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Cuprates as dopedU(1) spin liquids
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We explore theoretically the notion that the underdoped cuprates may be viewed adud@psgin liquid
Mott insulators. We pursue a conceptually clear version of this idea that naturally incorporates several aspects
of the phenomenology of the cuprates. We argue that the low-doping region may be fruitfully discussed in
terms of the universal physics associated with a chemical-potential-tuned Mott transition betwé&Brspin
liquid insulator and al-wave superconductor. A precise characterization of the deconfinementli{Ihspin
liquid is provided by the emergence of a conserved gauge flux. This extra conservation law should hold at least
approximately in the underdoped materials. Experiments that could possibly detect this conserved gauge flux
are proposed.
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I. INTRODUCTION The particular nonmagnetic state we consider may be

Superconductivity in the cuprate materials occurs uporflubbed a “deconfined’U(1) spin liquid on the two-
doping Mott insulators. The evolution of the physical prop-dimensional square lattice. The low-energy theory of this
erties from the insulator to the superconductor as a functiogtate consists of nodal linear-dispersing Dirac spinons that
of doping has been extensively studied in the last severa@re coupled to aoncompactiuctuating U(1) gauge field.
years. Many experiments have clearly established the reSuch a spin liquid state has played a central role in a large
evance of the proximity to the Mott state at zero doping fornumber of prior theoretical papers in the fiétd. Recent
understanding phenomena at finite doping where supercomevelopmentshave considerably clarified the conceptual ba-
ductivity appears at low temperature. sis of this state opening the way to the perspective used in

There is considerable theoretical debate, however, on thgis paper. Indeed, the present paper may be viewed as pro-
precise nature of the connection between the undoped Motliding a conceptually clear version of various previous the-

state and the doped superconductor. Experimentally it is welyretical ideas that allows for predictions that are possibly
established that the Mott insulating state at zero doping depgtaple.

velops long-ranged Néel antiferromagnetism. Upon doping
the magnetism disappears rather rapidly and soon thereafter

is replaced by the superconducting ground state. The “nor- g

mal” state above the superconducting transition temperature

is metallic and is commonly referred to as the pseudogap Spin %

state. A key observation is that the pseudogap state and the liquid

superconductor that descends from it both remember the

Mott nature of their parent undoped material but do not re-

member its long-ranged Néel ordeFhis observation is en- K

coded in the old suggestidf that a useful way to think AF| A\ 29

about the underdoped region is to first understand the nature

of the possible honmagnetic Mott states at zero doping—

obtained, for instance, by increasing frustration in the inter-

action between the spins. The behavior of the doped system X

may then possibly be fruitfully viewed as the result of dop-

ing this nonmagnetic Mott state. The idea is that the dopin

effectively frustrates the Néel order so that the system i

pushed across the transition where the Néel order iqsest e ) )
may be taken as a measure of the frustration in the interaction

Flgl. ]%th ticul tic M tbetween the spins in the Mott insulator. AF represents the antifero-
n this paper we pursué a particufar nonmagnetic vio tmagnetically ordered state. Also shown is a spin liquid insulator

State_t_hat is connected to the Ngel state by a_second-ordﬁ{at could potentially be reached by increasing the frustration. The
transition. Furthermore, doplng this nonmagqetm_ state Igad&ath taken by the cuprate materials as a function of dopiigy

to ad-wave superconductor with nodal quasiparticle excita-shown in a thick dash-dotted line. The question marks represent
tions. For these and other reasons discussed below, the pagyions where the physics is not clear at present. Doping the spin
ticular possibility we explore is theoretically very appealing jiquid naturally leads to thé-wave superconduct¢dSQO state. The

(at least to the present authprsVe show that this route to idea behind the spin liquid approach is to regard the superconduct-
superconductivity leads to very unusiiahd hence possibly ing system at nonzera as resulting from doping the spin liquid
unique physical effects that could possibly be detected inthough this is not the path actually taken by the material—this
experiments. “theoretical” path is indicated as a soliced) line above.

W

FIG. 1. Schematic zero-temperature phase diagram showing the
oute between the antiferromagnetic Mott insulator anddthreave
superconductor. The vertical axis is labeled by a parangetédrich
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path in Fig. 3 that is shown schematically. The properties of
the system along this path may be usefully discussed in
terms of the various crossover regimes in Fig. 3. In particular
it is clear that the “normal” state above the superconducting
transition is to be understood directly as the finite-
temperature “quantum critical” region associated with the
Mott transition. Empirically this region corresponds to the
pseudogap regime. Thus our assertion is that the pseudogap
regime is controlled by the unstable zero-temperature fixed
point associated with théMott) transition to a Mott insula-

tor.

w Once we adopt this point of view it is clear that the Mott
Fransition(which controls the pseudogap reginmeed not be

to the antiferromagnetic Mott state realized in the parent ma-
terials. Indeed the physical system takes a path through a

What precisely is meant by the notion that the underdope§®MmPplicated region which may involve charge ordering or
cuprates may be viewed as doped versions of a nonmagnefi/iP& Phases whose relation to other regions of the phase
Mott insulator? To understand this it is instructive to considerdiadram is poorly understood. Rather for the reasons men-
the phase diagram as a function of the chemical potentid{on€d in previous paragraphs it makes sense to explore Mot
rather than the hole doping as shown in Fig. 2. Consider an qnsmons to m_sulators that are non'me_lgn'etl.c. In the bulk of
nonmagnetic Mott state that when doped leads thveave his paper we \{v!II focus on the(1) spin liquid msu!ator and
superconductor. As a function of chemical potential, therd® Mott transition from it to a superconductor induced by
will then be a zero-temperature phase transition where theOPINg. Later we show how many aspects of the resulting
holes first enter the system. For concreteness we will simpi§f1€0ry may still survive provided only certain weaker as-
refer to this as the Mott transition—the corresponding phas€Umptions are satisfiegee Sec. VI
bour!dary is _mark_ed in Fig. 2. The a_ssopiated_ quantum criti- II. MOTT INSULATOR
cal fixed point will control the physics in a finite honzero
range of parameters. The various crossovers expected nearWe begin with a discussion of the Mott insulator. The
such transitions are well known and are shown in Fig. 3Neéel state is the ground state of the nearest-neighbor Heisen-
Sufficiently close to this zero-temperature critical point manyberg antiferromagnet. However, as explained above we will
aspects of the physics will be universal. The regime in whichbe interested in possible nonmagnetic ground states that are
such universal behavior is observed will be limited by “cut- proximate to the Néel state. It is very important to realize
offs” determined by microscopic parameters. In particular wethat there are very few such known candidate nonmagnetic
may expect that the cutoff scale is provided by an energy ofround states. Our options are quite limited as only a few
a fraction ofJ (the exchange energy for the spins in the Mottsuch states have been proposed. One candidate is the dimer-
insulato). We note that this corresponds to a reasonably higtized state described in Ref. 9. Studies of the doped dimerized
temperature scale. state have been pursued with some phenemenological

Now consider an underdoped cuprate material at fixeguccess? Indeed a superconducting state wittwave sym-

dopingx. Upon increasing the temperature this will follow a metry obtains upon doping. However, such a superconductor
also inherits the dimer order of the parent Mott state. In

particular it has a full gap to spin excitatiofet least at low

FIG. 2. Same as in Fig. 1 but as a function of chemical potential
rather than hole doping.

T doping and breaks translation symmetry. Empirically, how-
'-\ ever, there is strong evidence for the presence of gapless spin
! excitations in the superconductor, and for the presence of

i\ translation symmetry in most of the materials studied. The
- F gapless spin-carrying excitations are simply nodal BCS-like
’ d-wave quasiparticles. We are thus naturally led to search for
translation invariant nonmagnetic Mott states that when
- doped will produce a-wave superconductor with nodal qua-
}\i/f](:ntitdspm dSc H siparticles. ' '
Mott insulators that preserve translation and other lattice
FIG. 3. Schematic phase diagram for a doping-induced MotSymmetries are rather exotic beasts—the e)_<citati0n spectra
transition between a spin liquid insulator andiavave supercon-  Of all known theoretical examples are conveniently described
ductor. The bold dot-dashed line is the path taken by a system af terms of fractionalized spin-1/2 “spinon” degrees of free-
hole densityx that has a superconducting ground state. The regioflom. Further, in certain such “spin liquid” states, it is pos-
marked FS represents the fluctuation regime of the superconductirgjble for the spinons to have gapless nodal points with linear
transition. The region marked QC is the quantum critical regiondispersion. Such spin liquids therefore provide ideal starting
associated with the Mott critical point. This region may be identi- points to dope to produce translation-invaridatave super-
fied with the high-temperature pseudogap phase in experiments. conductors with nodal quasiparticles.
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An important physical property of such fractionalized field. The resulting Hamiltonian is conveniently written in
spin liquid Mott insulators is the emergence of extra topo-the “staggered flux” gauge and has the structure
logical structure. Specifically spin liquid states possess extra
topological conservation laws not present in the microscopic H=Hi+H,, 2.3
models in which they arise. This conservation law is conve- .
niently interpreted as the flux of an emergent gauge field. Hf:E [(ixyr +A,r,)e'arr’f:rfr, +H.cl], (2.9
Different classes of spin liquids may be defined depending rr’
on the nature of this conserved gauge flux.

.A simple exgmple of a spin liquid with npdal fermionic Hg= K cos(% X&) +ud e . (2.5)
spinons is provided by a state where there is a consetyed P 'y g
gauge flux. Indeed a theory of the cuprates based on doping
this state was developed and advocated in Refs. 11 and 1blerea, € [0, 2m) is to be regarded as the spatial component
One feature of this theory is that in the superconducting statef a U(1) gauge field, ana, is the corresponding electric
hc/e vortices tend to have lower energy thiacy 2e vortices,  field. Strictly speaking we must take the lint—0,u— o
particularly at low doping. This is because in this route tobut relaxing this condition is not expected to crucially
superconductivity arnc/2e vortex necessarily involves the change the physics. The Hamiltonian must be supplemented
presence OF, gauge flux in its core. There is an energy costwith a Gauss law constrairif -6+f1f,=1 on every lattice
to having theZ, gauge flux which dominates in the low- sjte.
doping limit and raises the energy of tihe/2e vortex. A Specializing to the low-energy limit, this theory méyr-
crucial experimental tekt of such a theory is to directly mally be viewed as a theory of massless Dirac fermions
detect the “vison” excitation that carries this consern®d coupled to a compad(1) gauge field. Here as usual com-
flux, or indirectly to look for signatures of stablec/e  pactness means that point like instantons or monopoles are
vortices:>'* Unfortunately, to date, all such experiments gllowed in the configurations of the gauge field in space-

have been negative:*® time. At each such monopole event the gauge flux changes
This forces us to refine our search further and look forhy an integer multiple of 2. Recent work has resolved a
spin liquid states that do not posséssgauge structuréi.e.,  |ong-standing controversy on the low-energy behavior of

do not have vison excitationsAn immediate candidate for theories of this type, and shown that when the nuntber
such a state is suggested by slave-particle mean-field theoriggrac species is large, there is a stable “deconfined” phase
of spin-1/2 models. Within a fermionic representation of theyhere the instanton fugacity renormalizes to zero at long
spin, a popular mean-field state is thavave or staggered distances and low energie@he case of direct physical in-
flux state. This state is conveniently viewed asl-&ave terest corresponds thi=4) A continuum field theory that
paired state of spinons at 1/2 filling with the following describes this low-energy fixed point is simply given by the

Hamiltonian: action
H== > x(FIf +H.e) + A [ff = (T — D). — . N
<n_/> " rr " e Sfer: d2X dT"Paf’yM(a,u, + Ia;/,)q,a/ + g(fpvkava)\)zi
]
(2.1 (2.6)

Heref, a=T,|, is a two-component fermionic Spinon oN \yhere . j=1,...,4, represent the four species of Dirac
the siter of a two-dimensional square lattice. The hopping e mion !

; - appropriate for each of the two distinct nodes.
X IS a real constant, and the pairidg hasd-wave struc- A precise characterization of the deconfinerféhin this

ture: A =Aq on horizontal bonds and,;, ==Aq on vertical  yhaqe is obtained by noting that the absence of instantons at
bonds. Diagonalization of. the mean-field Hamlltoman givesio energies implies that the gauge flox Ay~ dyay is con-
a low-energy spectrum with four nodal points near which aggrved. This corresponds to an extra global topolodika)

linearly dispersing Dirac spectrum appears. _ _symmetry at the low-energy fixed point that is absent in the
As pointed out in Ref. 17, this mean-field state is equiva-

. . ; -microscopic spin model.
lent under a unitary transformation to the “staggered flux” 1,4 analysis of Ref. 8 shows that stablél) spin liquids
Hamiltonian: !

could exist ind=2 at least for large enougk. Whether this

_ . + stability extends down to the physically relevant case of

Hsi= 2, [lixeer + Age)Trfrr +H.C. (2.2 SU(2) spins is not known at present. This corresponds to the
) caseN=4. However, the largét analysis shows that as a

Here we taker to belong to one sublattice of the square matter of principle there is no reason to dismiss the possibil-
lattice so that’ belongs to the opposite sublattice. This de-ity of such stabléJ(1) spin liquids forSU(2) spins. For most
scribes fermionic spin-1/2 spinons on the square lattice witlof the present paper we will simply assume that this is true,
complex hopping amplitudes such that there is a nonzero fluand explore its consequences. However, detailed numerical
that is staggered from plaquette to plaquette. calculation to settle this issue will certainly be useful and

The crucial question is the fate of this mean-field statewelcome. Toward the end of the pagdar Sec. V) we will
upon including fluctuations. It is well known that the impor- explore the opposite possibility—that the stability of the
tant fluctuations involve coupling to @ompact W1) gauge U(1) spin liquids does not extend ®U(2) spins. We show
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how even in that case it may be possible to retain the kew function of the chemical potential. The phase diagram then
aspects of the theory provided certain weaker assumptiorlsoks as shown in Fig. 3. As the chemical potential is in-
are satisfied. creased, there is a Mott transition from tbél) spin liquid

This d-wave pairedJ(1) spin liquid state is connected to insulator to thed-wave superconductor. The corresponding
a conventional Néel state at ordering vecfar,7) by a  (unstable¢ zero-temperature fixed point controls many as-
second-order transition. This transition will be discussedoects of the physics in the underdoped side. In particular it
elsewhere and is an example of a deconfined quantum critdetermines the universal aspects of the physics of the
cal point1®19In particular there will be two diverging length pseudogap regime and its eventual low-temperature transi-
scales on the ordered side—one characterizing the crossovéon into the superconducting state.
from critical to Néel-ordered spin correlations, and a differ- What is the theory that describes this Mott transition? To
ent longer one associated with the confinement of spinons.understand this we first note that in the insulating state, the

A schematic phase diagram depicting the Néel and spitwo bosonsb, , are gapped. Increasing chemical potential
liguid phases at zero doping is shown in Fig. 1. Now con-decreases this gap. The gap closes at the Mott transition,
sider doping the Mott insulator. As in many previous works,beyond which superconductivity is achieved when both bo-
we assume that the doping moves the system across tlsen species condengeith equal amplitude A continuum
phase boundary where the magnetism is lost. We may thetineory for the Mott transition that describes this condensa-
fruitfully view the doped nonmagnetic state as the result oftion is readily written down. It takes the form

doping theU(1) spin liquid.
S:Ser"'sol"'SoZv (3.1)

Ill. DOPED U(1) SPIN LIQUIDS

What then happens to the(1) spin liquid when it is S, :f b*(& ian e e (V -id)?
doped? One answer to this question is suggested by the L B S P
slave-particle mean-field theory developed in Ref. 5 which

also provides useful mathematical formalismdAvave su- R
perconductor with gapless nodal quasiparticles is obtained. _ « . (V +id)?

To understand this it is first useful to ask about the nature of S2= sz drtido— pu = 2m, b (3.3

the electric-charge-carrying excitations in this doped.) K

spin liquid. Speaking loosely, in the presence of fermionicThe change in the sign of the terms involving the gauge
spin-1/2 electrically neutral spinons, the charge of the dopeg@otential (a,,a) reflects the opposite gauge charges carried
holes may be expected to be associated with spin-0, charggy b, andb,. The physical hole density is simply the total

e bosons which carry gauge charge. This is roughly correct—hoson density given bly;b; +bb,, and thus couples linearly
more precise consideration shows that there are two specigs the chemical potentigk. The fermion parS, is given in

of such bosons which each carry gauge charge +1. These Wi, (2.6) above. The transition occurs wher=0. As dis-

be denotedb,,b,. The presence of two species of bosonscussed in the Introduction a material at fixed dopingill

with gauge charges lbut electric charge and spin 0is  take a path such as that shown in Fig. 3 in this phase dia-
actually common in situations that involve dopibgl) frac- gram.

tionalized phases. For instance, in three-dimensional frac- In writing down this continuum theory we have assumed
tionalized boson insulators with a deconfineldl) gauge that the instantons are irrelevant not just at thel) spin
field such as that considered in Ref. 20, two boson speciefyuid fixed point but also at the critical fixed point describ-
appear quite naturally. Note that a composite of the twdng the Mott transition. This is quite reasonable. The pres-
bosons is gauge invariant, has charge @&d is a spin sin- ence of extra gapless matter fields is only expected to drive
glet. Hence it may be identified with a Cooper pair. Thus thethe instantons more irrelevant. With this assumption the con-
two bosons may each be identified as being one-half of gervation of gauge flux continues to hold right at this critical
Cooper pair. fixed point.

Now consider condensing each of the two species of In Ref. 5, a slave-particle representation with a fermionic
bosons with the same amplitude;)=(b,) # 0. Clearly this  charge-0 spin-1/2 spinon and two species of bosonic charge-
state breaks the physical electromagneticl) symmetry, e spin-0 holons was introduced for thed model. Clearly this
and hence is superconducting. Further, once the bosons corepresentation is ideally suited to discuss the zero-doping
dense the spinons get endowed with electric charge—th&(1) spin liquid and the corresponding doped system. In
structure of the spinon Hamiltonian imposksvave symme-  particular the slave particles are “deconfined” in tHél)
try on this superconducting state. In particular the low-spin liquid and the associated Mott critical point to the doped
energy nodal spinons simply become the nodal quasiparticlesuperconductor in the sense that instantons in the associated
of the superconducting state. This condensate Wit}  U(1) gauge field are irrelevant. As emphasized above this
=(b,) # 0 is actually energetically favored in slave-particle leads to an extra global topological symmetry associated
mean-field calculations on thel model at low temperature Wwith conservation of gauge flux. This conserved gauge flux
in the low-doping range. gives precise meaning to the notion of deconfinement and

As discussed in the Introduction it is instructive to con-justifies the use of the slave particles as the useful degrees of
sider the phase diagram not as a function of dopimyit as  freedom. Indeed the considerations of the previous

)bl, (3.2)
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paragraphs give sharp meaning to the theory of the undephysical currents circulating in a staggered manner in the
doped cuprates developed on the basis of this slave-partictore. This staggered current pattern corresponds to a broken
representation. symmetry phase that apparently rears its head in the vortex
core. The symmetry of translation by one lattice spacing is
broken by the staggering of the current pattern. However, as
IV. MEANING OF GAUGE FLUX the core is finite the symmetry cannot truly be broken, and
there will be a finite tunneling rate between the two kinds of
As the conserved gauge flux plays a crucial role in thiscores.
theory it is interesting to ask what its meaning is and if its |t is clear from the discussion above that the two kinds of
presence can directly be detected in the nonsuperconductingres and the associated staggered patterns correspond to
state just abov@, in underdoped samples. In the following ¢,=+7. We immediately see that the tunneling event be-
we describe some physical effects that should obtain if suclween the two kinds of cores must involve a change @fir2
a deconfinedJ(1) gauge field indeed exists. The key is to the flux of the internal gauge field. Such & 8ux changing
exploit the unusual structure of the/2e vortex that obtains event is precisely the instanton in the internal gauge field.
in the superconducting state. The unusual nature of the vorthus we have the remarkably simple picture of the instanton
tex stems from the fact that the superconducting state is oS just the tunneling event between the two kinds of stag-
tained by condensing separately the two chargmsons 9ered flux cores fohc/2e vortices in the superconducting
b, ». Nevertheless the superconducting state is smoothly corftate-

nected to a regular BC8-wave superconductor. Thus, de- ~ Note that by assumption the superconducting state de-
spite the condensation of chargebosons, the supercon- scends from a “normal” state with deconfinement where the

ductor must supporhc/2e vortices. Such vortex solutions instantons are irrelevant at long scales. However, in the su-

were described by Lee and W&haA simple construction in perconducting state the internal gauge flux associated with
fact gives two apparently distindic/2e vortices—in one the vortex is confined to a flux tube of finite size. The finite

there is a full 2r vortex inb, but not inb, and in the other size of the flux tube implies that instantons can no longer

there is a 2 vortex inb, but not inb,. Note that the Cooper necessarily be ignored. Indeed instantons will also render
pair operator~b;b, winds by 27 in either case. To under- Unstable vortices that haws,=+3a, +5m,... so that there
stand these vortex solutions better and as they will provés in Principle a uniquec/2e vortex. o .
important for what follows, we consider the following simple . 1 hese vortices will presumably start developing integrity

energy functional which captures the basic physics assoc|D the fluctuation regiottsee Fig. 3above the superconduct-
ated with the vortices: ing transition. For materials with small, (i.e., close to the

Mott critical point in Fig. 3, the instanton rate will be small
K_ - - - - (compared to electronic energy scaleSonsequently, even
= | d?x= —&-A)2 5— A2+ - . . , . '
E= f d xz[(V O=a=-A +(Voh+a-A]+ . in the fluctuation region the vortex cores will have staggered
4.1 flux order that fluctuates slowly at this rate. It is natural to
(4. identify this region with the one observed to have an en-
Here 6, , are the phases df; , respectively. The fieldi is ~ hanced Nemnst effect in the experimefits. _
the vector potential of the internbl(1) gauge field, and is The considerations on vortices above enable us to provide

that of the external electromagnetc field. The ellipsis repre-Some meaning to the gauge flux once there is reasonably

sents various other termsuch as the gauge and external well-developed local superconducting ordge., in the fluc-

field kinetic energies, etcthat have not been written out. Let itgatlrc(J)r\\/i:jeegdloE o;b_erlr?(\;v\(ljg? E:"S rrggézn;,v?]izﬁeg::g:esgrggﬂ_
01, wind by 2mmy , on going on a large loop encircling a sivgl on the };Iuc(truatin clar;rs)ical order parameters. Indeed
vortex (m, , are integers Then we must have y 9 P '

such a description was obtained in Ref. 23. Here we will take

27Ty = a+ Pa, (4.2)  aslightly different perspective that will bring out some key
physical aspects.
21y = — b + P (4.3 The fluctuations of the superconducting order parameter

bib} are clearly important in this region. As discussed above
Here ¢, 4 are the fluxes of the gauge fieldsA enclosed by  the vortices in this order parameter will start having integrity
the loop. For arhc/ 2e vortex we must havesa=. This will  in this region. Since as we have seen above the vortices have
happen if my+m,=1. The internal gauge fluxp,=7(m;  slowly fluctuating staggered flux order in their cores it will
—-my) can then be angdd integral multiple ofzr. In general  be necessary to also include an order parameter for the stag-
there will be some energy cost to having nonzero internagered flux fluctuations. Clearly this is just simply given by
gauge flux so the lowest value of the gauge flux is energetin?~ |b,|?~|b,|?. Note that both these order parametéss-
cally preferred. This still leaves the two possibilities,  perconducting and staggered fluxave simple descriptions
=+. These correspond precisely to the two vortices deas bilinears in the underlying bosons.
scribed above. Reference 21 also pointed out that as the am- It is tempting to combine these order parameters into a
plitude of only one of the two bosons will be suppressed insingle three-component vectarwith n* being the pairing
the core of either vortex, the region in the core looks like aorder parameter andf the staggered flux one. In the regime
condensate db, but notb,, or vice versa. Such condensateswhere there is well-developed local order one might imagine
can easily be seen to have true staggered flux order witthat this vector has well-defined magnitude but there are
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fluctuations in its direction. A description in terms of a fluc- 4R,
tuating unit vector field which represents the local ordering _'I
direction may then possibly be appropriate. The energy func- |
tional for this unit vector field will presumably have easy- I
plane anisotropy which favors the superconducting order.
Despite the appeal of such a description it actually hides a
very important piece of physics, and hence is not the full
story. The point is that in the original description in terms of
the boson field$, ,, there is an extra conserved quantity—
namely, the gauge flux—which should be included in the
long-wavelength physics. This extra conservation arises due
to the assumed irrelevance of instantons at the Mott critical ! I
fixed point.(Of course at finite temperatures close to but not AL
quite at the critical point the instanton fugacity will be small AR;
and hence strict conservation of gauge flux will not obtain—
nevertheless it is necessary to include it to meaningfully dis- FIG. 4. Structure of the sample needed for the proposed experi-
cuss physics in the region impacted by the proximity to thisment. The outer annulu# dark blug has the highesT.. The inner
critical point) annulus(in light blue) has a smallefl.. The rest of the samplén
What is this conserved flux in terms of the unit vector brown has even smalleF.
field A? The answer to this is well known: it is the density of
defect configurations known as Skyrmions. Thus in the abbilities for its detection. At nonzero temperatures in the non-
sence of instantons, the skyrmion number in thenodel  superconducting regions, the flux conservation is only ap-
description is conserved. It is important to appreciate thaproximate(as the instanton fugacity is small but nonzero
this is not a property of familiar quantu@(3) o models in  Nevertheless at low enough temperature the conserved flux
two dimensions but is rather closely related to the unconvenwill propagate diffusively over a long range of length and
tional O(3) models studied in Refs. 24—26. The latter aretime scales. Thus there should be an extra diffusive mode
models in which hedgehog configurations of the unit vectotthat is present at low temperatures in the nonsuperconducting
field have been artificially suppressed by hand. In this situastate. Itis, however, not clear how to design a probe that will
tion as in the present problem a gauge theoretic descriptiogouple to this diffusive mode at present.
in terms of CP! fields is superior as it directly brings out the  Alternately the vortex structure described above provides
extra conservation law. a useful way to create and then detect the gauge flux in the
An expression for the conserved gauge flux in terms ononsuperconducting normal state. We will first describe this
the observable order parameter fields is readily written dowrRY ignoring the instantons completely in the normal state.

-
I
|
|
I
I

The gauge magnetic field The effects of instantons will then be discussed.
Consider first a large disk of cuprate material which is
B = 2mpsy, (4.4 such that the doping level changes as a function of the radial
distance from the center as shown in Figs. 4 and 5. The
1. . ~ outermost annulus has the largest dopingThe inner annu-
Peic= 7N - N X YN (4.5 |us has a lower doping leve. The rest of the sample is at
a doping levek; <x, <Xx;. The corresponding transition tem-
We write peraturesT, , 3 Will be such thatT<T,<T. We also

imagine that the thicknessadR,, AR of the outer and inner

h=(sin g cosa,sin sin a,cos) (4.8 annuli are both much smaller than the penetration depth for

so thatn’=cos@ is the staggered flux order parameter, and

is the phase of the superconducting order paraméfinen x
the expression above for the gauge magnetic field is readily %)
manipulated to
1. = I
BZE(VHZX Va). (4.7 x) FaN
It is easy to check that for a vortex with the structure de- . L ]
scribed above the total gauge flux isrfas expected. K
Hi |} 0 r
V. DETECTION OF GAUGE FLUX
AR, AR,

What are some signatures of the gauge flux in experi-
ments? The asymptotic conservation of the gauge flux at the FIG. 5. Variation of the doping level with radial distance in
Mott transition fixed point potentially provides some possi-the sample.
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the physical vector potentidl. The penetration depth of the macroscopic size. Consequently if instantons are irrelevant at
internal gauge field is expected to be small and we expectlong scales in the normal state, their rate may be expected to
it will be smaller thanAR,,AR;. We also imagine that the be small. At any nonzero temperatuf@s in the proposed
radius of this inner annulug, is a substantial fraction of the experimenkthere will be a nonzero instanton rate which will

radiusR, of the outer annulus. . be small for small temperature.
Now consider the following set of operations on such a \when such instantons are allowed then the internal gauge
sample. flux created in the sample after st€p) will fluctuate be-

(i) First cool in a magnetic field to a temperatigsuch  qyeen the values # and —=. However, so long as the time
that T, <Tip <Tcy. The outer ring will then go supercon- oqjired to form the physical vortex in stdfi) is much
ducting while the rest of the sample stays normal. In the e than the inverse of this instanton rate we expect that
presence of the field the outer ring will condense into a stat e effect will be seen. The former is the time required to

in which there is a net vorticity on going around the ring. We . . S .
will be interested in the case where this net vorticity is aneStabIISh t.he supercurrent flow around the fng. This 1S pa3|-
cally the time for a vortex to tunnel from outside to inside

odd multiple of the basidc/2e vortex. If as assumed the ina. This should b h | o le which i
physical penetration depth is much bigger than the thicknes}be ring. This should be a short electronic time scale which is

AR, then the physical magnetic flux enclosed by the ring will urther reduced by a fac'gor proportional to _the ring circum-
not be quantized. ference. Thus the experiment can be carried out under the

(i) Now consider turning off the external magetic field. conditions that the cooling is slow enough that the system
The vortex present in the outer superconducting ring will2lways stays in equillibrium so that the outcome of the ex-
stay(manifested as a small circulating persistent cujrantl ~ Periment is determined by thermodynamic considerations.
will give rise to a small magnetic field. As explained above if SPecifically the outcome will depend on the energy of the
the vorticity is odd, then it must be associated with a flux ofvarious processes that we estimate below.
the internal gauge field that ismt This internal gauge flux
must essgntially all be in the in_ner_“normal” region of the A. Energy estimates
sample with very small penetration into the outer supercon-
ducting ring. It will spread out essentially evenly over the In this subsection we take a closer look at the energies
full inner region. We have thus managed to create a configunvolved with various conceivable outcomes of the process
ration with a nonzero internal gauge flux in the nonsuperconedescribed above. This will give us some indication of the
ducting state. conditions under which the experiment has its best chance of

(iii) How do we detect the presence of this internal gauge@iving a positive result. We will use the simple energy func-
flux? For that imagine now cooling the sample further to ational in Eg. (4.1) but will now need to keep track of the
temperaturdy, such thafl ;< Ty, <T.,. Then the innerring  Kinetic energy terms for the internal gauge field. In principle
will also go superconducting. This is to be understood as th&e should also account for the existence of many weakly
condensation of the two boson spedigs. But this conden- ~ coupled layers in the three-dimensional sample and the en-
sation occurs in the presence of some internal gauge fluergy of the external magnetic field. To begin with we will
When the bosonb, , condense in the inner ring, they will do ignore these latter effects and comment on them later.
so in a manner that quantizes the internal gauge flux en- The energy per layer in the superconducting state is thus
closed by this inner ring into an integer multiple of If as  given by
assumed the inner radius is a substantial fraction of the outer
radius then the net internal gauge flux will prefer the quan- E=E,+E,, (5.1)
tized values #r rather than be zer¢see below. However,
configurations of the inner ring that enclose quantized inter-
nal gauge flux of & also necessarily contain a physical vor- K - - - -
tex that is an odd multiple ofic/2e. With the thickness of Eb:fdzxa[(v 6 -a-A?+(Vo,+a-A?, (5.2
the inner ring being smaller than the physical penetration
depth, most of the physical magnetic flux will escape. There
will still be a small residual physical flux due to the current R
in the inner ring associated with the induced vortex. This Ea:f d?x g(V x &)2. (5.9
residual physical magnetic flux can then be detected.

Note that the sign of the induced physical flux is indepen-
dent of the sign of the initial magnetic field. Furthermore theHereK is the superfluid stiffness and is roughly of the order
effect obtains only if the initial vorticity in the outer ring is of kgT.. The parameteg is more difficult to estimate in any
odd. If on the other hand the initial vorticity is even the reliable manner. A crude estimate is provided by the follow-
associated internal gauge flux is zero, and there will be ning consideration. Right at the Mott critical point, we may
induced physical flux when the inner ring goes superconhope to calculate the energy associated with various configu-
ducting. rations of the gauge field in a random-phase approximation

The preceding discussion ignores any effects of instantRPA) approach which integrates out both the spinon and
tons. In contrast to a bulk vortex in the superconducting statboson fields. In this calculation the gauge action is domi-
the vortices in the setup above have macroscopic cores. Thwated by contributions from the spindhsand is roughly
internal gauge flux is therefore distributed over a region ofgiven by
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—_— ous sections. In particular let us contemplate the situation
Sial ~ Ja f d’g dove® +q7ld'(G,w)|* (5.4  that the stability of theU(1) spin liquid state found in the
limit of a large numbeiN of species of Dirac spinons does
with J the exchange energy amdthe lattice spacingnot to  not extend to the physically relevant caseNosf4. In other
be confused with the vector potenjiaFor the energy, this words, what if such & (1) spin liquid is never a stable phase
corresponds to an effective coupliggthat is singularg(q)  for any model ofSU(2) spins with short-ranged interactions
~Ja/q for small g. At finite temperatureT, this singular  in two dimensions? If the instability is due to the relevance
behavior will be cut off at a valugr~kgT/vg~kgT/Ja. We  of a monopole operator then it is natural to expect confine-

thus have the estimate ment to occur. A natural possible confined state that can re-
1252 sult is simply the conventional Néel antiferromagftet.
~—. (5.5 We now show how even in this case it may still be pos-
keT sible to view the underdoped cuprates as dopéd) spin
We caution, however, that this estimate is very crude. liquids for the physics in an intermediate window of tem-

The energy associated with a supercurrghe K term) peratures. This window will describe the pseudogap regime.
competes with the energy associated with the internal gaugeur arguments will rely crucially on lessons drawn from
field & At the end of the experiment discussed above, théecent work®° on deconfined quantum criticality. Indeed
system has one of two options. It can choose to quantize th@efs. 18 and 19 showed thatstable gapped (1) spin lig-
gauge flux in the inner ring at while paying the cost of a Uuids may emerge as good descriptions of the physics over a
spontaneous supercurrent through the inner annulus. TH¥oad intermediate region of length and time scales close to
other option is that it prefers to push all the internal gaugecertain quantum phase transitions. Here we will argue that in
flux out into the region between the two superconductingg similar vein theU(1) spin liquid state with gapless Dirac
annuli thereby creating no supercurrent. If this were to occuspinons considered in this paper may also control the physics
the experiment would give a null result. It is therefore nec-in a broad intermediate regime near certain quantum transi-
essary to compare the energies of these two possible ouions at zero doping even if it is eventually unstable toward

comes. confinement. We will then discuss the implications for the
The energy cost of the supercurrent is readily estimatedoped system.
and is We now consider the possibility that the spin liquid state

K AR in Figs. 1 and 2 is &, state of the spin system that has nodal
E;~ (ARi)Ri(_z) ~ TC<—i>. (5.6) Dirac spinons. We will argue that a large region near the

R R transition between this state and the conventional Néel state
For a sample withT,~10 K and AR ~0.1R,, we haveE, may be controlled by théunstable¢ U(1) spin liquid fixed

~1 K. The energy cost of pushing the field out of the innerpomt' We recall that the, state also has a gapped “vison”
fing is roughly excitation that carries th&, gauge flux. Now consider a

confinement transition out of this state that is obtained by
£ 1 5.7 condensing the vison. Fayapped 2 spin liquids, such a
a gRﬁ— R keTRY ' transition to a confined valence bond solid state is possible.
We refer the reader to Ref. 19 for a complete discussion. As
wherefnR; is the area between the inner and outer rings. Ifgiscussed there, this transition provides an example of a de-
we assumef~0.1, thenE;>1 K for samples withR,<  confined quantum critical point. In particular the critical
~100Ga. Thus the energy cost per layer of the gauge fielctheory is that of a critical charged bosgimterpreted as a
may be expected to dominate for samples of outer diametejpinon pair fieldl coupled to a fluctuating noncompddt1)
about or smaller than a micrometer. However, in view of thegayge field.
crudeness of the energy estimates, this should only be taken 1o study the confinement transition out of tEe spin
as very rough guidance. liquid with gapless nodal spinons, we follow the same gen-
It is clearly also advantageous to have several layers Sgra| idea as in Ref. 19. Such a state is conveniently described
t.ha.t the total energy gain in forming the supercurrent is mulas a theory of Dirac spinons coupled tocampact W1)
tiplied by the number of layers and can excégd. Finally  gauge field provided we also condense a singlet pair of
we also mention that if the inner annulus thickness is muclypinons. Such a spinon pair has gauge charge 2 so that when
bigger than the physical penetration depth then all of thg; condenses, thé)(1) gauge theory enters a Higgs phase
physical flux associated with the trapped inner vortex will yhose universal physics is described in terms of a decon-

stay in the sample. However, the energy cost of this physic{neq 7, gauge theory. Schematically consider an action with
flux is easily seen to be enormous—it overwhelms any efy,q following general structure:

fects due to the internal gauge field. It is for this reason that
we advocate using an inner annulus thinner than the physical
penetration depth to let most of the flux escape. S=Ser+ Syt S (6.2

VI. ALTERNATE THEORETICAL POSSIBILIES

In this section, we wish to sketch some alternate theoret- ) .
ical possibilities that weaken the assumptions made in previ- SwFf dX d7 k(s ¥ h+ H.C), (6.2
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. i. E—"conf L
Sp= f d* dr(d, - 2ia,) psf?+ -+ . (6.3 Critical . UMSL Neel

FIG. 7. Crossovers as a function of length scale in the Néel state

Here ¢, represents the spinon pair field—this is taken to peclose to the transitiqn assum.ing the yalidity of the RG fI(.)ws. of Fig.
invariant under all the global symmetries of the microscopic®: There is a broad intermediate regime where the physics is that of
spin model. As mentioned above tlg spin liquid appears 9@Pless Dirac spinons in@(1) spin liquid state.
as the Higgs phase whetk,, is condensed. Now consider a
phase transition whergs, uncondenses, i.e., gets gapped. ToU(1) gauge field is conserved at the low-energy fixed point.
discuss the low-energy physics of such a phase we simplyhe assumed renormalization group flows near this critical
drop terms involvingpg, The result is precisely the theory of fixed point are shown in Fig. 6. As in other situations with
Dirac spinons coupled to a compadtl) gauge field. In this these flows, on approaching the transition from the Néel side,
section we are assuming that monopoles are relevant at ttieere will be two diverging length scalgsand & with &
U(1) spin liquid fixed point for the physical cadé=4 (Nis  diverging as a power of. Thus &, is potentially much
the number of Dirac specipsThe resulting state is expected bigger thang near the transition. The first length scdlés
to be confined, presumably just the usual Néel state. the scale below which the correlations appear to be that of
It is, however, perfectly possible that monopole eventghe critical fixed point. At length scales bigger thgrbut
though relevant at the)(1) spin liquid fixed point are irrel- smaller thané.,;, a description in terms of th&J(1) spin
evant at the critical fixed point controlling the transition to liquid with Dirac spinons is appropriate. Finally only on
the Higgs phaséi.e., theZ, spin liquid). Indeed this is pre- length scales bigger thaf,s does the system cross over to
cisely what happens in the situations with gapped spinonthe confined Néel state. Thus though unstablef® spin
considered in Refs. 18 and 19. A particularly close analog isiquid would (within the assumptions aboystill describe
provided by the transition between a valence bond solidhe physics in a broad intermediate region near the transition
paramagnet and a spin gappgsgparamagnet. Furthermore between the Néel state and 2z spin liquid with Dirac
in the present gapless case, the critical fixed point has apinons(see Fig. 7.
greater number of gapless matter fields than inlk®) spin What may we then say about the doped system? It is now
liquid fixed point—increasing the number of gapless matteonly necessary to assume that doping effectively pushes the
fields is expected to increase the scaling dimension of thgystemtowardthe critical point to theZ, spin liquid. Then it
monopoles. Thus it appears possible that monopoles are iis natural to expect that the doped version of tid) spin
relevant at the critical fixed point though relevant at thg) liquid provides a description of the physics in a broad inter-
spin liquid fixed point. In the following we will assume that mediate regime of length and energy scales. This intermedi-
this is the case. This is a weaker assumption than the or@i€ regime may possibly describe the pseudogap region in
made in previous sections. moderately doped samples.
Within this weaker assumption, a number of interesting At present we do not know whictif either) of the two
possibilities arise. First it strongly suggests the possibility ofpossibilities for the fate of th&J(1) spin liquid discussed
a direct second-order transition betweenh,apin liquid with ~ above obtains. We hope that the considerations here will set
Dirac spinons and a conventional collinear Néel antiferrothe stage for future work on these questions.
magnet. The critical point is described by the theory in Egs.
(6.1) and where the compactness may be ignored at low en-
ergies. This is a deconfined quantum critical point in the
same sense as in Refs. 18 and 19. In particular the flux of the \We have pursued the old idea that the underdoped metal-
lic cuprates are fruitfully viewed as doped nonmagnetic Mott
Neel insulators. We sharpened the meaning of this notion by first
considering the phase diagram as a function of chemical po-
tential rather than hole density. We suggested that the doped
metal may be understood as being close to a chemical poten-
| tial tuned quantum transition from a spin liquid Mott insula-
J tor to a d-wave superconductor. From this perspective the
actual detailed path followed by the real material as it
U(1) SL M g Z,SL evolves from the undoped antiferromagnetic Mott insulator
¢ to the doped metal is not that important in determining many
FIG. 6. Possible renormalization grotRG) flow diagram that aspects of the Iatter. Indeed this path in the_regl material
allows for a direct second-order transition between a conventiondfPP€ars to be complicated and probably nonunivensahat
collinear Néel magnet, and 2, spin liquid with gapless Dirac It varies between different cupraje¥Vvhat is universal is the
spinonsg is the parameter used to tune through the transitios. ~ Pehavior in a wide window of intermediate temperatuias
the fugacity of the leading allowed monopole operator. Té)  energy scalein the doped metal. Our suggestion is that this
spin liquid with gapless Dirac spinons appears as an unstable fixe@hysics is captured by the universal properties of the Mott
point that nevertheless controls the physics in a broad intermediateritical point between the spin liquid insulator and the
window of length scales in the ordered side of the phase transitiord-wave superconductg?.

VII. CONCLUSION

A
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The particular spin liquid state we considered has gaplessuggested physical effects that could help detect its existence
nodal spinons coupled to a fluctuating noncompl¢i) in experiments.
gauge field. These spinons may be considered “deconfined.”
We emphasize that this term doest mean that the spinons ACKNOWLEDGMENTS
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