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We study a superconductor in the Hall configuration, in the framework of a purely dissipative time-
dependent Ginzburg-Landau model. For electric penetration depths in the range 3.5–10 coherence lengths we
find situations in which the order parameter differs significantly from zero in a set of islands that appear to
form a periodic structure. When the pattern of islands becomes irregular, it moves in or against the direction of
the current and a Hall voltage is found. Tiny differences in the initial state may reverse the sign of the Hall
voltage. When the average Hall voltage vanishes, the local Hall voltage does not necessarily vanish. We
examine the influence that several boundary conditions at the electrodes have on these effects.
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I. INTRODUCTION

The Hall voltage in superconductors exhibits a rich vari-
ety of behaviors.1 In the Meissner state there is no Hall
voltage,2 but in the mixed state Hall voltage is present due to
vortex drag.3,4 In some cases, the sign of the Hall voltage is
opposed to what would naively be expected.5

We shall consider a thin rectangular superconducting
sample. Let a magnetic field be applied in thez direction and
let a total currentI flow in thex direction. The sample will be
assumed to be sufficiently long in thez direction, so that
physical quantities will be independent ofz. The current will
be assumed to flow in the entire range −`,x,`, but only
the segment 0øxøL will be superconducting. We denote
the thickness of the sample byd; the regionsy,0 and y
.d are taken as insulating. We will study the current depen-
dence of measurable quantities within the framework of the
time-dependent Ginzburg-Landau modelsTDGLd.6 Among
the diversity of formulations of TDGL, we consider the sim-
plest,

]tc = −
1

h
fs− i ¹ − Ad2c + s1 − Tdsucu2 − 1dcg + f̃ , s1d

]tA = s1 − TdRefc̄s− i ¹ − Adcg − k2 ¹ 3 ¹ 3 A . s2d

Herec is the order parameter,t is the time,A is the electro-
magnetic vector potential,h is the ratio between the relax-
ation times ofc andA, k is the Ginzburg-Landau parameter,

T is the temperature, andf̃ a random “force” that simulates
thermal fluctuations. The units are customary, as e.g., in
Refs. 7–10. The gauge is chosen such that the scalar potential
is zero.

A very similar setup was recently studied in Ref. 11.
There are however significant differences in the choices
made here and by them. They use a more involved equation
instead of Eq.s1d, they neglect the magnetic field induced by
the current, and they consider a large value ofh, which
limits the existence of the superconducting state to moderate
currents.

We shall see that the configuration we consider can lead
to the appearance of a phenomenon which, to my knowledge,
has not been previously encountered: Spots whereucu is sig-
nificant, while most of the sample is practically in the normal
state. We call these spots “superconducting islands.” The ex-
pression “superconducting islands” is usually intended for
regions of superconducting material separated by thin insu-
lating barriers,12 but in our case these islands will form spon-
taneously in a uniform material. In a loose sense, supercon-
ducting islands may be regarded as the opposite of vortices,
but their length scale is much larger. In appropriate situa-
tions, these islands form a periodic pattern. We shall see that
the rearrangement of these islands is related to the appear-
ance of Hall voltage.

II. SELECTION OF THE PROBLEM

The situation we consider is as follows: the applied mag-
netic field is kept fixed at 0.5Hc2s0d=0.25F0/pj2s0d, where
F0 is the quantum of flux andjsTd is the coherence length at
temperatureT. At this field and for the value ofk that we
choose the sample is in the mixed state. Initially, there is no
net current and the situation is static; then the current in the
x direction is gradually increased, until the film becomes
normal. If the current increases sufficiently slowly, we may
argue that we have a quasistationary situation and thus evalu-
ate the properties of the superconductor as functions of the
current.

The boundary conditions that are usually assumed in the
TDGL treatment are continuity of the magnetic field and
n̂ ·s−i ¹−Adc=0, wheren̂ is a vector perpendicular to the
superconductor-insulator interface. However, this condition
implies that the electric field is parallel to the interface, and it
might be suspected that it is not appropriate for the study of
the Hall voltage. Therefore, we used instead the refined
boundary condition suggested in Eq.s8.26d of Ref. 9 at the
boundariesy=0 and y=d. It turned out, however, that the
same results are obtained without this refinement. At the
electrodessx=0 andx=Ld we have considered two different
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boundary conditions. One case was that of periodic boundary
conditions, which are frequently used to mimic an infinite
sample in thex direction; the other case was the Dirichlet
condition, as appropriate for normal electrodes in which su-
perconductivity is strongly suppressed. Periodic boundary
conditions are not physically justified, but they lead to results
that are simpler to analyze. Therefore, for exposition pur-
poses, they will be presented first. A detailed discussion on
the justification of boundary conditions will be presented
elsewhere.

In order to keep just a small number of parameters, Eq.
s2d neglects the force exerted by the magnetic field on the
normal electrons. Therefore, the Hall voltage that we obtain
is that of the superconducting electrons only. Since the Hall
field is much smaller than the field in the direction of the
current, the Hall voltage should be, to a good approximation,
the superposition of contributions from both kinds of elec-
trons. We will also assume that the density and mobility of
the normal electrons are not significantly affected by super-
conductivity. For a treatment that considers the entire resis-
tivity tensor see, e.g., Ref. 10.

We integrate the TDGL equations by means of a finite
difference method, using essentially the same program as in
Ref. 8. In this method the sample is represented by a rectan-
gular grid, consisting ofNx3Ny cells with spacingsax
=L /Nx and ay=d/Ny. Discrete values ofc are defined at
every vertex and values ofAx,y are defined at every link in
the respectivex or y direction. When periodic boundary con-
ditions are used, they are imposed both onc and on
expsiAyayd. A standard initial state was obtained by raising
the applied field from 0 to 0.5Hc2 and then keeping the field
fixed until a stablesor metastabled state was reached. The
initial state for every run was then obtained by adding toc at
every vertex a complex random number with normal distri-
bution, zero average, and standard deviation 0.1. In a few
cases, different histories were used.

The current enters the algorithm through the effect it pro-
duces; it raises the value of the magnetic field at one inter-
face and lowers it at the other.

Equationss1d and s2d can be derived from microscopic
models in the dirty gapless limit. It is found thath=12 in the
strong depairing limit andh=5.79 for weak depairing. It
follows from these equations that the penetration depth,E of
the electric field isj /Îh and is therefore smaller than the
coherence length. However, in the most common case that
superconductors have a gap in their spectrum, it is experi-
mentally found that,E@j. Moreover, in the case of one-
dimensional superconducting filaments,13 it is found that the
regime,E@j is the most interesting, since it leads to a wide
range of currents in which superconducting and normal cur-
rents coexist and phase-slip centers appear. We shall see that
also in our case the most interesting situations are found for
,E considerably larger thanj. For superconductors with a
gap in the spectrumh should be replaced by a coefficient
that depends onucu,14 but we shall adopt a simplistic strategy,
as in Ref. 15, in which we will regard Eq.s1d as a phenom-
enologic equation andh will be assigned values that are
significantly smaller than 1.

Two qualitative differences between the present problem
and the case of one-dimensionals1Dd filaments13 should be

pointed out. First, by allowing for a finite width, the charac-
teristic currents of the problem depend on the magnetic field.
Second, the current will be the controlled independent vari-
able, rather than the distance between phase-slip centers.

III. RESULTS

A. Periodic boundary conditions

We report on samples of thicknessd=8js0d<7jsTd. For
these samples the standard initial state had a row of vortices
at y=d/2 and the average distance between consecutive vor-
tices was 2.5js0d<2.2jsTd.

Figure 1 shows the magnetizationM of the film as a func-
tion of the currentI, for several values ofh. The values ofM
were averaged over the volume of the sample and also over
2000 consecutive time steps. The curves start atI =4310−3

rather thanI =0 in order to chop off the influence of the
random numbers added to the initial state. The general be-
havior is similar for all the curvessincluding additional val-

FIG. 1. Clusters of curves of the magnetization of the film ver-
sus the current, withh as a parameter. Each curve in a cluster has an
initial state slightly different than those of the others. The magneti-
zation is the volume average of the induced magnetic field, in units
of Hc2s0d, divided by 4p. The unit of current iscF0/ f2pjs0dg2 per
cm of length in thez direction. For each cluster there is a different
value ofh, which is marked next to it. Typically, each cluster con-
tains four curves. For visibility, most clusters have been shifted in
the vertical direction. Each curve starts at the current 4310−3. At
the right extreme of every cluster the film is in the normal state and
the magnetization vanishes. The other parameters used in the cal-
culations areNx=80, Ny=16, ax=ay=0.5,k=2, T=0.5 and the size
of the noise is the same as in Refs. 7 and 8. The current increment
between consecutive steps isDI =5310−7 and the time increment
varies fromDt=0.008 for h=0.3 to Dt=0.0015 forh=0.03. The
applied field was kept fixed at 0.5Hc2s0d. In the inset, one of the
curves forh=0.03 is compared with the values obtained when the
side of the cells in the calculation grid is decreased by a factor of 2
and the initial state is significantly different.
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ues ofh not shown in the figured. For every curve there is a
small region 0ø I ø I1 where M is a smooth function ofI.
For I . I1, there are points where the slope changes discon-
tinously; at some of these points the slope changes sign and
sometimes there is just a kink.sThe curves themselves must
be continuous ifI changes at a finite rate.d The points where
the slope is discontinuous coincide with the entrance or exit
of vortices in and out of the film. The precise points where
these discontinuities occur vary among different runs, but the
general behavior is always the same. There is a currentI2
. I1 where the magnetization changes from diamagnetic to
paramagnetic. If we disregard the rapid oscillations of the
curves and consider only their smoothed trends, we observe
that there is a currentI3. I2 where the slope decreases pro-
nouncedly.sFor h=0.03,I3=0.31.d Finally, there is a current
Ic↑ where the film becomes normal and the magnetization
drops to zero. We also observe that there are regions, like a
region that containsI = I3 for h=0.07, where oscillations are
practically absent and all the curves in the cluster coalesce.
One might be tempted to suspect that in this regime vortices
do not enter or leave the film, but closer examination shows
that large regions of the sample have become normalstypi-
cally, ucu,10−3 in these regionsd; under this condition, the
concept of vorticity loses its significance.

Ic↑ is the limit of metastability of the superconducting
state, but at these high currents also the normal state is meta-
stable. Figure 2 shows a cluster ofMsId curves for a case in
which the current was decreased from aboveIc↑ to 0. We see
that there is a limit of metastabilityIc↓,0.98 and the sample
switches to the superconducting state when this limit is ap-
proached. The curvesMsId are roughly the same whenI is
raised or lowered, except for a large hysteresis loop between
Ic↑ and Ic↓, and a small hysteresis loop betweenI3 and I3↓
,0.24. All the curves in the cluster undergo a drop in the
magnetization at the same currentI3↓. Hysteresis is a com-
mon phenomenon in superconductivity when the current is
varied; a particularly well-known case is that of an under-
damped Josephson junction.

In order to test the reproducibility of our results, we per-
formed several runs with different computational parameters.
The solid line in the inset of Fig. 1 is one of the lines in the
cluster for h=0.03, whereas the dots correspond to essen-

tially the same physical parameters, but the computing grid
was densersNx=159, Ny=32d and the rate of change of the
current was increased by a factor of 5sDt=0.0003d. In addi-
tion, the initial state was significantly different from the stan-
dard one; the average distance between consecutive vortices
was 2.2js0d rather than 2.5js0d. Due to the different initial
state, the initial magnetization for this exceptional run is
about half that of the runs in the cluster; however, forI . I3,
it appears that the memory about the initial state has been
lost.

Figure 3 shows the average electric fieldEi in the direc-
tion of the current, for a few values ofh. These results were
obtained by averaging the parallel component of the electric
field over all the lines in the grid in the direction of the
current, and also over 2000 consecutive time steps. The re-
sults resemble those measured for long channels in the ab-
sence of applied field.16 For I , I1, Ei is very small and for
I . Ic↑ snormal stated we obtainEi=2k2I /d, which is Ohm’s
law in the units we are using. In the intermediate region,
except for small oscillations, we obtain straight lines with the
same slope as in the normal state.

The inset in Fig. 3 is a close up for low currents. The
reason thatEi does not vanish completely forI , I1 is that
our method of evaluation is not exactly stationary. For ex-
ample, if we start from the point atI =0.01 for h=0.07 and
keep the current fixed,Ei decays with a time constant of 18
time units. This result can be understood in terms of vortex
motion. The current exerts a force on the vortices, which
attempts to drive vortices into or out of the film; however, for

FIG. 2. MsId for h=0.03. One curve is for increasing current, as
in Fig. 1, and four curves are for decreasing current. The other
parameters are as in Fig. 1.

FIG. 3. Clusters of curves of the parallel component of the elec-
tric field versus the current, withh as a parameter. The electric field
unit is cF0/ f8p2k2sj3s0dg, wheres is thesnormald conductivity of
the sample. AtI = I1 the overall slope changes from,0 to ,2k2/d
and atI = Ic↑ the sample becomes normal. For visibility, the upper
clusters have been shifted in the vertical direction. In this graph
each line starts atI =Ei=0. The other parameters used are the same
as in Fig. 1. The inset shows the initial part of the considered
curves.

SPONTANEOUS SUPERCONDUCTING ISLANDS AND… PHYSICAL REVIEW B 71, 174504s2005d

174504-3



I , I1, the Bean-Livingston barrier17 prevents vortices from
crossing the interface. Therefore, for constant currents the
vortices attain equilibrium positions and stop moving; it is
only the change in current that keeps the vortices in motion.
Likewise, Ei increases close toI1; this happens because the
configuration becomes unstable and vortices accelerate.

Ideally, for I , I1 we have a static situation and physical
quantities are independent ofh. The differences among the
curves in the inset of Fig. 3sfor I , I1d are due to the slow
but nonvanishing variation of the current.

Figure 4 presents the average of they component of the
electric field,E', for several values ofh. This result was
obtained by averaging this component over all the lines in
the grid in the direction perpendicular to the current, and also
over 2000 consecutive time steps. There are essentially two
regions of currents for whichE' does not vanish. There is a
clearly distinguished feature on the right-hand side, present
for 0.01øhø0.07, which we call a “bubble”; there is also a
less clear feature on the left-hand side which we call a “jit-
ter.” In these regionsE' is chaotic; minute differences in the
state of the system when it enters the region cause it to as-

sume any of several very different functionsE'sId. A major
difference between these two regions is that for the bubble
the system chooses among a small number of possibilities,
which appear to be symmetric with respect to the line
E'sId=0, whereas for the jitter the number of possibilities is
large and has no obvious pattern. In most casesE'sId is
either positive or negative in the bubble region, but there are
a few casessas a case shown forh=0.05d in which E'sId
=0.

For h=0.01 the bubble ends atIc↑, but for hù0.03 the
bubble ends at a current smaller thanIc↑. In the caseh
=0.03, the bubble region coincides with the central part of
the regionI3ø I ø Ic↑ in which the magnetization curve looks
lower and smoother than its continuation at both sides. Ash
increases, the bubble moves to the left, until it merges with
the jitter.

In order to elucidate which part of the film gives rise to
E', we have also evaluated its averages restricted to the
sides of the cells that touch one of the interfaces. We found
thatE' in the bubble region is not influenced by the interface
where the applied magnetic field is augmented by the in-
duced magnetic field;E' in the jitter region is influenced by
both interfaces.

Since the Hall voltage we find might just be due to some
instability of our numeric algorithm, we compare in Fig. 5
the values ofE' obtained in different ways. Two curves are
for currents increasing with time, but for grids and time steps
of different sizes, and very different initial statessthe same
runs as in the inset of Fig. 1d. Except for the amount of
scattering and overshoot, the results coincide in the bubble
region salthough they have opposite signs in the jitter re-
giond. The third curve is for decreasing current. In spite of
the large hysteresis found in Fig. 2, this line also coincides
with those of increasing current in the region where the Hall
voltage is present. It should be mentioned that for decreasing
currentE' showed up in the bubble region only for about
half of the runs. When it did show up, it appeared immedi-
ately with the switch to the superconducting state and re-
mained present down toI = I3↓. No visible change inE' is

FIG. 4. Clusters of curves of the Hall component of the electric
field versus the current, withh as a parameter. Most clusters have
been shifted in the vertical and/or horizontal direction, but they are
all in the same scale. Each cluster starts atI =4310−3 and at the
right extremeE'=0. The other parameters used are the same as in
Fig. 1, except forDI, which was taken as 10−6 for h=0.01 andh
=0.005, and as 2.5310−7 for h=0.15.E' usually vanishes, but for
some regions ofI E'Þ0. In these regionsE' is chaotic; for some
runs is positive and for others is negative. For 0.01øhø0.07 there
is a region whereE'sId.0 for some lines andE'sId,0 for others,
but uE'sIdu is the same for all the lines in the cluster, so that a
“bubble” is formed. Note that the bubble forh=0.03 invades the
neighboring clusters.

FIG. 5. Hall component of the electric field for different histo-
ries. The solid line and the dots describe the same runs as in the
inset of Fig. 1. In the absence of scattering, the dots look like a
thick line. The dashed line describes a case in which the current was
decreased.
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obtained if our boundary condition aty=0 andy=d is re-
placed byŷ·s−i ¹−Adc=0.

We would like to gain some intuition concerning the rea-
son for the existence of this chaotic Hall voltage. For this
purpose, we have mapped the size of the order parameter for
several currents. Figure 6sad is a contour plot ofucu for a
current slightly below the bubble region. This current is al-
ready large enough to turn into normal the entire area close
to the interface where the magnetic field is large. The most
interesting feature is that the superconducting region is not
just a stripe parallel to the current direction, but it rather
concentrates into a discrete set of superconducting islands;
for the current in Fig 6sad, there are two such islands. In-
stead, forI =1.235, slightly above the bubble region, we find
that there are three well-defined islands. In the bubble region
itself, a process occurs in which two islands have to turn into
three; during this process the islands assume an irregular
shape, as in Fig. 6sbd. This deformation imposes an overall
motion of the superconducting part either in the direction of
the current or against it, and this motion produces the Hall
voltage.

The size of the Hall voltage in the bubble region does not
depend on the rate at which the current is swept. Increasing
this rate by a factor of 40 just produces some extra over-
shooting, but near its maximumuE'sIdu looks essentially the
same as in Fig. 5. Moreover, if we stop increasingI and keep
it at a fixed value in the bubble region,E'sId remains con-
stant in time, except for small oscillations that might be due
to numeric inaccuracy. According to our interpretation, this
means that whenI is in the bubble region the islands must
move, either in or against the direction of the current, even if
I is kept unchanged.

It is easy to monitor this motion by following the time
dependence ofE'. The effect of the motion is not observed
if we take the average ofE' along the entire range 0øx
øL, but becomes visible if we divide the sample into
fringes, perpendicular to the current direction. Figure 7 is a
contour plot for E'sx,td, which shows the motion of the
maxima and minima ofE'. Since these maxima and minima
are expected to move together with the islands, their velocity

should be equal to that of the islands. For the case described
in Fig. 7, the islands move with a velocity of
0.7c2/4pk2sjs0d.

A quantity that is easier to interpret is the “number
of superconducting electrons.” By definingns

xsx,td
=eucsx,y,tdu2dy and ns

ysy,td=eucsx,y,tdu2dx and drawing
contour plots of these quantities, we can visualize how the
superconducting regions move. We have applied this proce-
dure for the caseh=0.03 while the current is kept constant at
I =0.4; for this currentE' vanishes on the average. The up-
per panel in Fig. 8 shows that the superconducting regions do
not move in they direction. The lower panel should be com-
pared with Fig. 6sad: While in Fig. 6sad there are only two
islands, the distribution ofns

x exhibits four fringes.sHalf a
fringe was chopped off by the binning.d Examination of this
lower panel shows that the islands switch positions with a
period of about 2 time units, i.e., the centers of the islands
become the valleys that separate between them, and vice
versa. There is an additional phenomenon, with a period of
about 8 units, in which the islands are blurred. In view of
Fig. 8, Fig. 6sad should be understood as an average over a
period of time that is neither too long nor a multiple of these
periodic processes.

From Fig. 8 we also learn thatEi should not be interpreted
as due to motion of the islands in they direction. Rather, it
acts like a Josephson field that causes oscillatory motion of
the superconducting regions in its own direction. When the
volume average ofEi is analyzed as a function of time, we
find that is almost constant, with a small alternating part with
period 8.

FIG. 6. Contour plot of the size of the order parameterc. ucu is
larger in the lighter areas. The current flows in the vertical direction.
The unit of length isjs0d. Note that the scale is different for each
direction. All the parameters are those of the dotted line in the inset
of Fig. 1. sad I =0.555, slightly before the bubble.sbd I =1.195,
almost at the end of the bubble.scd I =1.235, slightly above the
bubble region.

FIG. 7. Contour plot of E'sx,td. The unit of time is
4pk2sjs0d2/c2. In order to evaluateE'sx,td, the sample was di-
vided into eight fringes, perpendicular to the current, andE' was
averaged on each fringe. For the case described here,h=0.03, I
=0.85, and the other parameters are as in Fig. 1. The regionsx
,2.5 andx.37.5 have been chopped off, due to the finite width of
the fringes. This contour plot indicates thatE'sx,td behaves as a
one-dimensional wave, with wave velocity 0.7c2/4pk2sjs0d.
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The size of the noise has practically no effect in our re-
sults. In our evaluations we have used the same size as in
Refs. 7 and 8, which in their notation is expressed in terms of
the parameterE0=10−5. We have checked how our results
vary for 10−7øE0ø10−3 and changes inE0 do not lead to
visible changes in the figures we have presented.

B. Dirichlet condition

In the previous case the islands formed a perfectly peri-
odic structure, due to the artificial requirement of periodic
boundary conditions in the direction of the current. We may
still anticipate that for any reasonable boundary condition at
the electrodes there will be a finite number of islands and the
creation of a new island will involve distortion. As a more
realistic boundary condition at the electrodes, we considered
Dirichlet conditions. The boundary condition forA was the
assumption that the electric field in the electrodes is always
in the x direction, implying thatAy remains fixed in time.

The results are complicated by the fact that now the elec-
trodes pin the superconducting islands and impede their free
motion. ForL=40js0d the influence of pinning is so strong
that we did not find island fragmentation. We may expect
that the influence of pinning will be weaker for longer
samples, but, if the size of computational cells is kept
smaller than the coherence length, largerL implies heavier
numeric calculations. As a compromise, we studied cases
where L=80js0d; we also doubled the thickness of the
sample, although that was not really necessary. For these
thicker samples the initial state had three rows of vortices.

Figure 9 shows the magnetization and the average Hall

field as functions of the current. We still obtain thatE' van-
ishes for small and large currents and is present in an inter-
mediate region. In this region there are two subregions where
E' is significant, separated by a “quiet” subregion close to
I ,1. For 1.05& I &1.45, E' has the same order of magni-
tude as in the “bubble” for periodic boundary conditions, but
is now of the “jitter” type.

Figure 10 shows the shape of the order parameter as the
current is increased. ForI =0.08 there are three rows of vor-
tices in the sample, but around the row at the rightc is too
small to make them visible. For this row the value ofucu at
the saddle points is of the order of 0.02. In a rough sense,
there is a symmetry mirror atx=L /2 and, accordingly, we
see thatE' vanishes. ForI =0.75 it would be useless to look
at vortices; the entire area on the right-hand side has become
normal and the notion of superconducting islands becomes
more meaningful. There is no symmetry with respect tox
=L /2 and, accordingly,E' is large. ForI =1 a clear pattern
of islands has developed. Two border islands are pinned at
the electrodes and four islands in the middle form a nearly
periodic pattern. This pattern is symmetric with respect to
x=L /2 andE' is small. ForI =1.5 we have again a regular
symmetric pattern of islands andE'=0. In contrast with the
preceding section, “counting” islands is not clear, since the
border islands may be regarded as fractions that do not re-
main fixed. The casesI =1.2 andI =1.3 illustrate the passage
between the regular situations atI =1 andI =1.5. During this
passage the regions wherec is significant move back and
forth and assume irregular shapes. Accordingly,E' is large
and changes sign. For large currents the total magnetic field
is large at both superconducting-insulating boundariesswith
opposite signsd. Figure 10sfd shows that the superconducting
islands take refuge along a stripe where the magnetic field is
small, and this enables them to survive up to large currents.

Contrary to the preceding section, the islands are now
blocked by the electrodes and cannot move freely in or
against the direction of the current; therefore,E' roughly
vanishes on the average. However, islands might conceivably
be formed near the middle of the sample and could migrate

FIG. 8. Distributions of the superconducting electron in thex
andy directions, as functions of time.h=0.03,I =0.4, and the other
parameters as in Fig. 1. The size of the binnings forx, y, andt, are
5, 1, and 1, respectively.

FIG. 9. Magnetizationscurve that looks like a mountain in the
horizond and Hall component of the electric fieldscurve that oscil-
lates strongly about zerod, for Dirichlet boundary conditions. Only
one run was carried out. The size of the sample isL=80js0d, d
=16js0d. The other parameters areh=0.03, k=2, T=0.5, ax=ay

=0.5js0d, DI =10−6, Dt=0.0015.
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to the electrodes and disappear at them. If this is the case, we
would expectE'sxd to differ from zero when averaged over
fringes of limited width. Figure 11 shows the averages ofE'

over fringes of width Dx=5js0d. We see thatE'sxd is
roughly antisymmetric with respect to the linex=40js0d at
the middle of the sample. We also see thatE'sxd does not
vanish in regions where the averageE' doessI ,0.1 andI
.1.5d. The difference between these and the other regions is
determined by whether the antisymmetry with respect to the
middle of the sample is perfect or not. In the following sec-
tion we will check whether the conjecture of island migration
describes an appropriate scenario.

In the regions where the averageE' does not vanish and
the islands are irregular,E'sxd is chaotic. Since this effect is
very similar to the case that will be discussed in the follow-
ing section, we do not provide a figure for it.

C. Nonuniform sample

It turns out that the results are more clear cut if the elec-
trodes are “smeared” by gradually reducing superconductiv-
ity in their proximity.

A possibility for describing locally stronger or weaker su-
perconducting materials is the replacement of Eq.s1d by

]tc = −
1

h
fs− i ¹ − Ad2c + s1 − Tdsucu2 − 1 −ddcg + f̃ ,

s3d

where d is a function of position. Ifd.0 srespectively,d
,0d in some place, superconductivity is strongersrespec-
tively, weakerd at that place; the cased=−1 describes the
situation in which the critical temperature has been reached.

We considered a sample of thicknessd=8js0d and length
L=120js0d. Its central segment 20øxø100 was uniform
sd=0d, but close to the electrodess0,x,20 and 100,x
,120d d varied linearly withx, reachingd=−1 at the elec-
trodes. In this way, the normal material at the electrodes was
met where superconductivity had already disappeared.

Figure 12 shows the results for the magnetization and for
the average Hall field. Comparison of this figure with Fig. 9
shows that we have recovered some of the features encoun-
tered for the case of periodic boundary conditions. There is
an intermediate region where the Hall field vanishes and
there is only a limited region where this field is large. Also,
there is a current where the overall slope of the magnetiza-
tion curve decreases significantly. On the other hand, there is
no extended region where the Hall field preserves its sign.

As in the preceding section, the average Hall field is just
a residual effect, due to its antisymmetry as a function of
position. In Fig. 13 we presentE' for several values ofx
within the segment where the sample is uniform. Since anti-
symmetry is quite well obeyed, these results are shown for
half of the sample only.

FIG. 10. Contour plot of the size of the order parameterc for the process described in Fig. 9.sad I =0.08, sbd I =0.75, scd I =1, sdd I
=1.2, sed I =1.3, sfd I =1.5.

FIG. 11. The sample described in Fig. 9 was divided into 16
fringes, perpendicular to the current. The curves in the graph de-
scribe the average ofE' in each of these fringes. As usual,E' is
also averaged over 2000 time steps. The number next to some of the
curves is the value ofx at the middle of the fringe. The curves for
fringes close tox=40js0d are hard to follow and have not been
marked.
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In order to check whetherE'sxd is chaotic, we repeated
the calculation of Fig. 13 for several initial states. Some of
the clusters of curves obtained are shown in Fig. 14. We see
that in the regions where the average value ofE' is small in
Fig. 12 all curves practically coalesce, whereas in the region
1.25&x&1.5 there is chaotic behavior.

As in the previous cases, we would like to relate the be-
havior of the Hall field to the shape ofucu. Figure 15 shows
these shapes for currents where the average Hall field van-
ishes, before and after the region where this average is large.
As might have been expected, these shapes are symmetric
with respect to the transformationx→120−x. A striking fea-
ture is that forI =1.76 superconductivity concentrates into
two sharply bounded islands at the borders between the seg-
ment where the material is uniform and those where super-
conductivity gradually decreases. These islands may be re-
garded as a generalization of surface superconductivity and
are probably the reason for the long tail of the magnetization
in Fig. 12.

We now attempt to find a relation betweenE' and island
motion. As in the lower panel of Fig. 8, the contour plots in
Fig. 16 describe the density of superconducting pairs,
ucsx,tdu2, averaged over fringes of widthDx=5js0d. The plot
on the left-hand side is for a current such thatE'=0 in Fig.
12 and on the right-hand side for a current such thatE' is
large. The plot on the left-hand side looks like a standing
wave superimposed on a nonuniform background. This
means that there is no net motion of the islands, and the fact
that E'sx,td does not vanish for every value ofx should be
attributed to a nonlinear effect. The plot on the right-hand
side might be described as a case of “breathing.” The most
notable feature of this plot is thatucsx,tdu decreases and in-
creases periodically forx,65. In addition, we see that the
island-pattern moves asymmetrically; there is no net motion
for x,50, whereas there is motion away from the center for
x.70. This confirms the conjecture that the existence of an
average Hall field is related to island motion.

FIG. 12. Magnetization and average Hall component of the elec-
tric field for the sample considered in Sec. III C. The averages ofM
and E' were taken over the uniform central parts20øxø100d
only. The other parameters ared=8js0d, h=0.03,k=2, T=0.5, ax

=ay=0.5js0d, DI =8310−7, Dt=0.0015.

FIG. 13. Hall field for different positions in the uniform segment
of a nonuniform sample.E' has been averaged over fringes of
width 5js0d. Each curve is marked by the distancex between the
middle of the fringe and one of the electrodes. Forx.60, E' can
be obtained fromE'sxd<−E's120−xd. For visibility, the results
were grouped into pairs and the upper pairs were shifted in the
vertical direction. AtI =2, E' vanishes for all fringes. All param-
eters are the same as in Fig. 12.

FIG. 14. Hall field averaged over fringes of width 5js0d for
miscellaneous values ofx and for a range of currents that contains
the region where the average overx is large. All parameters are the
same as in Fig. 12, but there are clusters of curves starting at four
different initial states. For visibility, the cluster forx=77.5 has been
shifted by 0.05 to the right and 0.0012 upwards; the cluster forx
=97.5 has been shifted by 0.15 to the right and also 0.0012
upwards.

FIG. 15. Contour plots for the size of the order parameter for
I =0.88 sleft-hand sided and I =1.76 sright-hand sided. The other
parameters are as in Fig. 12.
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IV. DISCUSSION

We have found that for appropriate parameters a nearly
periodic pattern of superconducting islands can form in a
superconducting sample in the Hall configuration. When the
current is varied, there are situations for which a pattern
becomes unstable and the islands become irregular, until a
new regular pattern is attained. While the islands are ar-

ranged irregularly, they move insor againstd the direction of
the current and the contribution of the superconducting elec-
trons to the average Hall voltage does not vanish. Even when
the islands do not move in a preferred direction, the size of
the order parameter oscillates in time, so that local maxima
of the order parameter may periodically become local
minima.

This scenario shows up very clearly when periodic bound-
ary conditions are imposed at the electrodes. For other
boundary conditions, these phenomena are still qualitatively
present, but become more difficult to analyze. The difference
between realistic and periodic boundary conditions is that the
latter do not pin the superconducing islands.

We might mimic a situation in which islands are not
pinned by taking a sample which is infinitely long in the
direction of the current flow; however, we may expect that
no Hall voltage would appear in this limit, since the islands
structure could shrink gradually and no distortion would be
required. This scenario is illustrated by Fig. 17, where we
have studied a sample with periodic boundary conditions, as
in Sec. III A, but this time the length is 80js0d rather than
40js0d. Figure 17sad corresponds to two islands per 40js0d
and Fig. 17scd to three islands. These possiblities were also
present in Fig. 6 of Sec. III A. However, Fig. 17sbd corre-
sponds to 2.5 islands, a possibility that does not exist when
the length of the sample is 40js0d. As a consequence of this
extra possibility, we see in Fig. 18 that in the interval
0.4ø I ø1.4 there are two regions rather than one where

FIG. 16. Contour plots for the average density of superconduct-
ing electrons along fringes perpendicular to the current, for the
sample considered in Sec. III C. For distances smaller than 15js0d
from an electrode,ucsx,tdu2 is very small and these regions are not
shown. Left-hand side,I =0.88. The size of the binning along thet
axis is 1, and along thex axis is 5. Right-hand sideI =1.32. The size
of the binning along thet axis is 2, and along thex axis is 5.

FIG. 17. Contour plot of the size of the order parameter for a sample twice as long as that of Fig. 6.sad I =0.4, sbd I =0.9, scd I =1.4.
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E'Þ0. The extent of these regions and the size ofE' in
them are considerably smaller than in the caseL=40js0d
sFig. 5d. Following this line of reasoning, we conclude that in
the limit of an infinitely long sample island fragmentation
would lose its discrete nature and would not give rise to Hall
voltage.

It seems therefore that some amount of pinning is desir-
able. If there is too much pinning islands cannot move, but in
the absence of pinning their fragmentation becomes too easy.
This is consistent with the theoretical results obtained in Ref.
10. The strongest oscillations of the Hall voltage were ob-
tained for an intermediate amount of defects. In the calcula-
tions of Ref. 10: the defects were assumed to be located in a
periodic array; this arrangement should be expected to favor
the formation of periodic arrays of islands. Artificially cre-
ated periodic arrays of defects in superconductors have been
available for a long time.18 We also found that gradual de-
crease of the superconducting strength of the superconduct-
ing material near the electrodes may help to create conditions
similar to the periodic case.

One might argue that there is no qualitative difference
between the formation of a new island and the entrance of a
vortex; when a vortex enters the sample, the others must
move away from it and this motion gives rise to the Hall
voltage. There is, however, a quantitative difference, since
vortices feel each other over distances of the order of the
coherence length, whereas islands seem to feel each other
over distances that are larger by at least an order of magni-
tude.

We do not have a tested hypothesis concerning the physi-
cal parameters that control the size of the islands. Conceiv-
ably, the length of the islands could be proportional to their
width and this could be controlled by the width of the region
where the magnetic field is sufficiently small. A more appeal-
ing scenario is to identify the minima between neighboring
islands with the phase slip centers19 that are encountered in
one-dimensional filaments; in this case the distance between
islands is expected to be of the order of the penetration
length of the electric field.

Due to the voltage drop in the direction of the current, the
phase of the order parameter changes at different rates at

both electrodes. As a consequence, the order parameter be-
comes increasingly wound, until some winding can be re-
leased. For currents that are not too high, winding is released
by means of vortices that enter the sample at the side where
the magnetic field is large and leave the sample at the other
side. For higher currents, the order parameter is practically
zero along the entire region where the magnetic field is large.
In this case, the concept of vortex loses its meaning; on the
other hand, the remaining fringe where superconductivity is
not negligible has a width of just a few coherence lengths
and it seems reasonable to conjecture that it will behave as a
1D filament. The features we have found support this sce-
nario. The length of the islands decreases with increasing
currentsas does the distance between phase slip centersd and
comparison of Fig. 6 and Fig. 10 indicates that the width of
the superconducting fringe when the islands first appear is
roughly the same in both cases, regardless of the fact that the
sample in Fig. 10 is twice as wide.

Our results are indirectly supported by the measurements
on a clean Nb film.10 In this experiment the variable quantity
was the applied field, whereas the current was fixed. How-
ever, the Hall voltage exhibits the same qualitative features
as in our case: it is present in limited regions only, is absent
close to the critical current, exhibits oscillations, and its sign
is reversed for different experiments that were apparently
identical.

The film used in Ref. 10 was grown epitaxially, but it
might be thought that the Hall voltage is due to imperfec-
tions. For instance, particular positions of pinning centers
could provide “easy” ways for vortex motion that are not
perpendicular to the current. On the other hand, our calcula-
tions, as well as those performed in Ref. 10, suggest a
mechanism for the presence of Hall voltage in which irregu-
lar or oblique arrays of imperfections are not required. An
experimental test to distinguish between these possible
mechanisms would be repetition of the experiment with an-
other sample prepared under the same conditions; another
possibility would be to rotate the direction in which the cur-
rent flows. Applying the magnetic field parallel to the film
would provide a situation similar to the case considered here.

The fact that we do obtain a Hall voltage using Eq.s1d
challenges the accepted contention that a transverse voltage
cannot arise from a purely dissipative TDGL model.1,20 Note
however that the voltage we have found is statistically sym-
metric about zero, so that our result may be regarded as a
sort of symmetry breaking.

It should be possible to use some of the techniques that
are employed in visualization of vorticesssuch as scanning
tunneling microscopyd for the visualization of the islands
predicted here.
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FIG. 18. Average Hall field for a sample with periodic boundary
conditions in thex direction, with length periodL=80js0d. The
other parameters are as for the solid line in Fig. 5.

JORGE BERGER PHYSICAL REVIEW B71, 174504s2005d

174504-10



*Electronic address: phr76jb@tx.technion.ac.il
1N. Kopnin, Theory of Nonequilibrium SuperconductivitysOxford

University Press, Oxford, 2001d.
2H. W. Lewis, Phys. Rev.92, 1149s1953d.
3J. Bardeen and M. J. Stephen, Phys. Rev.140, A1197 s1965d; P.

Nozières and W. F. Vinen, Philos. Mag.14, 667 s1966d.
4A. K. Niessen, F. A. Staas, and C. H. Weijsenfeld, Phys. Lett.

25A, 33 s1967d; K. Noto, S. Shinzawa and Y. Muto, Solid State
Commun. 18, 1081s1976d.

5S. J. Hagen, A. W. Smith, M. Rajeswari, J. L. Peng, Z. Y. Li, R.
L. Greene, S. N. Mao, X. X. Xi, S. Bhattacharya, Q. Li, and C.
J. Lobb, Phys. Rev. B47, 1064s1993d.

6L. P. Gor’kov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz.54, 612
s1968d fSov. Phys. JETP27, 328 s1968dg; A. Schmid, Phys.
Kondens. Mater.5, 302s1966d; M. Cyrot, Rep. Prog. Phys.36,
103 s1973d.

7R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B47, 8016
s1993d.

8C. Bolech, G. C. Buscaglia, and A. López, Phys. Rev. B52,
R15 719s1995d.

9G. C. Buscaglia, C. Bolech, and A. López, inConnectivity and
Superconductivity, edited by J. Berger and J. Rubinstein
sSpringer, Berlin, 2000d.

10L. Ghenim, J.-Y. Fortin, G. Wen, X. Zhang, C. Baradue, and J.-C.
Villegier, Phys. Rev. B69, 064513s2004d.

11D. Vodolazov, B. J. Baelus, and F. M. Peeters, Physica C404,
400 s2004d.

12Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys.73,

357 s2001d.
13L. Kramer and R. Rangel, J. Low Temp. Phys.57, 391s1984d; B.

I. Ivlev and N. B. Kopnin, Adv. Phys.33, 47 s1984d.
14L. P. Gor’kov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz.56,

1297s1969d fSov. Phys. JETP29, 698 s1969dg; A. Schmid and
G. Schön, J. Low Temp. Phys.20, 207 s1975d; L. Kramer and
R. J. Watts-Tobin, Phys. Rev. Lett.40, 1041 s1978d; S. N. Ar-
temenko and A. F. Volkov, Usp. Fiz. Nauk128, 3 s1979d.

15B. I. Ivlev, N. B. Kopnin, and L. A. Maslova, Zh. Eksp. Teor. Fiz.
78, 1963s1980d fSov. Phys. JETP51, 986 s1980dg; Fiz. Tverd.
TelasLeningradd 22, 252s1980d fSov. Phys. Solid State22, 149
s1980dg.

16L. E. Musienko, V. I. Shnyrkov, V. G. Volotzkaya, and I. M.
Dmitrenko, Fiz. Nizk. Temp.1, 413 s1975d.

17C. P. Bean and J. D. Livingston, Phys. Rev. Lett.12, 14 s1964d.
18M. I. Montero, K. Liu, O. M. Stoll, A. Hoffmann, I. K. Schuller,

J. J. Åkerman, J. I. Martin, J. L. Vicent, S. M. Baker, T. P.
Russell, C. Leighton, and J. Nogués, J. Phys. D35, 2398
s2002d; V. Metlushko, U. Welp, G. W. Crabtree, R. Osgood, S.
D. Bader, L. E. DeLong, Z. Zhang, S. R. J. Brueck, B. Ilic, K.
Chung, and P. J. Hesketh, Phys. Rev. B60, R12 585s1999d.

19J. S. Langer and V. Ambegaokar, Phys. Rev.164, 498 s1967d.
20A. T. Dorsey, Phys. Rev. B46, 8376s1992d; N. B. Kopnin, B. I.

Ivlev, and V. A. Kalatsky, Pis’ma Zh. Eksp. Teor. Fiz.55, 717
s1992d fJETP Lett. 55, 750 s1992dg; N. B. Kopnin, B. I. Ivlev,
and V. A. Kalatsky, J. Low Temp. Phys.90, 1 s1993d; L. Peres
and J. Rubinstein, Physica D64, 299 s1993d.

SPONTANEOUS SUPERCONDUCTING ISLANDS AND… PHYSICAL REVIEW B 71, 174504s2005d

174504-11


