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Flux creep in type-Il superconductors: The self-organized criticality approach
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We consider the current density distribution function of a flux-creep regime in type-Il superconductors by
mapping flux creep to a model with a self-organized criticality. We use an extremal equal-redistribution-type
model which evolves to Bean’s state, to treat magnetic flux penetration into superconductors and derive analog
of current-voltage characteristics in the flux-creep region.
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I. INTRODUCTION in terms of current density, i.e., on a “macroscopic” level

and assume that the rules of dynamicg efre formed on a
In the presence of transport currents, the vortex structureyicroscopic” level of vortex avalanchésThe distribution

in a type-1l superconductor is subjected to tbe Lorentz forcesnction G(j) of the current density is considered for an
This force per unit length of a vortex fs=j X ¢, wherej is  equal-redistribution-type proce$sve show that this process
the transport current densityy= ¢B/B, B is the magnetic results in a self-organized Bean’s state with a complex dy-
induction, andg¢y is the flux quantum. The Lorentz force namics, which can be mapped onto the low-temperature flux
acting on a unit volume of a vortex matter is therefore givencreep.

by F, =nf,_ =j X B, wheren(r)=B(r)/ ¢y is the density of the The paper is organized as follows. In Sec. Il, we discuss
vortices!? the low-temperature flux creep. The self-organized criticality
Consider as an illustration a superconducting slab paralledf extremal process is treated in Sec. Ill. In Sec. IV, we

to they, z plane and assume that a certain magnetic figld introduce the low-temperature flux-creep model and derive
is applied along the axis as shown in Fig. 1. In this case, we the distribution function of the current density The mag-
have j=jy and B=BZ related by Maxwell's equation netic flux penetration into type-ll superconductors and an
dB/dx=-puoj. The Lorentz force=| =B is therefore propor- analog of current-voltage characteristics in the flux creep re-
tional to the density of vortices and its gradientin/dx as  gime are discussed in Sec. V. Section VI summarizes the
follows from F| =jB «BdB/dxe ndn/dx. obtained results.

In high-current-density superconductors, defects of the

crystalline structure “pin” vortices. This leads to the creation

of various vortex configurations with flux “hills” and flux Il. FLUX CREEP IN SUPERCONDUCTORS

“valleys.” Indeed, single vortices or vortex bundles redistrib-
ute spatially if the Lorentz forc& «jodn/dx overcomes
the pinning forceF;,. This means thandn/dx=F, i.e., a
steady vortex structure consists of fragments with slope
dn/dx# 0 (flux hills). On a macroscopic level, we ha¥g

«j and, therefore, the local depinning of vortices happen
when the local current density exceeds a certainritical
valuej.xF,. It was pointed out by de Gennes that the flux - EET o€ —
hills with slopes statistically fixed by the critical current den- CUent([j=jc|<jo). The probability of depinning of a vortex
sity j. are very much like sand pilés. bu_ndle dep_end_s strongly on _the current_densny_ and tends to
An effective approach to flux statics and dynamics in gy-unity whenj — j.. The strong intervortex interaction leads to

perconductors with a high density of pinning centers was
first suggested by BeahThe famous Bean model assumes
that the current densityis equal to the critical current den-
sity j. anywhere through the current carrying region. Origi-
nally, Bean considered the magnetic field independglemts

a result, the spatial variation of the field inside the sample is
linear, e.g., in a slab with thicknessd2Asee Fig. 1, j.
=constant leads tB=B,— uqj|x + d|, whereB, is the field at

the sample surface. In general, for a better description of the
data available, the field dependencg oias to be taken into
account!® FIG. 1. Series of Bean’s states in a slab parallel toythplane.

In this paper, we treat the low-temperature flux creep ina zero-field-cooled sample was subjected to a monotonically in-
type-Il superconductors in the framework of the self-creased field parallel to theaxis. The slope oB(x) is proportional
organized criticality='” We perform numerical simulations to the critical current densitj,.

There are few mechanisms which cause the depinning of
vortices for currents with a density less than the critical
yalue. In particular, both thermally activated depinning and
guantum tunnelir®® result in vortices or vortex bundles
dumping from one group of pinning centers to another. This
type of vortex motion is called flux creéflt is observed if
the current density is from a narrow vicinity of the critical
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a very complicated collective behavior of the vortex matter The dynamics of Bean’s state is typical of other spatially
especially in thin films where the stray fields result in non-extended dynamical systems. The high number of degrees of
locality of the problent® Activation of a single vortex can freedom in these systems introduces the problem of coupling
launch a local avalanche-type motion of vortex bundles, i.e.between the individual degrees of freedom. In many cases,
in the flux-creep region, the vortex matter is a system witheven very complicated systems “self-organize” so that their
avalanche-driven dynamics. Such systems are the subject b&havior can be described by a small number of collective
the modern theory of self-organized criticality which re- degrees of freedof’
vealed a variety of power-law distributions for the size and In some dynamical systems, individual degrees of free-
duration of avalanches’ dom keep each other in a stable balance, which is not a
Motion of vortices is accompanied by dissipation of en-“perturbation” of some decoupled state and the situation can-
ergy. This can heat up the whole sample or a part of it to anot be described in terms of a small number of collective
temperature higher than the critical temperatilige Under  degrees of freedom. This type of the self-organized systems
certain conditions, an avalanche of even a small group ofias to be quite robust, otherwise, these systems would not be
vortices can trigger a run-away magnetothermal instabilityable to evolve to a stable balanced “critical” stafeThe

causing the superconducting-to-normal transifibn. sand piles and flux hills in superconductors exhibit many
Within the original Bean model, the dependence @in  features typical for the self-organized critical state.
the electric fieldk is a highly nonlinear stepwise function Several models were suggested to study dynamical sys-
} tems with extended spatial degrees of freedom and many
P 0, if E=0, 1) metastable states. These systems evolve delfaorganized
1=l 1, if E#0, critical state without a detailed specification of the initial

. L . conditions, i.e., the critical state is attractor—robust with
wherej.=j.E/E and the electric fielE is induced by the  regpect to variations of parameters and the presence of

flux motion. . . . quenched randomness.
It is well established now that in the narrow vicinity of the

critical current(|j —j <jo), i.e., in the flux-creep regime, the

dependence oE(j) is a very steep function given by the Ill. SELF-ORGANIZED CRITICALITY OF EXTREMAL
power law PROCESSES
E \n We consider now a specific subclassgfremalprocesses
j :j°<E> : (2)  demonstrating the self-organized criticality. In extremal
0

models, only the sites satisfying a certain extremal criterion

wherens 1 is a parameter an, defines the critical current &€ involved at each step of the system evolutio_n. In particu-
density. It is common to defing as the current density at lar, the problem of low-temperature flux creep in supercon-
E,=10°Vcm L It is worth mentioning that fon>1 we  ductors can be mapped onto an extremal médel.

can rewrite Eq(2) as

j E A. Low-temperature flux-creep model
J=ct ﬁc ln(E_)' ©) At low temperatures, vortices at sites with slightly differ-
0 ent current densities have a different probability of depin-
where the omitted terms are of the ordend«1. ning: The depinning will happen first in a site with the high-

Equation(2) was first derived considering the thermally est current density.
activated uncorrelated hopping of vortex bundles, the The model suggested by ZaitSesimulates a part of a
Anderson—Kim model. The vortex-glas® and collective superconductor with. sites using the closed boundary con-
creep®?*models suggested later result in more sophisticateditions. Numberg; (O<i<L) are the values of the current
dependencies df on E. Still, these dependencies reduce todensityj, atL sites of thex axis. At each simulation step, a
Eq. (2) providedj-j.<]j.. The recently developed approach site numbem with the maximum current densify, is found
of the self-organized criticality-' also leads to Eq(2) if j  (see Fig. 2 This current density is reduced by a certain
—jc<J It should be stressed that in the interyalj.<j.,  valueA chosen randomly with an equal probability from the
the power law(2) is in good agreement with numerous ex- interval 0<A<1:
perimental dat&®

A detailed study of the vortex dynamics in the flux-creep
regime was performed by Field and co-workgtsn their It was shown that the stationary state of this model exhib-
experiments, the magnetic field outside a tubular superconts the basic features typical for self-organized criticality

ducting sample is ramped slowly, driving the flux into the systemd. It is worth mentioning that Zaitsev’s model con-
tube outer wall. After the flux front reaches the inner wall, it seryes the total current
spills out into the tube interior, the process recorded in real

Im=Im= A, e = Jmea + A/2. (4)

time. This experiment distinguished between flux leaving the . ) )

superconductor in discrete bundles or avalanches. It was 1= ja=()L, ©)
shown that the probabilitfp(s) of an avalanche containirgy n=t

vortices is a power law extending over 1.6 decades. so that the average current densjty is also conserved.
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FIG. 3. The calm and the active zones for a one-dimensional
flux creep model. The rules of dynamics given by E4.are illus-
X trated by the dashed lines.
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by Eq. (4). Our simulations clearly demonstrate that the cur-

rent density distributiorG(j) is an exponential dependence
FIG. 2. lllustration of the dynamics rules of Zaitsev's low- up to a certain critical valug,, i.e.,

temperature flux-creep model.

G(j)=Aexpjlje), forjc-1<j<]j, (6)
The system approaches Bean’s state starting from any ini-

tial state with a giver(j). In this state, almost all sites have WhereA andj, are parameters of the distributiésee Fig. 4
current densities less than a certain vajuéNe assume that 1Ne distribution functionG(j) is cut off sharply ag=jc. In
each site maps an area in a superconductor containing tAe active zondj> j) the “tail” of G(j) decreases as L/
bundle of vortices and ascribe the depinning of this bundle tavhenL — < (see Fig. 3.
a single “vortex” of Zaitsev's model. Motion of this vortex ~ The function G(j) has another cutoff aj.-1 if the
changes the local current density By The distribution of ~ A-distribution in the interval0,1) is chosen to be uniform.
the values ofA (referred to below ad\-distribution is re-  Indeed, there are only two options to have a site with the
lated to the amount of vortices leaving a given site, i.e., allcurrent densityj: (&) To decrease the current density in the
details concerning vortex dynamics, including microscopicignition site byA, and(b) to increase the current density in

vortex dynamics, are “hidden” in th&-distribution. one of the involved sites by /2. The lowest value of is
obtained by subtracting from the minimum value of the cur-
B. Dynamics of extremal processes rent density in an ignition site, which ig, the maximum

The flux-creep model described above conserves the tot Plug frpm theA-.dlstrlt')utlon, which is 1. As a result, the
currentl; this leads to a high level of correlation between the |str|byt|on f“”,C“O”G(J) has a cutoff from.thg Ieft. This
sites. In extremal models, the extremal sites are chosen aEUtOff is not universal and depends on Wdistribution. A
cording to problem-specific criteria. We will call these sitesCOntinuously decreasing-distribution eliminates both the
ignition sites. The changes at ignition sites provoke changel§ft cutoff and the deviation o6(j) from the exponential in
at neighboring sites, again according to rules specific for ahe Vicinity of jc. The details of the\-distribution affect only
given model. The sites drawn to be active by the ignitionthe tail of the functionG(j) in the intervalj > j.. Therefore,
sites will be callednvolved An involved site in its order can Values of the current densityare distributed according to
became an ignition site if it matches a certain extremal crifhe exponential law of Eq(6) in almost all sites of the sys-
terion. A system in a critical state is characterized by a criti-tem-
cal value of some dynamic parameter. For the flux-creep
model, this parameter js which is theleastvalue ofj in the A. Relation between the currentsj, and j,

ignition sites. That means that for the flux-creep model, all his relati b lculated iicall ina th
ignition sites have values greater than This relation can be calculated analytically using the nor-

The rules of dynamics given by Ed4) are illustrated malization of the distribution functio(j) and the average
schematically in Fig. 3. The interval of values of current current density conservation rules. Indeed, the normalization

densities at ignition sites is called antivezone. Each site in j j
the active zone, anctive site, becomes an ignition site at a JC G(j)dj :Af ¢ explj/jodj =1 7)
certain moment. At any step, only a small part of all sites is - -

active. As shown in Fig. 3, the majority of sites belongs to

the calm zone. We will consider the dynamic properties of relatesA, j., andj,

the low-temperature creep modd) using this terminology.

1 -
IV. LOW-TEMPERATURE CREEP SIMULATIONS A= J_ exp=jdje) - (8)
e
We have performed numerical simulations of the low-

temperature flux creep based on the rules of dynamics giveNext, we calculate the average value of the current density
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. e ablej;. To simplify the derivation, we use discrete values of
<J>:j jG(j)dj (9)  j by dividing the domain of possible values pinto small
" intervals. In this case, each site is characterized by a certain
and obtain the relation o4, j., andje to (j): value j;. We denote the number of sites with the same value
) ji asn; and write the conservation relations in the form
= Ajelidje— Dexp(jdje)- (10
Combining Eqgs(8) and (10), we find: 2 n=L, E niji = (k. (13
I I
Jomle= - (11) Distribution of L sites among the intervals with=j; is
If the A-distribution is uniform, we havé¢j)=1/2 and described by a s€h;}, wheren; is a number of sites in each
o interval. The number of states corresponding to the same set
je—Jje=1/2. (120 {n}is given by
-1
o . . 103 o) .
B. Origin of the exponential dependences(j) 1. L=100
2, L=300

We performed numerical simulations for a few different
extremal models and obtained the current density distributiono™ 3. L=900
function G(j) for all of them. In addition to the uniform
distribution for A, we tested exponential, Gaussian, and
power-law distributions. These\-distributions are more 1o
“natural” than the uniformA-distribution, since they decay
gradually and have no cutoffs. All of them lead to the expo-

nential form ofG(j) if two conditions are satisfiedl) Inter- =
actions in the model are local, meaning that an ignition site
affects only sites in a nearby region of a finite size, &2)cat
each step, the sum of dynamical variablgg stays constant. 5
. o ) T |
In other words, the exponential for(6) of G(j) is universal;
meaning that it does not depend on the form of the 2
A-distribution, on the dynamic rules of redistribution Af i}
between neighbors, and on how many sites from the vicinity10 3

of an ignition site are involved in the redistribution process
(for example, next-nearest neighbors can be included into the
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dynamic$. Thus, the exponential behavior &fj) is typical — ¥’
for extremal models with short-range interactions and a con-  9:0 0.50 1-°j° 150 2.00
servation relation for the dynamical variable.

The exponential behavior @(j) can be obtained analyti-  FIG. 5. Distribution functionsa(j) for different values of the

cally as the most probable distribution of the dynamical vari-length of the systenh in the regionj > j, [tails of G(j)].
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L! flux penetration. The periodic boundary conditions which we
I'= ont’ (14) used above were convenient to describe the part of the sys-
v tem far from the sample edges. In this section, we modify the
Using Stirling’s formula, we have fos=InT model to allow for studying the flux penetration.
Consider a slab in the parallel magnetic field as shown in
o=LInL- 2 niinn (15  Fig. 1. Due to the symmetry, we can do simulations in one-
1

half of the sample. Assume that the applied field increases

The maximum ofs is found using Lagrange method for with a rateh and penetrates the sample from the edgg at
conditional extremum with two conditiond.3) =-d. At this edge, we have:

F=o+(a+1)L- 8L,

jolt+ 8t) = jo(t) + hét. (23)
JF . The dynamics rule at the middle of the slad=0) has the
N
We finally obtain jLt+8) =jut) —A,
n = ea+ﬂji (17) . i
' jLoalt+ &) =ja(t) +A/2, (24)

with @ and 8 defined by
wherej (t) corresponds to the site at0. It is worth men-

Sebli=L, > jerFi=(j)L. (18)  tioning that there is no current conservation at the sample
i i boundaries at each simulation step. However, in a stationary

Using continuous forms of Eq18) state, the current conservation holds for large time intervals.

fea+ﬁjdj =L, fjea+5jdj = ()L, (19) A. Introduction of the “real” time scale
The above model of the self-organized low-temperature
we find flux creep does not formulate the rules of the current density
. dynamics in terms of real time; instead, it operates with the
B= 1, ev= A= 1 exp(— J_C>_ (20) simulation steps. These steps correspond to the sequential
Je Je Je depinning events in the process of numerical simulation. The

real time step corresponding to two successive simulation

Thus, jc, je, and(j) are indeed related by EGL1) and steps depends on temperature, current density, and other pa-

1 i—ie 1 i=G) rameters of the system, and can vary significantly. This has
G(j)=—exp — |=—expg — (21)  to be taken into account in order to relate the numerical and
]e Je eJe e 1
experimental data.

This distribution function contains an independent param- The temporal variation of the applied magnetic field has
eter j, characterizing the function width. The value jgfis  its time scale, which has to be synchronized with the “inner
proportional to the widthSA of the A-distribution and de- clock” of numerical simulations. This synchronization can be
pends on the spatial dimension of the model, on the numbefone by calculating the real time interval between two suc-
of the neighbors of the ignition site, etc. cessive depinning events. The extremal models of the low-

It is worth mentioning that the main features of the distri- temperature creep are based on the assumption that the de-
bution functionG(j) can be formulated in terms of a certain pinning probability P4 strongly depends on the maximum
effective “temperature.” Indeed, the above derivatioiGof) currentj,,. We assume that this dependence has the exponen-
is based on the arguments which are used to derive the Gibiiel form
distribution for a system of nonidentical particles. We can
rewrite Eq.(21) in the formG(j) =exp(-¢/ 7)/j., where the P, o exp{
effective “energy”e; and the “temperature? are defined as
€=a(j.—J) with an arbitrary coefficiena and 7= aj,. Using
Eqg. (11), we find for the average energy

—Jm._lc}'xexp{{—m] forj,<ij.. (25

I J1

The mean time between two depinning eve(# is in-
versely proportional tdy and, therefore, we write

(g)=aljc- (i) =aje=r. (22) _
t

The parametelj, is proportional to the widthSA of the (St =&, exp[—ln_‘j], (26)

A-distribution, and the same is true for the effective tempera- 1

ture: 7o A. where &, is the time interval of dick of the “real clock.”

The last equation provides the synchronization rule for the
numerical steps.

Extremal models are useful for studying macroscopic pro- Using Egs.(23) and (26), we arrive at the synchronized
cesses in superconductors and, in particular, the magnetimoundary condition ax=-d in the form

V. FLUX PENETRATION MODEL
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FIG. 6. Starting from the same initial distribution, the current j
density approaches different asymptotic values depending on the
ramp rateh=4x 1075, 3% 105 2x10°5 5% 10, and 3x 107 FIG. 7. Analogue of the current-voltage characteristics.
(from top to botton.
asymptotic value of, the analog of thg-E curve of Bean'’s

' i (0) state. This logarithmig-E curve is consistent with E¢3) as
jo(t+ 8t = jo(t) + ht, exp[— T—} (27)  well as with numerous experimental data.
1

Changing the time scale so tH'"aftr—> h, we rewrite Eq(27)
in the form convenient for recursive calculations VI. SUMMARY

_ j We demonstrate that an extremal type model evolves to
joﬂj0+hexp[— ,—m}. (28) Bean’s type state. The distribution function of the current
1 densityG(j) in this self-organized state was obtained by nu-
We now treat the numerical analog of the curve for ~ merical simulations as well as analytically. We found that
the low-temperature magnetic flux creep. The self-organize&(j) has a characteristic cutoff at the critical current density.
criticality model does not operate with the electric fidd We map the low-temperature magnetic flux-creep process to
explicitly. Therefore, we have to relate the fidkdto certain ~ dynamics of an extremal model with Bean’s type critical
characteristics of the model. state to treat magnetic flux penetration into superconductors
When a stable state is established, the magnetic flux reand derive an analog of the current-voltage characteristics in
distributes inside the sample keeping the critical current denthe flux creep regime.
sity j. almost constant. According to the Faraday law, the
magnetic field varying in time generates an electrical field.
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