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We investigate the diffusion behavior of quasiparticles in two-dimensionals2Dd disordered systems with
s-wave pairing by using the finite-size scaling analysis and transfer-matrix method. The disorder is introduced
by random site energies, and the spatial fluctuations of the pairing potential due to this randomness are
determined self-consistently. From the size dependence of the Lyapunov exponents, we show that the quasi-
particle state in every channel is localized in such a 2D system. The calculated size dependence of the total
transmittance of quasiparticles through all possible channels, however, shows a different scaling behavior that
suggests the existence of a critical point. The associated critical behavior is studied and the relationship of the
results to the Meissner effect and supercurrent is discussed.
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I. INTRODUCTION

Recently, the study of disorder in two-dimensionals2Dd
superconductors has remained an engaging topic. The effect
of strong disorder on superconductivity has been of great
interest for a long time,1–3 but the nature of destruction of
superconductivity by disorder and the localization of quasi-
particles is not very clear. On the one hand, at zero tempera-
ture Fermi liquid suffers the Cooper instability even at an
infinitesimal attractive interaction. Provided that the nonsu-
perconducting state remains a metal, the Anderson theorem
guarantees that the nature of the transition from a Fermi liq-
uid to ans-wave superconductor is unchanged by the pres-
ence of nonmagnetic impurities or disorder.4 On the other
hand, the scaling theory has predicted that an infinitesimal
disorder can cause localization of all electron states in 2D,
and in the thermodynamic limit there is no truly 2D metallic
phase in the nonsuperconducting state.5 In the coexistence of
the superconducting pairing and disorder, a complicated situ-
ation may appear in 2D. It has been pointed out that the
ground state of the system may be an insulator, a metal, or a
superconductor, determined by an infinite-wavelength and
zero-frequency current-current correlation function as a cri-
terion discussed in Ref. 6. In the presence of strong disorder,
the self-consistent calculations based on the Bogoliubov–de
GennessBdGd framework show that the spectral gap persists,
but the local pairing amplitude develops broad spatial fluc-
tuations and off-diagonal correlations exhibit a substantial
reduction.7–9 From a finite-size scaling analysis, it is shown
that ad-wave component of the pairing potential is necessary
for the delocalization of quasiparticle states in a 2D disor-
dered system.10 The effects of the disorder on 2D or
quasi-2D s-wave superconductors have also been investi-
gated in experimental research.11,12

In the present paper, we consider a 2D disordered model
with thes-wave pairing to investigate the combined effect of
disorder and pairing potential on the diffusion properties of
quasiparticles. The disorder is introduced with the random-
ness of site energies. In the BdG framework, we numerically
determine the relationship between the spatial fluctuations of
the pairing potential and the distribution of random site en-
ergies by using self-consistent calculations. With the

transfer-matrix method, and taking into account the fluctua-
tions of the pairing potential, we investigate the size depen-
dence of the Lyapunov exponent of the most extended qua-
siparticle state and the total transmittance of quasiparticles
through all possible channels. The results show that although
the most extended quasiparticle is still localized in the ther-
modynamic limit, the calculated size dependence of the total
transmittance of quasiparticles indicates the existence of the
long-range transparent state. The relationship of the localiza-
tion of quasiparticles in a single channel and the transpar-
ency of the total transmittance to the Meissner effect and the
supercurrent are discussed.

The paper is organized as follows. In the next section, we
describe the basic formalism in our calculations. In Sec. III,
we present the main results and discuss their physical mean-
ings. The final section is devoted to a brief summary of the
conclusions.

II. MODEL AND BASIC FORMALISM

We consider a 2D square lattice with on-site disorder and
on-site attractive interaction which is responsible for the
BdG pairing potential,

H = o
i,j ;s

ei j cij ,s
† cij ,s + o

ki,j ;i8,j8l,s

st0cij ,s
† ci8 j8,s + H . c.d

− o
i,j

Vcij ,↑
† cij ,↓

† cij ,↓cij ,↑, s1d

wherecij ,s is the annihilation operator for an electron on site
si , jd and of spins, with i and j labeling the site position in
thex andy directions, respectively,t0 is the nearest-neighbor
hopping integral,ei j ’s denote the random site energies uni-
formly distributed infe0−W/2 ,e0+W/2g, with e0 being the
average value of the site energies andW the strength of dis-
order, andV is the strength of the on-site attractive interac-
tion. Here we set the Fermi level as the energy zero. The
BdG s-wave pairing potential can be expressed as

li j = − Vkcij ,↑
† cij ,↓

† l, s2d

where k¯l denotes the statistical averaging. With such a
mean-field treatment, one obtains the BdG Hamiltonian
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H = o
i,j ;s

ei j cij ,s
† cij ,s + o

ki,j ;i8,j8l,s

st0cij ,s
† ci8 j8,s + H . c.d

+ o
i,j

sli j cij ,↓cij ,↑ + H . c.d. s3d

In order to investigate the diffusion behavior of quasipar-
ticles, let us consider a strip with a finite width ofM in thex
direction and very long lengthL in they direction. In the site
representation, a wave function in such a system can be writ-
ten as a linear superposition,

uCl = o
i=1

M

o
j=1

L

saijcij ,s
† + bijcij ,−sduFl, s4d

where uFl denotes the Fermi sea in the normal state. The
coefficients in the superposition satisfy the BdG equations

s« − ei jdaij = t0sai+1,j + ai−1,j + ai,j+1 + ai,j−1d + li j
* bij , s5d

s« + ei jdbij = − t0sbi+1,j + bi−1,j + bi,j+1 + bi,j−1d + li jaij ,

s6d

where« is the corresponding quasiparticle energy. For given
values ofhli jj and energy«, one can rewrite Eqs.s5d ands6d
in a transfer-matrix form,

1
aW j+1

bW j+1

aW j

bW j

2 = T̂j1
aW j

bW j

aW j−1

bW j−1

2 , s7d

where vector aW jsbW jd has M components

a1j ,a2j ,… ,aMj sb1j ,b2j ,… ,bMjd, andT̂j is a 4M 34M trans-

fer matrix. From BdG equations,T̂j can be written as

T̂j =1
û1 v̂ − 1̂ 0̂

v̂† û2 0̂ − 1̂

0̂ 0̂ 1̂ 0̂

0̂ 0̂ 0̂ 1̂
2 , s8d

where the symbols with a caret areM 3M matrices and their
elements are

hû1jii8 = di,i8
«l − ei j

t0
− di,i8−1 − di,i8+1, s9d

hû2jii8 = − di,i8
«l + ei j

t0
− di,i8−1 − di,i8+1, s10d

hv̂jii8 = − di,i8
li j

*

t0
. s11d

For a strip with lengthL, the coefficients at one end are
related to the coefficients at the other end with the transfer
matrices

1
aWL

bWL

aWL−1

bWL−1

2 = Sp
j=1

L−1

T̂L−jD1
aW1

bW1

aW0

bW0

2 . s12d

We can calculate the Lyapunov exponents of quasiparticle
states by using the transfer-matrix method, in which the or-
thonormalization procedure is adopted.13 The Lyapunov ex-
ponents are the natural logarithms of eigenvalues of the
transfer matrix. In the present case, there are 4M eigenvalues
for the transfer matrix, corresponding toM spatial transverse
channels, two particle-hole channels, and two propagating
directionssforward and backwardd. The natural logarithms of
eigenvalues for the forward and backward waves have oppo-
site signs, so we only keep the 2M positive ones, whose
inverses,jls« ,Md with l =1,2,… ,2M, are the localization
lengths of the corresponding channels. According to Ref. 14,
the rescaled localization length is defined as

Lls«,Md = jls«,Md/M . s13d

The properties of the system, such as the superconductiv-
ity and the conductance, are closely related to the localiza-
tion behavior of quasiparticles. Let us consider a square sys-
tem of sizeM 3M. From Ref. 15, the off-diagonal long-
range ordersODLROd is defined as the probability of finding
a Cooper pair at the right edge after it is injected from the
left edge. If the Cooper pair is injected into thelth channel of
the left edge, the probability of finding it at the right edge is
related to the rescaled localization length as

Pls«,Md = o
i=1

M

ual;i0bl;i0u2 expf− 2/Lls«,Mdg, s14d

whereal;i0 andbl;i0 are the components of thelth eigenvector
of the transfer matrix. It can be seen that besides the prefac-
tor oi=1

M ual;i0bl;i0u2, which represents the strength of pairing in
this channel, the ODLRO has the same scaling behavior as
the rescaled localization length. Thus, from theM depen-
dence of the largestLls« ,Md, we can determine whether the
ODLRO in one channel vanishes in the thermodynamic
limit. In some cases, the properties are determined by the
total contribution from all the channels, so it is also interest-
ing to investigate theM dependence of the following dimen-
sionless quantity:

gs«,Md = o
l=1

M
1

p
F tls«,Md

1 − tls«,MdG , s15d

wheretls« ,Md is the transmission coefficient of thelth chan-
nel,

tls«,Md = expf− 2/Lls«,Mdg.

gs« ,Md can be regarded as the probability that a quasiparti-
cle can travel through the system from the left to the right, no
matter what channel is taken.
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III. SCALING BEHAVIOR OF QUASIPARTICLE
DIFFUSION

The transfer-matrix calculations and the scaling analysis
are performed on a very long strip of lengthL=53104 in the
x direction and with a varying widthM in they direction, for
which the periodic boundary conditions are applied. For a
given energy«, the 4M 34M transfer matrix maps the am-
plitudes of a quasiparticle wave function at the left end of the
strip to those at the right end. The propagation of quasipar-
ticles along the strip is therefore determined by the Lyapunov
exponents and the rescaled localization lengths of the trans-
fer matrix obtained from the orthonormalization procedure.
In this procedure, the self-averaging over the randomness is
automatically achieved by the large length of the strip. Since
the attractive interactionV in the Hamiltonian is a constant
and the spatial fluctuations of pairing potentialli j are caused
by the randomness of site energiesei j , we can first determine
the dependence ofhli jj on hei jj with self-consistent calcula-
tions on anM 3M square system. The obtained results show
that this dependence has a local feature, i.e., the value ofli j
is mainly determined byei j on the same site, and only
weakly dependent onei8 j8’s with sitessi8 j8d distant from it.
The dependence ofli j on ei j is shown in Fig. 1. This depen-
dence provides a way to determine the values ofli j in the
transfer-matrix calculations of the long strip.

Figure 2 shows the largest rescaled localization length
Ls« ,Md /M as a function of widthM for given« and various
values of disorder strengthW. It can be seen that, for all the
investigated values ofW, the largest rescaled localization
length decreases almost monotonically with widthM if the
fluctuations are neglected. This means that all the quasipar-
ticles are localized even in the case of very smallW, consis-
tent with the scaling theory for 2D systems.

The results in Fig. 2 reflect the localization behavior of
quasiparticles in every channel. This corresponds to the
properties that rely on the transport in one or a few channels.

For other properties, the contribution from all possible chan-
nels, which can be reflected with the dimensionless quantity
g in Eq. s15d, is more relevant. Figure 3 shows theM depen-
dence ofg for different values of disorder strengthW. It can
be seen that in spite of the statistical fluctuations, forW.2,
g is decreased with increasingM, while for W,2, it is in-
creased withM. For anM 3M square system in the limit
M→`, there exists a regionsW,2d in which the transmis-
sion probability of quasiparticles from one edge to the other
via all possible channels is nonzero. The size independence
of g aboutW=2 corresponds to a critical point of a continu-
ous phase transition.16

The dimensionless quantityg for a finite M 3M square
system near the critical point can be expressed with a uni-
versal function gsM /zd by using the finite-size scaling
ansatz.13,14 We make a further assumption that this scaling
parameterz varies asz~ uW−Wcu−n in the vicinity of the
critical point, obeying the scaling law in a continuous phase

FIG. 1. Dependence of the self-consistent pairing potentialli j

on the on-site energyei j for different values ofW. Dashed curves
are the results from the solutions of the BdG equations in a 30
330 square lattice, and the solid curves are fitting ones. The attrac-
tive interactionV=1.8t0. Energy units are set to be the hopping
integral t0.

FIG. 2. Largest rescaled localization length as a function of

width M. The energy«=−0.5 and the average pairing potentiall̄
=0.2. The curves with filled symbols are obtained by using the
average pairing potential for all sitessnon-self-consistent calcula-
tionsd, and the curves with empty symbols are for the system with
spatially fluctuated pairing potentials obtained from the self-
consistent calculations.
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transition. In Fig. 4, we display this scaling function for dif-
ferent values ofW. We also plot the scaling parameterz as a
function of uW−Wcu in the inset. From the data, the values of
the exponentn and the critical pointWc are fitted asn
=1.80 andWc=1.8t0.

Thus, from the scaling behavior of the largest localization
length and the total transmittance probabilityg, we are led to
different conclusions on the existence of the critical point. To
explore the origin of this difference, in Fig. 5 we display the
distribution of Lyapunov exponents for all channels. It is
interesting to note that, differently from the usual log-normal
distribution in disordered system without superconducting
pairing, there are two plateaus in the distribution correspond-
ing to different regions of Lyapunov exponents. Especially,
for Lyapunov exponents approaching the smallest value, cor-
responding to the limit of largest localization length, the dis-
tribution density is saturated at a finite value. This means that
there exists a finite fraction of channels that have localization

lengths near the largest one. As a result, the total transmit-
tance probability via all channelsg may be increased with
increasingM, although the largest localization length is de-
creased, because by increasingM the number of available
channels is also increased. The physics here is that, although
all quasiparticles are localized due to the random reflections,
a finite supercurrent can still be supported by the multiple
Andreev reflections between the local “islands.” Such a
theory has already been proposed by Ma and Lee and Kotliar
and Kapitulnik.17,18 The results presented here provide a nu-
merical version of the theory.

From the different scaling behaviors of the largest local-
ization length and the quantityg, one may expect some basic
features of superconducting and transport properties of such
2D systems in the thermodynamic limit.sid For the Meissner
effect, the induced diamagnetic supercurrent is within the
penetration depth. If the penetration depth is microscopically
small, this supercurrent is only within a few channels. Ac-
cording to the localization behavior of quasiparticles in a
single channel, in this case the Meissner effect could disap-
pear due to the disorder. In this sense, the system is not a true
superconductor even though the local pairing potential is
nonzero. However, if the penetration depth is in a macro-
scopic range, the diamagnetic supercurrent is determined by
the scaling behavior ofg. In this case the Meissner effect
cannot be suppressed by the disorder.sii d Since the current is
related to the contribution of all channels in the case of ap-
plying a dc bias, one may expect the existence of a supercur-
rent sor a normal currentd under the dc bias. In this sense, the
system may be regarded as a metal and a superconductor.
This situation is certainly different from that of the usual 2D
disordered systems.

IV. CONCLUSION AND DISCUSSION

We have investigated the diffusion behavior of quasipar-
ticles in 2D systems with on-site energy disorder ands-wave
pairing. By applying the transfer-matrix method and the fi-
nite size scaling analysis, it is found that although every

FIG. 3. Dimensionless quantityg as a function of widthM for
different values ofW. Other parameters are the same as those in
Fig. 2.

FIG. 4. Scaling function ofg for a 2D system. Inset: log10z as a
function of log10suW−Wcud, where the square symbols represent val-
ues from the data and the straight line is the fitting functionz
~ uW−Wcu−n with the shown value ofn. Other parameters are the
same as those in Fig. 2.

FIG. 5. Distribution density of channels as a function of
Lyapunov exponent. Parameters areE=−0.5t0, W=0.8t0, M =47,
and the pairing potential is 0.2t0.
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quasiparticle channel is localized in the thermodynamic
limit, the total transmittance probability via all available
channelsg can still be finite in the case of relatively weak
disorder. Numerically, this is due to specific distribution of
Lyapunov exponents in the channels in the presence of pair-
ing. Physically, the origin is the multiple Andreev reflections
that connect the localized regions with each other. The finite
scaling ansatz ong gives the corresponding critical point of
the disorder strength and the critical exponent. The results
suggest that the Meissner effect may be absent for micro-

scopically small penetration depth, but may exist in the case
of macroscopic penetration depth. With applying the dc bias,
the supercurrent exists.
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