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Controllable plasma energy bands in a one-dimensional crystal of fractional Josephson vortices
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We consider a one-dimensional chain of fractional vortices in a long Josephson junction with alterrating +
phase discontinuities. Since each vortex has its own eigenfrequency, the intervortex coupling results in eigen-
mode splitting and in the formation of an oscillatory energy band for plasma waves. The band structure can be
controlled at the design time by choosing the distance between vortices or during experiment by varying the
topological charge of vortices or the bias current. Thus one can construct an artificial vortex crystal with
controllable energy bands for plasmons.
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I. INTRODUCTION and the phase: (the first Josephson relatipm the region

The study of crystals is a cornerstone of solid state<0 IS Is=IcSin(x), while in the regionx>0 it is I
physicsi=2 The electronic structure of crystals, such as en=IcSin(u+«). Fractional vortices spontaneously appear to
ergy bands and the dispersion relation for electrons an@ompensate the-phase jump and are pinned at the discon-
phonons, has a great impact on all physical properties dfinuity points?® For a = discontinuity the vortex carries the
solids. A crystal is a periodic arrangement of a group offractional fluxdy/2 and the junction can be described by the
atoms translated in space by direct lattice vecfarsually same model as the junction with alternating sign of critical
edge effects are negligibleThis periodicity in space results current1?1-24mentioned above.
in the formation of energy bands and different propagation Recently, a LJJ with artificial phase discontinuities was
modes for electrons and phonons. If one could control thgroposed, implemented, and successfully te$telh this
periodicity, e.g., by varying the mutual position and the kindsjunction, made using standard Nb-Al®lb technology, the
of atoms in a crystal, during experiment, one could turn adiscontinuity of the phase is created using a pair of tiny
metal into an insulator and basically create a material withcurrent injectors attached to the same electrode of the junc-
any desired properties. Unfortunately, the crystal structurdion as close as possible to each other. By passing the current
(the type of ions, lattice, and spacing fixed by nature and |;; from one injector to the other, one can create an arbitrary
can be changed only a little, e.g., by applying strong pressure discontinuity of the Josephson phase withl;,. Since the
or electric or magnetic field. Josephson phase isr2periodic, without loss of generality

Therefore, it is interesting to construct artificial periodic we consider only & «<2s. One can also fabricate such a
structures(crystalg, whose propertiesan be varied over a junction with as many injector pairs as required and tune the
wide range during experimengllowing a great degree of strengthx of all discontinuities by a single control current.
control over their resulting electronic properties. Such strucNb-AlO,-Nb junctions also have very low damping
tures need not necessarily consist of atoms, but could consi@¥icCumber-Stewart parametgg~ 10%), which makes them
of other more macroscopic objects which can be fabricatea perfect candidate to study propagation of plasma waves
and arranged by means of modern technology, e.g., usingnd formation of energy bands. In comparison, SFS- and
lithography. The few known examples include control of thed-wave-based LJJs typically hayg <9 (see, e.g., Fig. 2 of
energy bands using electrilRashba effe¢} or magnetic Ref. 17.
fields> A fractional vortex has an eigenfrequenay(x) which

In this article we consider an artificial one-dimensionalcorresponds to oscillations of the magnetic flux around the
(1D) crystal made of fractional Josephson vorti¢ieactional  discontinuity poing® This eigenfrequency lies within the
magnetic flux quanta and study its plasma energy bands,plasma gap and depends on the flux carried by the véftex.
i.e., energy bands of plasmons—small oscillations of the JoH one considers two vortices at some distance from each
sephson phase. other, so that their magnetic fields and supercurrents overlap,

Usually, vortices in Josephson junctions and superconthen the vortices behave as two coupled oscillators: their
ductors(S) carry one quantum of magnetic flukg=2.07  eigenfrequency splits into two frequencies, corresponding to
X 10°°*Whb. Fractional Josephson vortices spontaneouslywo different modes, in phase and out of phase. This splitting
appear in long Josephson junctiofis}J9 with an unusual of eigenfrequencies for different two-vortex configurations
current-phase relatioh! with spatially alternating sign of the was already investigated numericafyin an infinite 1D ar-
critical current [e.g., SFS LJJéRefs. 9,10 with a stepwise ray of fractional vortices situated not very far from each
variation of the ferromagneti@=) layer thickneskor with = other, due to coupling, the eigenfrequencies split and form an
discontinuites of the Josephson phidse [e.g., energy band, very similar to the formation of bands in a
d2_>-wave-based LIJERefs. 12-19]. More generally, a  crystal starting from the discrete energy levels of electrons in
discontinuity of the phase at=0 (x is the coordinate along a single atom. In this paper we study the energy bands cor-
the LJJ means that the relation between the supercudrgnt responding to oscillations of a chain of fractional vortices
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and we show that the band structure can be easily controlleshatrix A, given by Eq.(6) with x=x,=nAx on each interval
during experiment. Ax from x, to x,.1. Then we solve Eq(5) on each small
interval Ax to find &(X,.1) =&(X,)eXp(AXA,).
As a consequence of the Floqu8ioch) theorem the so-
Consider an infinite array of alternating«Hiscontinuities  lution of Eq. (5) should satisfy the following equation:
at a distancea from each other and- « vortices pinned at - P
them. Such an antiferromagneticallAFM) ordered state s(x+28) = Ce(x),
represents the most natural configuration or, in other wordsyith constant matrixC, where 2 is the periodicity of the
the ground state of the system. lattice. In our case, the so-called principal mat@xis ap-
To model an infinite chain of vortices we consider anproximated by a simple transfer matrix discretization de-
annular LJJ with two phase discontinuities placed at thescribed above, i.e.,
same distanca from each other, so thate2L, wherelL is N
the length(circumferencg of the LJJ. It is also possible to
realize such a geometry experimentally using an annular LJJ C= U expAXAy), (7)
with injectors?>2728The dynamics of the Josephson phase is mt
described by the following perturbed sine-GordonwhereN=2a/Ax. More delicate schemes to calculate a band
equationf11.21 gap can be found in, e.g., Refs. 31,32. The transfer m@trix
has two eigenvalues. The product of these eigenvalues

II. MODEL AND NUMERICS

Moxx = M = SN+ 000 ] =, D | N
with M, =detC =[] dete® =[] ™A =1,
) 0, 0<x<a, n=1 n=1
0 =1 _ Kk, a<x<?z2a=L. @ Wwhere we used an identity dekp(M)]=exd Tr(M)] and the

. ) . fact that T(A)=0 [see Eq(6)]. The periodic solution exists,
The _Josep_hson phas&éx,t) is a contlnuou%gfgnctmn of the i.e., w is within the energy band, only [f,|=|\,|=1, i.e., if
spatial variablex and timet that are normalized to the Jo- the determinant of the characteristic equation is negative and

sephson _pienetratio_n depxh and to th_e inverse plasma fre- A1, is a pair of complex-conjugate roots lying at the unit
quencyw,”, respectively. The subscriptsandt denote de-  jrcle on the complex plane.

rivatives with respect to space and time. We normalize the
bias current density to the critical current density,, i.e.,
v=jlj.. The function #(x) defines the positions and the
strength of the discontinuities. Since we consider an annular First, we consider the case when the bias current is absent,
geometry we supplement E€l) with the periodic boundary i.e., y=0. Band structures as a function gf numerically
conditionsu(0,t)=u(L,t) and u,(0,t) = w,(L,1). calculated for different (given in units normalized ta.;)

To calculate numerically the oscillatory energy bands of érom a=5 (weak coupling to 1 (strong coupling are shown
chain of fractional vortices, we first, calculate the steady soin Fig. 1. In all plots one can see that in the absence of
lution corresponding to an AFM vortex chain for given val- discontinuities(«=0) the junction has a plasma gap for 0
ues ofk, a, andy by solving Eq.(1) numerically>® We use ~<w<1 (o is normalized to the plasma frequeney) and a
several spatial discretization steps to compare the obtainegingle infinite plasma band fap>1. As « increases, frac-

Ill. RESULTS

results, i.e.Ax=0.1, 0.05, 0.02. tional vortices appear. Each vortex, if isolated, has an eigen-

If uo(x) is the obtained static solution of E€l), then the  frequencywg(x) <128 In our case vortices are coupled and
small oscillations around this solution are given by the eigenfrequency splits into a band, which is the lowest

. energy bandsee Fig. 1a)]. Small gaps also appear in the

O = pgl(x) + e(e . 3) formg)r/ continuous glasma band>gl.pAs the cgﬁpling in-

Substituting expressiof8) in Eq. (1) we get creasegdistancea decreases the bands broaden, while the

gaps shrink and shift to higher frequencies, as can be seen in
€t wP€=COg uo(X) + B(X)]e. (4)  consecutive Figs. (®-1(f).

Written as a system of first-order equations, the eigenvalue N Fig- 1 the bands are traced frorv0 to .(a). At «
problem (4) takes the form =k(a) the AFM state becomes unstable and turns itself into

a complementary state, i.e., each of thevortices becomes

.= -_[ € a Hk-2m) vortex?° As a sign of this instability the lower

€,=Ae wheree= (5) .
€ band touches zero, i.es,— 0 atk — . For the complemen-

_ ) tary state, the band structure is the mirror reflection of the
with the matrix one shown in Fig. 1 with respect to the lires 7. Note that
( 0 1) in the interval ofx from 27—«.(a) to «.(a) there are two
Ax) = : (6)  stable solutions: an AFM chain of direct vortices or an AFM
cog uo(X) + 6(X)] - w?

chain of complementary vortices. Similar behavior was re-
In our case, sincé(x) # const, we cannot implicitly inte- ported for a system of only two vorticé$The value of«(a)
grate Eq.(5). Instead, we approximat&(x) by a constant decreases as the coupling increases, reaching the walue
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FIG. 1. Numerically calculated
band structure as a function &f
for a=5, 4, 3, 2.5, 2, 1 shown in
(@)-(f), respectively. Atk=«(a)
the crystal becomes unstable and
structural phase transition takes
place.

AFM ordered fractional vortex crystal as a function of the

the infinite AFM orderedsemifluxonchain is stable for any discontinuityx. Such a 1D vortex crystal has no acoustic, but

a—0.

only an optical branch in the dispersion relation, which is a

Contrary to a crystal of integer vorticé%3”our 1D crys-

direct consequence of vortex pinning. The band structure can

tal hasno acoustic branciiexcept the case=2mn) in the  pe changed by changing In case of discontinuities created
dispersion relation becausgevortices are pinned and cannot artificially by injectors, one can make a wiring such that a
move all together, i.e., wit=0 andk=0. single control current changes the valdefor all disconti-

~ Next, we consider the control of the band structure by the,jties in the same time, thus providing the possibility to
bias current at various fixed valuesa@find k=. This case change the band structure “on the fly.” For naturakrO-
is interesting for O LJJs where the discontinuities cannot | ;3517-19 \yhere the discontinuitye=1 is fixed, the band
be controlled during experiment. In Fig. 2 we present thestruc’ture can be smoothly controlletiiring exp’erimenby
band structure for the case of we@=5), moderatga=2), the bias current
and strong(a=1) coupling. As one can see, by applying a :

bi rent. an additional ns within h band. Far The knowledge of eigenmodes and the band structure is a
as current, an additional gap opens within each band. q<ey element in designing classical or quantum devices based
the case of moderate and strong coupling these gaps can

. Iy on fractional vortices. In the classical domain this may help
become quite large near the critical value pf y(a) at to avoid resonance phenomena or to exploit th in
which the static solution becomes unstable. Again, as a sig P b €.,

of instability the lowest band has—0 at y— y,(a). For Hiters and detectojsIn the quantum domain, thanks to the
().

v> v.(a) the system switches to the finite-voltage state. Noteabsence of acoustic branch, the lowest-energy gap can be a

that y.(a) — 0 ata— 0 in qualitative agreement with the re- cruligeobset}ar(]:;e éocr;zegggiﬁgtaﬁ?%gaplazgfnﬁ for a mir-
sults for finite semifluxon chair. » We hav u plasmon spectru l

ror symmetric crystal. However, the most unusual properties
can be expected from systems with broken reflection sym-
netry (ratchet$,383° such as crystals of ferroelectrics or of
some superconductot®. From this point of view, the

IV. CONCLUSIONS

To conclude, we have calculated the energy bands corr
sponding to small oscillationgplasma wavesof the 1D
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FIG. 2. Numerically calculated
band structure as a function of the
applied bias currenty for k=
and (a) weak couplinga=5, (b)
moderate couplinga=2, and (c)
strong coupling a=1. At vy
=v.(a, «) the crystal becomes un-
stable and structural phase transi-
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