
Vortex-chain phases in layered superconductors

A. E. Koshelev
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

sReceived 3 January 2005; published 19 May 2005d

Layered superconductors in tilted magnetic field have a very rich spectrum of vortex lattice configurations.
In the presence of in-plane magnetic field, a smallc-axis field penetrates in the form of isolated vortex chains.
The structure of a single chain is mainly determined by the ratio of the Londonsld and JosephsonslJd lengths,
a=l /lJ. At large a the chain is composed of tilted vorticesstilted chainsd and at smalla it consists of a
crossing array of Josephson vortices and pancake stacksscrossing chainsd. We studied the chain structures at
intermediatea’s and found two types of behavior.sid In the range 0.4&a&0.5 ac-axis field first penetrates in
the form of pancake-stack chains located on Josephson vortices. Due to attractive coupling between deformed
stacks, their density jumps from zero to a finite value. With further increase of thec-axis field the chain
structure smoothly evolves into modulated tilted vortices and then transforms via a second-order phase tran-
sition into the tilted straight vortices.sii d In the range 0.5&a&0.65 ac-axis field first penetrates in the form
of kinks creating kinked tilted vortices. With increasing thec-axis field this structure is replaced via a first-
order phase transition by the strongly deformed crossing chain. This transition is accompanied by a large jump
of pancake density. Further evolution of the chain structure is similar to the higher anisotropy scenario: it
smoothly transforms back into the tilted straight vortices.
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I. INTRODUCTION

Layered superconductors have an amazingly rich phase
diagram in tilted magnetic field. In the presence of the in-
plane field, pancake vortices generated by thec-axis field1,2

can form a very large number of different lattice configura-
tions. Possible structures include the kinked lattice,3–6 tilted
vortex chains,7 and crossing lattices composed of sublattices
of Josephson vorticessJVsd and pancake-vortex stacks.4,8 In
addition to homogeneous lattices, phase-separated states may
also exist such as dense pancake-stack chains sitting on JVs
and dilute lattice in between8–11 or coexisting lattices with
different orientations.12 Even though considerable progress
in this field has been made in the last decade, the satisfactory
understanding of the phase diagram has not been achieved
yet. All these phases probably do realize in different materi-
als and experimental conditions. However, finding ground
states in tilted field occurs to be a challenging theoretical
task and it is even more difficult to prove experimentally that
a particular lattice configuration does realize somewhere in
the phase diagram.

The main source of richness of lattice structures in tilted
field is the existence of two very different kinds of interac-
tions between pancake vortices in different layers: magnetic
and Josephson interactions. The key parameter, which deter-
mines the relative strength of these two interactions and
plays a major role in selecting the lattice structures, is the
ratio of the two fundamental lengths, the in-plane London
penetration depth,l;lab, and Josephson lengthlJ=gs,
with g being the anisotropy parameter ands being the inter-
layer spacing,a=l /lJ. One can distinguish two limiting
cases which we refer to as “extremely anisotropic” case,
a,0.4, and “moderately anisotropic” casea.0.7. Note
that in our terminology even “moderately anisotropic”
superconductors may have very large anisotropy factor,g
@1. Among known atomically layered superconductors,

only Bi2Sr2CaCu2Ox sBSCCOd and related compounds may
belong to the “extremely anisotropic” family. Even in this
compound the parametera is not smaller than,0.25 and
increases with temperature so that BSCCO typically be-
comes “moderately anisotropic” in the vicinity of transition
temperature.

In a wide range of the in-plane fieldss10–200 Gd and at
very smallc-axis fieldssup to 1–2 Gd the pancake stacks in
layered superconductors within a wide range of anisotropies
are arranged in chains, see Fig. 1. An isolated chain is a
two-dimensional array of pancake vortices oriented perpen-
dicular to the layers. At somewhat higherc-axis fields the
chains are surrounded by the stripes of regular vortex
lattice.9,10 The internal structure of an isolated chain depends
on the ratioa and it is relatively simple in two limiting cases.
At large a the chain is composed of tilted pancake stacks
stilted chain, right column in Fig. 1d and at smalla it consists
of crossing array of Josephson vortices and pancake stacks
scrossing chains, left column in Fig. 1d. A very nontrivial and
intriguing problem is how one structure transforms into an-
other in the region of intermediatea. We address this prob-
lem in this paper. We analytically and numerically computed

FIG. 1. sColor onlined Crossingsleftd and tilted srightd vortex
chains. Upper pictures show three-dimensional views and lower
pictures show the structures of isolated chains.
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ground-state configurations in the isolated vortex chain and
found a surprisingly rich behavior. We found two types of
phase transitions. The first phase transition typically takes
place for the intermediate separations between pancake
stacksa, a=s1–2dlJ, and rather wide range of the ratioa,
0.4&a&0.65. For thesea’s the ground state is given by the
crossing chain in a wide range of the pancake separationsa.
However, due to attractive coupling between deformed pan-
cake stacks,13 the equilibrium separation cannot exceed some
maximum value, which depends on the in-plane field anda
and it is typically of the order of severallJ. With decreasing
the pancake separationa, the crossing chain becomes
strongly deformed and smoothly transforms into the modu-
lated tilted vortices which then transform via a second-order
phase transition into the tilted straight vortices. We calcu-
lated analytically the energies of two limiting chain configu-
rations and checked that numerics reproduces them. Compar-
ing these energies, we locate the transitional region in the
phase space, where strongly deformed chains are realized.

Another phase transition is realized at very small densities
of pancake vortices and only whena exceeds a certain criti-
cal value<0.5 sexact criterion depends on the in-plane mag-
netic fieldd. In this case a smallc-axis field penetrates in the
form of kinks. The kinked vortex lines forming tilted chains
are composed of pieces of Josephson vortices separated by
kinks.3–5 If the kink energy is only slightly smaller than the
energy per pancake in a straight pancake stack then at very
small concentration of kinks, typically ata<s20–30dlJ, the
kinked chains are replaced with strongly deformed crossing
chains via a first-order phase transition. Due to the opposite
signs of interactionsskinks repel and deformed pancake
stacks attract each otherd, this transition is accompanied by a
very large jump in the pancake density. With further decrease
of pancake separation the chain smoothly transforms back to
the tilted chain as it was described in the previous paragraph.

Based on numerical exploration of the chain configura-
tions, we construct the chain phase diagrams for different
ratios a. As follows from the earlier description, there are
two types of phase diagrams in the region of intermediate
a’s.

• In the range 0.4&a&0.5 a smallc-axis field first pen-
etrates in the form of pancake-stack chains located on Jo-
sephson vortices. Due to attractive coupling between de-
formed stacks, their density jumps from zero to a finite
value. With further increase of thec-axis field the chain
structure first evolves into the modulated tilted vortices,
which then transforms via a second-order phase transition,
into the tilted straight vortices.

• In the range 0.5&a&0.65 a smallc-axis field first pen-
etrates in the form of kinks creating kinked tilted vortices.
With increasing thec-axis field this structure is replaced via
a first-order phase transition by the chain of pancake stacks,
which are typically strongly deformed. This transition is ac-
companied by a large jump of pancake density. Further evo-
lution of the chain structure is identical to the smallera
scenario: the structure first transforms into modulated tilted
vortices and then, via a second-order phase transition, into
tilted straight vortices.

Note that the exact transition between the two types of
behavior depends also on the in-plane field. As interaction

with the Josephson vortices reduces the energy of the pan-
cake stacks, the larger in-plane field favors the first scenario.

Using numerical code developed for studying the chain
structures, we also investigated stability of an isolated cross-
ing configuration of the Josephson vortex and pancake stack.
We found that the crossing configuration becomes unstable at
a<0.69. Above this value the magnetic coupling is not ca-
pable to maintain stable configuration and the Josephson vor-
tex tears the stack apart. Nevertheless, the obtained stability
range occurs to be significantly broader than it was estimated
from simple considerations in Ref. 21. The reason is that the
strongly deformed crossing configuration significantly modi-
fies the Josephson vortex which reduces forces pulling pan-
cakes apart. We found that the crossing energy increases
smoothly up to instability point. Perturbative calculation8

gives accurate results for the crossing configuration and its
energy up toa<0.35.

Recently, the vortex chains in BSCCO at small concentra-
tions of pancakes have been studied by the scanning Hall
probe microscopy by Grigorenkoet al.14 They observed that
at very small concentration of the pancakes the chains are
magnetically homogeneous and separate pancake stacks are
not resolved. When the external field exceeds some critical
value of the order of several oersted, crystallites of the pan-
cake stacks are suddenly formed along the chain and the flux
density in the crystallites approximately ten times higher
then the flux density in the homogeneous chains. Our calcu-
lations provide consistent interpretation for these observa-
tions. The magnetically homogeneous chains are interpreted
as kinked/tilted chains and formation of crystallites can be
attributed to the low-densityskinked linesd-scrossing chainsd
first-order phase transitionssuch interpretation has been pro-
posed by Dodgson15d. The observed large density jump also
comes out from the theory.

The evolution of the mixed chain1lattice state with in-
creasing temperature has been studied recently by Lorentz
microscopy.16 It was observed that the pancake stacks lo-
cated in chains smear along the chain direction above some
field-dependent temperature while the pancake stacks outside
chains still remain well defined. The continuous low-density
phase transition from crossing to tilted chain found and dis-
cussed in this paper provides a very natural interpretation for
this observation.

The paper is organized as follows. In Sec. II we review
general expressions for the chain energy. In Sec. III we per-
form analytical calculations of the chain energy for the two
limiting cases: crossing and tilted chain. In Sec. IV, compar-
ing energies for the two limiting configurations, we estimate
location of the transition region. In Sec. V we review attrac-
tive interaction between deformed pancake stacks located on
Josephson vortices13 and derive general formulas for deter-
mination of the maximum equilibrium separation between
the pancake stacks and the boundaries of stability region
with respect to density fluctuations. Section VI contains the
main results of the paper on numerical exploration of the the
phase diagram. After discussion of numerical implementa-
tion of the model, we explore stability of the isolated cross-
ing configuration. In the next two subsections we consider
two different phase transitions between the tilted and cross-
ing chains and two types of phase diagrams which are real-
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ized in the region of intermediate parametera.

II. ENERGY FUNCTIONAL

Our calculations are based on the Lawrence-Doniach free-
energy functional in the London approximation, which de-
pends on the in-plane phasesfnsr d and vector-potentialAsr d

F = o
n
E d2rH J

2
S¹'fn −

2p

F0
A'D2

+ EJF1 − cosSfn+1 − fn −
2ps

F0
AzDGJ

+E d3r
B2

8p
, s1d

where

J ;
s«0

p
andEJ ;

«0

psg2 s2d

are the phase stiffness and the Josephson coupling energy
with «0;F0

2/ s4pld2, l;lab andlc are the components of
the London penetration depth,g=lc/lab is the anisotropy
factor, ands is the interlayer periodicity. The ratio of the two
energy scales determines the most important length scale of
the problem, the Josephson length,lJ=gs=ÎJ/EJ. We use
the London gauge, divA =0. We mainly address the situation
when magneticB inside the superconductor is fixed. Thec
component of the field determines the concentration of the
pancake vorticesnv;Bz/F0 inside one layer. The in-plane
phasesfn have singularities at the positions of pancake vor-
ticesRn,i inside the layers

f¹ 3 ¹ fngz = 2po
i

dsr − Rn,id.

Logarithmic divergencies in the vicinity of pancake-vortex
cores have to be cut at the coherence lengthjab. A useful
approach for superconductors with weak Josephson coupling
is to split the phase and vector-potential into the vortex and
regular contributions,fn=fvn+frn andA =Av+A r. The vor-
tex contributions minimize the energy for fixed positions of
pancake vortices atEJ=0 and give magnetic interaction en-
ergy for the pancake vortices. One can express this part of
energy via the vortex coordinatesRn,i. In general, the regular
contributions may include phases and vector potentials of the
Josephson vortices. The total energy naturally splits into the
regular partFr, the energy of magnetic interactions between
pancakesFM, and the Josephson energyFJ, which couples
the regular and vortex degrees of freedom

F = Fr + FM + FJ s3d

with

Frffrn,A rg = o
n
E d2r

J

2
S¹frn −

2p

F0
A r'D2

+E d3r
Br

2

8p
,

s4d

FMfRn,ig =
1

2 o
n,m,i,j

UMsRn,i − Rm,j,n − md, s5d

FJffrn,A r,Rn,ig = o
n
E d2rEJF1 − cosS¹nfn −

2ps

F0
AzDG ,

s6d

where the discrete gradient¹nfn is defined as¹nfn;fn+1
−fn, and UMsR ,nd is the magnetic interaction between
pancakes1

UMsR,nd < 2pJFln
L

R
Fdn −

s

2l
expS−

sunu
l
DG

+
s

4l
uS r

l
,
sunu
l
DG , s7d

usr,zd ; exps− zdE1sr − zd + expszdE1sr + zd,

where E1sud=eu
`sexps−vd /vddv is the integral exponent

fE1sud<−gE−ln u+u at u!1 with gE<0.5772 being the
Euler constantg, r ;ÎR2+snsd2, andL is a cutoff length. The
regular and vortex degrees of freedoms are coupled only via
the Josephson energy in whichfn is the total phase com-
posed of vortex and regular contributions.

The discrete layer structure has strongest influence on the
cores of tilted and Josephson vortices. Interaction contribu-
tions to the total energy usually can be computed within
continuous approximation which describes the layered super-
conductor as a three-dimensional anisotropic material. This
approximation amounts to replacement of summation in the
layer indexn in Eqs.s4d–s6d with integration in the continu-
ous variablez=ns and expansion of cosine in Eq.s6d. In the
continuous approximation one can derive a very useful gen-
eral result for the energys1d ssee Ref. 17d

F =
F0

2

8p
E d3k

s2pd3

s1 + lc
2k2duSzu2 + s1 + l2k2duSiu2

s1 + l2k2ds1 + l2kz
2 + lc

2ki
2d

s8d

in terms of vorticity Ssr d of parametrically defined vortex
lines RisXd

Ssr d = o
j
E dX

dRi

dX
dfr − RisXdg

whose Fourier transform is

Sskd = o
j
E dX

dR j

dX
expfikR jsXdg.

As we will use this formula only for evaluation of interaction
energies between vortex lines, we have to subtract from it the
logarithmically diverging single-vortex terms.

In this paper we focus on the structure of an isolated
vortex chain with perioda in x direction and periodc=Ns in
z direction corresponding to the tilting angleu of vortices
with respect to thec axis with n; tanu=a/c ssee Fig. 1d.
The vertical period is fixed by the in-plane fieldBx,
c<Î2F0/ sÎ3gBxd. For BSCCOg,500 and this period is
approximately equal to 20 layers atBx<50 G. We consider
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the casec!l and in-plane distances much smaller thanlc.
For this particular problem the general energy given by Eqs.
s3d–s6d can be significantly simplified using several approxi-
mations:sid we can neglect screening of regular phase and
z-axis vector potential;sii d we consider only one-dimensional
displacements of pancake rows along the chain,Rn,i =sai
+un,0 ,nsd; siii d we subtract the energy of straight pancake
stacks,sBx/F0d«PS with «PS<«0sln k+0.5d, allowing us to
eliminate logarithmically diverging pancake-core contribu-
tions; and sivd we drop the trivial magnetic energy term
Bx

2/8p which plays no role in selection between different
chain phases. We will use the chain energy per unit area,
E;cyfF /V−Bx

2/ s8pd−sBz/F0d«PSg with V being the total
system volume. With the introduced simplifications this en-
ergy can be represented as

E =
1

sN
o
n=1

N E
0

a dx

a
E

−cy/2

cy/2

dyS J

2
s¹fr,nd2

+ EJH1 − cosF¹nsfr,n + fv,nd −
2ps

F0
BxyGJD

+
1

2sLz
o
nÞm

UMrsun − um,n − md, s9d

wherefv,nsr d is the vortex-phase variation induced by dis-
placement of pancake rows,un, from the ideally aligned po-
sitions

wv,nsx,y;und = arctan
tanspsx + und/ad

tanhspy/ad
− arctan

tanspx/ad
tanhspy/ad

,

UMrsun−um,n−md is the interaction energy between the pan-
cake rows per unit length, computed with respect to straight
stacks

UMrsu,nd ;
1

a
o
m

fUMsma+ u,nd − UMsma,ndg, s10d

cy=F0/cBx@c is the in-plane distance between chains, and
Lz is the total system length inz direction.

The energys9d contains a long-range suppression of the
Josephson energy accumulated from distancesc!y!cy, that
is identical in all chain phases and it is convenient to separate
this term too. The averagedz-axis phase gradient induced by
the Josephson vortex lattice is given by

¹nfn −
2ps

F0
Bxy =

p

N
−

2py

Ncy
.

Evaluating integral

E
−cy/2

cy/2

dyF1 − cosS¹nf̄n −
2ps

F0
BxyDG <

p2cy

6N2 ,

we obtain the long-range Josephson energy,EJ-LR,

EJ-LR = EJ
p2cy

6sN2 s11d

We will define the local energy,Eloc, sensitive to the chain
structure as

Eloc ; E − EJ-LR. s12d

This part of energy weakly depends oncy and does not di-
verge forcy→`. The results11d is valid for chains separated
by distancecy smaller thanlc. Similar calculation can
be made for an isolated chain separated from other chains by
distance larger thanlc. In this situation the integral overy
converges on distancelc instead of cy leading to result
EJ-LR=EJplc/sN2. We will use this result in the analytical
calculations of the isolated chain energy.

In calculation of magnetic coupling energy one has to take
into account periodic conditions for pancake displacements,
un+N=un. In addition, if one selectsz axis origin at the center
of the Josephson vortex then symmetry also requires
u−n=−un. Ground state of the vortex chain is determined by
the minimum of energys9d with respect to pancake displace-
ments and regular phase distribution. Two simple limiting
cases in Fig. 1 correspond tosid un!a for the crossing-chain
configuration and sii d un=−af1−sn−1/2d /Nlg /2 for the
tilted-chain configuration.

III. ANALYTICAL CALCULATIONS OF CHAIN
ENERGIES

In this section we compute energy of an isolated vortex
chain with perioda in x direction and periodc=Ns!l in z
direction. In general, there are two approaches to compute
energies of vortex configurations. Using distribution of phase
and vector potential, the total energy can be obtained directly
from the Lawrence-Doniach functional by integration of the
local energy. This approach is always used in numerical
computations. Analytically, it is more convenient to calculate
the total energy by summing up energy of isolated vortices
and vortex interactions. Analytic estimates for energy contri-
butions are possible in two limiting cases of weakly de-
formed crossing chain and chain consisting of tilted vortices
ssee Fig. 1d. Comparison of these energies gives an approxi-
mate range of parameters where one of these competing con-
figurations is energetically preferable. In contrast to the nu-
merical part, we consider isolated chain separated from other
chains by distancecy@lc. For comparison with numerical
calculations, it will be necessary to extract the local part of
energy which is not sensitive to the long-range behavior.

A. Crossing chains

Energy of crossing-lattices chain per unit area is given by
sum of pancake stacksEPSd, Josephson vortexsEJVd and
crossing energiessE3d terms

ECL = EPS+ EJV + E3. s13d

Both pancake and JV terms are composed of single-vortex
and interaction contribution,EPS=EPS

s +EPS
i , EJV=EJV

s +EJV
i .

We start with evaluating pancake-stack energies. Contri-
bution from energies of individual stacks to the energy per
unit length is given by

EPS
s =

«0

a
Sln

l

j
+ CvD , s14d

whereCv<0.497 within the Ginzburg-Landau theory. Using
vorticity of the pancake-vortex chain,Szsr d=S jdsyddsx− jad
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corresponding toSzskd=dskzdS j expsikxjad, we derive from
general formulas8d the pancake-stacks interaction energy

EPS
i =

F0
2

8pa
E dkxdky

s2pd2 o
jÞ0

expsikxjad
1 + l2k2 . s15d

Using relation S j expsikxjad=s1/adSmdfkx−s2pm/adg and
integrating overky, we obtain

EPS
i =

F0
2

16pa2l
o

m=−`

`
1

Î1 + s2plm/ad2

−
F0

2

16pal
E dk

2p

1
Î1 + l2k2

.

For comparison with the energy of tilted chain, it will be
convenient to represent this energy in the form

EPS
i =

«0

a
Fpl

a
− ln

4pl

a
+ gE − US a

2pl
DG s16d

with

Usxd = o
m=1

` S 1

m
−

1
Îm2 + x2D = 5zs3dx2/2,x & 0.5

1

2x
− ln

2

x
+ gE,x * 16 ,

andzs3d;Sm=1
` s1/m3d<1.202.

Single-vortex JV energy is given by6,18

EJV
s =

«0

gc
Sln

l

s
+ 1.54D .

The JV interaction energy can be evaluated in the same way
as the pancake-stack interaction energys16d and in the limit
c!l it is given by

EJV
i <

«0

gc
Spl

c
− ln

4pl

c
+ gED .

Therefore, the total energy of the JV array,EJV=EJV
s +EJV

i ,
can be written as

EJV =
«0

gc
Spl

c
+ ln

c

s
+ CJVD s17d

with CJV=1.54−ln 4p+gE<−0.41. The fist term in this for-
mula is the long-range Josephson energy,EJ-LR. This term is
identical in all chain phases and does not determine selection
between them. This formula is valid for an isolated chain and
it is different from the long-range Josephson energy of the
dense JV lattice,cy,lc, given by Eq.s11d. The difference
amounts to a simple replacementcy→plc. For comparison
with simulations, we will use only the local part of energy
which is obtained from the total energy by subtractingEJ-LR.

Using estimate for the crossing energy of Josephson vor-
tex and pancake stack fora=l /gs&0.48,19

e3 = −
8a2s«0

lns3.5/ad
, s18d

we obtain the contribution from the crossings into the energy
per unit area

E3 =
e3

ac
= −

8a2«0

lns3.5/adaN
. s19d

Finally, combining resultss14d, s16d, s17d, ands19d, we ob-
tain the total energy of crossing chain

ECL = EPS
s +

«0

a
Fpl

a
− ln

4pl

a
+ gE − US a

2pl
D +

pnl

gc

+
n

g
sln N + CJVd −

8a2

lns3.5/adNG . s20d

Subtracting the pancake-stack and long-range Josephson en-
ergies, we obtain local energy,ECL

loc=ECL−EPS−«0pl /gc2

ECL
loc =

«0

a
F n

g
sln N + CJVd −

8a2

lns3.5/adNG , s21d

which we will use for comparison with numerical simula-
tions.

B. Tilted chains

Energy of the tilted chain per unit area also can be decom-
posed into the single-vortex and interaction contributions

ETV = ETV
s + ETV

i .

The first term can be estimated analytically only in two lim-
iting cases tanu!g and tanu.g, where the second case
corresponds to kinked lines. For the interaction term we de-
rive a general formula valid in both limits.

1. Energy of a single tilted line

sad Regionn=tanu,g. Energy difference between tilted
and straight pancake stacks,«TV−«PS, determines tilt stiff-
ness of pancake stack and contains magnetic and Josephson
contribution,«M and «J. Magnetic part has been calculated
by Clem2

«M = «0 ln
Î1 + n2 + 1

2
.

The Josephson contribution to the tilt energy appears due to
suppression of the Josephson interlayer coupling by mis-
matched pancakes. It can be evaluated as

«J = «0
n2

2g2Sln
lc

sn
+ CJD .

Numerical constantCJ can be computed exactly by matching
logarithmic contributions coming from small and large
distances20 which gives CJ=3 ln 2−gE. Therefore, the
single-vortex energy of the tilted chain is given by

ETV
s = EPS

s +
«0

a
ln

Î1 + n2 + 1

2
+

«0

a

n2

2g2Sln
8lc

sn
− gED .

s22d

Note that at not very large tilt angles,n&1, the Josephson
tilt energy is roughlyg2 smaller than the magnetic tilt energy.
Two terms become comparable at very large tilt angles,n
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,g. In several papers the energy of a tilted line in
anisotropic three-dimensionalsuperconductor has been
calculated.7,17 This calculation is based on the London
energy expressions8d employing elliptic cut off in
k-integrationki

2+kz
2/g2,jab

−2 to treat the vortex core. Strictly
speaking, this approximation does not describe layered su-
perconductors in whichjc,s. Nevertheless, in the region
n,g it leads to the result similar to Eq.s22d.

sbd Region n=tanu.g skinked linesd. In the region
tanu.g the vortex lines have the kink structure, i.e., they
are composed of kinks separated by JV pieces. Energy of
such line per unit length is given by

«kl = «JV + uk/L + «ki , s23d

where«JV=s«0/gdslnsl /sd+1.54d is the energy of Josephson
vortex

uk = s«0slnsgs/jd + Ckd s24d

is the kink energy,4,6 L=s tanu is the separation between
kinks, and«ki is the kink interaction energy. Numerical con-
stantCk in the kink energy has been estimated as −0.17 in
Ref. 6. However more accurate numerical calculations of this
paper give somewhat smaller valueCk<−0.31.

The interaction energy between neighboring kinks in the
kinked line decays as 1/L2 up to L,lc leading to relatively
large interaction contribution to the total energy. The kink
interaction energy is computed in details in Appendix A. In
the regionL!lc the dominant interaction term in the energy
of single line is given by

«ki =
gs2«0

2L2 FlnSlc

L
D −

3

2
G . s25d

Combining all contributions, we derive the following re-
sult for the single-vortex energy of a tilted chain,ETV

s

=«kl /c, in the limit n.g:

ETV
s = EPS

s + EJV
s +

«0

a
Hln

1

a
+ Ckv +

g

2n
FlnSlcN

a
D −

3

2
GJ

s26d

with Ckv;Ck−Cv<−0.81. Note that the values of the nu-
merical constantsCv andCk depend on the core structure at
small distancesr ,j from its center, which evolves with
temperature decrease. However, as this structure is exactly
the same for the pancake vortex and kink, the difference
Ck−Cv is not sensitive to behavior at small distances and
remains the same down to low temperatures. Criterion
lns1/acd+Ckv=0 scorresponding toac<0.44d separates the
kink and pancake-stack penetration regimes of a smallc-axis
field for largeN ssomewhat larger valueac<0.5 has been
given in Ref. 6d. This critical value increases with decrease
of N due to the crossing energies in the crossing chains.
Penetration of thec-axis field in the presence on the in-plane
field is frequently referred to as a lock-in transition.

2. Interaction energy of tilted vortices.

The interaction energy between tilted lines is not influ-
enced much by the layered structure and it can be computed

within the London approximation. In Appendix B we derive
a general analytical formula for the interaction energy of
tilted chain,ETV

i

ETV
i <

«0

a Hpnl

gc
+

pl

a
−

În2 + g2

g
FlnS4plÎn2 + g2

a
D − gEG

+ ln
g + În2 + g2

1 +Î1 + n2 J . s27d

The first term in this formula represents again the long-range
Josephson energy and it is identical to the first term in the
energy of the Josephson chains17d. At large N this formula
also gives the interaction energy of a kinked line forn.g,
because the kinked structure of tilted lines starts to influence
their interaction only at very large tilting angle
n.Ng /2p.23 In the regionn!g Eq. s27d simplifies as

ETV
i <

«0

a
Hpn2l

ga
+

pl

a
− lnF2pls1 +Î1 + n2d

a
G + gE

−
n2

2g2FlnS4plc

a
D − gE +

1

2
GJ . s28d

The last term represents change of the Josephson energy due
to misalignment of pancakes in different stacks. Combining
this term with the last term in Eq.s22d, we obtain the total
Josephson energy loss of tilted chain due to pancake mis-
alignment

dETV =
«0

a

n2

2g2Sln
2c

ps
−

1

2
D .

In the limit of kinked lines,n@g, interaction energy reduces
to

ETV
i <

«0

a
Hpn2l

ga
+

pl

a
−

n

g
FlnS4pl

c
D − gEG

−
g

2n
FlnS4pl

c
D − 1 −gEGJ . s29d

Note again that this result is valid untiln,Ng /2p, where
the kink structure of the tilted lines does not influence much
interaction between them. The limit of largern corresponds
to the regime of “kink walls” described in Ref. 6.

3. Total energy of tilted chains

Combining the interaction energys28d with the energy of
individual stackss22d, we obtain the total tilted-chain energy
in the limits c=Ns!l, n!g

ETV < EPS
s +

«0

a
Fpnl

gc
+

pl

a
− lnS4pl

a
D

+ gE +
n2

2g2sln N − 0.95dG . s30d

This gives the following result for the local part of energy,
ETV

loc;ETV−EPS−«0pl /gc2
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ETV
loc =

«0

a
FUS a

2pl
D +

n2

2g2sln N − 0.95dG . s31d

In this formula the first term represents the loss of the mag-
netic coupling energy in the tilted chain and the second term
represents the Josephson energy loss.

In the region of kinked linesn@g sbut n!Ng /2pd, the
total chain energy is obtained by combining Eqs.s26d and
s29d giving

ETV < EPS
s + EJV +

«0

a
Hln

gs

l
+ Ckv +

g

2n
FlnSgN

n
D + CkiGJ

s32d

with Cki =−ln 4p−1/2+gE<−2.454.

IV. LOCATION OF TRANSITIONAL REGIONS IN THE
PHASE SPACE

To find out whether the crossing or tilted chain is realized
for given values of the parametersa, c, anda, we have to
compare the energies of these states. Naively, one may think
that intersection of the energy curves for the two states
would correspond to a first-order phase transition between
these states. However, as we will see from numerical simu-
lations, in the regionn=tanu,g another scenario is real-
ized. Typically, strongly deformed intermediate chain con-
figurations develop in the transitional region providing a
smooth transition between the two limiting configurations.
Therefore, a simple energy comparison gives only an ap-
proximate location of the transitional region separating the
two configurations.

In the regionn /g=a/NlJ!1 comparison ofs20d ands30d
gives the following criterion for the transitional region:

US a

2pl
D −

n

g
sln N − 0.41d +

n2

2g2sln N − 0.95d +
8a2

lns3.5/adN

= 0. s33d

One can observe that the main competition takes place be-
tween the loss of the magnetic coupling energy for the tilted
chain sfirst termd and strong suppression of the Josephson
energy by JVs for the crossing chainssecond termd. Solution
of this equation provides the boundary which can be written
in the reduced forma=lJN fsN,ad with fsN,ad!1, i.e., the
boundary shape in the planea/lJ-N depends only on the
parametera.

In region 1,n /g,N/2p anda.2pl comparison of the
energiess20d and s32d gives

ln
1

a
+ Ckv +

g

2n
FlnSgN

n
D + CkiG +

8a2

lns3.5/adN
= 0.

s34d

This equation has a solution only in the kink penetration
regime, lns1/ad+Ckv,0, near the transition between the
two penetration regimesulns1/ad+Ckvu!1 where the kink
energy is only slightly smaller than the energy per pancake
of a straight pancake-vortex stack. In contrast to Eq.s33d,

which gives only an approximate location of the broad tran-
sitional region, this equation indeed describes a very strong
first-order phase transition.

V. ATTRACTION BETWEEN DEFORMED PANCAKE
STACKS AND TILTED VORTICES: MAXIMUM

EQUILIBRIUM SEPARATION

A peculiar property of the crossing chain is an attractive
interaction between the deformed pancake stacks at large
distances.13 As a consequence, when the magnetic field is
tilted from the layer direction, the density of the pancake
stacks located on the Josephson vortices jumps from zero to
a finite value. This means the existence of a maximum equi-
librium separationam between pancake stacks, i.e., chains
with a.am are not realized in equilibrium. Note that the
tilted vortices also attract each other within some range of
angles and distances7 meaning that tilted chains also have
this property in some range of parameters.

A simple analytical formula for the attraction energy be-
tween the deformed pancake stacks can be derived for very
anisotropic superconductorslJ@l in the rangel!R!lJ.

13

In this limit short-range pancake displacementsun from the
aligned positions in the two neighboring stacks produce a
dipolelike contribution to the interaction energy per unit
length between these stacks

dUisRd = −
2«0

NR2o
n=1

N

un
2 = −

2«0ku2l
R2 .

This term has to be combined with the usual repulsive inter-
action between straight stacksUi0sRd=2«0K0sR/ld
<2«0

Îpl /2Rexps−R/ld. Minimum of the total interaction
energy,Ui0sRd+dUisRd, gives an estimate for the maximum
equilibrium separationam,13 am=l lnsCl2/ ku2ld and this re-
sult is valid untilam,lJ. Because in BSCCOlJ is only 2–3
times larger thanl, this simple formula is not practical for
this compound. We will see thatam in BSCCO is usually
larger thanlJ.

One can obtain a useful general recipe for determination
of the maximum equilibrium separation between the pancake
stacks directly from the chain energy per unit areaE, without
splitting it into the single-vortex and interaction parts. We
consider situation when the in-plane component of the mag-
netic field is much larger than the lower critical field in this
direction so that the in-plane magnetic induction practically
coincides with the in-plane external magnetic field. Thec
component of the external field,Hz, determines the effective
chemical potentialm for density of pancake stacks,m
=F0Hz/ s4pd. With fixed chemical potential, the chain ther-
modynamic potential per unit area depends on pancake linear
densityn as

Gsnd = Esnd − mn. s35d

The equilibrium densitynm is given by the minimum of this
energy
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dEsnd
dn

= m.

Substituting this relation back to Eq.s35d we obtain

Gsnmd = Esnmd − E8snmdnm.

If we represent the energy as a function of the stack separa-
tion a rather than the density, the last result can be rewritten
in a more compact way

Gsad =
d

da
faEsadg.

The separationa in this formula corresponds an equilibrium
separation only ifGsad is smaller than the energy of the
Josephson vortex latticeGs`d;Es`d=EJV. Therefore the
maximum equilibrium separationam is given by the condi-
tion

dUsad
da

= 0, s36d

where the quantityUsad=afEsad−Es`dg represents the pan-
cake part of energy per one stack and the conditions36d
implies thatam is determined by the minimum of this energy.
When the main contribution to the total interaction energy is
coming from the nearest-neighbor interaction,am coincides
with the position of the minimum in the pair interaction po-
tential.

In principle, nonequilibrium structures witha.am can be
prepared by applying external stretching forces at the chain
edges. However, the chain can be stretched only up to a
certain critical value of separation. Above this value the sys-
tem becomes unstable with respect to density fluctuations
leading to formation of high-density chain clusters. The sta-
bility criterion of the chain is given by

d2Esnd
dn2 . 0. s37d

As

d2Esnd
dn2 = a3 d2

da2hafEsad − Es`dgj,

the stability criterion can also be written as

d2Usad
da2 . 0. s38d

Therefore, in the dependence of the pancake part of energy
per unit cell,U, on pancake separationa, the minimum gives
the maximum equilibrium separation and the inflection point
corresponds to the boundary of instability with respect to
cluster formation.

As an example, we apply the obtained general formula
s36d to the tilted chain atn,g. Using Eqs.s30d ands17d, we
obtain from Eq.s36d a cubic equation foram

ãm
3

N2sln N − 0.95d −
ãm

2

N
sln N − 0.41d + ãm − pa = 0, s39d

with ãm;am/lJ, which can be easily solved numerically in
general case. At smalla and largeN an approximate solution
of this equation gives

am < plF1 +
pa

N
sln N − 0.41dG ,

i.e., at largeN am approaches a remarkably simple universal
valuepl.

VI. NUMERICAL EXPLORATION OF CHAIN
STRUCTURES

A. Numerical implementation of the model

Our purpose is to calculate the equilibrium distribution of
the regular phasefr,nsx,yd and pancake-row displacements
on the basis of the energys9d. To facilitate numerical calcu-
lations, we introduce reduced variables

ỹ = y/lJ, x̃ = x/a, vn = un/a

and represent the row interaction energys10d in the reduced
form

UMrsu,nd =
pJa

l2 ṼMrSu

a
,nD ,

whereṼMrsv ,nd=VMrsv ,nd−VMrs0,nd and forVMrsv ,nd we
derive from Eq.s7d

VMrsv,nd =
sl

2a2F2 expS−
sunu
l
Dlnf2 sinspuvudg

+ o
m=−`

`

uS uv − mu
l/a

,
sunu
l
DG . s40d

The reduced energy per unit area,Ẽ=ElJ/«0, takes the form

Ẽ =
1

pN
o
n=1

N E
0

ã dx̃

ã
E

−c̃y/2

c̃y/2

dỹH1

2
s¹fr,nd2

+ 1 − cosf¹nsfr,n + fv,nd − hỹgJ
+

ã

2a2Ntot
o
nÞm

ṼMrsvn − vm,n − md s41d

with h;2pBxgs2/F0 andã=a/lJ. The reduced local energy
is defined as

Ẽloc = Ẽ −
pc̃y

6N2 . s42d

In particular, from Eqs.s21d and s31d we obtain the follow-
ing results for the reduced local energies of two limiting
configurations in the limitã/N=n /g!1
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Ẽloc <5
ln N + CJV

N
−

8a2

Nã lns3.5/ad
, for crossing chain

1

ã
US ã

2pa
D +

ã

2N2sln N − 0.95d, for tilted chain.6
s43d

We will also use the excess pancake part of energy defined as

dE ; E − EJV s44d

=slJ/«0dsE − EPS
s − EJVd s45d

with EJV being the JV lattice energy per unit area and the

excess pancake energy per stacksin units of «0d, Ũ; ãdẼ.
The phase distributionfr,n and pancake displacementsvn

minimizing the energy functionals41d obey the following
equations:

Dfr,n + sinf¹nsfr,n + fv,nd − hỹg

− sinf¹nsfr,n−1 + fv,n−1d − hỹg = 0, s46ad

¹yfrnsvnã,0d +
ã

2a2 o
m=−`

`

FMrsvn − vm,n − md = 0, s46bd

whereFMrsv ,nd;−¹vVMrsv ,nd is the magnetic interaction
force between the vortex rows

FMrsv,nd = −
psl

a2 expS−
sunu
l
Dcotpv

+
sl

a2 o
m=−`

`
1

v − m
expF−

Îsv − md2 + s2n2

l/a
G .

s47d

Note that bothVMrsv ,nd andFMrsv ,nd are regular atv→0,
because divergency in the first term is compensated by the
m=0 term in the sum.

In numerical calculations we assume for simplicity peri-
odic boundary condition iny direction with periodcy. Physi-
cally, this corresponds to rectangular arrangement of both
Josephson vortices and pancake stacks. Even though such
arrangement does not give the true ground state, it does not
influence much the structure of an individual chain, that is
the focus of this paper. Due to symmetry properties, it is
sufficient to find the phase distributionfnsx,yd within do-
main 0,x,a, 0,y,cy/2, 1ønøNl =N/2 with the fol-
lowing boundary conditions for the total phase:

fnsa + 0,yd = fns+ 0,yd, fnsx,− 0d = p − fnsx, + 0d,

fnSx,
cy

2
+ 0D = − fnSx,

cy

2
− 0D +

2psn − 1/2d
N

,

f0sx,yd = − f1s− x,yd, fNl+1sx,yd = p − fNl
sx,yd.

Pancake displacementsvn have symmetry properties
vn+N=vn and v1−n=−vn. This allows us to reduce infinitem
summation in Eq.s46bd to summation over half of the unit
cell 1ømøNl

o
m=−`

`

FMrsvn − vm,n − md = o
m=1

Nl

o
l=−`

`

fFMrsvn − vm,n − m+ lNd

+ FMrsvn + vm,n + m− 1 + lNdg.

Similar decomposition was made for the magnetic interac-
tion energy in Eq.s41d.

We explored chain phase structures by numerically solv-
ing Eqs.s46d with respect to the pancake-row displacement
vn and regular phase distributionfr,n for different values of
the parametersa, N=2Nl, and a. Numerical computations
were performed on two Linux workstations with 2 GHz
AMD Athlon processors and on the nodes of the Argonne
computing cluster “Jazz”s350 nodes, each with 2.4 GHz
Pentium Xeon processord. In the following sections we re-
view the results of these calculations.

B. Stability of crossing configuration

The fundamental property of the crossing-chain state is
the structure of the crossing configuration of Josephson vor-
tex and pancake stack. In-plane currents of the Josephson
vortex displace the pancakes in the opposite directions above
and below central layers. Equilibrium displacements are the
result of a balance between the pulling forces of the Joseph-
son vortex, which try to tear the pancake stack apart, and
magnetic coupling, which tries to keep the stack aligned. The
structure of the crossing configuration can be calculated ana-
lytically in the regime of high anisotropyl!lJ

8,19 leading to
the results18d for the crossing energy and to the maximum
displacementu1<2.2l2/ flJ lns2lJ/ldg. This calculation is
based onsid quadratic approximation for the magnetic tilt
energy andsii d assumption that the JV in-plane currents are
not influenced much by pancake displacements. The first as-
sumption breaks down whenu1 approachesl and the second
one breaks down whenu1 become comparable withlJ. This
means that the both approximations break down asl ap-
proacheslJ.

The stability of the crossing configuration has been ad-
dressed recently by Dodgson21 using the full magnetic cou-
pling energy but without taking into account modification of
the Josephson vortex by pancake displacements. The latter
can not be easily computed analytically. This calculation
suggested that the crossing configuration becomes unstable
at a;l /lJ<1/2.86<0.35. This estimate seems to be in
contradiction with the recent decoration experiments22 where
the isolated pancake stacks sitting on the Josephson vortices
have been observed in the strongly overdoped BSCCO with
the ratioa significantly larger than this value.

To resolve this contradiction and find an accurate stability
criterion we studied numerically evolution of the isolated
crossing configuration with increasing ratioa. For this pur-
pose we used the code, which calculates the chain structure
in Fig. 1, for large values of the periodsa andN=2Nl. Figure
2sad shows the dependence of the maximum pancake dis-
placement on the ratioa for N=20 and different values ofa.
One can see that the crossing configuration becomes unstable
neara<0.69, which significantly exceeds a simple estimate
in Ref. 21. The main reason for the extended stability range
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is that the pancake displacements significantly modify the
structure of the Josephson vortex. This reduces forces which
pull the pancake stacks away and compensates for reduced
magnetic coupling restoring forces at largeu. Finite-size ef-
fect is only noticeable in vicinity of the instability. The
small-a calculation correctly predicts the maximum dis-
placement up toa<0.35 and underestimates it at largera.
Figure 2sbd shows thea dependence of crossing energye3.
It demonstrates a rather regular behavior almost up to the
instability point. Similar to the maximum displacement, the
small-a calculation gives an accurate estimate fore3 up to
a<0.35. For highera an absolute value ofe3 exceeds the
analytical estimate.

C. Typical phase diagram within the range 0.4›a›0.5:
Phase transition from crossing to tilted chains with decreasing

pancake separation

At the first stage we studied the evolution of chain struc-
tures with increasinga;l /lJ for fixed periodsa andN. As
l increases with the temperature andlJ is approximately
temperature independent, increase ofa corresponds to in-
crease of the temperature in real systems except that our
calculations do not take into account thermal fluctuations.
For small values ofa andN we found that the chain structure
evolves smoothly. An example of such evolution is presented
in Fig. 3 for N=14 anda=1.52lJ. The main plot shows the
dependence of the maximum pancake displacement from the
straight-stack positionumax/a sdefined in the insetd on the
parametera. We will use this ratio to characterize the chain
structure throughout the paper. It changes from zero for
straight stacks tos1−1/Nd /2 for tilted chains. At smalla a

FIG. 2. sColor onlined sad The dependence of the maximum
pancake displacement in the crossingsdefined in the insetd on the
ratio a=l /lJ for different periodsa in x direction. The plot shows
that crossing becomes unstable neara=0.69. The inset shows cross-
ing configuration near instability point.sbd The dependence of
crossing energy on the ratioa. For comparison, small-a calculation
is shown in both plots.

FIG. 3. sColor onlined Main plot shows the dependence of the maximum displacementsdefined in the insetd divided by pancake separation
on the parametersa for N=14 anda=1.52lJ. The chain structures are illustrated at marked points. In the configuration pictures circles show
positions of the pancake vortices and horizontal lines mark locations of the Josephson vortices. One can see that the system evolves from
weakly deformed chainsa=0.25d via strongly deformed chainsa=0.4d to modulated tilted chainsa=0.46d. The last structure transforms via
a second-order phase transition ata=0.48 into tilted straight vortices.
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weakly deformed crossing configuration is always realized
ssee the structure ata=0.25d. The pancake displacements
grow with increasinga and the chain evolves into strongly
corrugated configurations such as configuration fora=0.4 in
Fig. 3. With further increase ofa, this structure smoothly
transforms into modulated tilted linesssee the structure for
a=0.46d. Finally, the last structure transforms via a second-
order phase transition into the straight tilted lines. For pa-
rameters used in Fig. 3 this occurs ata=0.48. The plateau in
the dependenceumaxsad above this value ofa corresponds to
the maximum displacements1−1/Nd /2 in the tilted chain.

To compare numerical and analytical calculations we plot
in Fig. 4sad the numerically computeda-dependence of the
local energys42d together with analytical estimatess43d for
N=10 anda=3.4lJ. One can see that the analytical estimates
accurately reproduce numerical results for the weakly de-
formed crossing chain ata,0.35 and for the tilted chain at
a.0.5. However, in between the numerical study predicts
intermediate configurations with energies smaller than the
energies of the both limiting configurations. As a result, a
naively expected first-order phase transition is replaced by a
continuous transition occurring at significantly largera. This
behavior is quite general. We observed it within the broad
range of the periods, 6&N&20, 2&a/lJ&5 and the ratios
0.4&a&0.6. In Fig. 4sbd we compare location of the phase
transition into the tilted-chain state in thea-a plane for
N=10 with location of the transitional region defined by Eq.

s33d. The computed transition line is always displaced from
the estimated boundary in the direction of largera. The tran-
sitional region just marks the location of the intermediate
strongly deformed chain configurations. The observed con-
tinuous phase transition indicates that tilted lines become
unstable with decrease ofa. It is known that an isolated
vortex line in anisotropic superconductors is unstable within
some range of tilt angles.24,25 We have to note that the sta-
bility criterion of a chain is not identical to the stability cri-
terion of an isolated vortex line and requires separate study.
At large values ofa a continuous transition is replaced by a
first-order phase transition. However, as it was discussed in
Sec. V, due to the attractive interaction between the pancake
stacks, large separations may not realize in equilibrium be-
causea is expected to jump from infinity to the maximum
equilibrium separationam.

To find location ofam in the phase space, we calculated
the evolution of chain structures with changinga for fixed a
and N. These calculations, of course, reproduce the chain
structures and location of the transition line of the previous
calculation. Following the recipe of Sec. V, we calculated the
a dependence of the excess pancake energy per unit stack,
Usãd; ãsE−EJVd, and findam from the minimum location of
this energy. Figure 5 shows an example of these dependen-
cies for a=0.5 and differentN. IncreasingUsad at a.am

implies attractive interaction between stacks at large separa-
tions. We can see that fora=0.5 the separationam weakly
depends onN and lies in between 2lJ and 3lJ. Note that the
N dependence of the limiting value ofUsad at a→` reflects
contribution from the crossing energy of an isolated pancake
stack with the JV array.

In Fig. 6 we present the chain phase diagrams in the
a-N plane for two values ofa, 0.4 and 0.5. Solid lines show
the phase transition into the tilted-chain statefthe depen-
denceatsNdg. One can see that at largerN the transition takes
place at smallera. With increasinga this line moves higher
meaning that the tilted-chain state occupies larger area in the
phase space. At largea weakly deformed chain configura-
tions are realized, similar to ones shown in Fig. 3 for
a=0.25. With decreasinga the chain configuration crosses
over into a strongly corrugated state. To mark location of this
crossover we show in the phase diagrams by dashed lines the
pancake separation at which the maximum pancake displace-
ment umax reachesa/4 fplot arsNdg. This crossover can be

FIG. 4. sColor onlined sad The dependence of the local part of
energy of the chain configuration on the ratioa for N=10 and
a=3.4lJ. For comparison, we also show analytical estimates for the
crossing and tilted chain configuration.sbd Phase diagram in the
planespancake separationad-sratio ad for the fixed separation be-
tween JVs,N=10. The solid line shows computed transition into the
tilted chain state. The dashed line shows location of the transitional
region where the energy of the crossing configuration is equal to the
energy of the tilted configuration.

FIG. 5. sColor onlined The dependence of the excess pancake
energy per stack in units of«0, U, on the separation between pan-
cakesa for a=0.5 and differentN. The position of minimum of this
energy corresponds to the maximum equilibrium separationam

smarked forN=8 plotd.
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viewed as “reconnection” of pancake-stack segments. Dotted
lines show locations ofam. We see thatamsNd line crosses the
transition line meaning that at smallN am falls into the tilted-
chain region and at largeN it falls into the crossing-chains
region. Fora=0.5 we also show the analytical estimate for
am for the tilted chain calculated from Eq.s39d. One can see
that it agrees very well with numerical calculations. Fora
=0.5 andNø8 the transition is of the first order. However,
the pancake separation at the transition lies aboveam mean-
ing that it does not correspond to the ground state.

The obtained phase diagrams imply that at small tilting
angle of the field with respect to thec axis scorresponding to
smallad the tilted chains have lower energy than the crossing
chains. This is similar to the situation at higher fields, in the
dense lattice, where the crossing-lattices state also is ex-
pected to transform into the simple tilted lattice at small
tilting angle of the field.8

D. Typical phase diagram in the range 0.5›a›0.65:
Reentrant transition to kinked/tilted lines at small

concentration of pancake vortices

At higher values of the ratioa an additional qualitative
feature emerges in the phase diagram. Whena exceeds the
characteristic value, a smallc-axis field penetrates supercon-
ductor in the form of kinks forming kinked vortex lines

slock-in transition, see, e.g., Refs. 3–5d. The critical value of
a is determined by combination of numerical constants in the
pancake-stack and kink energies and it is given by
ac=expCkv, where the constantCkv is defined after Eq.s26d.
To find the value ofac, we calculated in Appendix A the
energy of tilted chains at very large pancake separationsa,
which allowed us to extract the energy of an isolated kink.
This calculation givesCkv<−0.81 corresponding toac
<0.44. It is important to note that the critical value ofa
increases with decrease ofN, due to the increasing contribu-
tion of the crossing energies to the total energy of crossing
chain. Very interesting behavior is expected whena is only
slightly larger thanac. The competing chain states have very
different interactions: deformed stacks attract and kinks repel
each other. Moreover, at the same value of thec-axis mag-
netic induction,Bz, the kink separation is much smaller than
the stack separation and the absolute value of the kink inter-
action energy is much larger than the interaction energy be-
tween deformed stacks. As a consequence, with increasingBz
the total energy of the kinked lines rapidly exceeds the total
energy of the crossing chain and the system experiences a
first-order phase transition into the crossing-chain state. Due
to the attractive interaction between the pancake stacks, the
pancake/kink separation at which the energy curves cross
does not give the equilibrium separation for the crossing
chain and the stack separation jumps at the transition to a
value slightly smaller than the maximum equilibrium sepa-
ration am. This means that the phase transition is accompa-
nied by jump of pancake density and magnetic induction,Bz.

This behavior was confirmed by numerical calculations.
Figure 7 shows a plot of the dependence of the pancake
energyU on the pancake separation forN=16 anda=0.6.
This dependence has two branches, corresponding to the two
different starting states at largea, crossing chain and kinked
lines. This branches cross ata=14.8lJ and the the kinked
vortex lines have smaller energy at largera. The variations of
U at largea occur due to the interaction energy and one can
see that the kink interaction energy is much larger than the
interaction energy of the deformed stack in the crossing
chain. With further decrease ofa, the crossing chain
smoothly transforms into the tilted chain, as it was described
in the previous section. The second-order phase transition for
these parameters takes place ata<2.5lJ somewhat smaller
than the maximum equilibrium separationam<3.44lJ.

The pancake separationsor pancake densityd in the chain
cannot be directly fixed in experiment. Instead, the magnetic
field strength, Hz, fixes the chemical potentialmH,
mH=F0Hz/ s4pd, and the equilibrium density is determined
by the global minimum of the thermodynamic potential
Gsnd=Esnd−mHn. To find evolution of density with increas-
ing chemical potential, we plot in Fig. 8 the density depen-
dencies of the reduced thermodynamic potential,dE−mn for
different m and representative parametersN=14 anda=0.6.
As the energy of isolated stacks is subtracted indE, the di-
mensionless chemical potential is shifted with respect to its
bare value and it is related to the magnetic field strength as

m =
F0sHz − Hc1d

4pe0
,

whereHc1 is the lower critical field forH ic. We find that
for selected parameters the transition takes place at

FIG. 6. sColor onlined Chain phase diagrams in the plane
a/lJ−N for two values of the ratioa, 0.4 and 0.5. The solid line
indicate phase transition into the tilted-chain phase. The dotted line
shows the maximum equilibrium separationam. The dashed line
shows crossover “reconnection” line at which the maximum dis-
placement exceedsa/4 and weakly deformed crossing configura-
tion crosses over into the strongly corrugated configuration. Fora
=0.5 we also showam for the tilted-chain phase analytically calcu-
lated from Eq.s39d.
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m=mt=−0.152. Atm,mt the global minimum falls into the
region of kinked lines and atm.mt it jumps into the region
of crossing chain. Note that the density value, at which the
energy curves crossskinks in the lines nearn=0.1 in Fig. 8d,
is always larger than the lower density from which the jump
to the high-density state takes place. At the transition, the
density jumps almost ten times, from 0.037/lJ to 0.315/lJ.

The numerically obtained phase diagram in theN-a plane
for a=0.6 is shown in the upper panel of Fig. 9. The plots in
the lower left panel, the thermodynamic potential at the tran-
sition point and the maximum displacement versusa/lJ, il-
lustrate definitions of different lines in the phase diagram.
The lines 1 and 18 show the limiting pancake separations at
the first-order transition between which the jump takes place.
When the chemical potential is fixed by external conditions,
the area between these lines is bypassed in equilibrium. At
largeN the jump takes place from the kinked-lines state into
the strongly corrugated configuration. This configuration
transforms into the tilted chain with further decrease ofa via
continuous transition shown by the line 28. Below N=14
only tilted chains realize, but the density jump still exists.
The upper separation grows approximately proportional toN
while the lower separation slowly decreases withN and lies
slightly below the maximum equilibrium separationam
shown by dotted line. This means that the relative density
jump increases withN. The line 2 shows the position of the
crossing of the energy curves for the two states.

It is also instructive to examine the phase diagram for
fixed c-axis periodN, in thea-a plane. Asa increases with
temperature, this diagram to some extent describes the tem-
perature evolution of the chain structure. Figure 10 shows

FIG. 7. sColor onlined The dependence of the excess pancake
energy per stack on pancake separationa for N=16 anda=0.6. The
two branches correspond to the two different starting states at large
a, crossing chain and kinked lines. One can see that the kinked lines
have lower energy at very largea, a.14.81. Crossing chain
smoothly transforms back into tilted chain with decrease ofa. The
transformation is completed at a second-order phase transition point
at at=2.5lJ. Chain configurations at four points marked by arrows
are shown below. The evolution of chain configuration along this
energy curve is also illustrated by an animationsSee Ref. 26d.

FIG. 8. sColor onlined The density dependence of the pancake
part of the thermodynamic potential per unit area,dE−mn sin units
of e0/lJd at different chemical potentialsm corresponding to differ-
ent values of the magnetic field strength forN=14 anda=0.6.
Kinks in the curves separate regions of tilted/kinked linesslow nd
and crossing chainsshigh nd. The equilibrium density in units of
1/lJ is given by the global minimum of this energy. One can see
that atm<−0.152 the system experiences a first-order phase tran-
sition with very large density jump.

FIG. 9. sColor onlined The upper plotshows the phase diagram
in theN-a plane fora=0.6. The left plot in the lower plat illustrates
meanings of the phase lines using the plot of the thermodynamic
potentialdE−mn vs a/lJ at the transition pointsmain plotd and the
maximum displacementu divided by lattice spacinga vs a/lJ sin-
setd. The lines 1 and 18 correspond to the two limiting pancake
separations at the transition point between which the jump occurs.
The line 2 indicates crossing of the energy curves for the kinked
and crossing chain. The line 28 shows the position of a continuous
transition into the tilted chainsillustrated by the inset in the lower
paneld. Dotted line slightly above 18 line shows the position of the
maximum equilibrium separationam. We also show the crossover
line a/lJ=N above which well-defined kinks appear. The right plot
in the lower part shows blowup of the phase diagram above the 28
line.
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such diagram forN=14. One can see that the phase transition
line is reentrant, within some range ofa the tilted chains are
realized both for small and largea. Above some critical
value ofa s0.66 forN=14d only straight tilted lines exist in
whole range ofa. This maximum value increases withN. For
somewhat smaller values ofa, there is narrow range ofa
where the chains become slightly modulated. This is illus-
trated in the plot of the maximum displacementu for
a=0.63 in the right panel of Fig. 11. The maximum equilib-
rium separation lineamsad terminates at certain value ofa,
above which the dependenceUsad becomes monotonic. We
also show in this diagram the stability boundaries extracted
from the inflection points in theUsad dependenciesfsee cri-
terion s38d and related discussiong. Origin of such phase dia-
gram can be better understood by studying the dependencies
Usad at differenta shown in the left panel of Fig. 11. One
can see that the first-order transition vanishes above certain
value of a and the dependenceUsad becomes monotonic

close to this value ofa. On the other hand, even after be-
coming monotonic, this dependence still has two inflection
points bounding unstable region in some range ofa. Exis-
tence of such unstable region means that the pancake-density
jump with increasing thec-axis external field persists in the
region where only tilted chains exist. This jump is closely
relatedsbut not identicald with the jump of the tilt angle of
the vortex line at the lower critical field with increasing tilt
angle of the external field.27,28

The vortex chains in BSCCO at small concentrations of
pancakes have been studied by the scanning Hall probe mi-
croscopy in Ref. 14. It was found that at very small concen-
tration of pancakes the chains are magnetically homogeneous
and separate pancake stacks are not resolved. When the ex-
ternal field exceeds certain critical value, crystallites of the
pancake stacks are suddenly formed along the chains and the
flux density in crystallites approximately ten times higher
then the flux density in homogeneous chains. Theskinked
linesd-scrossing chainsd first-order phase transition provides a
very natural explanation for this observations.

VII. CONCLUSIONS

In conclusion, we investigated numerically and analyti-
cally the phase diagram of an isolated vortex chain in layered
superconductors. In the region where Josephson and mag-
netic coupling are approximately equal, we found a very rich
behavior. The crossing chains typically transform into tilted
chains with decreasing pancake separation via formation of
intermediate strongly deformed configurations and a continu-
ous phase transition. When the relative strength of the Jo-
sephson coupling exceeds some typical value, the phase dia-
gram becomes reentrant. At a very smallc-axis field, tilted
chains are realized in which the vortex lines have the kinked
structure. With increasingc-axis field these low-density tilted
chains transform via a first-order phase transition into
strongly deformed crossing chains. This transition is accom-
panied by a large jump of the pancake-vortex density. With
further increase of the field these crossing chains transforms
back into the tilted chains via a second-order transition.

An important feature of real BSCCO which is not taken
into account in this paper is the thermal vortex fluctuations.
We expect that fluctuations will not change qualitatively the
described behavior, especially the strong first-order phase
transition, but may significantly change locations of the
phase transitions in the phase space.

Finally, we briefly overview the relevant field scales. In
the range of studied JV separations,N, from 10 to 20, and for
g=500, the in-plane field,Bx=2F0/ sÎ3gs2N2d, varies in the
range from 200 to 50 G and the in-plane separation between
Josephson vortices, cy=sÎ3/2dgsN, varies from
6.75 to 13.5mm. The typical density jump forN=16 and
a=6 in Fig. 9 corresponds to jump of the averagec-axis
induction, Bz=F0/acy, from 0.12 to 1.2 G. Such jump is
usually difficult to notice in the global magnetization
measurements. Therefore, a rich spectrum of transformations
discussed in this paper takes place in the range of very
small c-axis magnetic induction, not exceeding few gauss.
Taking a typical valuel for BSCCO at 80 K, as 0.4mm, we

FIG. 10. sColor onlined Phase diagram ina-a plane forN=14.
Solid nose-shaped line shows the phase transition into the tilted-
chain state. Dashed line shows location of the maximum equilib-
rium separation, which terminates at some point. We also show by
dotted line location of the stability boundaries obtained from inflec-
tion points of the dependenciesUsad fsee criterions38dg.

FIG. 11. sColor onlined Left panel: The dependencies of the
excess pancake energy per stackU on separationa for N=14 and
different values ofa. With increasinga the first-order transition
from tilted to crossing chain vanishes and the crossing chain do not
realize at all. Also the dependenceUsad becomes monotonic which
corresponds to termination ofamsad line in Fig. 10.Right panel:
The dependence of the relative maximum displacementu on sepa-
ration a for N=14 anda=0.63. The maximum value ofu, corre-
sponding to tilted chains, is given bys1−1/14d /2<0.464. One can
see that there is a range ofa where the chains become only slightly
modulated.
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estimate for the same parameters that the maximumc-axis
field in the chain center,Bz0=F0/al, jumps from
3.3 to 33 G.
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APPENDIX A: KINK INTERACTION ENERGY OF A
SINGLE LINE

We compute the kink interaction energy within London
approximation. As the main contribution to this energy
comes from the regions away from the JV and kink cores,
one can expect that the London approach gives a very good
approximation of the interaction energy. Shape of the kinked
line is given by

RsXd = fX,0,usXdg,

usXd = ns, sn − 1/2dL , X , sn + 1/2dL.

From the general formulas8d we obtain the total energy of
the kinked line in London approximation

«kl =
F0

2

8pLx
E d3k

s2pd3 E dXE dX8

3

s1 + l2k2d + s1 + lc
2k2d

du

dX

du

dX8

s1 + l2k2ds1 + l2kz
2 + lc

2ki
2d

3expfikxsX − X8d + ikzsu − u8dg. sA1d

To separate the kink interaction energy one has subtract from
this expression the energies of Josephson vortices,«JV

L , and
kinks, «kink

L , in London approximation. Integration overX,
X8, andkx leads to the following expression for the total kink
contribution to energy,«k=«kl −«JV

L :

«k =
F0

2

8p
E dkydkz

s2pd2 FS 1

1 + l2kz
2 −

1

1 + l2kz
2 + lc

2ky
2D

3
sinhg

g

1 − cosskzsd
coshg − cosskzsd

+
s2/l2

2s1 + l2kz
2d

sinhg1/g1

coshg1 − coskzs
G

with

g = LÎlc
−2 + g−2kz

2 + ky
2,

g1 = LÎl−2 + ky
2 + kz

2.

To separate kink interaction we have to subtract the contri-
bution coming from isolated kinks, i.e., the term which be-
haves as 1/L at L→`

«kink
L =

F0
2

8p
E dkydkz

s2pd2 F−
1 − cosskzsd

gs1 + l2kz
2 + lc

2ky
2d

+
s2

2l2s1 + l2kz
2d
S 1

g1
+

l2kz
2

g
DG .

This gives the following result for the kink interaction en-
ergy:

«ki =
F0

2

8p
E dkydkz

s2pd2 FS 1

1 + l2kz
2 −

1

1 + l2kz
2 + lc

2ky
2D

3
1 − cosskzsd

g

coskzs− exps− gd
coshg − coskzs

+
s2/l2

2s1 + l2kz
2d

1

g1

cosskzsd − exps− g1d
coshg1 − cosskzsd G , sA2d

which has to be evaluated in the limitL.gs. The main con-
tribution is coming from the first term in square brackets. If
we keep only this term, than the kink interaction energy can
be reduced to the following form:

«ki <
gF0

2s2

8pl2L2JsL/lcd

with

Jsrd =E dpydpz

s2pd2 S 1

1 + pz
2 −

1

1 + p2D
3

pz
2

Î1 + p2

r

expsrÎ1 + p2d − 1
,

p2 ; py
2 + pz

2.

In the practically interesting caser =L /lc!1 the integral
Jsrd can be evaluated as

J <
1

4p
FlnS1

r
D −

3

2
G ,

giving the main result for the kink interaction energys25d.
The second term in square brackets of Eq.sA2d represents

magnetic coupling contribution to the kink interactions. We
calculated this contribution in the two limiting cases

«ki
s2d < 5

s2«0

L2 , for L ! l

s2«0

lL
exps− L/ld, for L ! l6 .

As we can see, it does give a very small contribution to the
total kink interaction energy.
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APPENDIX B: DERIVATION OF THE INTERACTION
ENERGY OF TILTED VORTICES

The interaction potential between two straight tilted vor-
tices per unit length alongc-axis separated by distanceR in
the tilt directionsx axisd is given by

UisRd =
F0

2

4p
E dkxdky

s2pd2

3
n2 + f1 + lc

2sk'
2 + n2kx

2dg/f1 + l2sk'
2 + n2kx

2dg
1 + l2n2kx + lc

2k'
2

3expsikxRd

This formula works also in the regime of kinked vortex
lines n.g. The kink structure of the lines starts to influence
interaction between them when kink separationL exceeds
czg /2p corresponding to the conditionn.Ng /2p. Integrat-
ing over ky we obtain UisRd=esdk/2pdcosskRdUiskd
with

Uiskd = 2p«0lo
j=1

3

gjskd sB1d

with

g1skd =
n2l2 + lc

2

lcf1 + sn2l2 + lc
2dk2g1/2,

g2skd = −
lc

f1 + sn2l2 + lc
2dk2g1/2s1 + n2l2k2d

,

g3skd =
l

f1 + l2s1 + n2dk2g1/2s1 + n2l2k2d
.

The interaction energy of the chain per unit areaETV
i can be

represented as

ETV
i =

1

2a
o
nÞ0

E dk

2p
Uiskdexpsiknad

=
1

2a2 o
m=−`

`

Uiskmd −
1

2a
E dk

2p
Uiskd

with km=2pm/a, or

ETV
i = o

j=1

3

ETV,j
i

with

ETV,j
i =

p«0

a2 o
m=−`

` Fgjskmd −E
−p/a

p/a adk

2p
gjskm + kdG .

In the limit a!2pÎn2l2+lc
2 the first term, j =1, can be

evaluated as

ETV,1
i <

«0

a
Hpsn2l2 + lc

2d
lca

−
În2 + g2

g

3FlnS4pÎn2l2 + lc
2

a
D − gEGJ .

Using integral

E
0

` dk
Î1 + a2k2s1 + b2k2d

=
a.b

1
Îa2 − b2

ln
Îa2 − b2 + a

b
,

the other two terms are calculated in the limitc!2pl as

ETV,2
i + ETV,3

i <
«0

a
F−

plc

a
+

pl

a
+ ln

g + În2 + g2

1 +Î1 + n2

− zs3dS c

2pl
D2S g

În2 + g2
−

1
Î1 + n2DG .

The last term is small and will be dropped in further calcu-
lations. Collecting terms, we finally obtain for the total inter-
action energys27d.

APPENDIX C: ENERGY OF ISOLATED KINK

To find the energy of an isolated kink, we calculated en-
ergy of tilted lines in the regime when kink separationL
=a/N significantly exceeds the Josephson length. Numeri-
cally, this is a challenging task because the kink interaction
energy decays slowly with increasingL meaning that one has
to go to very large values ofa. To maintain sufficient accu-
racy, one has to use large number of grid points inx direc-
tion. As follows from Eq.s32d, the pancake part of energy
vanishes linearly at small kink concentrationsn. In reduced

units, we define this energy asdẼ=slJ/«0dsETV−EPV
s −EJVd

and from Eq.s32d we have

FIG. 12. Left panel shows plot of the pancake part of the
chain energy per unit area in units«0/lJ, dE, vs pancake densityn
at very smalln. Slope of this energy atn→0 determines the energy
of an isolated kink and the numerical constantCkv. Calculations
were made for two sets of parameters,sN=10,a=0.52d and
sN=14,a=0.6d, and for two system sizes for each set.Right picture
illustrates the numerically calculated kink structure. Arrows show
in-plane currents and gray level plot codes distribution of the cosine
of phase difference between the neighboring layerssdark area be-
low corresponds to the Josephson vortex.d
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dẼ < nSln
1

a
+ CkvD .

Plots of this energy are shown in Fig. 12 for two sets of
parameters,sN=10,a=0.52d and sN=14,a=0.6d. From lin-
ear fits at small n we obtain estimatesCkv<−0.192
−lns1/0.52d<0.846 for the first set andCkv<−0.296

−lns1/0.6d<0.807 for the second set. If we use the last con-
stant, corresponding to the larger system size,
we obtain the estimateCk<−0.31 for the constant in
the kink energy within Ginzburg-Landau theorys24d.
This is somewhat smaller than the value −0.17 reported
in Ref. 6. The difference is most probably due to
finite-size effects.
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