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We analyze the behavior of systems of two and three qubits made by Josephson junctions, treated in the two
level approximation, driven by a radiation mode in a cavity. The regime we consider is a strong coupling one
recently experimentally reached for a single junction. Rabi oscillations are obtained with the frequency pro-
portional to integer order Bessel functions in the limit of a large photon number, similarly to the case of the
single qubit. A selection rule is derived for the appearance of Rabi oscillations. A quantum amplifier built with
a large number of Josephson junctions in a cavity in the strong coupling regime is also described.
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I. INTRODUCTION

Quantum computation1–3 promises a large improvement
on the ability to execute demanding algorithms due to the
large parallelism involved. Presently, it is not yet clearly un-
derstood how the hardware for a quantum computer should
be realized. Several proposal relying, e.g., on ion traps4 and
NMR5 have been devised but solid state devices seem to be
very promising for this aim. Josephson junctions have been
largely used both experimentally and theoretically for this
goal.6,7

In a couple of recent experiments Nakamura, Pashkin, and
Tsai8 and Chiorescuet al.9 were able to display the behavior
of a single Josephson junction strongly coupled to a radiation
field and its suitability for quantum computation. The strong
coupling regime has the advantage that can be theoretically
described by a two-level model.10,11

Validity of the two-level model to describe the behavior
of Josephson junctions has been proved by Stroud and
Al-Saidi.12,13 They considered the case of weak coupling
where the so-called rotating wave approximation does
apply.14 They also proved that, in some cases, a correction
term to the model is needed while collapse and revival of
Rabi oscillations is observed as also happens to similar mod-
els in quantum optics.15,16 Similarities between solid state
devices and quantum optics systems are becoming increas-
ingly meaningful.17

The model used by Stroud and Al-Saidi cannot be applied
directly to the experiments of Nakamura’s group. Rather, we
need to use the Dicke model18 without any other approxima-
tions than the numbers of radiation modes and two-level sys-
tems. A complete application of this kind has been given by
Ref. 10 even if a study of this model in the strong coupling
regime was started by Cohen-Tannoudji and his group19 for a
single radiation mode and a two-level atom. In this case all
the terms in the interaction part of the Hamiltonian must be
retained.

In our paper10 we were able to obtain the equations for the
probability amplitudes in the strong coupling regime given
the proper set of states. Two bands of levels were obtained
and both intraband and interband transitions were shown. In
the limit of a large number of photons in the cavity, the Rabi
frequency is proportional to the integer number Bessel func-
tions. We will recover this result below. Rather interestingly,

the square of the amplitudes of the levels involved in the
Rabi oscillations is a Poisson distribution. Rabi oscillations
arise from the crossing of the energy levels of the Dicke
model and appear between macroscopic superposition of
charge statessknown in the current literature as Schrödinger
cat statesd.

In the Dicke model, two-level systems are coupled by the
radiation field. The same can happen with Josephson
junctions.20 So, our aim is to see how collective effects can
emerge when more Josephson junctions are coupled by a
cavity field. We will prove that Rabi oscillations also emerge
in this case with the Rabi frequencies proportional to integer
order Bessel functions. A selection rule arises for situations
with more qubits as certain transitions are not allowed. In
turn this means that the transition to some qubit configura-
tions cannot be realized. Then, states involved in the Rabi
oscillations are always macroscopic superpositions of en-
tangled states between the radiation field, which can have a
large number of photons, and the junctions.

Finally, we extend the analysis to the thermodynamic
limit showing that, in this case, a large number of Josephson
junctions coupled by a cavity field in the strong coupling
regime can be used to amplify vacuum fluctuations of the
field to a large macroscopic field, assuming all the junctions
in their ground state. Decoherence effects may be prominent
in this case, as we will discuss. This effect defines a quantum
amplifier sQAMPd as proposed by us in the literature.14,21,22

The paper is structured as follows. In Sec. II we introduce
the model describing a number of Josephson junctions inter-
acting through a cavity field. In Sec. III we analyze explicitly
the cases for one, two, and three coupled qubits obtaining the
Rabi frequencies and proving, in the limit of a large number
of photons, the proportionality with integer order Bessel
functions. In Sec. IV we discuss the thermodynamic limit,
that is, we see the physics of a large number of Josephson
junctions in a cavity proving that an amplification of the
vacuum fluctuations of the radiation field in the cavity is
obtained. This device we term QAMP. Finally, in Sec. V
conclusions are given.

II. DESCRIPTION OF THE MODEL

The model we should consider for a single Josephson
junction, treated in the two-level approximation, in a cavity
field is shere and in the following"=1d
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H = DSz + va†a + 2gSxsa† + ad, s1d

D being the separation between the ground and the first ex-
cited state in a Cooper pair,12,13, v the frequency of the field
in the cavity,g the coupling between the junction and the
cavity, a† and a creation and annihilation operators, and
Sx,Sz=sx/2 ,sz/2 with sx,sz Pauli matrices.

Equations1d is just the Dicke model that we have special-
ized to a single qubit with Pauli matrices. This generalizes
immediately to any number of qubits putting

Sx =
1

2o
i=1

N

sx,i ,

Sz =
1

2o
i=1

N

sz,i , s2d

N being the number of qubits.
One may think that Eq.s1d differs from the Hamiltonian

currently used to describe Josephson junction qubits in
experiments8,9 but these Hamiltonians are equivalent as we
can interchangesx and sz with the unitary transformation
eisp/4dsy and what one gets, in the analysis in the strong cou-
pling regime, is a shift to the energy levels. Thus both Hamil-
tonians give rise to the same physics and we can safely work
with the Dicke model as currently known.

In order to work out the analysis of the model in the
strong coupling regime proper to the experiments carried out
so far, we follow the same approach used in Ref. 10. We split
the Hamiltonians1d as

H0 = va†a + 2gSxsa† + ad,

H1 = DSz, s3d

H0 being the unperturbed Hamiltonian andH1 the perturba-
tion. The unperturbed partH0 can be immediately diagonal-
ized by the eigenstates, as can be directly verified, treatingSx
as ac number,

ufng;S,Sxl = es2g/vdSxsa−a†dunluS,Sxl s4d

Sx being the component of the spin along thex axis chosen as
the axis of quantization,uS,Sxl the corresponding eigenstates,
anda†aunl=nunl andn=0,1,2, . . . aninteger. Energy eigen-
values are given by

En,Sx
= nv −

4g2Sx
2

v
s5d

and we observe a degeneracy between positive and negative
values of the spin components. Then we can introduce the
unitary evolution operator

UFstd = o
n,Sx

e−ifnv−s4g2Sx
2/vdgtufng;S,Sxlkfng;S,Sxu. s6d

We can apply this unitary operator to the initial Hamiltonian
s1d and the problem is reduced to the Hamiltonian

H̃ = o
m,Sx

o
n,Sx8

eifmv−s4g2Sx
2/vdgte−ifnv−s4g2Sx8

2/vdgtDufmg;S,Sxl

3kfng;S,Sx8ukfmg;S,SxuSzufng;S,Sx8l. s7d

The matrix elements can be evaluated by noting thatSz
=sS+−S−d /2i and one gets

kfmg;S,SxuSzufng;S,Sx8l

=
1

2i
sdSx,Sx8+1

ÎSsS+ 1d − Sx8sSx8 + 1dMmn
−

− dSx,Sx8−1
ÎSsS+ 1d − Sx8sSx8 − 1dMmn

+ d s8d

where we have put10

Mmn
± = kmue±s2g/vdsa−a†dunl

=Î n!

m!
e−2g2/v2S±

2g

v
Dm−n

Ln
m−nS4g2

v2 D s9d

Ln
m−n being Laguerre polynomials.

Now the Hamiltonians7d can be split into two parts to
give a diagonal part

H̃0 = o
n,Sx

1

2i
DMnse−if4g2s2Sx−1d/vgtÎSsS+ 1d − SxsSx − 1d

3ufng;S,Sxlkfng;S,Sx − 1u

− eif4g2s2Sx+1d/vgtÎSsS+ 1d − SxsSx + 1dufng;S,Sxl

3kfng;S,Sx + 1ud, s10d

having set

Mn = Mnn
± = e−2g2/v2

LnS4g2

v2 D , s11d

and an off-diagonal part

H̃1 = o
m,n,Sx

mÞn

1

2i
De−isn−mdvtse−if4g2s2Sx−1d/vgtMmn

− ÎSsS+ 1d − SxsSx − 1dufmg;S,Sxlkfng;S,Sx

− 1u − eif4g2s2Sx+1d/vgtMmn
+ ÎSsS+ 1d − SxsSx + 1dufmg;S,Sxlkfng;S,Sx + 1ud. s12d
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In order to obtain the equations for the probability ampli-
tudes, we diagonalize Hamiltonians10d obtaining the energy
eigenvalues, the eigenstates, and the geometrical part of the
phase as we can have time-dependent eigenstates, in agree-
ment to the general approach outlined in Refs. 10 and 23.
Then, by interaction picture, the amplitude equations are ob-
tained using Hamiltonians12d.

In the analysis we pursue, in the following we will see
that Hamiltonians10d has eigenvaluessxDMn having sx the
same values of the spin projectionSx and one can have tran-
sitions between the eigenstates only if the selection rule
Dsx=0, ±1 holds. We recognize that each levelsx develops a
band of levels numbered by integern, so the selection rule
provides intrabandssx= s̃xd and interbandssxÞ s̃xd permitted
transitions at resonance, respectively.

In the limit of a large number of photons we can show, in
all cases below, that the Rabi frequencies are proportional to
integer order Bessel functions. This can be accomplished us-
ing the relation10

Jas2Înxd = e−x/2S x

n
Da/2

Ln
asxd s13d

that holds in the limit ofn going to infinity.

III. ANALYSIS OF THE MODEL

We apply the procedure outlined in the previous section to
one, two, and three qubits to see in detail the physics of the
model. The one qubit case has been already discussed in
literature10 but we present it here again to show the way our
method works to make this paper self-contained.

A. One qubit

In the one qubit case we haveSx= 1
2 ,−1

2 beingS= 1
2. The

diagonal part of the Hamiltonian will be

H̃0 = o
n

1

2i
DMnSUfng;

1

2
,
1

2
LKfng;

1

2
,−

1

2
U − Ufng;

1

2
,−

1

2
L

3Kfng;
1

2
,
1

2
UD , s14d

that is time-independent in this case. Similarly, we have the
off-diagonal part

H̃1 = o
m,n

mÞn

1

2i
De−isn−mdvtSMmn

− Ufmg;
1

2
,
1

2
LKfng;

1

2
,−

1

2
U

− Mmn
+ Ufmg;

1

2
,−

1

2
LKfng;

1

2
,
1

2
UD . s15d

This operator is Hermitian as can be verified using the fact
that sum indexes are dummy.

Hamiltonian s14d can be immediately diagonalized with
eigenvaluesEn,sx

=sxDMn, sx= 1
2 ,−1

2 corresponding to the
eigenstates

un;sxl =
1
Î2

SUfng;
1

2
,−

1

2
L −

i

2sx
Ufng;

1

2
,
1

2
LD s16d

that are not eigenstates of the spin projectionSx. Then, we
can write the equation for the probability amplitudes by
looking for a time-dependent solution in the form

ucstdl = o
k,sx

e−iEk,sx
tck,sx

stduk;sxl s17d

where no contribution enters due to geometrical phases as
Hamiltonian s14d is time-independent. The Schrödinger
equation takes the form

iċm,s̃x
std =

D

2 o
n,sx

e−ifEn,sx
−Em,s̃x

+sn−mdvgt

3ss̃xMmn
− + sxMmn

+ dcn,sx
std. s18d

We recognize the resonance conditions

En,sx
− Em,s̃x

+ sn − mdv = 0 s19d

with Dsx=0 for intraband transitions andDsx= ±1 for inter-
band transitions as said above. These resonance conditions
correspond to crossing of the energy levels of the Dicke
model. Energy levels are given by24

En,sx
= nv −

4sx
2g2

v
+ sxDMn s20d

where we can recognize the band structure and the degen-
eracy forsx= ± 1

2 that is removed by the last term. Then reso-
nance conditions can be straightforwardly interpreted as
crossings of energy levels. Such crossings produce Rabi os-
cillations as experimentally observed.

Finally, let us check the Rabi frequencies for the single
qubit case. It is not difficult to realize that we have for intra-
band transitionsDsx=0 from Eq.s18d, assuming the rotating
wave approximation due to the resonant terms,

R1 =
1

2
DsMmn

+ + Mmn
− d = DKmUcoshF2g

v
sa − a†dGUnL

s21d

and for interband transitionsDsx= ±1

R18 =
1

2
DsMmn

+ − Mmn
− d = DKmUsinhF2g

v
sa − a†dGUnL .

s22d

Now we can use Eq.s9d to show that transitions with states
differing by an odd number of photons,m=n+2N+1, are
permitted for intraband transitions and an even number of
photons are involved,m=n+2N, in interband transitions.10

Using Sterling formula and Eq.s13d one gets, in the limit of
Fock states with a large number of photons,

R1 < DJ2N+1S4Îng

v
D s23d

and
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R18 < DJ2NS4Îng

v
D , s24d

completely in agreement with experimental results by Naka-
mura, Pashkin, and Tsai.8 As also experimentally observed,
crossing atm=n can happen, belonging to interband transi-
tions with N=0. Further details for a single qubit case are
given in Ref. 10.

B. Two qubits

For the case of two qubits one has

H̃0 = o
n

1

2i
Î2DMnse−is4g2/vdtufng;1,1lkfng;1,0u

+ eis4g2/vdtufng;1,0lkfng;1,− 1u − eis4g2/vdtufng;1,0l

3kfng;1,1u − e−is4g2/vdtufng;1,− 1lkfng;1,0ud. s25d

Now the Hamiltonian shows time-dependence and it is not
straightforward to interpret the resonance conditions as en-
ergy level crossings. On the same ground one has

H̃1 = o
m,n

mÞn

e−isn−mdvt 1

2i
Î2Dse−is4g2/vdtMmn

− ufmg;1,1lkfng;1,0u

+ eis4g2/vdtMmn
− ufmg;1,0lkfng;1,− 1u

− eis4g2/vdtMmn
+ ufmg;1,0lkfng;1,1u

− e−is4g2/vdtMmn
+ ufmg;1,− 1lkfng;1,0ud. s26d

One can immediately diagonalize Hamiltonians25d obtain-
ing eigenvaluesEn,sx

=sxDMn with sx=1,0,−1. Thecorre-
sponding eigenvectors are

un;1,tl =
1

2i
e−is4g2/vdtufng;1,1l +

1
Î2

ufng;1,0l

−
1

2i
e−is4g2/vdtufng;1,− 1l,

un;0,tl =
1
Î2

ufng;1,1l +
1
Î2

ufng;1,− 1l,

un;− 1,tl = −
1

2i
e−is4g2/vdtufng;1,1l +

1
Î2

ufng;1,0l

+
1

2i
e−is4g2/vdtufng;1,− 1l s27d

that do not give any geometrical phase askn;1 ,tui]tun;1 ,tl
=kn;0 ,tui]tun;0 ,tl=kn;−1,tui]tun;−1,tl=0. Thus we can put
again

ucstdl = o
k,sx

e−iEk,sx
tck,sx

stduk;sx,tl s28d

and obtain the equations for the amplitudes

iċk,1std = o
n

D

4
sMkn

− + Mkn
+ de−ifEn,1−Ek,1+sn−kdvgtcn,1std

+ Î2
D

4i
sMkn

− − Mkn
+ deifEk,1+4g2/v−sn−kdvgtcn,0std,

iċk,0std = o
n

Î2
D

4i
sMkn

− − Mkn
+ de−ifEk,1+4g2/v+sn−kdvgtcn,1std

+ e−ifEk,−1+4g2/v+sn−kdvgtcn,−1std,

iċk,−1std = o
n

−
D

4
sMkn

− + Mkn
+ de−ifEn,−1−Ek,−1+sn−kdvgtcn,−1std

+ Î2
D

4i
sMkn

− − Mkn
+ deifEk,−1+4g2/v−sn−kdvgtcn,0std

s29d

where we can recognize again the effect of the selection rules
Dsx=0, ±1 on the permitted transitions, originating from the
resonance conditions

En,±1 − Ek,±1 + sn − kdv = 0,

Ek,±1 +
4g2

v
− sn − kdv = 0 s30d

for intraband and interband transitions, respectively, giving
rise to Rabi oscillations in the two-qubit system. Again, we
can interpret these resonance conditions as originating from
the crossings of the energy levels for the Dicke model

En,sx
= nv −

4sx
2g2

v
+ sxDMn s31d

that is degenerate with respect tosx= ±1 but the degeneracy
is removed by the last term. The Rabi frequencies can be
computed from Eqs.s29d with the rotating wave approxima-
tion imposing the resonance conditionss30d and are given
by, for intraband transitions,

R2 = R1 s32d

and for interband transitions

R28 = Î2R18. s33d

These frequencies, in the limit of a large number of photons,
display dependence on the integer order Bessel functions,
being proportional toR1 andR18 as in the single qubit case.
A cooperative effect arises from the coherent behavior of
both the junctions entering entangled states and producing
Rabi oscillations.

Thus the main conclusion of this section is that the two
qubits act collectively producing Rabi oscillations, exactly as
in the case of a single qubit. Such oscillations appear be-
tween entangled states to be considered macroscopic.

C. Three qubits

In order to gain further insight into the physics of Joseph-
son junctions in this case, we analyze a system with three
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qubits. This case is rather different from the preceding ones,
asH0 depends on time and we have to apply a theorem for
strong coupling that imposes formally the adiabatic theorem
at the leading order.23 So there is a geometrical contribution
to the phases. This does not make it straightforward to inter-
pret the resonance conditions as energy level crossings. We
have

H̃0 = o
n

1

2i
DMnSe−is8g2/vdtÎ3Ufng;

3

2
,
3

2
LKfng;

3

2
,
1

2
U

+ 2Ufng;
3

2
,
1

2
LKfng;

3

2
,−

1

2
U − eis8g2/vdtÎ3Ufng;

3

2
,
1

2
L

3Kfng;
3

2
,
3

2
U + eis8g2/vdtÎ3Ufng;

3

2
,−

1

2
LKfng;

3

2
,−

3

2
U

− 2Ufng;
3

2
,−

1

2
LKfng;

3

2
,
1

2
U − e−is8g2/vdtÎ3Ufng;

3

2
,−

3

2
L

3Kfng;
3

2
,−

1

2
UD s34d

and

H̃1 = o
m,n

mÞn

e−isn−mdvt 1

2i
DSe−is8g2/vdtÎ3Mmn

− Ufmg;
3

2
,
3

2
L

3Kfng;
3

2
,
1

2
U + 2Mmn

− Ufmg;
3

2
,
1

2
LKfng;

3

2
,−

1

2
U

− eis8g2/vdtÎ3Mmn
+ Ufmg;

3

2
,
1

2
LKfng;

3

2
,
3

2
U

+ eis8g2/vdtÎ3Mmn
− Ufmg;

3

2
,−

1

2
LKfng;

3

2
,−

3

2
U

− 2Mmn
+ Ufmg;

3

2
,−

1

2
LKfng;

3

2
,
1

2
U

− e−is8g2/vdtÎ3Mmn
+ Ufmg;

3

2
,−

3

2
LKfng;

3

2
,−

1

2
UD .

s35d

It is straightforward to diagonalize Hamiltonians34d with the
eigenstates

un;sx,tl = bssxdF− ie−is8g2/vdt
Î3

2sx
Ufng;

3

2
,
3

2
L

+ Ufng;
3

2
,
1

2
L + iSsx −

3

4sx
DUfng;

3

2
,−

1

2
L

− e−is8g2vdt
Î3

2
S1 −

3

4sx
2DUfng;

3

2
,
3

2
LG s36d

being

bssxd =
1

Îsx
2 +

3

16sx
2 +

27

64sx
4 +

1

4

s37d

andsx= 3
2 , 1

2 ,−1
2 ,−3

2. As in the other cases, we get entangled
macroscopic states. In this case we have geometrical phases
as given by

ġssxd =
2g2

v

3 −
3

2sx
2 +

27

16sx
4

sx
2 +

3

16sx
2 +

27

64sx
4 +

1

4

s38d

that reduces to 2g2/v for sx= 3
2, −3

2 and 6g2/v for
sx= 1

2 ,−1
2.

For the givenH̃0 and H̃1 we seek a solution like

ucstdl = o
k,sx

e−iEk,sx
te−iġsx

tck,sx
stduk;sx,tl s39d

yielding the equations for the amplitudes

iċm,s̃x
std = o

n,sx

e−ifEn,sx
−Em,s̃x

+sn−mdv+ġs̃x
−ġsx

gtDbssxdbss̃xd

3fassx,s̃xdMmn
+ + ass̃x,sxdMmn

− gcn,sx
std s40d

having set

assx,s̃xd =
3

4sx
+ s̃x −

3

4s̃x

+
3

4
S1 −

3

4s̃x
2DSsx −

3

4sx
D . s41d

Also in this case, it is not difficult to verify that the selection
rulesDsx=0, ±1 hold corresponding to intrabandssx= s̃xd and
interband ssxÞ s̃xd transitions, respectively, with the reso-
nance conditions

En,sx
− Em,s̃x

+ sn − mdv + ġs̃x
− ġsx

= 0. s42d

The Rabi frequencies can be computed from Eqs.s40d with
the rotating wave approximation imposing the resonance
conditionss42d and can be given explicitly as follows

R3/2,3/2= R−3/2,−3/2=
3

2
R1,

R1/2,1/2= R−1/2,−1/2=
1

2
R1 s43d

for intraband transitions and

R3/2,1/2= R1/2,3/2=
Î3

2
R18,

R−3/2,−1/2= R−1/2,−3/2=
Î3

2
R18,

R1/2,−1/2= R−1/2,1/2= R18 s44d

for interband transitions. Also, for three qubit the Rabi fre-
quencies are proportional toR1 andR18, so in the limit of a
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large number of photons one has that these frequencies are
given by integer order Bessel functions. This rule applies to
all cases.

As also seen for one and two qubits we can see again a
collective effect. The behavior of the three qubits is coherent,
producing entangled states with Rabi oscillations. Apart from
numerical factors, the Rabi frequencies are the same as in the
single qubit case. It would be interesting to extend the analy-
sis to higher spins to see if this is a rule.

IV. THERMODYNAMIC LIMIT: QUANTUM AMPLIFIER

To analyze this case, we limit the study to the leading
order as higher orders become increasingly less important as
the number of Josephson junctions increases.22 This permits
us to write down immediately the unitary evolution being
given byH0 in Eq. s6d. It is important to emphasize that, in
order to unveil this effect, we should avoid random phases
putting all the junctions in the same state. This makes the
case somewhat different from above but shows again a col-
lective effect possible to be observed.

Now let us assume that the field in the cavity is in the
ground state andall the Josephson junctions are in their
lower stateexternally imposed. Unitary evolution gives

ufstdl = o
n

e−isnv−g2N2/vdtUfng;
N

2
,−

N

2
L

3 e−N2g2/v2SNg

v
Dn 1

În!
. s45d

So, leaving aside the contributions of the Josephson junc-
tions, one is left with

uNxstdl = e−sNg/vdsa−a†do
n

e−isnv−g2N2/vdt

3 e−N2g2/v2SNg

v
Dn 1

În!
unl, s46d

that is, a coherent state with a parameter proportional toN. In

the largeN limit this represents a classical state of the radia-
tion field25 and we see that we have amplified quantum fluc-
tuations of the ground state of the radiation field to a classi-
cal level. The interesting aspect of this already known result
is that it can be practically realized through Josephson junc-
tions that lend themselves to realize this kind of classical
state out of a fully quantum initial state. One realizes a
QAMP squantum amplifierd.14,22 The device can be realized
without too much care about taking just the limitN→` or
N→`, V→`, V being the volume of the cavity, andN/V
=const as we are in the strong coupling limit.

This represents a very peculiar collective effect of a large
number of Josephson junctions in a cavity in the strong cou-
pling regime, the same regime devised in the experiments of
Nakamura’s group6,7 for a single qubit.

V. DISCUSSION AND CONCLUSIONS

The above discussed collective effects can have their limit
in the appearance of decoherence. The experiments of Naka-
mura’s group display the decay of Rabi oscillation but the
decay time can be long enough to permit quantum computa-
tion. Neither the nature of this decoherence effect nor the
way it scales with the number of Josephson junctions are
known as far as we know. It should be expected that the
same should happen for the QAMP producing a classical
radiation field. The origin of decoherence on Josephson junc-
tions is to be understood but it could not be excluded that
revival and collapse effects of Rabi oscillations may be at
work as happens in the weak coupling regime.12,13

We have shown how, in the strong coupling limit as de-
vised by Nakamura’s group, several collective effects such as
Rabi oscillations and quantum amplification could appear in
Josephson junctions coupled by a radiation field. Rabi oscil-
lations, in the limit of a large number of photons, have fre-
quencies proportional to integer order Bessel functions and a
selection rule applies limiting transitions. These effects could
be useful for applications in quantum computation or to use
a large number of Josephson junctions to produce a laser
field.
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