from 400 to 50 K. At room temperature up to 20% of the
implanted & end up as o-Ps which self-annihilatgise bound & and € annihilate; this is 50% of the formed
0-Ps. One would expect self-annihilation to be suppressed at lower temperatures since, although o-Ps trapped
in pores of diametegp>1 nm, found in these films, is more likely to self-annihilate, several effects could
decrease 0-Ps formation and/or o-Ps trapping in a pore. Instead we find that at 50 K the amé&ierttidihg
up as self-annihilating o-Ps is up to 19% greater than predictealstippressing effects played a role. Copious
amounts of 0-Ps atoms self-annihilate at 5Qug to 30% of implanted e 75% of formed o-Ps This amount
was found to increase even further down to 10 K making these films ideal substrates in which to confine large
amounts of collisionally cooled, self-annihilating o-Ps for the eventual realization of an 0-Ps Bose Einstein
condensatéBEC).
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Introduction Beam-based positron annihilation lifetime y rays with surrounding eof opposite spin. The pickoff
spectroscopy (PALS)'® and 3y positron annihilation annihilation rate depends on the surroundingsgatial den-
spectroscodyr® (PAS) are powerful methods to characterize sity and can be far greater than the rate of self-annihilation;
the porosity properties of lol-mesoporous films developed e.g., 0-Ps annihilating in the smallest free volume established
to replace SiQas the interlayer dielectric in future electronic for these films exhibits a lifetime of onk¢ 3 ns(see Table)l
devices. Both techniques employ ortho-positroni@aP9 as  The € spatial density seen by o-Ps depends on the open
a probe to characterize size, concentration, and/or intercorvolume size and geometry as well as the composition of the
nectivity of nanometer-sized pores. These films are also us®pen volume boundary. These factors in turn influence the
ful for fundamental o-Ps investigations, e.g., they were emeo-Ps pickoff annihilation rate. The correlation between the
ployed in a study of the vacuum o-Ps lifetime, resolving ao-Ps lifetime and open volume characteristics is at the heart
long-standing disagreement between experiment and theoryf models relating the o-Ps lifetime to open volume size that
Here, in a number of mesoporous films, we investigate thare used to characterize film porosity.
low temperature dependence of the fraction beading up Table | shows the lifetimes and corresponding intensities
as confined, self-annihilating o-Ps. A material that exhibitsof o-Ps confined within the films measured at room tempera-
the greatest such amount at low temperatures would be ideaire with beam-based PAL&Ref. 5 at 2-keV & implanta-
for fundamental studies of large numbers of collisionallytion energy. The 29 wt% sample exhibited an additional
cooled o0-Pg? 0-Ps lifetime component due to escaping 0-Ps, not shown in

Ps in mesoporous film&\Ve study porous methyl silses- Table I. The open volumes were assumed to be spherical
quioxane(MSSQ films, 0.4- to 0.8um thick, prepared with  pores and their corresponding diameters were deduced from
0, 10, 20, and 29 wt % of a volatile polym&sorogen. The  an o-Ps lifetime—pore-size correlation moélel.
films were spun on Si wafers from a mixture of methyl
methacrylate-contained copolyméguorogen and a MSSQ . _ i . : )
resin in solution, followed by curing te-520 K to vitrify the zie;rri.elzelrs density, 7 lifetime, | intensity, andd the fitted pore
hybrid structure. They were then cured to 670 K to decom- '
pose and remove the porogen, introducing open volume ad-

TABLE I. o-Ps lifetime components for the films investigated

ditional to that found in films grown without porogen Porogen 0 wt % 10wt 20 wt% 29 wt%
(0 wt %)." The films had porosities of 3.5%, 10.4%, 17.3%, |, (g/cn?) 1.26 1.13 1.01 0.89
and 23.5%, respectivehpf ) 3.4 27 3.1 3.6
Implanted & may form Ps |.nS|de the film or at the film Iy (%) 26.2 6.3 6.0 24
surface. Ps forms as tripléspins parallel o-Ps or singlet
(spins antiparallglpara-Ps(p-P9, at a 3:1 ratio. Ps escaping d (nm) 1.2 1.2 1.2 1.2
the film (e.qg., via free volume extending to the surfpself- 7 (N9 6.1 7.2 154 134
annihilates(the bound & and € annihilat¢ in a lifetime Iy (%) 16.1 7.2 3.8 3.2
depending on the Ps spin state: o-Ps self-annihilates into d, (nm) 15 16 2.0 19
three y rays with a lifetime of 142 ns while p-Ps self- 7, (ng N/A 17.2 31.1 37.6
annihilates into twoy rays with a lifetime of 125 ps. The Ly (%) N/A 26.1 30.1 29.9
0-Ps, which does not escape, may, besides self-annihilating, g (nm) N/A 21 28 392

“pickoff” annihilate where the bound*eannihilates via two
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Experimental We investigate o-Ps self-annihilation via 5,1 _ Surface L 73

beam-based B PAS, which measures theyB2vy ratio (the 1 —e—128mm ./.

ratio of 0-Ps 3 self-annihilation to all other £ annihilation 2‘°f —A—328nm ® -7

processesas a function of & implantation energy from 184 —w—744nmm _a a% Leo

50 to 400 K. The 3/2y ratio is proportional to the amount 1 ——320 nm /././_.—/l“.l N g

of implanted & ending up as self-annihilating o-Ps. Self- o .../"'—'/" A §

annihilation can also be measured with PAERRfs. 2and B 2 141 Sel /0/.. 7/‘; 47 £

since PALS and 3 PAS are related: The mean lifetime fora g 1,] o-®-6® /‘/‘ -

material iS7yea=2i |;7, Wherer; is theith lifetime compo- & - . AN 5

nent and I, its intensity. The o-Ps mean lifetime, ™07 4. ad—24—a* 8 o

7 0P5=3, 19PS0PS considersall the o-Ps components. In - 0.5 a®* = AP

materialsd_thjthform .;igng;oant _am_ounts of .Ps, Isuch as th 051 ,w‘,/v*_,y_rw/v/* %0

ones studied here, t ratio is proportional tor ] .

and Tmeano-PS'lz ey y p p o 04- .~I.-’_I."I HI’ L 1 I—._l’ 3 13
We prefer 3y PAS over PALS for several reasond) 50 100 150 200 250 300 350 400

PALS measurements at eachimplantation energy take sev- Temperature (K)

eral hours and up to six lifetime components ranging from )

125 ps to 140 ns need to be separated reliably. WitP&S FIG. 1. 3y/2vy ratio vs temperature of the 20 wt % sample. The

the entire experiment oveall implantation energies is car- €S are guides to the eye.

ried out in asingle 2.5 h cooling run.(2) The long PALS i 71718

measurement times mean substantial residual gas contamirf2ntation energy(Spur model."*"** The decrease foe
tion at low temperature3) PALS suffers from systematics — 7 NM is due to more o-Ps pickoff annihilating because it is
due to different detection efficiencies fory@nd 2y decay. confined in pores not interconnected to the surface and/or
The samples were mounted on a closed cycle He cryostat afgcause it has to undergo more collisions to reach the surface
cooled to <50 K. The cold finger was surrounded by a via interconnected pores. Ps no longer is emitted ahere
5.7-cm diam Al radiation shield mounted on the 80-K stagetn® 3y/2y ratio remains constant.

of the cryostat. The samples were heated to 400 K- h Figure 3 shows the temperature dependence for o-Ps con-
to remove absorbed water and-a6 x 10°° Torr base pres- fined within the samples obtained by fitting with VEPFIT
sure cooled to 50 K within-2.5 h. Less than a few mono- (Ref. 19 the 3y/2y ratio for z beyond which o-Ps cannot
layers of water form during a single cooling cycle. Cooling €Scape. The temperature dependence of the data in Fig. 3 is
and heating runs were reproducible and showed no evidendgfluénced by several factors. Fgr>1-nm pores, as found

for e* irradiation effect&14or chemical changes at the pore In all investigated samplesee Table ), Ps samples excited
surface'® A magnetically guided, variable energy beant states>® With decreasing temperature, Ps samples fewer ex-
of ~5 mm diam and K 10° e*/s rate profiled the film as a Cited statesless pickoff for o-Pxin the confining quantum
function of implantation depth. The mean implantation deptiells, increasing the o-Ps lifetime and thus the ratio of self-
(2) is related to the implantation energin keV) by annihilating o-Ps to the number of implantet élowever
z=(40/p) EL® wherez is in nanometers ang, the sample the increase in this ratio may be suppressed significantly by a

o : decrease in the amount of Ps in these pores due to reduced
density in g/cm. At each selected energy,espectrum with . L )
5x 10° counts was acquired with a HpGe detector at right€ /PS trapping rate¥) reduced &/Ps diffusion lengths, pin-

angles to the incoming beam. The/2y ratio was calcu-

lated a8’ 3y/2y=(T—P)/P-C whereT is the total spectrum 228 | gy 76
counts,P the number of integrated counts in the photopeak 1.90 ] = 63
region(511+9 ke\}, andC the ratio for no Ps, as found in .
Si. A unity 3y/2y ratio corresponds te-30% of the im- 152 0% 5 -
planted & forming o-Ps, which self-annihilates. » s 382\1
Results and discussiokigure 1 shows theyd2yratiovs |~ | e = §
temperature for the 20 wt % sample at selecte8ince we % or ® g
are interested in 0-Ps confined within the films we need t 4 | #s ® 25 £
find z beyond which o-Ps no longer escapes into vacuum® ’é ] £
This can be determined in two way® Room temperature s g 3 -
PALS observed no Ps escape at 2-keV implantation energ =28 2 % 2 &9 %
(z=118 nm for the 20 wt% samplefor samples up to . & % %
20 wt %2 This may be an overestimate since no implantation  o0.38 13

energy<2 keV was consideredb) By plotting the 3y/2y
ratio vsz we can determing beyond which o-Ps no longer
escape$.Figure 2 shows such a plot for the 20-wt % sample
obtained by interpolating the data in Fig. 1 at selected tem- FIG. 2. Interpolated $/2y ratio (logarithim scalg vs z at se-
peratures. The #/2y ratio maximum at 400 and 200 K is lected temperatures for the 20-wt% sample. Squares: 400 K; up
explained in terms of more Ps forming with increasing im-triangles: 200 K; diamonds: 50 K.
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10 8 3y/2y ratio for the 20- and 29-wt % samples increases with
0.9 decreasing temperatuisee alsoz=320 nm in Fig. 1. In
fact, at <200 K the measured values exceed B$9% the
calculations that assume thao suppressing effects play a
role. This is not due to an increase in Ps formatiah
0 wt % samplg changes in the chemistry of the pore wélls
(results were reproduciblepickoff annihilation of o-Ps at
the film—substratéSi) interface(found to be below the de-
tection sensitivity?) or due to Ps/& preferring to trap in
d>2 nm poregsee Table)lat lower temperatures. The latter
statement holds since the data for the 10-wt % sample, which
0.1 -3 also hasd>2 nm pores, cannot be modeled in terms of
00— . : : : I Ps/é& preferring to trap ind>2 nm pores. To understand
50 100 150 200 250 300 350 400 why the suppressing effects appear to be negligible and why
Temperature (K) the data exceed the calculations will require further theoret-
ical investigations.

FIG. 3. 3y/2y annihilation ratio as a function of temperature for These samples are ideal candidates for fundamental inves-
the 0%(squarep(z>70 nm, 10%(circles (z>100 nm), 20%(up  tigations of large amounts of confined, collisionally cooled,
triangles  (z>225nm, and 29wt% (down triangles  self-annihilating o-Ps: At 50 K, self-annihilation in the 20-
(z>300 nm samples. The error bars are the size of the dots. Linesgnd 29-wt % samples is-45% greater than at 400 K. For
Calculated 3/2y ratio assuming that only”"® changes. Line the 29-wt % sample at 50 K400 K), ~75% (50%) of the
width: Uncertainty in relation betweefy,eanand 3y/ 27y ratio. formed o-Ps self-annihilates and30% (20%) of the im-

) ) planted é end up as self-annihilating o-Ps. In a recent ex-
ning of the € to the pore surfacé, reduced Ps formation tensjon of these experiments, self-annihilation was found to
and/or reflection of the*ewave function at the pore watt. i crease even further down to 10 K in capped losamples.

To investigate the extent to which these effects suppresgompare this with a proposed scheme for the generation of
self-annihilation we calculate the temperature dependence @, o-Ps Bose Einstein condensft@here it is estimated that
self-annihilation associated solely with excited states of Ps iy 2504 of implanted &form Ps inside a cavity in a Si
the confining quantum wells and compare the calculated vals pstrate. Of the formed Ps, 75%, i.e., 19% of implanted e
ues with the experimental results. The calculations were pekyrm o-Ps and of that not all will self-annihilate. The mate-
formed in the following manner: for the samples investigatedigis studied here form almost twice as much self-
here the 3/2y ratio is proportional tornean@ndrpeas™ > At annihilating o-Ps at 50 K and even more<e60 K. It would
room temperatureryea=%il;7 is obtained directly from the  pe very interesting to see what happens for samples of
PALS results(Table |). Variation of the o-Ps lifetimes with  ~59 wt 9 porosity. There the above-mentioned effects
temperature is calculated according to Ref. 3; intensities argoyid be more pronounced.

kept at the room temperature value. The non-o-Ps lifetimes conclusion Beam-based BPAS was employed to mea-
and intensities remain unchanged. The calculated variation ig e o-Ps self-annihilation in mesoporous films from
TmeanWas converted back to theyB2y ratio and is plotted as 50 to 400 K. Self-annihilation in the film was found to de-
a line in Fig. 3. The width of the line equals the error in the crease slightly with decreasing temperature for lower poros-
Tmean 10 3y/2y ratio calibration. For the 0-wt % sample the jr, samples while it increases by as much as 45% for the
data agree within the error bars with the calculations thaFarger porosity sample. This is beyond what could be ex-
predict no increase in the)32y ratio. Thus there is N0 pected even if there were no effects which suppress self-
change in the amount of Ps formed in the film material un-ynnjnilation and requires further theoretical investigations.
less it is masked by free volume changes. This is unlikelyhe jarge amount of o-Ps self-annihilatitas much as 30%
since the thermal expansion coefficiéat 300 K) for similar 4t 50 K, and even more at lower temperatures, make these
materials (HSSQ is 17 ppm per K5 amounting to negli-  samples interesting candidates for substrates in which to

gible changes in the32y ratio. form a BEC of collisionally cooled o-Ps.
In the case of the 10-wt % sample the data fall below the

calculated value at temperatures below 100 K. This can be The authors thank DOE Basic Energy Scien@@sntract
accounted for by a decreasing/Es diffusion lengthimea- No. ER46103 and W. Volksen and R.D. Mille(IBM, Al-
sured for the 0-wt % sampleso that the amount of Ps inside maden Res. Cir.for supplying the samples; K.P. Rodbell
the porogen introduced pores decreases. (IBM, Yorktown Heights Res. Ctr.for initiating the project
Unlike for the 0- and 10-wt% samples, the measuredand together with K. Canter for useful discussions.
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