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Layered superconductors in tilted magnetic field have a very rich spectrum of vortex lattice configurations.
In the presence of in-plane magnetic field, a sroalkis field penetrates in the form of isolated vortex chains.
The structure of a single chain is mainly determined by the ratio of the Lofdasand Josephsofi ;) lengths,
a=N/\;. At large « the chain is composed of tilted vorticéslted chaing and at smalle it consists of a
crossing array of Josephson vortices and pancake stexssing chains We studied the chain structures at
intermediatex’s and found two types of behavidr,) In the range 0.4 «<0.5 ac-axis field first penetrates in
the form of pancake-stack chains located on Josephson vortices. Due to attractive coupling between deformed
stacks, their density jumps from zero to a finite value. With further increase of-thés field the chain
structure smoothly evolves into modulated tilted vortices and then transforms via a second-order phase tran-
sition into the tilted straight vorticesii) In the range 0.5 a=<0.65 ac-axis field first penetrates in the form
of kinks creating kinked tilted vortices. With increasing thxxis field this structure is replaced via a first-
order phase transition by the strongly deformed crossing chain. This transition is accompanied by a large jump
of pancake density. Further evolution of the chain structure is similar to the higher anisotropy scenario: it
smoothly transforms back into the tilted straight vortices.
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I. INTRODUCTION only Bi,Sr,CaCyO, (BSCCO and related compounds may
asgelong to the “extremely anisotropic” family. Even in this
n-compound the parameter is not smaller than~0.25 and
increases with temperature so that BSCCO typically be-
comes “moderately anisotropic” in the vicinity of transition

Layered superconductors have an amazingly rich ph
diagram in tilted magnetic field. In the presence of the i
plane field, pancake vortices generated by dfaxis field-?
can form a very large number of different lattice configura-
tions. Possible structures include the kinked laftidejited ~ (©MPerature. _ ,
vortex chaing, and crossing lattices composed of sublattices N @ wide range of the in-plane field20—200 G and at
of Josephson vortice§Vs) and pancake-vortex stack8In  Very smallc-axis fields(up to 1-2 G the pancake stacks in
addition to homogeneous lattices, phase-separated states nfyered superconductors within a wide range of anisotropies
also exist such as dense pancake-stack chains sitting on J@& arranged in chains, see Fig. 1. An isolated chain is a
and dilute lattice in betwe&n!! or coexisting lattices with fwo-dimensional array of pancake vortices oriented perpen-
different orientationd? Even though considerable progress dicular to the layers. At somewhat highefaxis fields the
in this field has been made in the last decade, the satisfactoff?@ins are surrounded by the stripes of regular vortex
understanding of the phase diagram has not been achievétice®'° The internal structure of an isolated chain depends
yet. All these phases probably do realize in different materiOn the ratioe and it is relatively simple in two limiting cases.
als and experimental conditions. However, finding groundt large « the chain is composed of tilted pancake stacks
states in tilted field occurs to be a challenging theoreticaltilted chain, right column in Fig.jland at smalk it consists
task and it is even more difficult to prove experimentally that0f crossing array of Josephson vortices and pancake stacks
a particular lattice configuration does realize somewhere ifcrossing chains, left column in Fig).1A very nontrivial and
the phase diagram. intriguing problem is how one structure transforms into an-

The main source of richness of lattice structures in tiltedother in the region of intermediate. We address this prob-
field is the existence of two very different kinds of interac- 1€m in this paper. We analytically and numerically computed

tions between pancake vortices in different layers: magnetic T
and Josephson interactions. The key parameter, which deter- E/If .
mines the relative strength of these two interactions and

plays a major role in selecting the lattice structures, is the =

ratio of the two fundamental lengths, the in-plane London oN,

penetration depthA =\, and Josephson length;=1ys, T ¢
¢ N

with y being the anisotropy parameter antleing the inter-
layer spacing,a=\/\;. One can distinguish two limiting ZLI
cases which we refer to as “extremely anisotropic” case, ——a—
a<0.4, and “moderately anisotropic” case>0.7. Note

that in our terminology even “moderately anisotropic”  FIG. 1. (Color onling Crossing(left) and tilted (right) vortex
superconductors may have very large anisotropy factor, chains. Upper pictures show three-dimensional views and lower
>1. Among known atomically layered superconductors,pictures show the structures of isolated chains.
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ground-state configurations in the isolated vortex chain anavith the Josephson vortices reduces the energy of the pan-
found a surprisingly rich behavior. We found two types of cake stacks, the larger in-plane field favors the first scenario.
phase transitions. The first phase transition typically takes Using numerical code developed for studying the chain
place for the intermediate separations between pancalsructures, we also investigated stability of an isolated cross-
stacksa, a=(1-2)\;, and rather wide range of the ratig ing configuration of the Josephson vortex and pancake stack.
0.4= a<0.65. For theser's the ground state is given by the We found that the crossing configuration becomes unstable at
crossing chain in a wide range of the pancake separations a=0.69. Above this value the magnetic coupling is not ca-
However, due to attractive coupling between deformed panpable to maintain stable configuration and the Josephson vor-
cake stack$? the equilibrium separation cannot exceed somedex tears the stack apart. Nevertheless, the obtained stability
maximum value, which depends on the in-plane field and range occurs to be significantly broader than it was estimated
and it is typically of the order of several,. With decreasing from simple considerations in Ref. 21. The reason is that the
the pancake separation, the crossing chain becomes strongly deformed crossing configuration significantly modi-
strongly deformed and smoothly transforms into the modufies the Josephson vortex which reduces forces pulling pan-
lated tilted vortices which then transform via a second-ordecakes apart. We found that the crossing energy increases
phase transition into the tilted straight vortices. We calcu-smoothly up to instability point. Perturbative calculation
lated analytically the energies of two limiting chain configu- gives accurate results for the crossing configuration and its
rations and checked that numerics reproduces them. Compahergy up tow=0.35.
ing these energies, we locate the transitional region in the Recently, the vortex chains in BSCCO at small concentra-
phase space, where strongly deformed chains are realizedtions of pancakes have been studied by the scanning Hall

Another phase transition is realized at very small densitieprobe microscopy by Grigorenket al1* They observed that
of pancake vortices and only whenexceeds a certain criti- at very small concentration of the pancakes the chains are
cal value=0.5 (exact criterion depends on the in-plane mag-magnetically homogeneous and separate pancake stacks are
netic field. In this case a smad-axis field penetrates in the not resolved. When the external field exceeds some critical
form of kinks. The kinked vortex lines forming tilted chains value of the order of several oersted, crystallites of the pan-
are composed of pieces of Josephson vortices separated bake stacks are suddenly formed along the chain and the flux
kinks3-5 If the kink energy is only slightly smaller than the density in the crystallites approximately ten times higher
energy per pancake in a straight pancake stack then at vetlgen the flux density in the homogeneous chains. Our calcu-
small concentration of kinks, typically at=(20—30\;, the lations provide consistent interpretation for these observa-
kinked chains are replaced with strongly deformed crossingions. The magnetically homogeneous chains are interpreted
chains via a first-order phase transition. Due to the oppositas kinked/tilted chains and formation of crystallites can be
signs of interactiongkinks repel and deformed pancake attributed to the low-densitikinked lineg-(crossing chains
stacks attract each othethis transition is accompanied by a first-order phase transitiofsuch interpretation has been pro-
very large jump in the pancake density. With further decreasposed by Dodgsdf). The observed large density jump also
of pancake separation the chain smoothly transforms back twomes out from the theory.
the tilted chain as it was described in the previous paragraph. The evolution of the mixed chairlattice state with in-

Based on numerical exploration of the chain configuracreasing temperature has been studied recently by Lorentz
tions, we construct the chain phase diagrams for differenticroscopy:® It was observed that the pancake stacks lo-
ratios a. As follows from the earlier description, there are cated in chains smear along the chain direction above some
two types of phase diagrams in the region of intermediatdield-dependent temperature while the pancake stacks outside
a’s. chains still remain well defined. The continuous low-density

* In the range 0.4 «<0.5 a smallc-axis field first pen-  phase transition from crossing to tilted chain found and dis-
etrates in the form of pancake-stack chains located on Jaussed in this paper provides a very natural interpretation for
sephson vortices. Due to attractive coupling between dethis observation.
formed stacks, their density jumps from zero to a finite The paper is organized as follows. In Sec. Il we review
value. With further increase of the-axis field the chain general expressions for the chain energy. In Sec. Il we per-
structure first evolves into the modulated tilted vortices,form analytical calculations of the chain energy for the two
which then transforms via a second-order phase transitiodimiting cases: crossing and tilted chain. In Sec. IV, compar-
into the tilted straight vortices. ing energies for the two limiting configurations, we estimate

* In the range 0.5 «<0.65 a smalt-axis field first pen- location of the transition region. In Sec. V we review attrac-
etrates in the form of kinks creating kinked tilted vortices. tive interaction between deformed pancake stacks located on
With increasing thes-axis field this structure is replaced via Josephson vorticésand derive general formulas for deter-
a first-order phase transition by the chain of pancake stackspination of the maximum equilibrium separation between
which are typically strongly deformed. This transition is ac-the pancake stacks and the boundaries of stability region
companied by a large jump of pancake density. Further evowith respect to density fluctuations. Section VI contains the
lution of the chain structure is identical to the smaller main results of the paper on numerical exploration of the the
scenario: the structure first transforms into modulated tiltegphase diagram. After discussion of numerical implementa-
vortices and then, via a second-order phase transition, intton of the model, we explore stability of the isolated cross-
tilted straight vortices. ing configuration. In the next two subsections we consider

Note that the exact transition between the two types ofwo different phase transitions between the tilted and cross-
behavior depends also on the in-plane field. As interactioiing chains and two types of phase diagrams which are real-
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ized in the region of intermediate parameter 1
FulRni]= 5 2 Un(Rni~Rmpn=m),  (5)

n,m,i,j

II. ENERGY FUNCTIONAL

; ; 27Ss
Our calculations are based on the Lawrence-Doniach free-,:J[(ﬁm,Aanyi] => J d2r EJ{l - CO<Vn¢n - _Azﬂ ,
energy functional in the London approximation, which de- n b,

pends on the in-plane phasgg(r) and vector-potentiah(r) 6)

_ 5] 2 2 where the discrete gradieft,¢, is defined asv,,¢,= P41
F=2 | dr{Z|V. .- —A, . g i
n 2 d, -¢n and Uy(R,n) is the magnetic interaction between
pancakes
+E{1 cos<¢> ¢ ZWSA)H L n|
- ~PnT S
) mLT @, UM(R,n)zZW\][In—{6n—iex;<——)}
B2 R 2\ N
+ | d¥r—, 1
Joree ® L2z "
AN \N A
where
. u(r,z) = exp(— 2 Ey(r - 2) + exp(2) Eq(r + 2),
_ >0 _ %o
J= . andE, = 7572 2 where Ey(u)=f](exp(-v)/v)dv is the integral exponent

[E1(u)==ve=Inu+u at u<1 with y==0.5772 being the
are the phase stiffness and the Josephson coupling energyiler constarit r = {R?+(ns)?, andL is a cutoff length. The
with eg=®5/(4m\)?, N =Xy, and ). are the components of regular and vortex degrees of freedoms are coupled only via
the London penetration depth,=\./\,, is the anisotropy the Josephson energy in whigh, is the total phase com-
factor, ands is the interlayer periodicity. The ratio of the two posed of vortex and regular contributions.
energy scales determines the most important length scale of The discrete layer structure has strongest influence on the
the problem, the Josephson length=ys=VJ/E;. We use cores of tilted and Josephson vortices. Interaction contribu-
the London gauge, di% =0. We mainly address the situation tions to the total energy usually can be computed within
when magnetid inside the superconductor is fixed. The continuous approximation which describes the layered super-
component of the field determines the concentration of theonductor as a three-dimensional anisotropic material. This
pancake vortices, =B,/ ®, inside one layer. The in-plane approximation amounts to replacement of summation in the
phasesp, have singularities at the positions of pancake vor-layer indexn in Egs.(4)—(6) with integration in the continu-

ticesR,; inside the layers ous variablez=ns and expansion of cosine in E(). In the
continuous approximation one can derive a very useful gen-
[V X V ¢pl,= 2>, 8(r —=Ry). eral result for the energgl) (see Ref. 1y
i
— ) . 96 [k AAASLHAAOS?
L o L _ ) -0
ogarithmic divergencies in the vicinity of pancake-vortex 8w ) (2m)3 (1 +2\2Kk3)(1 +)\2k§+)\§ ‘2)

cores have to be cut at the coherence lergth A useful

approach for superconductors with weak Josephson coupling terms of vorticity S(r) of parametrically defined vortex
is to split the phase and vector-potential into the vortex andines R;(X)

regular contributionse, = ¢,n+ ¢, andA=A, +A,. The vor- 4R,

tex contributions minimize the energy for fixed positions of S(ry=> de—'é[r -Ri(X)]

pancake vortices & ;=0 and give magnetic interaction en- i dX

ergy for the pancake vortices. One can express this part of . .
energy via the vortex coordinat&s,;. In general, the regular whose Fourier transform is

contributions may include phases and vector potentials of the dR; )

Josephson vortices. The total energy naturally splits into the S(k) = 2 fdx dX exdikR;(X)].

regular part~,, the energy of magnetic interactions between !

pancakes), and the Josephson enerfly, which couples As we will use this formula only for evaluation of interaction

the regular and vortex degrees of freedom energies between vortex lines, we have to subtract from it the
B logarithmically diverging single-vortex terms.
F=F +Fu+F, ©) In this paper we focus on the structure of an isolated
- vortex chain with perio in x direction and perio¢=Nsin
with S X e .
z direction corresponding to the tilting angkeof vortices

2 with respect to thec axis with v=tané=a/c (see Fig. 1

5 J 2w \? s Br . R : :
FlémAl=> | d rE W”“"EA“ +[d r8—, The vertical period is fixed by the in-plane fielB,,
n 0 . c=\2dy/(y3yB,). For BSCCOy~500 and this period is

(4) approximately equal to 20 layers Bf~50 G. We consider
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the casec<\ and in-plane distances much smaller than
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Boc=E-Ejr (12

For this particular problem the general energy given by Egs. . _
(3)(6) can be significantly simplified using several approxi- | NiS part of energy weakly depends opand does not di-
mations: (i) we can neglect screening of regular phase and/€9€ forc,— . The result11) is valid for chains separated
z-axis vector potentialii) we consider only one-dimensional Py distancec, smaller thani.. Similar calculation can

displacements of pancake rows along the ch&p;=(ai
+U,,0,n9); (iii) we subtract the energy of straight pancake
stacks, (B,/ ®p)epg With eps~= go(In k+0.5), allowing us to
eliminate logarithmically diverging pancake-core contribu-
tions; and(iv) we drop the trivial magnetic energy term
B2/8 which plays no role in selection between different
chain phases. We will use the chain energy per unit are
E=c,[F/V-B/(8m) —(B,/Pg)epg] With V being the total
system volume. With the introduced simplifications this en-
ergy can be represented as

N
1o (fdx (%2 (J )
E—SNE fo aLﬂdy > (Vérn)

27s
+ EJ{l - CO{Vn(d)r,n + d’v,n) - (}TBxy:| })
0

1
Unr(Up = Up,n—m),
ZSLzEm Mr( n m: )

9

+

where ¢, (r) is the vortex-phase variation induced by dis-
placement of pancake rows,, from the ideally aligned po-
sitions

tan(mx/a)

tan(m(x + u,)/a) ~
ntanf(rry/a) '

t
tanh wy/a) arcla

@, n(X,Y;Up) = arcta

Uwmr(u,—umy,,n—m) is the interaction energy between the pan-

cake rows per unit length, computed with respect to straighg

stacks

U (u,n) = %IE [Um(ma+u,n) - Uy(man)], (10

a

be made for an isolated chain separated from other chains by
distance larger thai.. In this situation the integral over
converges on distanck. instead ofc, leading to result
E;..r=E;m\/sN. We will use this result in the analytical
calculations of the isolated chain energy.

In calculation of magnetic coupling energy one has to take
nto account periodic conditions for pancake displacements,

i
U,+n=Up. In addition, if one selects axis origin at the center

of the Josephson vortex then symmetry also requires
u_,=-u,. Ground state of the vortex chain is determined by
the minimum of energy9) with respect to pancake displace-
ments and regular phase distribution. Two simple limiting
cases in Fig. 1 correspond 9 u,<a for the crossing-chain
configuration and(ii) u,=—al1-(n-1/2)/N,]/2 for the
tilted-chain configuration.

Ill. ANALYTICAL CALCULATIONS OF CHAIN
ENERGIES

In this section we compute energy of an isolated vortex
chain with perioda in x direction and perioc=Ns<<\ in z
direction. In general, there are two approaches to compute
energies of vortex configurations. Using distribution of phase
and vector potential, the total energy can be obtained directly
from the Lawrence-Doniach functional by integration of the
local energy. This approach is always used in numerical
computations. Analytically, it is more convenient to calculate
the total energy by summing up energy of isolated vortices
nd vortex interactions. Analytic estimates for energy contri-
utions are possible in two limiting cases of weakly de-
formed crossing chain and chain consisting of tilted vortices
(see Fig. 1L Comparison of these energies gives an approxi-
mate range of parameters where one of these competing con-
figurations is energetically preferable. In contrast to the nu-

c,=®y/cB,>c is the in-plane distance between chains, andnerical part, we consider isolated chain separated from other

L, is the total system length indirection.

chains by distance,>\.. For comparison with numerical

The energy(9) contains a long-range suppression of thecalculations, it will be necessary to extract the local part of

Josephson energy accumulated from distaceeg<c,, that

is identical in all chain phases and it is convenient to separate

this term too. The averagesaxis phase gradient induced by
the Josephson vortex lattice is given by

_m_2my
"N Ng’
Evaluating integral
[ )
_Cy/2

we obtain the long-range Josephson enegy,g,

27S

Vindn = (}TOBxy

2ms 7729 f
. Y
0

dy{l - cos{Vngn - ~ oNE

77_2

E. —E %

J-LR JGSNZ

We will define the local energy,,. sensitive to the chain
structure as

(11

energy which is not sensitive to the long-range behavior.

A. Crossing chains

Energy of crossing-lattices chain per unit area is given by
sum of pancake stackEpg), Josephson vortexE;,) and
crossing energie€E, ) terms

(13
Both pancake and JV terms are composed of single-vortex
and interaction contributiorEps=Epgt+Epg Ejv=E5,+E}\.

We start with evaluating pancake-stack energies. Contri-

bution from energies of individual stacks to the energy per
unit length is given by

5_80 )\ )
—|In—=+C, |,
a(n§ Y

Ec = Epst+ Ejy+ Ex.

ps= (14

whereC, =~ 0.497 within the Ginzburg-Landau theory. Using
vorticity of the pancake-vortex chaig,(r)=;4(y) (x-ja)
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corresponding td5,(k) = d(k,)%; explik,ja), we derive from €y 8a’e,
general formulg8) the pancake-stacks interaction energy Ex= ac =" In(3.5/a)aN’ (19
2
i _ %o dkxdkyz exp(ikgja) (15) Finally, combining result$14), (16), (17), and(19), we ob-
PS"8ma ) (2m? 2 1A% tain the total energy of crossing chain
Using relation 3; explik,ja)=(1/a)3,d k.~ (2#m/a)] and _ 7\ 4\ a TV
] EcL= —-In—+ye=Ul — |+ —
integrating overk,, we obtain oL = Epst al a a E 2\ ¥C
. P2 = 1 v 8a?
o= 0 +=(INN+Cyp) - ——— (20
PST 16ma\ = 1 + (2mamia)? y In(3.5/@)N
‘DS dk 1 Subtracting the pancake-stack and long-range Josephson en-

T l6rar | 2nTe ergies, we obtain local energg’=Ec, —Eps—gomh/ yc?
T my\l+

807
For comparison with the energy of tilted chain, it will be EQC= [ —(InN+Cy) - m} (21
convenient to represent this energy in the form n(3.5/a)
which we will use for comparison with numerical simula-
i [77_)‘ A, (_) (16)  tions
PS™ a Ve 2\ :
with B. Tilted chains
o [(3)X%2,x=<0.5 Energy of the tilted chain per unit area also can be decom-
ux =S (l o1 ) ={1 2 posed into the single-vortex and interaction contributions
i \m o VM2 + X2 ——In—+y,x=1 s i
2X X ETV: ETV+ ETV'
and{(3)=3,_,(1/m?) =~ 1.202. The first term can be estimated analytically only in two lim-
Single-vortex JV energy is given By iting cases ta®<y and tanf> vy, where the second case
corresponds to kinked lines. For the interaction term we de-
s €p A . T -
ESv= —(In —+ 1,54)_ rive a general formula valid in both limits.
yc\ S
The JV interaction energy can be evaluated in the same way 1. Energy of a single tilted line
as the pancake-stack interaction enef®§) and in the limit (a) Regionv=tang< y. Energy difference between tilted
C<\ itis given by and straight pancake stacks;,—epg determines tilt stiff-
ness of pancake stack and contains magnetic and Josephson
; N 4\ Sor .
E'JV% —=In—+ ). contribution, g, and ;. Magnetic part has been calculated
el ¢ ¢ by Clent
Therefore, the total energy of the JV arrdgsy,=ES,+E}, I
. Vi+/7+1
can be written as em=¢goIn ———.
2
go( ™\ c o .
V= 'y_C s + Ing +Cyy (17) The Josephson contribution to the tilt energy appears due to

suppression of the Josephson interlayer coupling by mis-
with C;,=1.54—In 47+ yz~-0.41. The fist term in this for- matched pancakes. It can be evaluated as
mula is the long-range Josephson eneEyy,g. This term is
identical in all chain phases and does not determine selection €= 2o ( C )
between them. This formula is valid for an isolated chain and Y\ sv
it is different from the long-range Josephson energy of th
dense JV latticeg, <\, given by Eq.(11). The difference
amounts to a simple replacemesjt— mA.. For comparison
with simulations, we will use only the local part of energy
which is obtained from the total energy by subtractifyg .

SNumerical constant; can be computed exactly by matching
logarithmic contributions coming from small and large
distance® which gives C;=31In2-9. Therefore, the
single-vortex energy of the tilted chain is given by

Using estimate for the crossing energy of Josephson vor- < &, V1+17+1 L €0 v 8)\
tex and pancake stack far=\/ys=<0.4819 Erv=Epst ‘a In 2 a 272 T
86!258() (22)
=——0 18
>~ In(3.5/) 18

Note that at not very large tilt angles=<1, the Josephson
we obtain the contribution from the crossings into the energyilt energy is roughlyy? smaller than the magnetic tilt energy.
per unit area Two terms become comparable at very large tilt angies,

174507-5



A. E. KOSHELEV PHYSICAL REVIEW B71, 174507(2009

~1v. In several papers the energy of a tilted line inwithin the London approximation. In Appendix B we derive
anisotropic three-dimensionalsuperconductor has been a general analytical formula for the interaction energy of
calculated!” This calculation is based on the London tilted chain,E},

energy expression(8) employing elliptic cut off in ’ ’

k-integrationk?+k2/ y? < &2 to treat the vortex core. Strictly ;&) 7vA + mN NV Y | (4777\\V2+ 72) _

speaking, this approximation does not describe layered su-7V g yc a Y n Ve

perconductors in whickk.<s. Nevertheless, in the region —_—

v<v it leads to the result similar to E¢22). +in y+ V1P + @27
(b) Region v=tan#>vy (kinked line$. In the region 1+V1+.2 |

tan#> v the vortex lines have the kink structure, i.e., they
are composed of kinks separated by JV pieces. Energy dfhe first term in this formula represents again the long-range

such line per unit length is given by Josephson energy and it is identical to the first term in the
energy of the Josephson chditv). At large N this formula
e = et UL + ey, (23 also gives the interaction energy of a kinked line for 7,
wheree = (go/ y)(In(\/s)+1.54 is the energy of Josephson because the kinked structure of tilted lines starts to influence
vortex their interaction only at very large tilting angle
v>Ny/27.2 In the regionv<y Eq. (27) simplifies as
Uy = seq(In(5/€) + Gy (24) -
. . . . - go) mAN  m\ 2aN(1 +V1 +17)
is the kink energy;® L=stan#@ is the separation between Erv= —{— +— = In[—} + v
kinks, ande,; is the kink interaction energy. Numerical con- al r a
stantCy in the kink energy has been estimated as —-0.17 in 2 Amh, 1
Ref. 6. However more accurate numerical calculations of this - ﬁ[ln(7> ~ Y%+ 5] (28)
paper give somewhat smaller valGg=~-0.31.

~ The interaction energy between neighboring kinks in theThe |ast term represents change of the Josephson energy due
kinked line decays as 1f up toL <\, leading to relatively o misalignment of pancakes in different stacks. Combining
large interaction contribution to the total energy. The kinkthis term with the last term in Eq22), we obtain the total

interaction energy is computed in details in Appendix A. In josephson energy loss of tilted chain due to pancake mis-
the regionl <\ the dominant interaction term in the energy gjignment

of single line is given by

2
&g V 2c 1)
pa Ae) 3 SEn=——=|In—=-=].
Eyi = 2L§0{|n<f>_§:| (25) v aZyZ( ms 2

Combining all contributions, we derive the following re- In the limit of kinked lines,y> v, interaction energy reduces

sult for the single-vortex energy of a tilted chaify,,

=ey/c, in the limit v>y: Ceg) mA m ,,{ <4w>\) ]
En=~———+—-—|In| —| -
y[ln(ﬂ> 3]} Voalya a vy c ) *

1
E5v=Eps+ E5y+ @{In —+C+—
L | LA S 29
(26) 20| | (29

2v
with Gy, =C,—C,~-0.81. Note that the values of the nu- \gte again that this result is valid untit<Ny/2m, where
merical constant€, andC, depend on the core structure at yq kink structure of the tilted lines does not influence much

small distances ~¢ from its center, which evolves with interaction between them. The limit of largercorresponds
temperature decrease. However, as this structure is exacy the regime of “kink walls” described in Ref. 6.

the same for the pancake vortex and kink, the difference
C—C, is not sensitive to behavior at small distances and
remains the same down to low temperatures. Criterion
In(1/a) +C, =0 (corresponding tav,~0.44 separates the  Combining the interaction enerd?8) with the energy of
kink and pancake-stack penetration regimes of a scrakis !nd|V|dL_JaI_ stackg22), we obtain the total tilted-chain energy
field for largeN (somewhat larger value,=~0.5 has been in the limitsc=Ns<\, v<y

2

3. Total energy of tilted chains

given in Ref. 6. This critical value increases with decrease
of N due to the crossing energies in the crossing chains. Erv~Edg+ @[W_”)‘J,Tr_)‘_m(@)
Penetration of the-axis field in the presence on the in-plane al C a a
field is frequently referred to as a lock-in transition. 2
+ e+ ——(In N—O.Qa]. (30)
2. Interaction energy of tilted vortices. 272

The interaction energy between tilted lines is not influ-This gives the following result for the local part of energy,
enced much by the layered structure and it can be computeEi?SEETV— Eps—eqm\/ yC?
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e €0 a which gives only an approximate location of the broad tran-
Ev=2 1Y\ o)t ﬁ(m N-0.99 |. (31 sitional region, this equation indeed describes a very strong
first-order phase transition.
In this formula the first term represents the loss of the mag-
netic coupling energy in the tilted chain and the second term

represents the JOSGphSOﬂ energy loss. V. ATTRACTION BETWEEN DEFORMED PANCAKE
In the region of kinked lines> vy (but v<Nvy/2), the STACKS AND TILTED VORTICES: MAXIMUM

total chain energy is obtained by combining E¢6) and EQUILIBRIUM SEPARATION

(29) giving

A peculiar property of the crossing chain is an attractive
< €0 ys Y N interaction between the deformed pancake stacks at large
Erv=Epst EJV"'; In Y+Cku+z In o +Cyi distanced3 As a consequence, when the magnetic field is
tited from the layer direction, the density of the pancake
(32 stacks located on the Josephson vortices jumps from zero to
with C=—In 4m—1/2+yg~—2.454. a finite value. This means the existence of a maximum equi-
librium separationa,, between pancake stacks, i.e., chains
with a>a,, are not realized in equilibrium. Note that the

IV. LOCATION OF TRANSITIONAL REGIONS IN THE tilted Vortices.also attract .ea.Ch Oth(?r within .Some range of

PHASE SPACE angles and distancésneaning that tilted chains also have
this property in some range of parameters.

To find out whether the crossing or tilted chain is realized A simple analytical formula for the attraction energy be-
for given values of the parametess ¢, and a, we have to  tween the deformed pancake stacks can be derived for very
compare the energies of these states. Naively, one may thirdhisotropic superconductoks> \ in the range\ <R<<\ ;.13
that intersection of the energy curves for the two statesn this limit short-range pancake displacemeunisrom the
would correspond to a first-order phase transition betweealigned positions in the two neighboring stacks produce a
these states. However, as we will see from numerical simudipolelike contribution to the interaction energy per unit
lations, in the regiorwv=tanf< y another scenario is real- length between these stacks
ized. Typically, strongly deformed intermediate chain con-

figurations develop in the transitional region providing a o N 26 (U2
smooth transition between the two limiting configurations. 8Ui(R) :_ﬂz uﬁ:— sozu .
Therefore, a simple energy comparison gives only an ap- NRES R
proximate location of the transitional region separating the
two configurations. _ This term has to be combined with the usual repulsive inter-
In the regionv/ y=a/N\;<1 comparison 0f20) and(30)  action between straight stacksU;o(R)=2soKo(R/\)
gives the following criterion for the transitional region: ~ 2e0\/m\/2Rexp(—-R/\). Minimum of the total interaction
a v 2 802 energy,U;o(R) +d8U;(R), gives an estimate for the maximum
U-——|--(nN-04D)+—(InN-099 + —— ilibri i B a,= 21{u? iS re-
(277)\) y( D 2)/2( 5 nG.5/N equilibrium separatiom,, '3 a,,=\ In(C\?/{u?)) and this re

sult is valid untila,,<\;. Because in BSCCQ; is only 2—3
=0. (33 times larger than\, this simple formula is not practical for
this compound. We will see tha, in BSCCO is usually
arger thanh;.
One can obtain a useful general recipe for determination
the maximum equilibrium separation between the pancake
stacks directly from the chain energy per unit ageavithout
nsplitting it into the single-vortex and interaction parts. We
consider situation when the in-plane component of the mag-
netic field is much larger than the lower critical field in this
direction so that the in-plane magnetic induction practically
coincides with the in-plane external magnetic field. The
component of the external fielti,, determines the effective
1 y N 8a2 chemical potentialy for density of pancake stacksy
In—+Cy, + > In(—) +Cy |+ ING5N 0 =®dgH,/(47). With fixed chemical potential, the chain ther-
“« v v > modynamic potential per unit area depends on pancake linear
(34 densityn as

One can observe that the main competition takes place b
tween the loss of the magnetic coupling energy for the tilte
chain (first term) and strong suppression of the Josephsorbf
energy by JVs for the crossing chasecond term Solution
of this equation provides the boundary which can be writte
in the reduced forna=A;N f(N, @) with f(N,a) <1, i.e., the
boundary shape in the plar@@\;-N depends only on the
parameter.

In region 1<w/y<<N/27 anda>2m\ comparison of the
energieqd20) and(32) gives

This equation has a solution only in the kink penetration

regime, I1/a)+C,, <0, near the transition between the G(n) =E(n) - un. (39
two penetration regimefn(1/a)+C,,|<1 where the kink

energy is only slightly smaller than the energy per pancakdhe equilibrium density, is given by the minimum of this
of a straight pancake-vortex stack. In contrast to B9), energy
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dE(n) EN A2
an =u. 2(InN O95——(|nN 0.4) +3,- ma=0, (39
Substituting this relation back to E(5) we obtain with 3,,=a,,/\;, which can be easily solved numerically in
general case. At smadt and largeN an approximate solution
G(n,) =E(n,) —E'(nyn,. of this equation gives

If we represent the energy as a function of the stack separa-
tion a rather than the density, the last result can be rewritten
in a more compact way

a,~ 7\ 1+7T—,\la(InN—0.4]) ,

i.e., at largeN a,, approaches a remarkably simple universal

d TN,
G(a)=£[aE(a)]_ value m\

VI. NUMERICAL EXPLORATION OF CHAIN

The separatiom in this formula corresponds an equilibrium STRUCTURES
separation only ifG(a) is smaller than the energy of the
Josephson vortex lattic&(«) =E(«<)=E,,. Therefore the A. Numerical implementation of the model
maximum equilibrium separatioay, is given by the condi- Our purpose is to calculate the equilibrium distribution of
tion the regular phase, ,(x,y) and pancake-row displacements
on the basis of the enerd®). To facilitate numerical calcu-
dl;;a) =0, (36) lations, we introduce reduced variables

V=y/\;, X=Xa, v,=uya
where the quantity(a)=a[E(a)-E(«)] represents the pan- . _ .
cake part of energy per one stack and the condit@®  and represent the row interaction enet@9) in the reduced
implies thata,, is determined by the minimum of this energy. form
When the main contribution to the total interaction energy is wlae (U
coming from the nearest-neighbor interactiag, coincides U, (u,n) = —ZVMr<—,n),
with the position of the minimum in the pair interaction po-
tential. ~
In principle, nonequilibrium structures witn>a,, can be ~ Where Vi (v,m=Vy(v,n)=Vy(0,n) and forVy(v,n) we
prepared by applying external stretching forces at the chaiflerive from Eq.(7)

edges. However, the chain can be stretched only up to a
certain critical value of separation. Above this value the sys- Vige(0,1) = Sh 2 XF(‘ ﬂ)ln[Z sin(mlv))]
tem becomes unstable with respect to density fluctuations 2 A
leading to formation of high-density chain clusters. The sta-
bility criterion of the chain is given by . E <|v - m|,s|n|> (40)
— NMa A
d’E(n)
———>0. (37) -
dr? The reduced energy per unit aréss EN;/ g, takes the form
As - d;(
- ) , E:ﬁ f y{ ~(Vy n)?
d“E(n d n=1 /2
G~ g gtelE@ - EE)
+1- Coivn((l&r,n + ¢’v,n) - h’y]
the stability criterion can also be written as
2 + > Vur(vn=vmn-m) (41)
d:(za) >0. (39 202 Ntotn;tm M "
a

with h=27B, ys’/ &, anda=a/\ ;. The reduced local energy
Therefore, in the dependence of the pancake part of energy defined as

per unit cell,U, on pancake separatian the minimum gives
the maximum equilibrium separation and the inflection point ~ =~
corresponds to the boundary of instability with respect to Bioc=E-
cluster formation.

As an example, we apply the obtained general formuldn particular, from Eqs(21) and (31) we obtain the follow-
(36) to the tilted chain ai< y. Using Eqs(30) and(17), we  ing results for the reduced local energies of two limiting
obtain from Eq.(36) a cubic equation foa,, configurations in the limig/N=v/y<1

23,

(42)
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|n N + CJV 8a2 f i h ) * N| *
E N - I\I'éln(35/a)’ or crossing chain m-E_x ]:Mr(Un_Um,n—m)zmz_l |§m []:Mr(l)n_vm,n_m+|N)
loc =~ ~ ~ - T
1 a a
:U(—) +——(InN-0.95, for tilted chain. + Furwptomn+m-1+IN)].
a \ 27« 2N

Similar decomposition was made for the magnetic interac-
(43 ; X
tion energy in Eq(41).

We will also use the excess pancake part of energy defined as We explored chain phase structures by numerically solv-

SE—E-E 44 ing Egs.(46) with respect to the pancake-row displacement

- NV (44) v, and regular phase distributiafy , for different values of

B s the parameters, N=2N;, and . Numerical computations
=(\ye0) (E - Eps~ Egv) (45 were performed on two Linux workstations with 2 GHz

with Ejy being the JV lattice energy per unit area and theAMD Athlon processors and on the nodes of the Argonne
excess pancake energy per stéickunits of ), U=30E. computing cluster “Jazz(350 nodes, each with 2.4 GHz

The phase distributiog, , and pancake displacements \Ijiinwt”tjr?; ées?JTtspE)?Ctﬁ:gngaltgaa:(tci’cl)lg;wng sections we re-
minimizing the energy functional41) obey the following '

equations:
Ay o+ siNVu(dy o+ &, ) — hy] B. Stability of crossing configuration
— SN V,(é 11+ by 1) = HY] =0, (463 The fundamental property of the crossing-chain state is
’ ” the structure of the crossing configuration of Josephson vor-
5 = tex and pancake stack. In-plane currents of the Josephson
Vy (0@, 0) + 2 > Furlon—vmn—-m) =0, (46b)  vortex displace the pancakes in the opposite directions above
o

m=—o0 and below central layers. Equilibrium displacements are the
result of a balance between the pulling forces of the Joseph-
son vortex, which try to tear the pancake stack apart, and
magnetic coupling, which tries to keep the stack aligned. The

where Fy,(v,n) ==V, Vy,(v,n) is the magnetic interaction
force between the vortex rows

Sk sin| structure of the crossing configuration can be calculated ana-
Fur(v,n) =~ P N cotmv lytically in the regime of high anisotropy< \ 21°leading to
. the result(18) for the crossing energy and to the maximum
SN 1 V(v —m)?+sn? displacementu, =~ 2.2\2/[\;In(2x,/\)]. This calculation is
+ ?Em o—m P Na : based on(i) quadratic approximation for the magnetic tilt

energy andii) assumption that the JV in-plane currents are

(47)  not influenced much by pancake displacements. The first as-
sumption breaks down whean approache& and the second
hgne breaks down whem, become comparable witk;. This
means that the both approximations break down\ aap-
i proaches\ ;.

The stability of the crossing configuration has been ad-
ressed recently by Dodgsdrusing the full magnetic cou-
p]ng energy but without taking into account modification of

Note that bothVy,(v,n) and Fy,(v,n) are regular ab — 0,
because divergency in the first term is compensated by t
m=0 term in the sum.

In numerical calculations we assume for simplicity per
odic boundary condition iy direction with periodc,. Physi-
cally, this corresponds to rectangular arrangement of botH

hson vorti n ncake stacks. Even though )
Josephson vortices and pancake stacks © ougn su e Josephson vortex by pancake displacements. The latter

arrangement does not give the true ground state, it does n t b i ted wtically. Thi lculat
influence much the structure of an individual chain, that isca' NOt b€ €aslly computed anaiytically. This calcuiation

the focus of this paper. Due to symmetry properties, it iSsuggested that the crossing configuration becomes unstable

fici find the ph trib it ithi . ata=\/\;=1/2.86~0.35. This estimate seems to be in
ijaifltéit):i a'”gi; <pcy:';1§e ffgi)uN“c_mN”(/); )(/)vitwhlttr:g ?c())l contradiction with the recent decoration experimé&nghere
] ’ =H=IN= -

) g . the isolated pancake stacks sitting on the Josephson vortices
lowing boundary conditions for the total phase: have been observed in the strongly overdoped BSCCO with

d(@a+0y) = (+0y), &u(X,—0) =7 - P, (X, +0), the ratioa significantly larger than this value.
To resolve this contradiction and find an accurate stability
cy B cy 2m(n—1/2) criterion we studied numerically evolution of the isolated
Pn| X, 2 +0)==¢n| X, 2 0)+ N ' crossing configuration with increasing ratio For this pur-
pose we used the code, which calculates the chain structure
Bo(XY) == 1= XY),  Pyer(XY) =T = Py (XY). in Fig. 1, for large values of the periodsandN=2N,. Figure

2(a) shows the dependence of the maximum pancake dis-
Pancake displacements, have symmetry properties placement on the ratia for N=20 and different values @f.
vnsn=Vn andv,_,=-v,. This allows us to reduce infinitm  One can see that the crossing configuration becomes unstable
summation in Eq(46b) to summation over half of the unit neara=0.69, which significantly exceeds a simple estimate
cell Ism=N, in Ref. 21. The main reason for the extended stability range
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5 N=-20 is that the pancake displacements significantly modify the
(@) ' ' e-n12 ¥ structure of the Josephson vortex. This reduces forces which
5| U * a6 - pull the pancake stacks away and compensates for reduced
TTemmamad, : magnetic coupling restoring forces at langeFinite-size ef-
S 4r neow forsmall & b fect is only noticeable in vicinity of the instability. The
S 3L i small« calculation correctly predicts the maximum dis-
s placement up tax=0.35 and underestimates it at larger
2 : T 7 Figure 2b) shows thea dependence of crossing energy.
1L a0 o-0" i It demonstrates a rather regular behavior almost up to the
TV TCTL 0-69 instability point. Similar to the maximum displacement, the
0 _Bf*---ﬂ-“?‘“@"""a"l"'" : L ', small-w calculation gives an accurate estimate &rup to
(0) T ey , a=~=0.35. For higherx an absolute value of, exceeds the
- 05k Tl % i analytical estimate.
£l “":&;;n\‘ B 4
= S“GB:\.‘ C. Typical phase diagram within the range 0.4 a=<0.5:
; 1.5¢ q“s. 7 Phase transition from crossing to tilted chains with decreasing
:,; oL ) | pancake separation
o5l i At the first stage we studied the evolution of chain struc-
’ tures with increasingr=\/\; for fixed periodsa andN. As
03 0'3 0'4 0'5 ole 0'7 \ increases \_/vith the temperature ang is approximate_ly
: : : o : : : temperature independent, increaseaotorresponds to in-

crease of the temperature in real systems except that our
FIG. 2. (Color onlin® () The dependence of the maximum Calculations do not take into account thermal fluctuations.

pancake displacement in the crossigfined in the insgton the ~ For small values o& andN we found that the chain structure

ratio a=\/\; for different periodsa in x direction. The plot shows €Volves smoothly. An example of such evolution is presented

that crossing becomes unstable nea0.69. The inset shows cross- iN Fig. 3 forN=14 anda=1.52,;. The main plot shows the

ing configuration near instability pointb) The dependence of dependence of the maximum pancake displacement from the

crossing energy on the ratia For comparison, smalk-calculation  straight-stack position,,/a (defined in the ins¢ton the

is shown in both plots. parameterx. We will use this ratio to characterize the chain

structure throughout the paper. It changes from zero for

straight stacks t@1-1/N)/2 for tilted chains. At smalkx a

a=0.25 o =046

= N=14,a=152),

Transition

o
Jomeoseet®’ penonel

a=04 a=0.55

u

— = —= 0 1 1 1 — |max

025 03 035 04 045 05 0.55:
— o

FIG. 3. (Color online Main plotshows the dependence of the maximum displace(uefited in the insetdivided by pancake separation
on the parameters for N=14 anda=1.52\ ;. The chain structures are illustrated at marked points. In the configuration pictures circles show
positions of the pancake vortices and horizontal lines mark locations of the Josephson vortices. One can see that the system evolves from
weakly deformed chaife=0.25 via strongly deformed chaitw=0.4) to modulated tilted chaifte=0.46. The last structure transforms via
a second-order phase transitionaat0.48 into tilted straight vortices.
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02 ' ' ' ' st|lmate ' ' ( ) T |
a a -
0.18 L e \‘ - B ﬁﬁ@ﬂ@@gmﬁazmmzﬁmaﬁaﬁmaﬁaﬁaﬁa—u
Lol = o~ 501 | :
'-UQ 014 ——numerics S - -
BN R EEELE theory, tilted 02
. C ted Ve 1
0.12 [ [ eeeeeee theory, crossing tr;’;‘;‘i’ﬁuoi 0 10
01 1 1 1 1 1 1 m a/kJ
0.2 0.3 0.4 0.5 0.6
a FIG. 5. (Color online The dependence of the excess pancake
8 pag b energy per stack in units afy, U, on the separation between pan-
71 N=10 L0 ®) | cakesa for a=0.5 and differenN. The position of minimum of this
6l ) .7 st order | energy corresponds to the maximum equilibrium separatign
5 Ejﬂ?;atf: (marked forN=8 plof).
5
< B 2 ] . . . .
® 4] T | (33). The computed transition line is always displaced from
et ond order the estimated boundary in the direction of largeiThe tran-
3| - sitional region just marks the location of the intermediate
21 gom’(’j“ted i strongly deformed chain configurations. The observed con-
Pl tinuous phase transition indicates that tilted lines become
0.4 0.45 05 0.55 unstable with decrease af. It is known that an isolated
o vortex line in anisotropic superconductors is unstable within

some range of tilt angl€¥:?> We have to note that the sta-

FIG. 4. (Color onling (a) The dependence of the local part of bility criterion of a chain is not identical to the stability cri-
energy of the chain configuration on the ratiofor N=10 and  terion of an isolated vortex line and requires separate study.

a=3.4\;. For comparison, we also show analytical estimates for theat large values ofa a continuous transition is replaced by a
crossing and tilted chain configuratiotb) Phase diagram in the first-order phase transition. However, as it was discussed in
plane (pancake separatiom)-(ratio a) for the fixed separation be-  Sec. V, due to the attractive interaction between the pancake
tween JVsN=10. The solid line shows computed transition into the gtacks, large separations may not realize in equilibrium be-

tilted chain state. The dashed line shows location of the transitiongl5;ses is expected to jump from infinity to the maximum
region where the energy of the crossing configuration is equal to th%quilibrium separatiom,,

energy of the tited configuration. To find location ofa,, in the phase space, we calculated

weakly deformed crossing configuration is always realizedh €volution of chain structures with changiador fixed &
(see the structure a¥=0.25. The pancake displacements @nd N. These calculations, of course, reproduce the chain
grow with increasinge and the chain evolves into strongly structures and location of the transition line of the previous
corrugated configurations such as configurationsfe0.4 in ~ calculation. Following the recipe of Sec. V, we calculated the
Fig. 3. With further increase o, this structure smoothly a dependence of the excess pancake energy per unit stack,
transforms into modulated tilted lindsee the structure for U(a)=a(E-E,), and finda,, from the minimum location of
a=0.46. Finally, the last structure transforms via a second-this energy. Figure 5 shows an example of these dependen-
order phase transition into the straight tilted lines. For pa<cies for «=0.5 and differentN. IncreasingU(a) at a>a,
rameters used in Fig. 3 this occursaat0.48. The plateau in implies attractive interaction between stacks at large separa-
the dependence,,,(«) above this value o corresponds to tions. We can see that far=0.5 the separation,, weakly
the maximum displacemeiit —1/N)/2 in the tilted chain.  depends oM and lies in betweenX and 3\;. Note that the

To compare numerical and analytical calculations we plofN dependence of the limiting value bf(a) ata— o reflects
in Fig. 4(a) the numerically computed-dependence of the contribution from the crossing energy of an isolated pancake
local energy(42) together with analytical estimat¢43) for ~ stack with the JV array.
N=10 anda=3.4\;. One can see that the analytical estimates In Fig. 6 we present the chain phase diagrams in the
accurately reproduce numerical results for the weakly dea-N plane for two values of, 0.4 and 0.5. Solid lines show
formed crossing chain at<0.35 and for the tilted chain at the phase transition into the tilted-chain stétke depen-
a>0.5. However, in between the numerical study predictsdencea(N)]. One can see that at largdithe transition takes
intermediate configurations with energies smaller than thelace at smallea. With increasinga this line moves higher
energies of the both limiting configurations. As a result, ameaning that the tilted-chain state occupies larger area in the
naively expected first-order phase transition is replaced by phase space. At large weakly deformed chain configura-
continuous transition occurring at significantly largerThis  tions are realized, similar to ones shown in Fig. 3 for
behavior is quite general. We observed it within the broade=0.25. With decreasin@ the chain configuration crosses
range of the periods, 8 N=<20, 2<a/\;=<5 and the ratios over into a strongly corrugated state. To mark location of this
0.4<«a=<0.6. In Fig. 4b) we compare location of the phase crossover we show in the phase diagrams by dashed lines the
transition into the tilted-chain state in tree« plane for  pancake separation at which the maximum pancake displace-
N=10 with location of the transitional region defined by Eq. ment u,,, reachesa/4 [plot a,(N)]. This crossover can be
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a5 a=04 (lock-in transition, see, e.g., Refs. 3—%he critical value of
I ' ' ' ' a is determined by combination of numerical constants in the
3f Crossing Chains . pancake-stack and kink energies and it is given by
25| a.=expCy,, where the constar@,, is defined after Eq(.26).
2| To find the value ofa,, we calculated in Appendix A the
< energy of tilted chains at very large pancake separatons
® 15 which allowed us to extract the energy of an isolated kink.
1t This calculation givesC,,~-0.81 corresponding taw,
05 L ~0.44. It is important to note that the critical value of
o L . . increases with decrease Nf due to the increasing contribu-

tion of the crossing energies to the total energy of crossing
chain. Very interesting behavior is expected wheis only
slightly larger tharne.. The competing chain states have very
different interactions: deformed stacks attract and kinks repel
each other. Moreover, at the same value of ¢kexis mag-
netic induction,B,, the kink separation is much smaller than
the stack separation and the absolute value of the kink inter-
action energy is much larger than the interaction energy be-
tween deformed stacks. As a consequence, with incre&sing
the total energy of the kinked lines rapidly exceeds the total
4 energy of the crossing chain and the system experiences a
first-order phase transition into the crossing-chain state. Due
20 to the attractive interaction between the pancake stacks, the
N pancake/kink separation at which the energy curves cross
does not give the equilibrium separation for the crossing
chain and the stack separation jumps at the transition to a
value slightly smaller than the maximum equilibrium sepa-
Fation a, This means that the phase transition is accompa-
nied by jump of pancake density and magnetic inductign,
This behavior was confirmed by numerical calculations.
Figure 7 shows a plot of the dependence of the pancake
energyU on the pancake separation fi=16 anda=0.6.
This dependence has two branches, corresponding to the two
different starting states at large crossing chain and kinked
lines. This branches cross at14.8\; and the the kinked
viewed as “reconnection” of pancake-stack segments. Dottegortex lines have smaller energy at largehe variations of
lines show locations dd,,,. We see thaa,(N) line crosses the U at largea occur due to the interaction energy and one can
transition line meaning that at smalla,, falls into the tilted-  see that the kink interaction energy is much larger than the
chain region and at largh it falls into the crossing-chains interaction energy of the deformed stack in the crossing
region. Fora=0.5 we also show the analytical estimate forchain. With further decrease o&, the crossing chain
a, for the tilted chain calculated from E¢B9). One can see Smoothly transforms into the tilted chain, as it was described
that |t agrees Very We” W|th numerica' Ca'culations_ For in the pl’eViOUS section. The second-order phase transition for
=0.5 andN=<8 the transition is of the first order. However, these parameters takes placeaat2.5\, somewhat smaller
the pancake separation at the transition lies almymean-  than the maximum equilibrium separatiap~3.44\;.
ing that it does not correspond to the ground state. The pancake separatidor pancake densilyin the chain
The obtained phase diagrams imply that at small tiltingca”nOt be directly fixed in experiment. Instead, the magnetic

' - : : field strength, H,, fixes the chemical potentialuy,
angle of the field with respect to theeaxis (corresponding to - z o . F !
smalla) the tilted chains have lower energy than the crossingg H _tg)eOHZI/o(ﬁgl), ni?ﬁm??n egfu Iilr?élutwe?rig?jlt%;n?cetegggteigl
chains. This is similar to the situation at higher fields, in the y 9 y P

dense lattice, where the crossing-lattices state also is exG-(n):E(n)_’an' To find evolution of density with increas-

. : . : ing chemical potential, we plot in Fig. 8 the density depen-
Eﬁiztgeir:glérﬁ?frf]zr?elgto the simple tilted lattice at sma"dencies of the reduced thermodynamic potensigk- un for

different u and representative parameté&s 14 anda=0.6.
As the energy of isolated stacks is subtractedt the di-

alk,

o = N W H» 00 O N
: .

[=>]
@
N
o
-
N
-
D
-
[=2]
-
©

FIG. 6. (Color onling Chain phase diagrams in the plane
a/\;—N for two values of the ratiax, 0.4 and 0.5. The solid line
indicate phase transition into the tilted-chain phase. The dotted lin
shows the maximum equilibrium separatiap. The dashed line
shows crossover “reconnection” line at which the maximum dis-
placement exceeds/4 and weakly deformed crossing configura-
tion crosses over into the strongly corrugated configuration.d~or
=0.5 we also shove,, for the tilted-chain phase analytically calcu-
lated from Eq.(39).

D. Typical phase diagram in the range 0.5 @=<0.65: mensionless chemical potential is shifted with respect to its
Reentrant transition to kinked/tilted lines at small bare value and it is related to the magnetic field strength as
concentration of pancake vortices
. . . - _ Po(H;=He)
At higher values of the ratiax an additional qualitative =T dre
0

feature emerges in the phase diagram. Whesxceeds the
characteristic value, a smallaxis field penetrates supercon- where H; is the lower critical field forH|lc. We find that
ductor in the form of kinks forming kinked vortex lines for selected parameters the transition takes place at
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N=16, «=0.6
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FIG. 8. (Color online The density dependence of the pancake
part of the thermodynamic potential per unit aré&;- xn (in units
of €y/\;) at different chemical potentiajs corresponding to differ-
ent values of the magnetic field strength fd=14 and «=0.6.
Kinks in the curves separate regions of tilted/kinked liflesv n)
and crossing chaingigh n). The equilibrium density in units of
1/\; is given by the global minimum of this energy. One can see
that atu=-0.152 the system experiences a first-order phase tran-
sition with very large density jump.

N e =

It is also instructive to examine the phase diagram for

FIG. 7. (Color onling The dependence of the excess pancakeﬂxed c-axis periodN, in thea-« plane. Ase increases with

energy per stack on pancake separatidor N=16 anda=0.6. The temperature, this diagram to some extent describes the tem-
two branches correspond to the two different starting states at Iarg@erature evolution of the chain structure. Figure 10 shows

a, crossing chain and kinked lines. One can see that the kinked lines
have lower energy at very large, a>14.81. Crossing chain
smoothly transforms back into tilted chain with decreasa.ofhe
transformation is completed at a second-order phase transition point
at a;=2.5\;. Chain configurations at four points marked by arrows
are shown below. The evolution of chain configuration along this
energy curve is also illustrated by an animati@ee Ref. 25

u=wm=—0.152. Atu <, the global minimum falls into the
region of kinked lines and gt > u, it jumps into the region
of crossing chain. Note that the density value, at which the
energy curves crogginks in the lines nean=0.1 in Fig. §,
is always larger than the lower density from which the jump
to the high-density state takes place. At the transition, the
density jumps almost ten times, from 0.037to 0.315A;.

The numerically obtained phase diagram in da plane
for «=0.6 is shown in the upper panel of Fig. 9. The plots in
the lower left panel, the thermodynamic potential at the tran-
sition point and the maximum displacement veraix;, il-

al,

SE-pn

40

30

20

10

0
12

a=0.6

T T T T

tilted/kinked

_:/7>a/7,J=N _.7

tilted

crossing

13 14

u/a

w b

= N

14 15 16 17 18

lustrate definitions of different lines in the phase diagram.
The lines 1 and 1show the limiting pancake separations at _ .
the first-order transition between which the jump takes place, G- 9- (Color onling The upper ploshows the phase diagram
When the chemical potential is fixed by external conditions,” the.N-a plane for“_o'e'.The left plotin the lower plat illustrates .
the area between these lines is bypassed in equilibrium. Apeanings of the phase lines using Fhe pk.)t of t_he thermodynamic
largeN the jump takes place from the kinked-lines state intofnosirr‘::s:rﬁ?s“ Ta\ézrz/;\[;‘lagi\t:;eginszg?t?cgOsmgzﬁ:n fgg\nd(it:_e

the strongly corrugated configuration. This configuration P Y pacira y

’ . L2 seb. The lines 1 and 1 correspond to the two limiting pancake
tran§f0rms Into the_ tilted chain with fur'Fher decreasa ofa separations at the transition point between which the jump occurs.
continuous transition shown by the lineé.2Below N=14

A ! : <. a ) ' The line 2 indicates crossing of the energy curves for the kinked
only tilted chains realize, but the density jump still exists. ang crossing chain. The liné Zhows the position of a continuous
The upper separation grows approximately proportion® to ransition into the tilted chaifillustrated by the inset in the lower
while the lower separation slowly decreases wWitland lies  pane). Dotted line slightly above lline shows the position of the
slightly below the maximum equilibrium separatic®,,  maximum equilibrium separatioa,. We also show the crossover
shown by dotted line. This means that the relative densityine a/\;=N above which well-defined kinks appear. The right plot
jump increases wittN. The line 2 shows the position of the in the lower part shows blowup of the phase diagram above ‘the 2
crossing of the energy curves for the two states. line.
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close to this value otx. On the other hand, even after be-
coming monotonic, this dependence still has two inflection
points bounding unstable region in some rangeaoExis-
tence of such unstable region means that the pancake-density
jump with increasing the-axis external field persists in the
region where only tilted chains exist. This jump is closely
related(but not identical with the jump of the tilt angle of

the vortex line at the lower critical field with increasing tilt
T angle of the external fiel¢f.®

The vortex chains in BSCCO at small concentrations of
pancakes have been studied by the scanning Hall probe mi-
croscopy in Ref. 14. It was found that at very small concen-

FIG. 10. (Color online Phase diagram in-« plane forN=14. tration of pancakes the chains are magnetically homogeneous
Solid nose-shaped line shows the phase transition into the tilted@nd separate pancake stacks are not resolved. When the ex-
chain state. Dashed line shows location of the maximum equilibternal field exceeds certain critical value, crystallites of the
rium separation, which terminates at some point. We also show bpancake stacks are suddenly formed along the chains and the
dotted line location of the stability boundaries obtained from inflec-flux density in crystallites approximately ten times higher
tion points of the dependenciéia) [see criterion(38)]. then the flux density in homogeneous chains. Tkiaked

lines)-(crossing chainsfirst-order phase transition provides a

such diagram foN=14. One can see that the phase transitiorvery natural explanation for this observations.
line is reentrant, within some range efthe tilted chains are
realized both for small and larga. Above some critical
value of @ (0.66 forN=14) only straight tilted lines exist in
whole range of.. This maximum value increases with For In conclusion, we investigated numerically and analyti-
somewhat smaller values af, there is narrow range i cally the phase diagram of an isolated vortex chain in layered
where the chains become slightly modulated. This is illus-superconductors. In the region where Josephson and mag-
trated in the plot of the maximum displacement for netic coupling are approximately equal, we found a very rich
«a=0.63 in the right panel of Fig. 11. The maximum equilib- behavior. The crossing chains typically transform into tilted
rium separation liney,(«) terminates at certain value of, chains with decreasing pancake separation via formation of
above which the dependentia) becomes monotonic. We intermediate strongly deformed configurations and a continu-
also show in this diagram the stability boundaries extracte®Us phase transition. When the relative strength of the Jo-
from the inflection points in th&J(a) dependenciefsee cri-  Sephson coupling exceeds some typical value, the phase dia-
terion (38) and related discussidrOrigin of such phase dia- 9ram becomes reentrant. At a very smabxis field, tilted
gram can be better understood by studying the dependenci€8ains are realized in which the vortex lines have the kinked
U(a) at differenta shown in the left panel of Fig. 11. One Structure. With increasing-axis field these Iow-dens[ty t||te_d
can see that the first-order transition vanishes above certaff@ins transform via a first-order phase transition into

value of @ and the dependendd(a) becomes monotonic Strongly deformed crossing chains. This transition is accom-
panied by a large jump of the pancake-vortex density. With

____________

tilted

1 1 am 1

4 0.45 0.5 0.55 0.6 0.65
o

VII. CONCLUSIONS

o=0.63

further increase of the field these crossing chains transforms
back into the tilted chains via a second-order transition.

An important feature of real BSCCO which is not taken
into account in this paper is the thermal vortex fluctuations.
We expect that fluctuations will not change qualitatively the
described behavior, especially the strong first-order phase
transition, but may significantly change locations of the

“*r,mg'l,, phase transitions in the phase space.

6 Finally, we briefly overview the relevant field scales. In

a the range of studied JV separatiohs from 10 to 20, and for
y=500, the in-plane fieldB,=2d,/(13ys’N?), varies in the
excess pancake energy per station separatiora for N=14 and range from 200 to 50 G and the in-plane separation between

different values ofa. With increasinga the first-order transition Josephson  vortices, c_y—(\s3/2)_ysl\!, varies  from

from tilted to crossing chain vanishes and the crossing chain do ndt- /2 10 13.5um. The typical density jump foN=16 and
realize at all. Also the dependentéa) becomes monotonic which @=6 in Fig. 9 corresponds to jump of the averagexis
corresponds to termination @y(a) line in Fig. 10.Right panel  induction, B,=®o/ag, from 0.12t0 1.2 G. Such jump is
The dependence of the relative maximum displacernem sepa-  usually difficult to notice in the global magnetization
ration a for N=14 andw=0.63. The maximum value aof, corre-  Mmeasurements. Therefore, a rich spectrum of transformations
sponding to tilted chains, is given l§¢—1/14/2~0.464. One can discussed in this paper takes place in the range of very
see that there is a range @fvhere the chains become only slightly small c-axis magnetic induction, not exceeding few gauss.
modulated. Taking a typical valuex for BSCCO at 80 K, as 0.4m, we

o
oo

i,

FIG. 11. (Color online Left panel The dependencies of the
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estimate for the same parameters that the maximtaris = LVN2+ K2 + K2

. . . . O1=LVA“+ ky+ z*

field in the chain center,B,y=®y/a\, jumps from

3.3t033G. To separate kink interaction we have to subtract the contri-

bution coming from isolated kinks, i.e., the term which be-
haves as 1/ atL—o
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_®f [ dkdk, 1 1
APPENDIX A: KINK INTERACTION ENERGY OF A &ki = ET (277)2 1 +\2K2 - 1+7N2K2 + )\zks
SINGLE LINE z ze
1 - cogk,s) cosk,s— exp(— g)
We compute the kink interaction energy within London X _
S . - . g coshg — cosk,s
approximation. As the main contribution to this energy
comes from the regions away from the JV and kink cores, .\ S\ 1 cogk,s) —exp-gy) (A2)
one can expect that the London approach gives a very good 2(1+)\%3) g, coshg, - cogk,s) |’
approximation of the interaction energy. Shape of the kinked
line is given by which has to be evaluated in the linhit> ys. The main con-
tribution is coming from the first term in square brackets. If
R(X) =[X,0,u(X)], we keep only this term, than the kink interaction energy can
be reduced to the following form:
u(X) =n n-1/2L<X<(n+1/2)L. 2
(X)=ns (n-1/2 (n+1/2) o= 2% i)

From the general formulé8) we obtain the total energy of 8L
the kinked line in London approximation with

®; [ dk dp,d 1 1

SKI:_O 3def ax’ J(r): R’ %( >~ 2)
8mL,J (2m) (2m~\1+p; 1+p
2
(14+03) + (1 +22) 24 Y p2 K |
dXdX \“”1 + p2 eXder + p2) -1
(1+N2K3)(L+ NG+ N2k
xexik (X - X') +ik,(u-u)]. (A1) p?=pj+pl.

To separate the kink interaction energy one has subtract froff the practically interesting case=L/A.<1 the integral
this expression the energies of Josephson vortiggs,and ~ J(r) can be evaluated as

kinks, ke in London approximation. Integration ove, 1 1\ 3
X', andk, leads to the following expression for the total kink J= _[m(_) - _} ,
contribution to energys, =z -5, Aml \r/) 2

2 [ didk 1 1 giving the main result for the kink interaction enerp).

= -0 f Ky Z{( _ ) The second term in square brackets of &f) represents
8r ) m?[\1+\4E 1+\AC+ )\gkﬁ magnetic coupling contribution to the kink interactions. We
Xsinhg 1- cogk.s) calculated this contribution in the two limiting cases

g coshg-cogk,s)

. PI\? sinhg,/g; £@ ~
2(1 +\%2) coshg, — cosk,s §

s
220 for L <\

$
%o exp(—L/\), for L< )
_ AL
with
As we can see, it does give a very small contribution to the

2 total kink interaction energy.

g=LINZ+y A+ K
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APPENDIX B: DERIVATION OF THE INTERACTION
ENERGY OF TILTED VORTICES

The interaction potential between two straight tilted vor-

tices per unit length along-axis separated by distanéein
the tilt direction(x axis) is given by

@5 [ dkdk,
UI(R) = _Of kx 2
47 ) (2m)
" P+ [1 40203 + AL+ 22K +12K2)]
1+ N2k + N2K3

XexplikyR)

This formula works also in the regime of kinked vortex
lines v>v. The kink structure of the lines starts to influence
interaction between them when kink separatlorexceeds
c,v/ 27 corresponding to the conditiom> Nvy/2. Integrat-
ing over k, we obtain U;(R)=/(dk/2m)cogkR)U;(k)
with

3

Ui(K) = 2meoh 2, g;(K) (B1)
=1
with
1/2)\2 + )\2
9:(k) = 2y 2 v 21172
N1 + (N + NHKT]
N
k)=- : ,
%K) [1+(AZ+N)RMHL + 1203
A
gs(k) =

[1 M1+ AL+

The interaction energy of the chain per unit alié@ can be
represented as

E9)

Anxo

ETV oa —U i(k)exp(ikna)

[

_ 1
T 2a?

%Ui(k)

1
U, —_—
(k) 2a ) 2w

m=—o©

with k,=27m/a, or

3
EiTv: E EiTV,j
j=1

with

mla

e
ETVJ 0 E

m=—%

dk
{g,(km) 2 Gi(kn + k)}.

-mla

In the limit a<2m\v \2+\2 the first term,j=1, can be
evaluated as

PHYSICAL REVIEW B71, 174507(2009

0 - I T T T T T
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~0.008 |——N=14, a=0.6,1024x512 i

*  N=14, 0=0.6, 512:612

1 1 1 | 1

1
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FIG. 12. Left panelshows plot of the pancake part of the
chain energy per unit area in unitg/\;, 6E, vs pancake density
at very smalin. Slope of this energy at— 0 determines the energy
of an isolated kink and the numerical const&. Calculations
were made for two sets of parameterf®y=10,4=0.52 and
(N=14,a¢=0.6), and for two system sizes for each Right picture
illustrates the numerically calculated kink structure. Arrows show
in-plane currents and gray level plot codes distribution of the cosine
of phase difference between the neighboring laydesk area be-
low corresponds to the Josephson voitex.

go] AN +N) P+
ETVl
a Aca 0%

() )
x|\ =% [-

Using integral

fw dk 1 va?-b’+a
0 V1+ a2k2(1 + b2k2) a>b Vr’aZ — b2 b !

the other two terms are calculated in the limi# 2w\ as

Ei _,_Ei ~@ _W_)\C+7T_)\+Inm
TV,2 TV,3 a a a 1+ \’11 + V2
2
c y 1
_§(3)< ) ( i - [ 2) "
27\ \V +')/2 \r1+y

The last term is small and will be dropped in further calcu-
lations. Collecting terms, we finally obtain for the total inter-
action energy27).

APPENDIX C: ENERGY OF ISOLATED KINK

To find the energy of an isolated kink, we calculated en-
ergy of tilted lines in the regime when kink separatibn
=a/N significantly exceeds the Josephson length. Numeri-
cally, this is a challenging task because the kink interaction
energy decays slowly with increasihgneaning that one has
to go to very large values af. To maintain sufficient accu-
racy, one has to use large number of grid pointx idirec-
tion. As follows from Eq.(32), the pancake part of energy
vanishes linearly at small kink concentratiamsin reduced

units, we define this energy a§=()\J/so)(ETV—E§V—EJV)
and from Eq.(32) we have
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~ 1 —-In(1/0.6 =0.807 for the second set. If we use the last con-
5E“”(|n;+ckv>- stant, corresponding to the larger system size,
we obtain the estimateC,~-0.31 for the constant in
Plots of this energy are shown in Fig. 12 for two sets ofthe kink energy within Ginzburg-Landau theor{24).
parameters(N=10,0=0.52 and(N=14,a¢=0.6). From lin-  This is somewhat smaller than the value -0.17 reported
ear fits at smalln we obtain estimatesC,,~-0.192 in Ref. 6. The difference is most probably due to
-In(1/0.52~0.846 for the first set andC,,~-0.296 finite-size effects.
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