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We explore theoretically the notion that the underdoped cuprates may be viewed as dopedUs1d spin liquid
Mott insulators. We pursue a conceptually clear version of this idea that naturally incorporates several aspects
of the phenomenology of the cuprates. We argue that the low-doping region may be fruitfully discussed in
terms of the universal physics associated with a chemical-potential-tuned Mott transition between aUs1d spin
liquid insulator and ad-wave superconductor. A precise characterization of the deconfinement in theUs1d spin
liquid is provided by the emergence of a conserved gauge flux. This extra conservation law should hold at least
approximately in the underdoped materials. Experiments that could possibly detect this conserved gauge flux
are proposed.
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I. INTRODUCTION

Superconductivity in the cuprate materials occurs upon
doping Mott insulators. The evolution of the physical prop-
erties from the insulator to the superconductor as a function
of doping has been extensively studied in the last several
years. Many experiments have clearly established the rel-
evance of the proximity to the Mott state at zero doping for
understanding phenomena at finite doping where supercon-
ductivity appears at low temperature.1

There is considerable theoretical debate, however, on the
precise nature of the connection between the undoped Mott
state and the doped superconductor. Experimentally it is well
established that the Mott insulating state at zero doping de-
velops long-ranged Néel antiferromagnetism. Upon doping
the magnetism disappears rather rapidly and soon thereafter
is replaced by the superconducting ground state. The “nor-
mal” state above the superconducting transition temperature
is metallic and is commonly referred to as the pseudogap
state. A key observation is that the pseudogap state and the
superconductor that descends from it both remember the
Mott nature of their parent undoped material but do not re-
member its long-ranged Néel order.1 This observation is en-
coded in the old suggestion2,3 that a useful way to think
about the underdoped region is to first understand the nature
of the possible nonmagnetic Mott states at zero doping—
obtained, for instance, by increasing frustration in the inter-
action between the spins. The behavior of the doped system
may then possibly be fruitfully viewed as the result of dop-
ing this nonmagnetic Mott state. The idea is that the doping
effectively frustrates the Néel order so that the system is
pushed across the transition where the Néel order is lostssee
Fig. 1d.

In this paper we pursue a particular nonmagnetic Mott
state that is connected to the Néel state by a second-order
transition. Furthermore, doping this nonmagnetic state leads
to a d-wave superconductor with nodal quasiparticle excita-
tions. For these and other reasons discussed below, the par-
ticular possibility we explore is theoretically very appealing
sat least to the present authorsd. We show that this route to
superconductivity leads to very unusualsand hence possibly
uniqued physical effects that could possibly be detected in
experiments.

The particular nonmagnetic state we consider may be
dubbed a “deconfined”Us1d spin liquid on the two-
dimensional square lattice. The low-energy theory of this
state consists of nodal linear-dispersing Dirac spinons that
are coupled to anoncompactfluctuating Us1d gauge field.
Such a spin liquid state has played a central role in a large
number of prior theoretical papers in the field.4–7 Recent
developments8 have considerably clarified the conceptual ba-
sis of this state opening the way to the perspective used in
this paper. Indeed, the present paper may be viewed as pro-
viding a conceptually clear version of various previous the-
oretical ideas that allows for predictions that are possibly
testable.

FIG. 1. Schematic zero-temperature phase diagram showing the
route between the antiferromagnetic Mott insulator and thed-wave
superconductor. The vertical axis is labeled by a parameterg which
may be taken as a measure of the frustration in the interaction
between the spins in the Mott insulator. AF represents the antifero-
magnetically ordered state. Also shown is a spin liquid insulator
that could potentially be reached by increasing the frustration. The
path taken by the cuprate materials as a function of dopingx is
shown in a thick dash-dotted line. The question marks represent
regions where the physics is not clear at present. Doping the spin
liquid naturally leads to thed-wave superconductorsdSCd state. The
idea behind the spin liquid approach is to regard the superconduct-
ing system at nonzerox as resulting from doping the spin liquid
though this is not the path actually taken by the material—this
“theoretical” path is indicated as a solidsredd line above.
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What precisely is meant by the notion that the underdoped
cuprates may be viewed as doped versions of a nonmagnetic
Mott insulator? To understand this it is instructive to consider
the phase diagram as a function of the chemical potential
rather than the hole doping as shown in Fig. 2. Consider any
nonmagnetic Mott state that when doped leads to ad-wave
superconductor. As a function of chemical potential, there
will then be a zero-temperature phase transition where the
holes first enter the system. For concreteness we will simply
refer to this as the Mott transition—the corresponding phase
boundary is marked in Fig. 2. The associated quantum criti-
cal fixed point will control the physics in a finite nonzero
range of parameters. The various crossovers expected near
such transitions are well known and are shown in Fig. 3.
Sufficiently close to this zero-temperature critical point many
aspects of the physics will be universal. The regime in which
such universal behavior is observed will be limited by “cut-
offs” determined by microscopic parameters. In particular we
may expect that the cutoff scale is provided by an energy of
a fraction ofJ sthe exchange energy for the spins in the Mott
insulatord. We note that this corresponds to a reasonably high
temperature scale.

Now consider an underdoped cuprate material at fixed
dopingx. Upon increasing the temperature this will follow a

path in Fig. 3 that is shown schematically. The properties of
the system along this path may be usefully discussed in
terms of the various crossover regimes in Fig. 3. In particular
it is clear that the “normal” state above the superconducting
transition is to be understood directly as the finite-
temperature “quantum critical” region associated with the
Mott transition. Empirically this region corresponds to the
pseudogap regime. Thus our assertion is that the pseudogap
regime is controlled by the unstable zero-temperature fixed
point associated with thesMottd transition to a Mott insula-
tor.

Once we adopt this point of view it is clear that the Mott
transitionswhich controls the pseudogap regimed need not be
to the antiferromagnetic Mott state realized in the parent ma-
terials. Indeed the physical system takes a path through a
complicated region which may involve charge ordering or
stripe phases whose relation to other regions of the phase
diagram is poorly understood. Rather for the reasons men-
tioned in previous paragraphs it makes sense to explore Mott
transitions to insulators that are nonmagnetic. In the bulk of
this paper we will focus on theUs1d spin liquid insulator and
the Mott transition from it to a superconductor induced by
doping. Later we show how many aspects of the resulting
theory may still survive provided only certain weaker as-
sumptions are satisfiedssee Sec. VId.

II. MOTT INSULATOR

We begin with a discussion of the Mott insulator. The
Néel state is the ground state of the nearest-neighbor Heisen-
berg antiferromagnet. However, as explained above we will
be interested in possible nonmagnetic ground states that are
proximate to the Néel state. It is very important to realize
that there are very few such known candidate nonmagnetic
ground states. Our options are quite limited as only a few
such states have been proposed. One candidate is the dimer-
ized state described in Ref. 9. Studies of the doped dimerized
state have been pursued with some phenemenological
success.10 Indeed a superconducting state withd-wave sym-
metry obtains upon doping. However, such a superconductor
also inherits the dimer order of the parent Mott state. In
particular it has a full gap to spin excitationssat least at low
dopingd and breaks translation symmetry. Empirically, how-
ever, there is strong evidence for the presence of gapless spin
excitations in the superconductor, and for the presence of
translation symmetry in most of the materials studied. The
gapless spin-carrying excitations are simply nodal BCS-like
d-wave quasiparticles. We are thus naturally led to search for
translation invariant nonmagnetic Mott states that when
doped will produce ad-wave superconductor with nodal qua-
siparticles.

Mott insulators that preserve translation and other lattice
symmetries are rather exotic beasts—the excitation spectra
of all known theoretical examples are conveniently described
in terms of fractionalized spin-1/2 “spinon” degrees of free-
dom. Further, in certain such “spin liquid” states, it is pos-
sible for the spinons to have gapless nodal points with linear
dispersion. Such spin liquids therefore provide ideal starting
points to dope to produce translation-invariantd-wave super-
conductors with nodal quasiparticles.

FIG. 2. Same as in Fig. 1 but as a function of chemical potential
rather than hole doping.

FIG. 3. Schematic phase diagram for a doping-induced Mott
transition between a spin liquid insulator and ad-wave supercon-
ductor. The bold dot-dashed line is the path taken by a system at
hole densityx that has a superconducting ground state. The region
marked FS represents the fluctuation regime of the superconducting
transition. The region marked QC is the quantum critical region
associated with the Mott critical point. This region may be identi-
fied with the high-temperature pseudogap phase in experiments.
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An important physical property of such fractionalized
spin liquid Mott insulators is the emergence of extra topo-
logical structure. Specifically spin liquid states possess extra
topological conservation laws not present in the microscopic
models in which they arise. This conservation law is conve-
niently interpreted as the flux of an emergent gauge field.
Different classes of spin liquids may be defined depending
on the nature of this conserved gauge flux.

A simple example of a spin liquid with nodal fermionic
spinons is provided by a state where there is a conservedZ2
gauge flux. Indeed a theory of the cuprates based on doping
this state was developed and advocated in Refs. 11 and 12.
One feature of this theory is that in the superconducting state
hc/e vortices tend to have lower energy thanhc/2e vortices,
particularly at low doping. This is because in this route to
superconductivity anhc/2e vortex necessarily involves the
presence ofZ2 gauge flux in its core. There is an energy cost
to having theZ2 gauge flux which dominates in the low-
doping limit and raises the energy of thehc/2e vortex. A
crucial experimental test12 of such a theory is to directly
detect the “vison” excitation that carries this conservedZ2
flux, or indirectly to look for signatures of stablehc/e
vortices.13,14 Unfortunately, to date, all such experiments
have been negative.15,16

This forces us to refine our search further and look for
spin liquid states that do not possessZ2 gauge structuresi.e.,
do not have vison excitationsd. An immediate candidate for
such a state is suggested by slave-particle mean-field theories
of spin-1/2 models. Within a fermionic representation of the
spin, a popular mean-field state is thed-wave or staggered
flux state. This state is conveniently viewed as ad-wave
paired state of spinons at 1/2 filling with the following
Hamiltonian:

H = − o
krr8l

xrr8sf r
†f r8 + H.c.d + Drr8ff r↑f r8↓ − s↑ → ↓dg.

s2.1d

Here f ra, a= ↑ ,↓, is a two-component fermionic spinon on
the siter of a two-dimensional square lattice. The hopping
xrr8 is a real constant, and the pairingDrr8 hasd-wave struc-
ture: Drr8=D0 on horizontal bonds andDrr8=−D0 on vertical
bonds. Diagonalization of the mean-field Hamiltonian gives
a low-energy spectrum with four nodal points near which a
linearly dispersing Dirac spectrum appears.

As pointed out in Ref. 17, this mean-field state is equiva-
lent under a unitary transformation to the “staggered flux”
Hamiltonian:

Hsf = o
krr8l

fsixrr8 + Drr8df r
†f r8 + H.c.g. s2.2d

Here we taker to belong to one sublattice of the square
lattice so thatr8 belongs to the opposite sublattice. This de-
scribes fermionic spin-1/2 spinons on the square lattice with
complex hopping amplitudes such that there is a nonzero flux
that is staggered from plaquette to plaquette.

The crucial question is the fate of this mean-field state
upon including fluctuations. It is well known that the impor-
tant fluctuations involve coupling to acompact Us1d gauge

field. The resulting Hamiltonian is conveniently written in
the “staggered flux” gauge and has the structure

H = Hf + Hg, s2.3d

Hf = o
rr8

fsixrr8 + Drr8de
iarr 8f r

†f r8 + H.c.g, s2.4d

Hg = − Ko
P

coss¹W 3 aWd + uo
krr8l

err8
2 . s2.5d

Herearr8P f0,2pd is to be regarded as the spatial component
of a Us1d gauge field, anderr8 is the corresponding electric
field. Strictly speaking we must take the limitK→0,u→`
but relaxing this condition is not expected to crucially
change the physics. The Hamiltonian must be supplemented

with a Gauss law constraint¹W ·eW + f r
†f r =1 on every lattice

site.
Specializing to the low-energy limit, this theory mayfor-

mally be viewed as a theory of massless Dirac fermions
coupled to a compactUs1d gauge field. Here as usual com-
pactness means that point like instantons or monopoles are
allowed in the configurations of the gauge field in space-
time. At each such monopole event the gauge flux changes
by an integer multiple of 2p. Recent work8 has resolved a
long-standing controversy on the low-energy behavior of
theories of this type, and shown that when the numberN of
Dirac species is large, there is a stable “deconfined” phase
where the instanton fugacity renormalizes to zero at long
distances and low energies.sThe case of direct physical in-
terest corresponds toN=4.d A continuum field theory that
describes this low-energy fixed point is simply given by the
action

Sfer =E d2x dt C̄agms]m + iamdCa +
N

2eg
2semnl]nald2,

s2.6d

where C j, j =1,… ,4, represent the four species of Dirac
fermion appropriate for each of the two distinct nodes.

A precise characterization of the deconfinement8,18 in this
phase is obtained by noting that the absence of instantons at
low energies implies that the gauge fluxb=]xay−]yax is con-
served. This corresponds to an extra global topologicalUs1d
symmetry at the low-energy fixed point that is absent in the
microscopic spin model.

The analysis of Ref. 8 shows that stableUs1d spin liquids
could exist ind=2 at least for large enoughN. Whether this
stability extends down to the physically relevant case of
SUs2d spins is not known at present. This corresponds to the
caseN=4. However, the large-N analysis shows that as a
matter of principle there is no reason to dismiss the possibil-
ity of such stableUs1d spin liquids forSUs2d spins. For most
of the present paper we will simply assume that this is true,
and explore its consequences. However, detailed numerical
calculation to settle this issue will certainly be useful and
welcome. Toward the end of the papersin Sec. VId we will
explore the opposite possibility—that the stability of the
Us1d spin liquids does not extend toSUs2d spins. We show
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how even in that case it may be possible to retain the key
aspects of the theory provided certain weaker assumptions
are satisfied.

This d-wave pairedUs1d spin liquid state is connected to
a conventional Néel state at ordering vectorsp ,pd by a
second-order transition. This transition will be discussed
elsewhere and is an example of a deconfined quantum criti-
cal point.18,19 In particular there will be two diverging length
scales on the ordered side—one characterizing the crossover
from critical to Néel-ordered spin correlations, and a differ-
ent longer one associated with the confinement of spinons.

A schematic phase diagram depicting the Néel and spin
liquid phases at zero doping is shown in Fig. 1. Now con-
sider doping the Mott insulator. As in many previous works,
we assume that the doping moves the system across the
phase boundary where the magnetism is lost. We may then
fruitfully view the doped nonmagnetic state as the result of
doping theUs1d spin liquid.

III. DOPED U„1… SPIN LIQUIDS

What then happens to theUs1d spin liquid when it is
doped? One answer to this question is suggested by the
slave-particle mean-field theory developed in Ref. 5 which
also provides useful mathematical formalism. Ad-wave su-
perconductor with gapless nodal quasiparticles is obtained.
To understand this it is first useful to ask about the nature of
the electric-charge-carrying excitations in this dopedUs1d
spin liquid. Speaking loosely, in the presence of fermionic
spin-1/2 electrically neutral spinons, the charge of the doped
holes may be expected to be associated with spin-0, charge-
e bosons which carry gauge charge. This is roughly correct—
more precise consideration shows that there are two species
of such bosons which each carry gauge charge ±1. These will
be denotedb1,b2. The presence of two species of bosons
with gauge charges ±1sbut electric chargee and spin 0d is
actually common in situations that involve dopingUs1d frac-
tionalized phases. For instance, in three-dimensional frac-
tionalized boson insulators with a deconfinedUs1d gauge
field such as that considered in Ref. 20, two boson species
appear quite naturally. Note that a composite of the two
bosons is gauge invariant, has charge 2e, and is a spin sin-
glet. Hence it may be identified with a Cooper pair. Thus the
two bosons may each be identified as being one-half of a
Cooper pair.

Now consider condensing each of the two species of
bosons with the same amplitudekb1l=kb2lÞ0. Clearly this
state breaks the physical electromagneticUs1d symmetry,
and hence is superconducting. Further, once the bosons con-
dense the spinons get endowed with electric charge—the
structure of the spinon Hamiltonian imposesd-wave symme-
try on this superconducting state. In particular the low-
energy nodal spinons simply become the nodal quasiparticles
of the superconducting state. This condensate withkb1l
=kb2lÞ0 is actually energetically favored in slave-particle
mean-field calculations on thet-J model at low temperature
in the low-doping range.

As discussed in the Introduction it is instructive to con-
sider the phase diagram not as a function of dopingx but as

a function of the chemical potential. The phase diagram then
looks as shown in Fig. 3. As the chemical potential is in-
creased, there is a Mott transition from theUs1d spin liquid
insulator to thed-wave superconductor. The corresponding
sunstabled zero-temperature fixed point controls many as-
pects of the physics in the underdoped side. In particular it
determines the universal aspects of the physics of the
pseudogap regime and its eventual low-temperature transi-
tion into the superconducting state.

What is the theory that describes this Mott transition? To
understand this we first note that in the insulating state, the
two bosonsb1,2 are gapped. Increasing chemical potential
decreases this gap. The gap closes at the Mott transition,
beyond which superconductivity is achieved when both bo-
son species condenseswith equal amplituded. A continuum
theory for the Mott transition that describes this condensa-
tion is readily written down. It takes the form

S= Sfer + Sb1 + Sb2, s3.1d

Sb1 =E
t,x

b1
*S]t − ia0 − m −

s¹W − iaWd2

2mb
Db1, s3.2d

Sb2 =E
t,x

b2
*S]t + ia0 − m −

s¹W + iaWd2

2mb
Db2. s3.3d

The change in the sign of the terms involving the gauge
potential sa0,aWd reflects the opposite gauge charges carried
by b1 and b2. The physical hole density is simply the total
boson density given byb1

*b1+b2
*b2, and thus couples linearly

to the chemical potentialm. The fermion partSfer is given in
Eq. s2.6d above. The transition occurs whenm=0. As dis-
cussed in the Introduction a material at fixed dopingx will
take a path such as that shown in Fig. 3 in this phase dia-
gram.

In writing down this continuum theory we have assumed
that the instantons are irrelevant not just at theUs1d spin
liquid fixed point but also at the critical fixed point describ-
ing the Mott transition. This is quite reasonable. The pres-
ence of extra gapless matter fields is only expected to drive
the instantons more irrelevant. With this assumption the con-
servation of gauge flux continues to hold right at this critical
fixed point.

In Ref. 5, a slave-particle representation with a fermionic
charge-0 spin-1/2 spinon and two species of bosonic charge-
e spin-0 holons was introduced for thet-J model. Clearly this
representation is ideally suited to discuss the zero-doping
Us1d spin liquid and the corresponding doped system. In
particular the slave particles are “deconfined” in theUs1d
spin liquid and the associated Mott critical point to the doped
superconductor in the sense that instantons in the associated
Us1d gauge field are irrelevant. As emphasized above this
leads to an extra global topological symmetry associated
with conservation of gauge flux. This conserved gauge flux
gives precise meaning to the notion of deconfinement and
justifies the use of the slave particles as the useful degrees of
freedom. Indeed the considerations of the previous
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paragraphs give sharp meaning to the theory of the under-
doped cuprates developed on the basis of this slave-particle
representation.

IV. MEANING OF GAUGE FLUX

As the conserved gauge flux plays a crucial role in this
theory it is interesting to ask what its meaning is and if its
presence can directly be detected in the nonsuperconducting
state just aboveTc in underdoped samples. In the following
we describe some physical effects that should obtain if such
a deconfinedUs1d gauge field indeed exists. The key is to
exploit the unusual structure of thehc/2e vortex that obtains
in the superconducting state. The unusual nature of the vor-
tex stems from the fact that the superconducting state is ob-
tained by condensing separately the two charge-e bosons
b1,2. Nevertheless the superconducting state is smoothly con-
nected to a regular BCSd-wave superconductor. Thus, de-
spite the condensation of charge-e bosons, the supercon-
ductor must supporthc/2e vortices. Such vortex solutions
were described by Lee and Wen.21 A simple construction in
fact gives two apparently distincthc/2e vortices—in one
there is a full 2p vortex in b1 but not inb2 and in the other
there is a 2p vortex inb2 but not inb1. Note that the Cooper
pair operator,b1b2 winds by 2p in either case. To under-
stand these vortex solutions better and as they will prove
important for what follows, we consider the following simple
energy functional which captures the basic physics associ-
ated with the vortices:

E =E d2x
K

2
fs¹W u1 − aW − AW d2 + s¹W u2 + aW − AW d2g + ¯ .

s4.1d

Here u1,2 are the phases ofb1,2, respectively. The fieldaW is

the vector potential of the internalUs1d gauge field, andAW is
that of the external electromagnetc field. The ellipsis repre-
sents various other termsssuch as the gauge and external
field kinetic energies, etc.d that have not been written out. Let
u1,2 wind by 2pm1,2 on going on a large loop encircling a
vortex sm1,2 are integersd. Then we must have

2pm1 = fa + fA, s4.2d

2pm2 = − fa + fA. s4.3d

Herefa,A are the fluxes of the gauge fieldsa,A enclosed by
the loop. For anhc/2e vortex we must havefA=p. This will
happen if m1+m2=1. The internal gauge fluxfa=psm1

−m2d can then be anyodd integral multiple ofp. In general
there will be some energy cost to having nonzero internal
gauge flux so the lowest value of the gauge flux is energeti-
cally preferred. This still leaves the two possibilitiesfa
= ±p. These correspond precisely to the two vortices de-
scribed above. Reference 21 also pointed out that as the am-
plitude of only one of the two bosons will be suppressed in
the core of either vortex, the region in the core looks like a
condensate ofb1 but notb2, or vice versa. Such condensates
can easily be seen to have true staggered flux order with

physical currents circulating in a staggered manner in the
core. This staggered current pattern corresponds to a broken
symmetry phase that apparently rears its head in the vortex
core. The symmetry of translation by one lattice spacing is
broken by the staggering of the current pattern. However, as
the core is finite the symmetry cannot truly be broken, and
there will be a finite tunneling rate between the two kinds of
cores.

It is clear from the discussion above that the two kinds of
cores and the associated staggered patterns correspond to
fa= ±p. We immediately see that the tunneling event be-
tween the two kinds of cores must involve a change of 2p in
the flux of the internal gauge field. Such a 2p flux changing
event is precisely the instanton in the internal gauge field.
Thus we have the remarkably simple picture of the instanton
as just the tunneling event between the two kinds of stag-
gered flux cores forhc/2e vortices in the superconducting
state.

Note that by assumption the superconducting state de-
scends from a “normal” state with deconfinement where the
instantons are irrelevant at long scales. However, in the su-
perconducting state the internal gauge flux associated with
the vortex is confined to a flux tube of finite size. The finite
size of the flux tube implies that instantons can no longer
necessarily be ignored. Indeed instantons will also render
unstable vortices that havefa= ±3p , ±5p ,… so that there
is in principle a uniquehc/2e vortex.

These vortices will presumably start developing integrity
in the fluctuation regionssee Fig. 3d above the superconduct-
ing transition. For materials with smallTc si.e., close to the
Mott critical point in Fig. 3d, the instanton rate will be small
scompared to electronic energy scalesd. Consequently, even
in the fluctuation region the vortex cores will have staggered
flux order that fluctuates slowly at this rate. It is natural to
identify this region with the one observed to have an en-
hanced Nernst effect in the experiments.22

The considerations on vortices above enable us to provide
some meaning to the gauge flux once there is reasonably
well-developed local superconducting ordersi.e., in the fluc-
tuation region or belowd. In this region, a useful description
is provided by as-model approach which focuses exclu-
sively on the fluctuating classical order parameters. Indeed
such a description was obtained in Ref. 23. Here we will take
a slightly different perspective that will bring out some key
physical aspects.

The fluctuations of the superconducting order parameter
b1

†b2
† are clearly important in this region. As discussed above

the vortices in this order parameter will start having integrity
in this region. Since as we have seen above the vortices have
slowly fluctuating staggered flux order in their cores it will
be necessary to also include an order parameter for the stag-
gered flux fluctuations. Clearly this is just simply given by
nz,ub1u2− ub2u2. Note that both these order parametersssu-
perconducting and staggered fluxd have simple descriptions
as bilinears in the underlying bosons.

It is tempting to combine these order parameters into a
single three-component vectornW with n+ being the pairing
order parameter andnz the staggered flux one. In the regime
where there is well-developed local order one might imagine
that this vector has well-defined magnitude but there are
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fluctuations in its direction. A description in terms of a fluc-
tuating unit vector field which represents the local ordering
direction may then possibly be appropriate. The energy func-
tional for this unit vector field will presumably have easy-
plane anisotropy which favors the superconducting order.

Despite the appeal of such a description it actually hides a
very important piece of physics, and hence is not the full
story. The point is that in the original description in terms of
the boson fieldsb1,2, there is an extra conserved quantity—
namely, the gauge flux—which should be included in the
long-wavelength physics. This extra conservation arises due
to the assumed irrelevance of instantons at the Mott critical
fixed point.sOf course at finite temperatures close to but not
quite at the critical point the instanton fugacity will be small
and hence strict conservation of gauge flux will not obtain—
nevertheless it is necessary to include it to meaningfully dis-
cuss physics in the region impacted by the proximity to this
critical point.d

What is this conserved flux in terms of the unit vector
field n̂? The answer to this is well known: it is the density of
defect configurations known as Skyrmions. Thus in the ab-
sence of instantons, the skyrmion number in thes-model
description is conserved. It is important to appreciate that
this is not a property of familiar quantumOs3d s models in
two dimensions but is rather closely related to the unconven-
tional Os3d models studied in Refs. 24–26. The latter are
models in which hedgehog configurations of the unit vector
field have been artificially suppressed by hand. In this situa-
tion as in the present problem a gauge theoretic description
in terms ofCP1 fields is superior as it directly brings out the
extra conservation law.

An expression for the conserved gauge flux in terms of
the observable order parameter fields is readily written down.
The gauge magnetic field

B = 2prsk, s4.4d

rsk =
1

4p
n̂ · ]xn̂ 3 ]yn̂. s4.5d

We write

n̂ = ssinu cosa,sinu sina,cosud s4.6d

so thatnz=cosu is the staggered flux order parameter, anda
is the phase of the superconducting order parameter.27 Then
the expression above for the gauge magnetic field is readily
manipulated to

B =
1

2
s¹W nz 3 ¹W ad. s4.7d

It is easy to check that for a vortex with the structure de-
scribed above the total gauge flux is ±p as expected.

V. DETECTION OF GAUGE FLUX

What are some signatures of the gauge flux in experi-
ments? The asymptotic conservation of the gauge flux at the
Mott transition fixed point potentially provides some possi-

bilities for its detection. At nonzero temperatures in the non-
superconducting regions, the flux conservation is only ap-
proximatesas the instanton fugacity is small but nonzerod.
Nevertheless at low enough temperature the conserved flux
will propagate diffusively over a long range of length and
time scales. Thus there should be an extra diffusive mode
that is present at low temperatures in the nonsuperconducting
state. It is, however, not clear how to design a probe that will
couple to this diffusive mode at present.

Alternately the vortex structure described above provides
a useful way to create and then detect the gauge flux in the
nonsuperconducting normal state. We will first describe this
by ignoring the instantons completely in the normal state.
The effects of instantons will then be discussed.

Consider first a large disk of cuprate material which is
such that the doping level changes as a function of the radial
distance from the center as shown in Figs. 4 and 5. The
outermost annulus has the largest dopingx1. The inner annu-
lus has a lower doping levelx2. The rest of the sample is at
a doping levelx3,x2,x1. The corresponding transition tem-
peraturesTc1,2,3 will be such thatTc3,Tc2,Tc1. We also
imagine that the thicknessesDRo,DRi of the outer and inner
annuli are both much smaller than the penetration depth for

FIG. 4. Structure of the sample needed for the proposed experi-
ment. The outer annulussin dark blued has the highestTc. The inner
annulussin light blued has a smallerTc. The rest of the samplesin
brownd has even smallerTc.

FIG. 5. Variation of the doping levelx with radial distancer in
the sample.
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the physical vector potentialA. The penetration depth of the
internal gauge fielda is expected to be small and we expect
it will be smaller thanDRo,DRi. We also imagine that the
radius of this inner annulusRi is a substantial fraction of the
radiusRo of the outer annulus.

Now consider the following set of operations on such a
sample.

sid First cool in a magnetic field to a temperatureTin such
that Tc2,Tin,Tc1. The outer ring will then go supercon-
ducting while the rest of the sample stays normal. In the
presence of the field the outer ring will condense into a state
in which there is a net vorticity on going around the ring. We
will be interested in the case where this net vorticity is an
odd multiple of the basichc/2e vortex. If as assumed the
physical penetration depth is much bigger than the thickness
DRo then the physical magnetic flux enclosed by the ring will
not be quantized.

sii d Now consider turning off the external magetic field.
The vortex present in the outer superconducting ring will
staysmanifested as a small circulating persistent currentd and
will give rise to a small magnetic field. As explained above if
the vorticity is odd, then it must be associated with a flux of
the internal gauge field that is ±p. This internal gauge flux
must essentially all be in the inner “normal” region of the
sample with very small penetration into the outer supercon-
ducting ring. It will spread out essentially evenly over the
full inner region. We have thus managed to create a configu-
ration with a nonzero internal gauge flux in the nonsupercon-
ducting state.

siii d How do we detect the presence of this internal gauge
flux? For that imagine now cooling the sample further to a
temperatureTfin such thatTc3,Tfin ,Tc2. Then the inner ring
will also go superconducting. This is to be understood as the
condensation of the two boson speciesb1,2. But this conden-
sation occurs in the presence of some internal gauge flux.
When the bosonsb1,2 condense in the inner ring, they will do
so in a manner that quantizes the internal gauge flux en-
closed by this inner ring into an integer multiple ofp. If as
assumed the inner radius is a substantial fraction of the outer
radius then the net internal gauge flux will prefer the quan-
tized values ±p rather than be zerossee belowd. However,
configurations of the inner ring that enclose quantized inter-
nal gauge flux of ±p also necessarily contain a physical vor-
tex that is an odd multiple ofhc/2e. With the thickness of
the inner ring being smaller than the physical penetration
depth, most of the physical magnetic flux will escape. There
will still be a small residual physical flux due to the current
in the inner ring associated with the induced vortex. This
residual physical magnetic flux can then be detected.

Note that the sign of the induced physical flux is indepen-
dent of the sign of the initial magnetic field. Furthermore the
effect obtains only if the initial vorticity in the outer ring is
odd. If on the other hand the initial vorticity is even the
associated internal gauge flux is zero, and there will be no
induced physical flux when the inner ring goes supercon-
ducting.

The preceding discussion ignores any effects of instan-
tons. In contrast to a bulk vortex in the superconducting state
the vortices in the setup above have macroscopic cores. The
internal gauge flux is therefore distributed over a region of

macroscopic size. Consequently if instantons are irrelevant at
long scales in the normal state, their rate may be expected to
be small. At any nonzero temperaturesas in the proposed
experimentd there will be a nonzero instanton rate which will
be small for small temperature.

When such instantons are allowed then the internal gauge
flux created in the sample after stepsii d will fluctuate be-
tween the values +p and −p. However, so long as the time
required to form the physical vortex in stepsiii d is much
shorter than the inverse of this instanton rate we expect that
the effect will be seen. The former is the time required to
establish the supercurrent flow around the ring. This is basi-
cally the time for a vortex to tunnel from outside to inside
the ring. This should be a short electronic time scale which is
further reduced by a factor proportional to the ring circum-
ference. Thus the experiment can be carried out under the
conditions that the cooling is slow enough that the system
always stays in equillibrium so that the outcome of the ex-
periment is determined by thermodynamic considerations.
Specifically the outcome will depend on the energy of the
various processes that we estimate below.

A. Energy estimates

In this subsection we take a closer look at the energies
involved with various conceivable outcomes of the process
described above. This will give us some indication of the
conditions under which the experiment has its best chance of
giving a positive result. We will use the simple energy func-
tional in Eq. s4.1d but will now need to keep track of the
kinetic energy terms for the internal gauge field. In principle
we should also account for the existence of many weakly
coupled layers in the three-dimensional sample and the en-
ergy of the external magnetic field. To begin with we will
ignore these latter effects and comment on them later.

The energy per layer in the superconducting state is thus
given by

E = Eb + Ea, s5.1d

Eb =E d2x
K

2
fs¹W u1 − aW − AW d2 + s¹W u2 + aW − AW d2g, s5.2d

Ea =E d2x gs¹W 3 aWd2. s5.3d

HereK is the superfluid stiffness and is roughly of the order
of kBTc. The parameterg is more difficult to estimate in any
reliable manner. A crude estimate is provided by the follow-
ing consideration. Right at the Mott critical point, we may
hope to calculate the energy associated with various configu-
rations of the gauge field in a random-phase approximation
sRPAd approach which integrates out both the spinon and
boson fields. In this calculation the gauge action is domi-
nated by contributions from the spinons28 and is roughly
given by
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Sefffag , JaE d2q dvÎv2 + q2uaWTsqW,vdu2 s5.4d

with J the exchange energy anda the lattice spacingsnot to
be confused with the vector potentiald. For the energy, this
corresponds to an effective couplingg that is singular:gsqd
,Ja/q for small q. At finite temperatureT, this singular
behavior will be cut off at a valueqT,kBT/vF,kBT/Ja. We
thus have the estimate

g <
J2a2

kBT
. s5.5d

We caution, however, that this estimate is very crude.
The energy associated with a supercurrentsthe K termd

competes with the energy associated with the internal gauge
field aW. At the end of the experiment discussed above, the
system has one of two options. It can choose to quantize the
gauge flux in the inner ring atp while paying the cost of a
spontaneous supercurrent through the inner annulus. The
other option is that it prefers to push all the internal gauge
flux out into the region between the two superconducting
annuli thereby creating no supercurrent. If this were to occur
the experiment would give a null result. It is therefore nec-
essary to compare the energies of these two possible out-
comes.

The energy cost of the supercurrent is readily estimated
and is

EJ , sDRidRiS K

Ri
2D , TcSDRi

Ri
D . s5.6d

For a sample withTc,10 K and DRi ,0.1Ri, we haveEJ
,1 K. The energy cost of pushing the field out of the inner
ring is roughly

Ea , g
1

Ro
2 − Ri

2 ,
J2a2

kBTRo
2f

s5.7d

where fpRo
2 is the area between the inner and outer rings. If

we assumef ,0.1, thenEa.1 K for samples withRo,
<1000a. Thus the energy cost per layer of the gauge field
may be expected to dominate for samples of outer diameter
about or smaller than a micrometer. However, in view of the
crudeness of the energy estimates, this should only be taken
as very rough guidance.

It is clearly also advantageous to have several layers so
that the total energy gain in forming the supercurrent is mul-
tiplied by the number of layers and can exceedkBT. Finally
we also mention that if the inner annulus thickness is much
bigger than the physical penetration depth then all of the
physical flux associated with the trapped inner vortex will
stay in the sample. However, the energy cost of this physical
flux is easily seen to be enormous—it overwhelms any ef-
fects due to the internal gauge field. It is for this reason that
we advocate using an inner annulus thinner than the physical
penetration depth to let most of the flux escape.

VI. ALTERNATE THEORETICAL POSSIBILIES

In this section, we wish to sketch some alternate theoret-
ical possibilities that weaken the assumptions made in previ-

ous sections. In particular let us contemplate the situation
that the stability of theUs1d spin liquid state found in the
limit of a large numberN of species of Dirac spinons does
not extend to the physically relevant case ofN=4. In other
words, what if such aUs1d spin liquid is never a stable phase
for any model ofSUs2d spins with short-ranged interactions
in two dimensions? If the instability is due to the relevance
of a monopole operator then it is natural to expect confine-
ment to occur. A natural possible confined state that can re-
sult is simply the conventional Néel antiferromagnet.29

We now show how even in this case it may still be pos-
sible to view the underdoped cuprates as dopedUs1d spin
liquids for the physics in an intermediate window of tem-
peratures. This window will describe the pseudogap regime.
Our arguments will rely crucially on lessons drawn from
recent work18,19 on deconfined quantum criticality. Indeed
Refs. 18 and 19 showed thatunstable gapped Us1d spin liq-
uids may emerge as good descriptions of the physics over a
broad intermediate region of length and time scales close to
certain quantum phase transitions. Here we will argue that in
a similar vein theUs1d spin liquid state with gapless Dirac
spinons considered in this paper may also control the physics
in a broad intermediate regime near certain quantum transi-
tions at zero doping even if it is eventually unstable toward
confinement. We will then discuss the implications for the
doped system.

We now consider the possibility that the spin liquid state
in Figs. 1 and 2 is aZ2 state of the spin system that has nodal
Dirac spinons. We will argue that a large region near the
transition between this state and the conventional Néel state
may be controlled by thesunstabled Us1d spin liquid fixed
point. We recall that theZ2 state also has a gapped “vison”
excitation that carries theZ2 gauge flux. Now consider a
confinement transition out of this state that is obtained by
condensing the vison. Forgapped Z2 spin liquids, such a
transition to a confined valence bond solid state is possible.
We refer the reader to Ref. 19 for a complete discussion. As
discussed there, this transition provides an example of a de-
confined quantum critical point. In particular the critical
theory is that of a critical charged bosonsinterpreted as a
spinon pair fieldd coupled to a fluctuating noncompactUs1d
gauge field.

To study the confinement transition out of theZ2 spin
liquid with gapless nodal spinons, we follow the same gen-
eral idea as in Ref. 19. Such a state is conveniently described
as a theory of Dirac spinons coupled to acompact Us1d
gauge field provided we also condense a singlet pair of
spinons. Such a spinon pair has gauge charge 2 so that when
it condenses, theUs1d gauge theory enters a Higgs phase
whose universal physics is described in terms of a decon-
finedZ2 gauge theory. Schematically consider an action with
the following general structure:

S= Sfer + Sff + Ssp, s6.1d

Sff =E d2x dt ksfspc
Tsyc + H.c.d, s6.2d
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Ssp=E d2x dtus]m − 2iamdfspu2 + ¯ . s6.3d

Herefsp represents the spinon pair field—this is taken to be
invariant under all the global symmetries of the microscopic
spin model. As mentioned above theZ2 spin liquid appears
as the Higgs phase wherefsp is condensed. Now consider a
phase transition wherefsp uncondenses, i.e., gets gapped. To
discuss the low-energy physics of such a phase we simply
drop terms involvingfsp. The result is precisely the theory of
Dirac spinons coupled to a compactUs1d gauge field. In this
section we are assuming that monopoles are relevant at the
Us1d spin liquid fixed point for the physical caseN=4 sN is
the number of Dirac speciesd. The resulting state is expected
to be confined, presumably just the usual Néel state.

It is, however, perfectly possible that monopole events
though relevant at theUs1d spin liquid fixed point are irrel-
evant at the critical fixed point controlling the transition to
the Higgs phasesi.e., theZ2 spin liquidd. Indeed this is pre-
cisely what happens in the situations with gapped spinons
considered in Refs. 18 and 19. A particularly close analog is
provided by the transition between a valence bond solid
paramagnet and a spin gappedZ2 paramagnet. Furthermore
in the present gapless case, the critical fixed point has a
greater number of gapless matter fields than in theUs1d spin
liquid fixed point—increasing the number of gapless matter
fields is expected to increase the scaling dimension of the
monopoles. Thus it appears possible that monopoles are ir-
relevant at the critical fixed point though relevant at theUs1d
spin liquid fixed point. In the following we will assume that
this is the case. This is a weaker assumption than the one
made in previous sections.

Within this weaker assumption, a number of interesting
possibilities arise. First it strongly suggests the possibility of
a direct second-order transition between aZ2 spin liquid with
Dirac spinons and a conventional collinear Néel antiferro-
magnet. The critical point is described by the theory in Eqs.
s6.1d and where the compactness may be ignored at low en-
ergies. This is a deconfined quantum critical point in the
same sense as in Refs. 18 and 19. In particular the flux of the

Us1d gauge field is conserved at the low-energy fixed point.
The assumed renormalization group flows near this critical
fixed point are shown in Fig. 6. As in other situations with
these flows, on approaching the transition from the Néel side,
there will be two diverging length scalesj andjconf with jconf
diverging as a power ofj. Thus jconf is potentially much
bigger thanj near the transition. The first length scalej is
the scale below which the correlations appear to be that of
the critical fixed point. At length scales bigger thanj but
smaller thanjconf, a description in terms of theUs1d spin
liquid with Dirac spinons is appropriate. Finally only on
length scales bigger thanjconf does the system cross over to
the confined Néel state. Thus though unstable theUs1d spin
liquid would swithin the assumptions aboved still describe
the physics in a broad intermediate region near the transition
between the Néel state and aZ2 spin liquid with Dirac
spinonsssee Fig. 7d.

What may we then say about the doped system? It is now
only necessary to assume that doping effectively pushes the
systemtoward the critical point to theZ2 spin liquid. Then it
is natural to expect that the doped version of theUs1d spin
liquid provides a description of the physics in a broad inter-
mediate regime of length and energy scales. This intermedi-
ate regime may possibly describe the pseudogap region in
moderately doped samples.

At present we do not know whichsif eitherd of the two
possibilities for the fate of theUs1d spin liquid discussed
above obtains. We hope that the considerations here will set
the stage for future work on these questions.

VII. CONCLUSION

We have pursued the old idea that the underdoped metal-
lic cuprates are fruitfully viewed as doped nonmagnetic Mott
insulators. We sharpened the meaning of this notion by first
considering the phase diagram as a function of chemical po-
tential rather than hole density. We suggested that the doped
metal may be understood as being close to a chemical poten-
tial tuned quantum transition from a spin liquid Mott insula-
tor to a d-wave superconductor. From this perspective the
actual detailed path followed by the real material as it
evolves from the undoped antiferromagnetic Mott insulator
to the doped metal is not that important in determining many
aspects of the latter. Indeed this path in the real material
appears to be complicated and probably nonuniversalsin that
it varies between different cupratesd. What is universal is the
behavior in a wide window of intermediate temperaturessor
energy scaled in the doped metal. Our suggestion is that this
physics is captured by the universal properties of the Mott
critical point between the spin liquid insulator and the
d-wave superconductor.30

FIG. 6. Possible renormalization groupsRGd flow diagram that
allows for a direct second-order transition between a conventional
collinear Néel magnet, and aZ2 spin liquid with gapless Dirac
spinons.g is the parameter used to tune through the transition.l is
the fugacity of the leading allowed monopole operator. TheUs1d
spin liquid with gapless Dirac spinons appears as an unstable fixed
point that nevertheless controls the physics in a broad intermediate
window of length scales in the ordered side of the phase transition.

FIG. 7. Crossovers as a function of length scale in the Néel state
close to the transition assuming the validity of the RG flows of Fig.
6. There is a broad intermediate regime where the physics is that of
gapless Dirac spinons in aUs1d spin liquid state.
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The particular spin liquid state we considered has gapless
nodal spinons coupled to a fluctuating noncompactUs1d
gauge field. These spinons may be considered “deconfined.”
We emphasize that this term doesnot mean that the spinons
behave as free fermions because they are still strongly
coupled to the fluctuatingUs1d gauge field.7 Rather, the pre-
cise meaning to the notion of deconfinement is provided by
the observation that there is an extra emergent globalstopo-
logicald conservation law in this phase that is not present at
the microscopic level. This conserved quantity is simply the
gauge flux. We discussed the meaning of the gauge flux, and

suggested physical effects that could help detect its existence
in experiments.
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