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Diffusion behavior of quasiparticles in two-dimensional disordered systems witls-wave pairing
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We investigate the diffusion behavior of quasiparticles in two-dimensi@ia) disordered systems with
s-wave pairing by using the finite-size scaling analysis and transfer-matrix method. The disorder is introduced
by random site energies, and the spatial fluctuations of the pairing potential due to this randomness are
determined self-consistently. From the size dependence of the Lyapunov exponents, we show that the quasi-
particle state in every channel is localized in such a 2D system. The calculated size dependence of the total
transmittance of quasiparticles through all possible channels, however, shows a different scaling behavior that
suggests the existence of a critical point. The associated critical behavior is studied and the relationship of the
results to the Meissner effect and supercurrent is discussed.

DOI: 10.1103/PhysRevB.71.174514 PACS nun®er74.78—w, 72.15.Rn, 73.20.Jc, 72.80.Ng

I. INTRODUCTION transfer-matrix method, and taking into account the fluctua-

Recently, the study of disorder in two-dimensioi2D) tions of the pairing potential, we investigate the size depen-
superconductors has remained an engaging topic. The effeggnce of the Lyapunov exponent of the most extended qua-
of strong disorder on superconductivity has been of grea$|part|cle state and the total transmittance of quasiparticles
interest for a long timé;3 but the nature of destruction of through all possible channels. The results show that although
superconductivity by disorder and the localization of quasithe most extended quasiparticle is still localized in the ther-
particles is not very clear. On the one hand, at zero temperanodynamic limit, the calculated size dependence of the total
ture Fermi liquid suffers the Cooper instability even at antransmittance of quasiparticles indicates the existence of the
infinitesimal attractive interaction. Provided that the nonsudong-range transparent state. The relationship of the localiza-
perconducting state remains a metal, the Anderson theoretion of quasiparticles in a single channel and the transpar-
guarantees that the nature of the transition from a Fermi ligency of the total transmittance to the Meissner effect and the
uid to ans-wave superconductor is unchanged by the pressupercurrent are discussed.
ence of nonmagnetic impurities or disorde@n the other The paper is organized as follows. In the next section, we
hand, the scaling theory has predicted that an infinitesimaflescribe the basic formalism in our calculations. In Sec. I,
disorder can cause localization of all electron states in 2Dwe present the main results and discuss their physical mean-
and in the thermodynamic limit there is no truly 2D metallic ings. The final section is devoted to a brief summary of the
phase in the nonsuperconducting stalte the coexistence of conclusions.
the superconducting pairing and disorder, a complicated situ-
ation may appear in 2D. It has been pointed out that the
ground state of the system may be an insulator, a metal, or a We consider a 2D square lattice with on-site disorder and
superconductor, determined by an infinite-wavelength an@n-site attractive interaction which is responsible for the
zero-frequency current-current correlation function as a criBdG pairing potential,
terion discussed in Ref. 6. In the presence of strong disorder, + T
the self-consistent calculations based on the Bogoliubov—de H= E €jCij oCij,o + > (toCij oCirjr o+ H. C)
GennegBdG) framework show that the spectral gap persists, b (R,
but the local pairing amplitude develops broad spatial fluc- S vd ¢ oo 1)
tuations and off-diagonal correlations exhibit a substantial o LT
reduction’~° From a finite-size scaling analysis, it is shown ] o )
that ad-wave component of the pairing potential is necessaryVherec; . is the annihilation operator for an electron on site
for the delocalization of quasiparticle states in a 2D disor-i.]) and of sping, with i andj labeling the site position in
dered syster® The effects of the disorder on 2D or thexandy directions, respectivelyy is the nearest-neighbor
quasi-2D s-wave superconductors have also been investihopping integrale;’'s denote the random site energies uni-
gated in experimental researti: formly distributed in[ey—W/2,ey+W/2], with g, being the

In the present paper, we consider a 2D disordered modélverage value of the site energies alidhe strength of dis-
with the sswave pairing to investigate the combined effect of order, andV is the strength of the on-site attractive interac-
disorder and pairing potential on the diffusion properties oftion. Here we set the Fermi level as the energy zero. The
quasiparticles. The disorder is introduced with the randomBdG s-wave pairing potential can be expressed as
ness of site energies. In the BAG framework, we numerically Ni= -V e ) 2)
determine the relationship between the spatial fluctuations of U URRCIE
the pairing potential and the distribution of random site en-where (---) denotes the statistical averaging. With such a
ergies by using self-consistent calculations. With themean-field treatment, one obtains the BdG Hamiltonian

Il. MODEL AND BASIC FORMALISM
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In order to investigate the diffusion behavior of quasipar-
ticles, let us consider a strip with a finite width i in the x We can calculate the Lyapunov exponents of quasiparticle
direction and very long length in they direction. In the site  states by using the transfer-matrix method, in which the or-
representation, a wave function in such a system can be writhonormalization procedure is adopt€dThe Lyapunov ex-

ten as a linear superposition, ponents are the natural logarithms of eigenvalues of the
ML transfer matrix. In the present case, there aveedgenvalues
_ for the transfer matrix, corresponding kb spatial transverse
V)= (Ch A+ biCi _o)|F), 4 Y )

[¥) Ez(a” .0+ i) F) @ channels, two particle-hole channels, and two propagating

directions(forward and backwand The natural logarithms of
where |[F) denotes the Fermi sea in the normal state. Theijgenvalues for the forward and backward waves have oppo-
coefficients in the superposition satisfy the BdG equations sjte signs, so we only keep thévi2positive ones, whose
_ . inverses,&(e,M) with 1=1,2,...,2M, are the localization
(€~ €)@ = to(@u + &m0 + B jer + 8ij-0) + Nyby, (5) lengths of the corresponding channels. According to Ref. 14,
the rescaled localization length is defined as
(& + €y = —to(beqj + bj_gj + by juy + 1 j-0) + Ny,
(6) A(e,M) = &(e,M)IM. (13

wheres is the corresponding quasiparticle energy. For given 1 N€ Properties of the system, such as the superconductiv-

values of{\; } and energy, one can rewrite Eq$5) and(6) ity and the conductance, are closely related to the localiza-
in a transfe”r-matrix form ’ tion behavior of quasiparticles. Let us consider a square sys-

tem of sizeM X M. From Ref. 15, the off-diagonal long-

din & range ordefODLRO) is defined as the probability of finding

s - a Cooper pair at the right edge after it is injected from the

bj+1 -1l 7 @) left edge. If the Cooper pair is injected into thik channel of

a; ! aj_q ’ the left edge, the probability of finding it at the right edge is

h 6 related to the rescaled localization length as

j -1

_}J ! J "
where vector  &j(b)) has i M components P(e,M) = D |a+;iob|;io|2 ex - 2/A,(e,M)], (14)
&), .-+, auj (03),0,...,by;), andT; is a 4M X 4M trans- i=1

fer matrix. From BdG equationd; can be written as wherea,.jo andb;.j are the components of tlth eigenvector

of the transfer matrix. It can be seen that besides the prefac-

0, o -1 ; U
v Al OA tor =M, |a.iob1.i0l?, Which represents the strength of pairing in
- of 0, 0 -1 this channel, the ODLRO has the same scaling behavior as
I N £ (8)  the rescaled localization length. Thus, from thle depen-
p
00 1 0 dence of the largest,(¢,M), we can determine whether the
0 0 0 1 ODLRO in one channel vanishes in the thermodynamic

_ . ~limit. In some cases, the properties are determined by the
where the symbols with a caret dvex M matrices and their  total contribution from all the channels, so it is also interest-

elements are ing to investigate thé&1 dependence of the following dimen-
— sionless quantity:
{0 = Q=" = 81~ S 9) YT e
0 TI\E,
g(s,M):E;[m] (15
1=1 (A
+ €.
{ﬁz}ii':‘@i'u‘ ir-1 7 Girets (10)
R ) ' wherer(e,M) is the transmission coefficient of tia chan-
nel,
~ N
{v}w=—5i,w?“. (1) 7i(e,M) = exf - 2/A,(e,M)].

0

For a strip with lengthL, the coefficients at one end are g(e,M) can be regarded as the probability that a quasiparti-
related to the coefficients at the other end with the transfecle can travel through the system from the left to the right, no
matrices matter what channel is taken.

174514-2



DIFFUSION BEHAVIOR OF QUASIPARTICLES IN.. PHYSICAL REVIEW B 71, 174514(2005

0.354 0.354 100 5

. o
] olB=g=d=g=oc 0 e oo d
0.301 \8:9_0\ S \\agu,él*\ /075 (a)
~e—Y—g— e % e
0.251 1.
104 “Na—A—A pp LA BmAA—A
0.20 0.20- ] A 4 4 4 4 aira,,
< 0.15 < 0.15 =3 ] V\\V*V*vaW\v/v\v_v/v\v —a——c—W=08
= 1. 7V ¥V ¥V v v w_ —e— —0o—W=1
< $o o VYV Vv vvy /
0.104 0.104 S WS OO AT W2
] Wt e oo OO v W
- = 9 . -9 _@—
0.05 w=08 0.05 w=2 : \-\ﬂ:ﬂ_:ﬂ\dﬂ\z‘z * e W=
l\-‘.\.\.::} —8— —a—\W=8
0-00 T M T T T M T M T c'oo T T M T !
04 02 0.0 02 04 -1 0 1 0.1 ' . : : : ,

& i

FIG. 1. Dependence of the self-consistent pairing potentjal
on the on-site energy; for different values ofW. Dashed curves

are the results from the solutions of the BAG equations in a 3(
X 30 square lattice, and the solid curves are fitting ones. The attrac 4.0 (b)
tive interactionV=1.8,. Energy units are set to be the hopping - 7;
integralt. 3.5+
3.0 -
I1l. SCALING BEHAVIOR OF QUASIPARTICLE 25 1
DIFFUSION s 0.001 0 |
, _ , 2 204 A we0s8 M o
The transfer-matrix calculations and the scaling analysi= 15] —v—w=10 /o/
are performed on a very long strip of lendtk5x 10* in the 1 —<—w=20 O b
x direction and with a varying widtM in they direction, for 1094 < wfg-g O’//H/M
which the periodic boundary conditions are applied. For & 0.5 E: wsso © <]
given energye, the 4V X 4M transfer matrix maps the am- 00l ——w=08 5 2 T ETIL e TeY

plitudes of a quasiparticle wave function at the left end of the T
strip to those at the right end. The propagation of quasipar

ticles along the strip is therefore determined by the Lyapunov
exponents and the rescaled localization lengths of the trans- g1 2. Largest rescaled localization length as a function of
fer matrix obtained from the orthgnormallzatlon procedure.Wiolth M. The energye=—0.5 and the average pairing potential

In this procedure, the self-averaging over the randomness

50.2. The curves with filled symbols are obtained by using the

automatically achieved by the large length of the strip. Sinc%Werage pairing potential for all sitémon-self-consistent calcula-

the attractive interactio in the Hamiltonian is a constant yjong “and the curves with empty symbols are for the system with
and the spatial fluctuations of pairing potentiglare caused  gpatially fluctuated pairing potentials obtained from  the self-
by the randomness of site energigs we can first determine  onsistent calculations.
the dependence dh;;} on {g;} with self-consistent calcula-
tions on anM X M square system. The obtained results showFor other properties, the contribution from all possible chan-
that this dependence has a local feature, i.e., the valag of nels, which can be reflected with the dimensionless quantity
is mainly determined bye; on the same site, and only gin Eq.(15), is more relevant. Figure 3 shows thkedepen-
weakly dependent og;/.'s with sites(i’j’) distant from it.  dence ofg for different values of disorder strengtli. It can
The dependence af; on ¢; is shown in Fig. 1. This depen- be seen that in spite of the statistical fluctuations Vior 2,
dence provides a way to determine the valuea,pfin the g is decreased with increasing, while for W<2, it is in-
transfer-matrix calculations of the long strip. creased withM. For anM X M square system in the limit
Figure 2 shows the largest rescaled localization lengtiM — oo, there exists a regioWW<2) in which the transmis-
A(e,M)/M as a function of widthM for givene and various  sion probability of quasiparticles from one edge to the other
values of disorder strengiV. It can be seen that, for all the via all possible channels is nonzero. The size independence
investigated values oW, the largest rescaled localization of g aboutW=2 corresponds to a critical point of a continu-
length decreases almost monotonically with widthif the  ous phase transitioff.
fluctuations are neglected. This means that all the quasipar- The dimensionless quantity for a finite M XM square
ticles are localized even in the case of very srifdliconsis-  system near the critical point can be expressed with a uni-
tent with the scaling theory for 2D systems. versal functiong(M/{) by using the finite-size scaling
The results in Fig. 2 reflect the localization behavior ofansatZ31* We make a further assumption that this scaling
quasiparticles in every channel. This corresponds to th@arameter{ varies as{>|W-W,™ in the vicinity of the
properties that rely on the transport in one or a few channelsritical point, obeying the scaling law in a continuous phase
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FIG. 5. Distribution density of channels as a function of
FIG. 3. Dimensionless quantity as a function of widtiV for ~ Lyapunov exponent. Parameters dte—0.5o, W=0.8o, M=47,

different values oM. Other parameters are the same as those if?nd the pairing potential is G2

Fig. 2.

lengths near the largest one. As a result, the total transmit-

transition. In Fig. 4, we display this scaling function for dif- fance probability via all channely may be increased with
ferent values ofV. We also plot the scaling parameteas a increasingM, although.the largest localization Iength is de-
function of[W-W,| in the inset. From the data, the values of creased, because by increasiMgthe number of available
the exponentr and the critical pointW, are fitted asv channel_s is glso mcreased_. The physics here is that, although
=1.80 andW,=1.8. all quasiparticles are localized due to the random reflections,
Thus, from the scaling behavior of the largest localization@ finite supercurrent can still be supported by the multiple
length and the total transmittance probabititywe are led to Andreev reflections between the local “islands.” Such a
different conclusions on the existence of the critical point. Totheory has already been proposed by Ma and Lee and Kotliar
explore the origin of this difference, in Fig. 5 we display the and Kapitulnik'"-**The results presented here provide a nu-
distribution of Lyapunov exponents for all channels. It is merical version of the theory. ,
interesting to note that, differently from the usual log-normal  From the different scaling behaviors of the largest local-
distribution in disordered system without superconductingZation length and the quantity, one may expect some basic
pairing, there are two plateaus in the distribution correspondtéatures of superconducting and transport properties of such
ing to different regions of Lyapunov exponents. Especially,2D systems in the thermodynamic limit) For the Meissner
for Lyapunov exponents approaching the smallest value, cofffect, the induced diamagnetic supercurrent is within the
responding to the limit of largest localization length, the dis-Penetration depth. If the penetration depth is microscopically
tribution density is saturated at a finite value. This means thatmall, this supercurrent is only within a few channels. Ac-

there exists a finite fraction of channels that have localizatioffording to the localization behavior of quasiparticles in a
single channel, in this case the Meissner effect could disap-

pear due to the disorder. In this sense, the system is not a true

2_ & superconductor even though the local pairing potential is
14, nonzero. However, if the penetration depth is in a macro-
T scopic range, the diamagnetic supercurrent is determined by
0+ the scaling behavior of. In this case the Meissner effect
1 s cannot be suppressed by the disor¢ier.Since the current is
cl 1 _, related to the contribution of all channels in the case of ap-
g o) E“, 1'5 plying a dc bias, one may expect the existence of a supercur-
' % rent(or a normal currentunder the dc bias. In this sense, the
a4 ™ % system may be regarded as a metal and a superconductor.
{08 s Oy i This situation is certainly different from that of the usual 2D
4L B . . disordered systems.
6 -4 2 0 2

log, (M/¢)

IV. CONCLUSION AND DISCUSSION
FIG. 4. Scaling function ofj for a 2D system. Inset: Iqgl as a

function of log,o|W-W,)), where the square symbols represent val- ~ We have investigated the diffusion behavior of quasipar-
ues from the data and the straight line is the fitting function ticles in 2D systems with on-site energy disorder aivadave

o [W-W,|~" with the shown value of. Other parameters are the pairing. By applying the transfer-matrix method and the fi-
same as those in Fig. 2. nite size scaling analysis, it is found that although every
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quasiparticle channel is localized in the thermodynamicscopically small penetration depth, but may exist in the case
limit, the total transmittance probability via all available of macroscopic penetration depth. With applying the dc bias,
channelsg can still be finite in the case of relatively weak the supercurrent exists.

disorder. Numerically, this is due to specific distribution of

!_yapunov_ exponents in th_e channelg in the presence o_f pair- ACKNOWLEDGMENTS
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