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We consider a one-dimensional chain of fractional vortices in a long Josephson junction with alternating ±k
phase discontinuities. Since each vortex has its own eigenfrequency, the intervortex coupling results in eigen-
mode splitting and in the formation of an oscillatory energy band for plasma waves. The band structure can be
controlled at the design time by choosing the distance between vortices or during experiment by varying the
topological charge of vortices or the bias current. Thus one can construct an artificial vortex crystal with
controllable energy bands for plasmons.
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I. INTRODUCTION

The study of crystals is a cornerstone of solid state
physics.1–3 The electronic structure of crystals, such as en-
ergy bands and the dispersion relation for electrons and
phonons, has a great impact on all physical properties of
solids. A crystal is a periodic arrangement of a group of
atoms translated in space by direct lattice vectorssusually
edge effects are negligibled. This periodicity in space results
in the formation of energy bands and different propagation
modes for electrons and phonons. If one could control the
periodicity, e.g., by varying the mutual position and the kinds
of atoms in a crystal, during experiment, one could turn a
metal into an insulator and basically create a material with
any desired properties. Unfortunately, the crystal structure
sthe type of ions, lattice, and spacingd is fixed by nature and
can be changed only a little, e.g., by applying strong pressure
or electric or magnetic field.

Therefore, it is interesting to construct artificial periodic
structuresscrystalsd, whose propertiescan be varied over a
wide range during experiment, allowing a great degree of
control over their resulting electronic properties. Such struc-
tures need not necessarily consist of atoms, but could consist
of other more macroscopic objects which can be fabricated
and arranged by means of modern technology, e.g., using
lithography. The few known examples include control of the
energy bands using electricsRashba effect4d or magnetic
fields.5

In this article we consider an artificial one-dimensional
s1Dd crystal made of fractional Josephson vorticessfractional
magnetic flux quantad, and study its plasma energy bands,
i.e., energy bands of plasmons—small oscillations of the Jo-
sephson phase.

Usually, vortices in Josephson junctions and supercon-
ductorssSd carry one quantum of magnetic fluxF0<2.07
310−15 Wb. Fractional Josephson vortices spontaneously
appear in long Josephson junctionssLJJsd with an unusual
current-phase relation,6,7 with spatially alternating sign of the
critical current8 fe.g., SFS LJJssRefs. 9,10d with a stepwise
variation of the ferromagneticsFd layer thicknessg or with p
discontinuities of the Josephson phase11 fe.g.,
dx2−y2-wave-based LJJssRefs. 12–19dg. More generally, ak
discontinuity of the phase atx=0 sx is the coordinate along
the LJJd means that the relation between the supercurrentIs

and the phasem sthe first Josephson relationd in the region
x,0 is Is= Icsinsmd, while in the region x.0 it is Is

= Icsinsm+kd. Fractional vortices spontaneously appear to
compensate thek-phase jump and are pinned at the discon-
tinuity points.20 For ap discontinuity the vortex carries the
fractional fluxF0/2 and the junction can be described by the
same model as the junction with alternating sign of critical
current8,11,21–24mentioned above.

Recently, a LJJ with artificial phase discontinuities was
proposed, implemented, and successfully tested.25 In this
junction, made using standard Nb-AlOx-Nb technology, the
discontinuity of the phase is created using a pair of tiny
current injectors attached to the same electrode of the junc-
tion as close as possible to each other. By passing the current
I inj from one injector to the other, one can create an arbitrary
k discontinuity of the Josephson phase withk~ I inj. Since the
Josephson phase is 2p periodic, without loss of generality
we consider only 0øk,2p. One can also fabricate such a
junction with as many injector pairs as required and tune the
strengthk of all discontinuities by a single control current.
Nb-AlOx-Nb junctions also have very low damping
sMcCumber-Stewart parameterbc,104d, which makes them
a perfect candidate to study propagation of plasma waves
and formation of energy bands. In comparison, SFS- and
d-wave-based LJJs typically havebc&9 ssee, e.g., Fig. 2 of
Ref. 17d.

A fractional vortex has an eigenfrequencyv0skd which
corresponds to oscillations of the magnetic flux around the
discontinuity point.26 This eigenfrequency lies within the
plasma gap and depends on the flux carried by the vortex.26

If one considers two vortices at some distance from each
other, so that their magnetic fields and supercurrents overlap,
then the vortices behave as two coupled oscillators: their
eigenfrequency splits into two frequencies, corresponding to
two different modes, in phase and out of phase. This splitting
of eigenfrequencies for different two-vortex configurations
was already investigated numerically.26 In an infinite 1D ar-
ray of fractional vortices situated not very far from each
other, due to coupling, the eigenfrequencies split and form an
energy band, very similar to the formation of bands in a
crystal starting from the discrete energy levels of electrons in
a single atom. In this paper we study the energy bands cor-
responding to oscillations of a chain of fractional vortices
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and we show that the band structure can be easily controlled
during experiment.

II. MODEL AND NUMERICS

Consider an infinite array of alternating ±k discontinuities
at a distancea from each other and7k vortices pinned at
them. Such an antiferromagneticallysAFMd ordered state
represents the most natural configuration or, in other words,
the ground state of the system.

To model an infinite chain of vortices we consider an
annular LJJ with two phase discontinuities placed at the
same distancea from each other, so that 2a=L, whereL is
the lengthscircumferenced of the LJJ. It is also possible to
realize such a geometry experimentally using an annular LJJ
with injectors.25,27,28The dynamics of the Josephson phase is
described by the following perturbed sine-Gordon
equation:8,11,21

mxx − mtt = sinfm + usxdg − g, s1d

with

usxd = H 0, 0 , x , a,

− k, a , x , 2a = L.
J s2d

The Josephson phasemsx,td is a continuous29 function of the
spatial variablex and timet that are normalized to the Jo-
sephson penetration depthlJ and to the inverse plasma fre-
quencyvp

−1, respectively. The subscriptsx and t denote de-
rivatives with respect to space and time. We normalize the
bias current densityj to the critical current densityjc, i.e.,
g; j / jc. The function usxd defines the positions and the
strength of the discontinuities. Since we consider an annular
geometry we supplement Eq.s1d with the periodic boundary
conditionsms0,td=msL ,td andmxs0,td=mxsL ,td.

To calculate numerically the oscillatory energy bands of a
chain of fractional vortices, we first, calculate the steady so-
lution corresponding to an AFM vortex chain for given val-
ues ofk, a, andg by solving Eq.s1d numerically.30 We use
several spatial discretization steps to compare the obtained
results, i.e.,Dx=0.1, 0.05, 0.02.

If m0sxd is the obtained static solution of Eq.s1d, then the
small oscillations around this solution are given by

msx,td = m0sxd + esxdeivt. s3d

Substituting expressions3d in Eq. s1d we get

exx + v2e = cosfm0sxd + usxdge. s4d

Written as a system of first-order equations, the eigenvalue
problems4d takes the form

eWx = AeW whereeW = S e

ex
D s5d

with the matrix

Asxd = S 0 1

cosfm0sxd + usxdg − v2 0
D . s6d

In our case, sinceAsxdÞconst, we cannot implicitly inte-
grate Eq.s5d. Instead, we approximateAsxd by a constant

matrix An given by Eq.s6d with x=xn=nDx on each interval
Dx from xn to xn+1. Then we solve Eq.s5d on each small
interval Dx to find «Wsxn+1d=«WsxndexpsDxAnd.

As a consequence of the FloquetsBlochd theorem the so-
lution of Eq. s5d should satisfy the following equation:

«Wsx + 2ad = CeWsxd,

with constant matrixC, where 2a is the periodicity of the
lattice. In our case, the so-called principal matrixC is ap-
proximated by a simple transfer matrix discretization de-
scribed above, i.e.,

C = p
n=1

N

expsDxAnd, s7d

whereN=2a/Dx. More delicate schemes to calculate a band
gap can be found in, e.g., Refs. 31,32. The transfer matrixC
has two eigenvalues. The product of these eigenvalues

l1l2 = detC = p
n=1

N

deteDxAn = p
n=1

N

eTrsDxAnd = 1,

where we used an identity detfexpsMdg=expfTrsMdg and the
fact that TrsAd=0 fsee Eq.s6dg. The periodic solution exists,
i.e., v is within the energy band, only iful1u= ul2u=1, i.e., if
the determinant of the characteristic equation is negative and
l1,2 is a pair of complex-conjugate roots lying at the unit
circle on the complex plane.

III. RESULTS

First, we consider the case when the bias current is absent,
i.e., g=0. Band structures as a function ofk, numerically
calculated for differenta sgiven in units normalized tolJd
from a=5 sweak couplingd to 1 sstrong couplingd are shown
in Fig. 1. In all plots one can see that in the absence of
discontinuitiessk=0d the junction has a plasma gap for 0
,v,1 sv is normalized to the plasma frequencyvpd and a
single infinite plasma band forv.1. As k increases, frac-
tional vortices appear. Each vortex, if isolated, has an eigen-
frequencyv0skd,1.26 In our case vortices are coupled and
the eigenfrequency splits into a band, which is the lowest
energy bandfsee Fig. 1sadg. Small gaps also appear in the
former continuous plasma bandv.1. As the coupling in-
creasessdistancea decreasesd, the bands broaden, while the
gaps shrink and shift to higher frequencies, as can be seen in
consecutive Figs. 1sad–1sfd.

In Fig. 1 the bands are traced fromk=0 to kcsad. At k
=kcsad the AFM state becomes unstable and turns itself into
a complementary state, i.e., each of the ±k vortices becomes
a ±sk−2pd vortex.20 As a sign of this instability the lower
band touches zero, i.e.,v→0 atk→kc. For the complemen-
tary state, the band structure is the mirror reflection of the
one shown in Fig. 1 with respect to the linek=p. Note that
in the interval ofk from 2p−kcsad to kcsad there are two
stable solutions: an AFM chain of direct vortices or an AFM
chain of complementary vortices. Similar behavior was re-
ported for a system of only two vortices.20 The value ofkcsad
decreases as the coupling increases, reaching the valuekc

SUSANTOet al. PHYSICAL REVIEW B 71, 174510s2005d

174510-2



→p at a→0, in agreement with the known result33,34 that
the infinite AFM orderedsemifluxonchain is stable for any
a→0.

Contrary to a crystal of integer vortices,35–37our 1D crys-
tal hasno acoustic branchsexcept the casek=2pnd in the
dispersion relation becausek vortices are pinned and cannot
move all together, i.e., withv=0 andk=0.

Next, we consider the control of the band structure by the
bias current at various fixed values ofa andk=p. This case
is interesting for 0-p LJJs where the discontinuities cannot
be controlled during experiment. In Fig. 2 we present the
band structure for the case of weaksa=5d, moderatesa=2d,
and strongsa=1d coupling. As one can see, by applying a
bias current, an additional gap opens within each band. For
the case of moderate and strong coupling these gaps can
become quite large near the critical value ofg=gcsad at
which the static solution becomes unstable. Again, as a sign
of instability the lowest band hasv→0 at g→gcsad. For
g.gcsad the system switches to the finite-voltage state. Note
that gcsad→0 at a→0 in qualitative agreement with the re-
sults for finite semifluxon chains.33

IV. CONCLUSIONS

To conclude, we have calculated the energy bands corre-
sponding to small oscillationssplasma wavesd of the 1D

AFM ordered fractional vortex crystal as a function of the
discontinuityk. Such a 1D vortex crystal has no acoustic, but
only an optical branch in the dispersion relation, which is a
direct consequence of vortex pinning. The band structure can
be changed by changingk. In case of discontinuities created
artificially by injectors, one can make a wiring such that a
single control current changes the valuek for all disconti-
nuities in the same time, thus providing the possibility to
change the band structure “on the fly.” For natural 0-p
LJJs,17–19 where the discontinuityk=p is fixed, the band
structure can be smoothly controlledduring experimentby
the bias current.

The knowledge of eigenmodes and the band structure is a
key element in designing classical or quantum devices based
on fractional vortices. In the classical domain this may help
to avoid resonance phenomena or to exploit themse.g., in
filters and detectorsd. In the quantum domain, thanks to the
absence of acoustic branch, the lowest-energy gap can be a
crucial obstacle for thermal excitation of plasmons.

Here, we have calculated the plasmon spectrum for a mir-
ror symmetric crystal. However, the most unusual properties
can be expected from systems with broken reflection sym-
metry sratchetsd,38,39 such as crystals of ferroelectrics or of
some superconductors.40 From this point of view, the

FIG. 1. Numerically calculated
band structure as a function ofk
for a=5, 4, 3, 2.5, 2, 1 shown in
sad-sfd, respectively. At k=kcsad
the crystal becomes unstable and
structural phase transition takes
place.

FIG. 2. Numerically calculated
band structure as a function of the
applied bias currentg for k=p
and sad weak couplinga=5, sbd
moderate couplinga=2, and scd
strong coupling a=1. At g
=gcsa,kd the crystal becomes un-
stable and structural phase transi-
tion takes place.
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transport in such systems is not well studied. Using an array
of discontinuities of different strengths and distances, one
might realizecontrollable fractional vortex crystals without
reflection symmetry and study the nonequilibrium transport.
In this case the eigenvalue problems4d corresponds to the
motion of a plasmon in a ratchet potential.
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