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Cooperative effects in Josephson junctions in a cavity in the strong coupling regime
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We analyze the behavior of systems of two and three qubits made by Josephson junctions, treated in the two
level approximation, driven by a radiation mode in a cavity. The regime we consider is a strong coupling one
recently experimentally reached for a single junction. Rabi oscillations are obtained with the frequency pro-
portional to integer order Bessel functions in the limit of a large photon number, similarly to the case of the
single qubit. A selection rule is derived for the appearance of Rabi oscillations. A quantum amplifier built with
a large number of Josephson junctions in a cavity in the strong coupling regime is also described.
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I. INTRODUCTION the square of the amplitudes of the levels involved in the
Quantum computatiod3 promises a large improvement Rabi oscillations is a Poisson distribution. Rabi oscillations
on the ability to execute demanding algorithms due to thé''S€ Ifrom the crossing of the energy levels of the _D|ckef
large parallelism involved. Presently, it is not yet clearly un-model and appear .between Macroscopic. superposition o
derstood how the hardware for a quantum computer shoulfharge statetknown in the current literature as Schrédinger
be realized. Several proposal relying, e.g., on ion frapsl  Cat States
NMRS have been devised but solid state devices seem to be [N the Dicke model, two-level systems are coupled by the
very promising for this aim. Josephson junctions have beeﬁad'at'on field. The same can happen with Josephson

N e :
largely used both experimentally and theoretically for this!UNCtions:" So, our aim is to see how collective effects can
goals’ emerge when more Josephson junctions are coupled by a

In a couple of recent experiments Nakamura, Pashkin, anfc?]avny field. We will prove that Rabi oscillations also emerge

) . . this case with the Rabi frequencies proportional to integer
9
Tsaf and Chioresciet al” were able to display the behavior order Bessel functions. A selection rule arises for situations

qfasingle_z Josgph_spnjunction strongly coupl_ed to a radiatiot) ity more gubits as certain transitions are not allowed. In
field and its suitability for quantum computation. The strongy, i this means that the transition to some qubit configura-
coupling regime has the advantage that can be theoreticalljons cannot be realized. Then, states involved in the Rabi
described by a two-level mod&:™ oscillations are always macroscopic superpositions of en-

Validity of the two-level model to describe the behavior tangled states between the radiation field, which can have a
of Josephson junctions has been proved by Stroud angrge number of photons, and the junctions.
Al-Saidi*21® They considered the case of weak coupling Finally, we extend the analysis to the thermodynamic
where the so-called rotating wave approximation doesimit showing that, in this case, a large number of Josephson
applyl* They also proved that, in some cases, a correctiofunctions coupled by a cavity field in the strong coupling
term to the model is needed while collapse and revival ofegime can be used to amplify vacuum fluctuations of the
Rabi oscillations is observed as also happens to similar modield to a large macroscopic field, assuming all the junctions
els in quantum optic®1® Similarities between solid state in their ground state. Decoherence effects may be prominent
devices and quantum optics systems are becoming increaisthis case, as we will discuss. This effect defines a quantum
ingly meaningfult’ amplifier (QAMP) as proposed by us in the literatufe?!:22

The model used by Stroud and Al-Saidi cannot be applied The paper is structured as follows. In Sec. Il we introduce
directly to the experiments of Nakamura’s group. Rather, wéhe model describing a number of Josephson junctions inter-
need to use the Dicke mod@lwithout any other approxima- acting through a cavity field. In Sec. Il we analyze explicitly
tions than the numbers of radiation modes and two-level syghe cases for one, two, and three coupled qubits obtaining the
tems. A complete application of this kind has been given byRabi frequencies and proving, in the limit of a large number
Ref. 10 even if a study of this model in the strong couplingof photons, the proportionality with integer order Bessel
regime was started by Cohen-Tannoudji and his gidfgna  functions. In Sec. IV we discuss the thermodynamic limit,
single radiation mode and a two-level atom. In this case althat is, we see the physics of a large number of Josephson
the terms in the interaction part of the Hamiltonian must bgunctions in a cavity proving that an amplification of the
retained. vacuum fluctuations of the radiation field in the cavity is

In our papet’ we were able to obtain the equations for the obtained. This device we term QAMP. Finally, in Sec. V
probability amplitudes in the strong coupling regime givenconclusions are given.
the proper set of states. Two bands of levels were obtained
and Fi)ota intraband and interband transitions were shown. In Il. DESCRIPTION OF THE MODEL
the limit of a large number of photons in the cavity, the Rabi The model we should consider for a single Josephson
frequency is proportional to the integer number Bessel funcjunction, treated in the two-level approximation, in a cavity
tions. We will recover this result below. Rather interestingly, field is (here and in the followindi=1)

1098-0121/2005/417)/1745137)/$23.00 174513-1 ©2005 The American Physical Society



MARCO FRASCA PHYSICAL REVIEW B71, 174513(2005

H=AS,+wa'a+2gS(a’ +a), (1) 49’
En‘sx =Nw —

(5

w

A being the separation between the ground and the first ex- . .
cited state in a Cooper pa#:3 o the frequency of the field and we observe a degeneracy between positive and negative

in the cavity,g the coupling between the junction and the values of the spin components. Then we can introduce the

. T . o unitary evolution operator

cavity, a' and a creation and annihilation operators, and

S..S,=0,/2,0,/2 with o,,0, Pauli matrices. Uet) = >, e‘i[”“"<492§"”)]‘|[n];8,S<><[n];83<|- (6)
Equation() is just the Dicke model that we have special- NS

ized to a single qubit with Pauli matrices. This generalize

immediately to any number of qubits putting We can apply this unitary operator to the initial Hamiltonian

(1) and the problem is reduced to the Hamiltonian

N o= i[Mo—(4g2S2 ) Ity no—(4g%S, 2l w) It :
Lo, -3 3 dnr et S ss)
2is N
X([n];S SHIM];S SISIN]; S Sy (7)
N
SZ:EE Oz (2)  The matrix elements can be evaluated by noting tBat
2is =(S,—-S))/2i and one gets

N being the number of qubits. ([ml: S SISl S S0

One may think that Eq1) differs from the Hamiltonian
currently used to describe Josephson junction qubits in
experiment$® but these Hamiltonians are equivalent as we / — .
can interchanger, and o, with the unitary transformation = 05,5-1VS(S+1) - S(S - DMy, (8)
€™y and what one gets, in the analysis in the strong cou-

pling regime, is a shift to the energy levels. Thus both Hamil-Where we have pif

1 _
= 5<5sx,s;+1\/s<s+ 1) - S(S, + DMy,

tonians give rise to the same physics and we can safely work ME = <m|er+<29/w)(a—a*)|n>
with the Dicke model as currently known.

In order to work out the analysis of the model in the _ /n_!e_2g2,w2<+§>m_nl_m_n<4_gz> )
strong coupling regime proper to the experiments carried out m! T N\ w?

so far, we follow the same approach used in Ref. 10. We split
the Hamiltonian(1) as LM™" being Laguerre polynomials.
Now the Hamiltonian(7) can be split into two parts to

_ ot t
Ho=wa'a+2gS(a’ +a), give a diagonal part

~ 1 i [
H;=AS, ) Ho= 2> EAMn(e"[492(25x‘1)’“’]‘v’5(8+ D)-S(&-1)
n.S
Hy being the unperturbed Hamiltonian akg the perturba- X|[n]; S SH[n];S S~ 1
tion. The unperturbed paH, can be immediately diagonal- o, ,
ized by the eigenstates, as can be directly verified, tre&ing - gl @Salollyg(S+ 1) - S(S + 1)|[n];S Sy
as ac number, X([n];S;Sc+1)), (10)
. — a2g/w)S(a-a')

[n];SS)=¢ MIS S @ having set
S, being the component of the spin along thaxis chosen as M. = ME = g 20707 (4_g2> (12)
the axis of quantizationS, S,) the corresponding eigenstates, " " "\ w? )

anda'a|ny=n|n) andn=0,1,2,... arinteger. Energy eigen-
values are given by and an off-diagonal part

Hi= X %Ae‘i““m)‘"‘(e‘i[492<25x'1>’w1‘M;n\f’S(S+ 1) - S(Sc- DI[m: S Sy([nl;S S
m,n,S¢

m#n

— 1] - ISVl S+ 1) — S(S,+ 1)|[m]; S SHIN]; S S+ 1)). (12
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In order to obtain the equations for the probability ampli- 1 1 1 i 11
tudes, we diagonalize Hamiltonigm0) obtaining the energy In;sy = _~< [n];5.~ ‘> T on ‘ [”]i‘a‘>) (16)
) ) : V2 22 2s, 2'2
eigenvalues, the eigenstates, and the geometrical part of the
phase as we can have time-dependent eigenstates, in agréeat are not eigenstates of the spin project®nThen, we
ment to the general approach outlined in Refs. 10 and 2%an write the equation for the probability amplitudes by
Then, by interaction picture, the amplitude equations are oblooking for a time-dependent solution in the form
tained using Hamiltonial12). _
In the analysis we pursue, in the following we will see )y =2 e Fkslo (]K; s (17)
that Hamiltonian(10) has eigenvalues AM,, havings, the ks
same values of the spin projecti§pand one can have tran- where no contribution enters due to geometrical phases as

sitions between the eigenstates only if the selection rulgygmiitonian (14) is time-independent. The Schrédinger
As,=0, £1 holds. We recognize that each legetevelops a  gquation takes the form

band of levels numbered by integer so the selection rule
provides intrabands,=S,) and interbands,#S,) permitted
transitions at resonance, respectively.

In the limit of a large number of photons we can show, in
all cases below, that the Rabi frequencies are proportional to XEMmn+ $Mp)Cns (1) (18)
integer order Bessel functions. This can be accomplished u
ing the relatiof®

. A ) o
iICmz (t)y= _2 7 i[Eng Emz, r(-molt
S 22

?Ne recognize the resonance conditions

— G Ens,~Emz +(N-mMw=0 (19
Jo(2VnY) =e (H) Lak) (13 with As,=0 for intraband transitions antis,=+1 for inter-
band transitions as said above. These resonance conditions
that holds in the limit ofn going to infinity. correspond to crossing of the energy levels of the Dicke
model. Energy levels are given ¥y
IIl. ANALYSIS OF THE MODEL 43592
Ens =Nw = +sAM, (20

We apply the procedure outlined in the previous section to )

one, two, and three qubits to see in detail the physics of th$¥here we can recognize the band structure and the degen
model. Tgme one qubit case has begn already discussed eracy fors(:+l that is removed by the last term. Then reso-
literature® but we present it here again to show the way our -2 \ o

nance conditions can be straightforwardly interpreted as

method works to make this paper self-contained. X . .
crossings of energy levels. Such crossings produce Rabi os-
) cillations as experimentally observed.
A. One qubit Finally, let us check the Rabi frequencies for the single

In the one qubit case we ha\&:%,—% being 5:%_ The Qqubit case. Itis not difficult to realize that we have for intra-

diagonal part of the Hamiltonian will be band transition&s,=0 from Eq.(18), assuming the rotating
wave approximation due to the resonant terms,
~ 1 11 1 1 1 1
Ho=2, =AM nl;=, = n;=,—=|-|[nl;z,—- = 1 - 2
0 % 2i ”( (] 2 2><[ ] 2 2‘ ‘[ ] 2 2> R1=§A(M;‘m+ an)=A<m cos}{zg(a—aT)] n>
11
><<[n];5,5‘>. (14) (21)
and for interband transitiords =+1
that is time-independent in this case. Similarly, we have the 1 29
off-diagonal part RQZEA(M;W,—M;W‘):A m|sinhl —(a-a") ||n).
w
~ 1 11 1 1 22
Hi= X —,Ae"('“’“)”’t(Mr‘Tm [m];—,—><[n];-,——‘ 22
mn 2l 22 2 2 Now we can use Eq9) to show that transitions with states
m#n differing by an odd number of photonsj=n+2N+1, are
1 1 11 permitted for intraband transitions and an even number of
- Mun [m];é"i [n];z 5 > (15)  photons are involvedmn=n+2N, in interband transition¥’
Using Sterling formula and Eq13) one gets, in the limit of

This operator is Hermitian as can be verified using the facFOCk states with a large number of photons,

that sum indexes are dummy. (4\’ﬁg>

Hamiltonian (14) can be immediately diagonalized with Ri= Al —— (23)
eigenvaluesE,s =sAM,, s,=3,~3 corresponding to the @
eigenstates and

174513-3



MARCO FRASCA PHYSICAL REVIEW B71, 174513(2005

—-
4N .. A - i _ _
Ri ~ AJZN(\_Q), (24) 'Ck,l(t) = E Z(|\/|kn_|_ M;n)e i[En1—Ex 1+(n k)w]tcn,l(t)
n

w

completely in agreement with experimental results by Naka-
mura, Pashkin, and Ts&iAs also experimentally observed,

crossing atm=n can happen, belonging to interband transi-
tions with N=0. Further details for a single qubit case are A _ .
given in Ref. 10. iCio(t) = > V’ZE(M;n— M;, e Brrdeorn-alte (t)

n

A )
+ \'EE(Mkn _ M;n)el[Ek!1+4g2/w_(n_k)w]tcnyo(t) ,

B. Two qubits + e_i[Ekf1+492/“’+(n_k)w]tCn,—l(t),
For the case of two qubits one has
. A )
T T iEa() =X = = (Migy + MyJe St malie, )
Ho= 2 E\szAMn(e‘““gz’ﬂ’)ﬂ[n];1,1><[n];1,o| KT g 2 nt

n

J_A - +\ A +40% w—(n-K)
+ U’ [n]:1,00([n]; 1, - 1 - 49%X|[n];1,0) + VZE(Mkn_ Mgl Bk-rraleomelic (1)

X([n];1,1 - e 4N n];1, - 1(n];1,0). (25 (29)

Now the Hamiltonian shows time-dependence and it is nowhere we can recognize again the effect of the selection rules
straightforward to interpret the resonance conditions as erds,=0,+1 on the permitted transitions, originating from the
ergy level crossings. On the same ground one has resonance conditions
- ) 1 ) Ens1— Ek’il+(n_k)w:0,
Hy= 3 e et 2A(e 0 M Jm]: 1, I([n]; 1,0

m,n 492
mn Eqart — —(N-Kw=0 (30)
w
i(402w)th1— . 1 —
Te Mad[ml; 1, 0X[n]: 1, - 1 for intraband and interband transitions, respectively, giving
- gy ITml;1,00(n];1, 1 rise to Rabi oscillations in the two-qubit system. Again, we
o, . can interpret these resonance conditions as originating from
- e lotmE Im];1,- 1([n];1,0). (26)  the crossings of the energy levels for the Dicke model
One can immediately diagonalize Hamiltonié2b) obtain- _ 43§g2
ing eigenvaluesEnYSX:s,(AMn with s,=1,0,-1. Thecorre- Ens =Nw - © +SAM, (3D

sponding eigenvectors are . )
that is degenerate with respectgge +1 but the degeneracy

is removed by the last term. The Rabi frequencies can be
computed from Eq929) with the rotating wave approxima-
tion imposing the resonance conditiof80) and are given

_ i e‘i(492"°)t|[n]; 1,-1), by, for intraband transitions,

2 R2=Ry (32)

1 1
In;Lty = Ee"(“gz"“)‘I[n];l,l) +—=[[n];1,0)
| V2

and for interband transitions

1 1
n;0,t) = —=[[n]; 1, + —=[[n];1,- D, e
\12 \’2 RZ = \”2721- (33)

1 1 These frequencies, in the limit of a large number of photons,
In;— 1,t>:——_e‘i(492"”)t|[n];1,1>+7|[n];1,0> display dependence on the integer order Bessel functions,
2 V2 being proportional to?,; andR] as in the single qubit case.
1 A cooperative effect arises from the coherent behavior of
+—e 149790 n]:1,- 1) (27)  both the junctions entering entangled states and producing
2 Rabi oscillations.
Thus the main conclusion of this section is that the two
qubits act collectively producing Rabi oscillations, exactly as
in the case of a single qubit. Such oscillations appear be-

that do not give any geometrical phase(asl,t|id/n;1,t)
=(n;0,tlig|n;0,ty=(n;-1,t|ig|n;-1,t)=0. Thus we can put

again tween entangled states to be considered macroscopic.
() =2 e Fusleg (DS, t) (28) C. Three qubits
K,
> In order to gain further insight into the physics of Joseph-
and obtain the equations for the amplitudes son junctions in this case, we analyze a system with three
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qubits. This case is rather different from the preceding ones, 1

asH, depends on time and we have to apply a theorem for B(s) = 1 (37)
strong coupling that imposes formally the adiabatic theorem \/Si —

at the leading ordé? So there is a geometrical contribution 1653 64% "4

to the phases. This does not make it straightforward to inter;
pret the resonance conditions as energy level crossings.
have

nds,=2,%,-3,-3. As in the other cases, we get entangled
acroscopic states. In this case we have geometrical phases

as given by
~ 1 Coo 33 31 3 27
H,= ZAM —i(8g“/w)t 31’3 == ;_'_‘ 3-—+ —
0 gzi ”(e V8| Inkg o ANk 2 2s 165,
s = 3 27 1 (38)
- 31 @ St —st——t+ =
v2|:5,5 ) i3~ 3| - o3 2 2 165 645} 4
33 . 1 3 3 that reduces to &Flo for s=3, -2 and @ w for
x( o | + e B2 -2 N min-5 | sedoh
For the givenHO and Hl we seek a solution like
§ } §1 _ —|(892/w)t, § _§ . L.
2|5 2><[ I 2‘ eIk 3 1)) = X e Erste sl (D]k; s, (39)
ks
x\ [n]; g %‘) (34 yielding the equations for the amplitudes

Gz (1) = 2 €7 (Fns Emsmmotis s A p(s ) B(3,)
and NS

X[a($8IMpp* a8 SIMpplCas () (40)

Hl_ 2 gi(n- m)wt_A< -i(8g%w)t \/é mn [m];= 3 3 having set
mn 2’ 2
3 3 3 3 3
m#n —+—(1 )( ) 41
- . . a(sxsx)sxstgX4<4Ei (41)
[n] * M| [ml:5 2’2 [n]’E’_ 2 Also in this case, it is not difficult to verify that the selection
31 33 rulesAs,=0, =1 hold corresponding to intrabarg=s,) and
_ei(figz/o,)t\@\/m1 | [m; —,—> [n];-,—‘ interband (s, #7S,) transitions, respectively, with the reso-
22 22 nance conditions
(80wt 3 1 3 3 L _ e
1 31 The Rabi frequencies can be computed from E46) with
oMt [m] n];=,= the rotating wave approximation imposing the resonance
mn ’ .y . ..
2" 2 22 conditions(42) and can be given explicitly as follows
3 3 3 1
-i(8g%o)t, [ 22 Sz 3
NN BM g | []; 2> 2><[n], 2’ 2 ‘) R3j2,32= R-3/2,-312= 5731,
(35

1
=R_1/0 _1/0=— 43
It is straightforward to diagonalize Hamiltoni@B4) with the Rz 2= Revz-1r2 ZR1 (43

eigenstates . .
9 for intraband transitions and

3
. _ e-iBgwt 33 R =R i —R1,
|n,sx,t)—,8(sx){ 50 23)(‘[n] > 8212 Rar = 5 R
31 3 3 1 =
k55 ) +ilse o) |55 _ _\3,
[n] > (SX 4&)‘[ : 2 2> R-312,-112= R-112,-312= ERla
3 3 33
—|(89 w)t\/ _ = i ,
(1 sf) 2’ 2>] (36 Ris2,-112= R-12,112= R1 (44)
for interband transitions. Also, for three qubit the Rabi fre-
being quencies are proportional ®; andR4, so in the limit of a
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large number of photons one has that these frequencies atfge largeN limit this represents a classical state of the radia-
given by integer order Bessel functions. This rule applies tdion field?® and we see that we have amplified quantum fluc-
all cases. tuations of the ground state of the radiation field to a classi-
As also seen for one and two qubits we can see again eal level. The interesting aspect of this already known result
collective effect. The behavior of the three qubits is coherentis that it can be practically realized through Josephson junc-
producing entangled states with Rabi oscillations. Apart fromtions that lend themselves to realize this kind of classical
numerical factors, the Rabi frequencies are the same as in tlstate out of a fully quantum initial state. One realizes a
single qubit case. It would be interesting to extend the analyQAMP (quantum amplifier’*?? The device can be realized

sis to higher spins to see if this is a rule. without too much care about taking just the linNt—o or
N—oo, V—oo, V being the volume of the cavity, and/V
IV. THERMODYNAMIC LIMIT: QUANTUM AMPLIFIER =const as we are in the strong coupling limit.

This represents a very peculiar collective effect of a large
To analyze this case, we limit the study to the leadingnumber of Josephson junctions in a cavity in the strong cou-
order as higher orders become increasingly less important gging regime, the same regime devised in the experiments of
the number of Josephson junctions incre@d&his permits  Nakamura’s group’ for a single qubit.
us to write down immediately the unitary evolution being
given byHg in Eqg. (6). It is important to emphasize that, in V. DISCUSSION AND CONCLUSIONS

order to unveil this effect, we should avoid random phases ) . o
putting all the junctions in the same state. This makes the The above discussed collective effects can have their limit

case somewhat different from above but shows again a col the appearance of decoherence. The experiments of Naka-
lective effect possible to be observed. mura’s group display the decay of Rabi oscillation but the

Now let us assume that the field in the cavity is in thed€cay time can be long enough to permit quantum computa-
ground state andll the Josephson junctions are in their 1ON: Neither the nature of this decoherence effect nor the

lower stateexternally imposed. Unitary evolution gives way it scales with the number of Josephson junctions are
known as far as we know. It should be expected that the

=S gritnogNrot N N same should happen for the QAMP producing a classical

(1) = . € [nl; 2" 2 radiation field. The origin of decoherence on Josephson junc-

tions is to be understood but it could not be excluded that
% e_Nzgzlw2< @)n 1 (45) revival and collapse effects of Rabi oscillations may be at
Jnt’ work as happens in the weak coupling regithé?
We have shown how, in the strong coupling limit as de-
So, leaving aside the contributions of the Josephson juncsised by Nakamura’s group, several collective effects such as
tions, one is left with Rabi oscillations and quantum amplification could appear in
+ ) o2 Josephson junctions coupled by a radiation field. Rabi oscil-
INX(D) = g (Nowaa) Ry grino-gion Iationps, in trjle limit of a I:Erge nﬁmber of photons, have fre-
" qguencies proportional to integer order Bessel functions and a
N2 Ng\" 1 selection rule applies limiting transitions. These effects could
xe o TEW' (46) be useful for applications in quantum computation or to use
v a large number of Josephson junctions to produce a laser
that is, a coherent state with a parameter proportiondl o field.

w
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