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We have measured the supercurrent and conductance of a superconducting quantum point contact in a
superconductor two-dimensional electron gas-superconductor Josephson junction. We observe that the super-
current and conductance change stepwise in a correlated manner as a function of the gate voltage. This was
achieved by simultaneous measurement of the supercurrent and conductance at high bias from the same current
voltage characteristic.
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I. INTRODUCTION

In analogy with the quantized conductance of a normal
conducting quantum point contactsQPCd1,2 a quantization of
the supercurrent is expected to be observable in a supercon-
ducting quantum point contactsSQPCd.3–7 This results from
the quantization of the transverse momentum of the quasi-
particles in the QPC constriction with a width of the order of
the Fermi wavelengthlF. The number of transport modes is
given by 2Wg/lF, whereWg is the constriction width. Each
transport mode contributes one quantized conductance unit
DG0=2e2/h to the total conductance and one quantized su-
percurrent unitDIC0 to the critical current of the SQPC. Here
e is the electron charge andh the Planck constant. In the
limit of a short junction where the length of the junctionL is
much smaller than the superconducting coherence lengthj0 a
stepwise change of the supercurrent and conductance was
observed in a mechanically controllable break junction.8

The first indication of the critical current quantization in
the limit of a long junction,Lùj0, was obtained in Ref. 9 for
a ballistic superconductor two-dimensional electron gas-
superconductorsS-2DEG-Sd Josephson junction. Here the
constriction in the 2DEG was created by applying a voltage
to the split gate. A stepwise change of the critical currentIc
and the conductanceG could be observed by varying the
gate voltage of the split gate. Surprisingly the position of the
critical current step was different from that of the corre-
sponding conductance step. The present theory predicts an
agreement between the position of the conductance and su-
percurrent steps.

In this paper we present new experimental data for a
SQPC in a S-2DEG-S Josephson junction. We measured the
current voltage characteristicsIVCd for different gate volt-
agesVg. This way we were able to determine simultaneously
the critical current and conductance along the same IVC.
Unlike the previous work9 in which a correlation between the
conductance and the critical current was not observed, our
data show that the critical current and conductance steps ap-
pear at the same gate voltages. In addition we observe the
onset of the first transport mode contributing both to the

supercurrent and the conductance of the SQPC. The ampli-
tude of the critical current steps is in agreement with theo-
retical estimations, even though for small values ofIC the
critical current step height is reduced by thermal fluctuations.

II. THEORY

It is well known that the critical supercurrentIC of a clas-
sical Josephson point contact is directly related to its conduc-
tanceG and is given bypGD0/e,10 whereD0 is the energy
gap of the superconductor. The same holds for a SQPC. The
conductance of a QPC is given by the well known Landauer
Büttiker formula11,12

G =
2e2

h
o
n=1

N

Tn, s1d

whereN=2Wg/lF is the maximum number of the 1D trans-
port modes in the quantum point contact andnøN is the
index for each transport mode. The transmission coefficient
for the nth transport mode is given byTn. The transmission
probabilityTn depends on the form of the potential barrier at
the constriction. In the adiabatic case it can be approximated
by Vxsxd=V0−m*vx

2x2/2, and the transmission coefficient
takes the form

Tn =
Dn

1 + expS− 2p
EF − En − V0

"vx
D , s2d

where EF is the Fermi energy andEn are the 1D sublevel
energies in the transverse potentialVysyd at the saddle point
of the constriction.Dn takes the scattering at impurities into
account. 1 /vx describes the “sharpness” of the steps. From
Eq. s2d for an open channel it follows thatTn=Dn. In the case
of ballistic electron transport in the quantum point contact all
transport modes withnøN are completely open,Tn=1. Each
open transport mode contributes the quantized conductance
DG0=2e2/h to the total conductance,
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G = N
2e2

h
= NDG0. s3d

According to Eq.s3d the conductance changes stepwise
with step heightDG0 as a function of the width of the con-
striction as the maximum number of transport modesN
=2Wg/lF, which is an integer, depends on the constriction
width. One has to point out that the conductance quantum
DG0 does not depend on the geometry of the conductor.

First we assume an ideal interface between the supercon-
ductor and the normal conductor, i.e., there is no potential
barrier at the interface. In accordance with Ref. 13 we will
use the factorZ to describe the barrier strength.Z is related
to the transmission probabilityDZ of the interface barrier by
DZ=1/s1+Z2d. In the case of a short SQPCsj0@Ld and Z
=0 the supercurrent is given by3

IC = N
2e2

h

pD0

e
= G

pD0

e
. s4d

All N transport modes carry the quantized supercurrent
DIC0=eD0/" which does not depend on the junction geom-
etry. As for the conductance the supercurrent changes step-
wise as a function of the width of the constriction.

In the opposite case of a long ballistic SQPCsLùj0d the
Josephson current flows via many bound states and the quan-
tization of the supercurrent is not anymore universal but de-
pends on junction parameters.5 The ratioL /j0 gives roughly
the number of Andreev bound states within the energy gap
D0 which carry the Josephson current.5 In this case and as-
suming no barrier potential at the interfacesZ=0d, the super-
current is quantized in units ofe/ st0+" /D0d.6 Heret0 is the
time of flight a quasiparticle requires to traverse the normal
region of lengthL. During the time" /D0 an electron wave
packet is Andreev reflected into a hole wave packet. For a
completely open transport mode the travel time can be ap-
proximated byt0=L /vF and the supercurrent quantization
saturates at the nonuniversal value6

DIC0 =
evF

L + pj0
. s5d

In contrast to the supercurrent quantization in the short
junction limit sj0@Ld fEq. s4dg, the supercurrent quantiza-
tion in the long junction limitsLùj0d depends both on the
Fermi velocityvF and the junction lengthL of the normal
conducting region.

A finite barrier potential at the interface between the su-
perconductor and normal conductorsZ.0d and a Fermi ve-
locity mismatch will further decrease the probability of An-
dreev reflection and increase the probability of normal
reflection.13 This will influence both the conductance and the
supercurrent quantization. In the case of the conductance, a
quasiparticle which traveled through the constriction will
have a finite probability to be reflected at the normal
conductor/superconductor interface and backscattered
through the constriction in the opposite direction. This re-
sults in a transmission probabilityTn in Eq. s1d smaller than
1 even if the transport through the constriction itself is purely
ballistic. Consequently the conductance quantization will not

have the universal value 2e2/h and the conductance as a
function of the constriction width will have step heights, de-
pending on the random transmission probabilitiesTn. The
effect of reduced Andreev probability will be a reduction of
the supercurrent through the constriction and consequently a
reduction of the quantization of the supercurrent.5–7 Accord-
ing to Ref. 7 the supercurrent step height in the presence of
scattering is given by

DICn =
Tn

4p

e

t
, s6d

with

t =
"

D0
+ t0S 2

Dn
− 1D . s7d

III. SAMPLE

The schematic cross section and the top view of the
sample is shown in Fig. 1. The 2DEG is localized in a 4 nm
thick InAs layer inserted in an In0.52Al0.48As/In0.53Ga0.47As
heterostructure grown by molecular beam epitaxy on a Fe
doped semi-insulating InP substrate. The two 100 nm thick
Nb electrodes, which are coupled to the 2DEG, were defined
by the lift off process and electron beam lithography. InAs
was used as it does not form a Schottky barrier at the inter-
face to the niobium electrodes which does GaAs. Details of
the fabrication process are reported elsewhere.14 The dis-
tance between the Nb electrodes isL=400 nm and the total
width of the junction isW=10 mm. Shubnikov-de Haas
measurements9 of the 2DEG at 4.2 K on similar samples give
the sheet carrier concentrationnS=2.331012 cm−2, the mo-
bility m=1.113105 cm2/V s and the effective massm*

=0.045me, whereme is the free electron mass. This results in
a Fermi velocityvF=Î2p"2nS/m*2 =9.83105 m/s and elas-
tic scattering timet=mm* /e=2.84310−12 s, wheree is the

FIG. 1. sad Cross sectional view of the superconducting quan-
tum point contactsSQPCd. The carrier concentrationnS in the
2DEG can be varied by applying a voltage to the gate electrode.sbd
Top view of the SQPC. The width of the sample isW=10 mm, the
lengthL=400 nm, and the width between the two gate electrodes is
Wg=100 nm.

T. BAUCH et al. PHYSICAL REVIEW B 71, 174502s2005d

174502-2



electron charge. From these values the mean free pathl
=vFt=2.8 mm and the normal coherence length in the clean
limit jN="vF /2pkBT=0.28mm at 4.2 K are calculated. The
Fermi wavelength islF=Î2p /nS=16.5 nm.

The length of the Al split gate is 100 nm and the distance
between the two gate electrodes isWg=100 nm. By applying
a gate voltageVg.−1 V the 2DEG under the gate electrodes
is depleted. In this case the current is flowing only within the
constriction between the two gate electrodes. Going to more
negative gate voltagesVg,−1 V will further deplete the
2DEG within the constriction, reducing the width of the con-
strictionWg. Finally, at gate voltagesVg,−2.1 V, the 2DEG
within the constriction is completely pinched off.

The Nb electrodes have a superconducting transition tem-
perature of about 6 K which results in an energy gapD0
.0.9 meV. This gives us for the superconducting coherence
length in the 2DEGj0="vF /pD0=230 nm wherevF is the
Fermi velocity in the 2DEG. Therefore the junction is in the
ballistic sl .Ld and long junctionsLùj0d regime and in the
clean limit sjN, ld.

At a temperature of 25 mK and at zero gate voltage the
junction under investigation has a critical currentIC0
=8.5 mA and a normal state resistanceRN=38 V.

IV. MEASUREMENTS

The measurements were performed in a3He-4He dilution
refrigerator with a base temperature of 15 mK. To protect the
sample from external noise and from 4 K photons, the elec-
trical lines to the sample in the cryostat are well filtered. At
the 1 K pot, a home-built RCL filter15 with a cutoff fre-
quency of 100 MHz is installed. At the mixing chamber a
combination of two meters Thermocoax16 plus a home-built
copper-powder filter is installed with a cutoff frequency of 1
GHz. Magnetic shielding of the sample is provided by two
Cryoperm shields inside the cryostat and onem-metal shield
outside the cryostat.

In order to analyze the gate voltage dependence of the
conductance and critical current of the SQPC, we measured
the current voltage characteristicssIVCd at different gate
voltages. This allows us a simultaneous determination of the
critical currentIC and conductanceGIVC from the same IVC.
In a second measurement runsthe sample was warmed up
and cooled down again in order to remove the magnetic
shieldsd, we measured the differential zero bias conductance
Gac with an applied magnetic field to suppress the critical
current, as was done in Ref. 9.

The current voltage characteristics of the SQPC were re-
corded using a standard four point measurement technique.
For each gate voltage we recorded 50 IVCs. The IVC for
three different gate voltages atT=25 mK are shown in Fig.
2. For increasing absolute value of the gate voltageuVgu the
supercurrent is decreasing. For gate voltagesVg,−1.8 V,
the supercurrent branch in the current voltage characterisics
shows a finite resistance as shown in the inset of Fig. 2. This
can be attributed to thermal smearing of the current voltage
characteristic,17 as the Josephson energyEJ/kB= ICF0/2pkB
in this gate voltage range is of the order of the bath tempera-
ture. HereF0=h/2e is the superconducting flux quantum
andkB the Boltzmann constant.

From the measured IVCs we extracted the critical current
and the conductance. The critical current was determined by
using a threshold voltage of 3mV. This still allows us to
extract a critical current from the IVC for gate voltagesVg
,−1.8 V ssee the inset of Fig. 2d. From the same IVC the
conductance is obtained by fitting the resistive branch in the
voltage range between 100mV and 150mV. In this voltage
range the IVC is linear and does not show any structure.
Here we have to point out that the conductance extracted for
voltages smaller than 2D /e might be enhanced by Andreev
reflection.9 For voltages larger than 2D /e, where the conduc-
tance is not affected by Andreev reflection, the measured
conductance does not show any step structure as a function
of gate voltage. Instead it shows only a linear dependence
which was also observed in Ref. 9. We attribute this effect to
heating of the 2DEG at high bias voltages, which smears out
the step structure of the conductance as a function of the gate
voltage.

The averaged critical current and conductance values,
which were extracted from 50 IVCs at each gate voltage, are
shown in Fig. 3 in the gate voltage range −2.1 V,Vg
,−1.4 V. For comparison, also, the differential zero bias
conductanceGac is shown in Fig. 3sad with an added offset of
2e2/h for clarity. Gac was measured at a magnetic field of
200 mT to suppress any contribution of Andreev reflection to
the conductance. The differential conductance was measured
with an AC excitation currentIAC=10 nA. To check for non-
linearities possibly due to a residual Josephson current or
Andreev reflection in the current voltage characteristics at a
magnetic field of 200 mT we varied the AC excitation cur-
rent from 5 nA to 50 nA which results in a voltage drop
across the junction from 90mV to 900 mV at Vg
=−1.98 V and from 11mV to 110 mV at Vg=−1.2 V. No

FIG. 2. Measured current voltage characteristicssIVCd at T
=25 mK for different gate voltages. In the inset the arrows indicate
the onset of the positiveIC

+ and negativeIC
− critical current at

Vgate=−1.978 V which is carried by the first open transport mode.
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difference within the measurement accuracy between the dif-
ferential conductances as a function of the gate voltage for
the different excitation currents was observed. Herewith we
can rule out any influence of Andreev reflection on the mea-
sured zero bias conductance.

In Fig. 3 one can clearly see that both the conductance
GIVC and the critical currentIC extracted from the IVC and
the differential zero bias conductanceGac change stepwise as
a function of the gate voltageVg. The difference in the step
structure between the conductanceGIVC extracted from the
IVC and the differential zero bias conductanceGac can be
attributed to a reconfiguration of the scattering centers in the
SQPC between the two measurement runs. Between the mea-
surements the sample was warmed up to room temperature to
remove the cold magnetic shields. This makes a comparison
between the gate voltage dependenceGac and IC difficult, as
the reorganization of the scattering centers influences the
transmission probabilitiesTn.

In the following we will only analyze and compare the
gate voltage dependence of the conductanceGIVC and critical
current IC, as they have been determined simultaneously
from the same IVCs. In Fig. 3 the appearance of the steps are
marked with the indexn which corresponds also to the trans-
port mode index contributing both to the conductance and
the critical current. The stepssn=1, 2, 3, 5, 6d in the conduc-
tance are also seen as steps in the critical current. This shows

the correlation between the critical current and the conduc-
tance. Only at the gate voltageVg=−1.725 V where the
fourth step is expected, no step is seen in the conductance
and supercurrent datassee Fig. 3d. In particular one can see
that as soon as the firstsn=1d transport mode contributes to
the first conductance step at a gate voltageVg=−2.02 V it
also contributes to the first critical current step with a step
heightDIC=0.5 nA fsee Fig. 3sbdg. The current voltage char-
acteristic forVg=−1.978 V, corresponding to the first open
channel is shown in the inset of Fig. 2. We can rule out that
the extracted critical current for the first stepsn=1d is only
due to the choice of the threshold voltageVt=3 mV and the
conductance. The contribution of the threshold voltage to the
extracted critical current isDI =GVt.160 pA for the first
stepsn=1d. This is about 32% of the total extracted current.
For all other steps the contribution of the threshold voltage to
the extracted critical current is less than 10%.

V. DISCUSSION

Following Chtchelkatchev6 sor Shchelkachev7d we fitted
the conductanceGIVC extracted from the IVC using Eqs.s1d
and s2d. The 1D sublevel energies are parametrized asEn
=sEF−V0dn2/ skGkcorrd2. kG is the parameter that controls the
opening of the channels and is assumed to depend linearly on
the gate voltage. The correction factorkcorr is introduced to
adjust for a shift of the onset of the steps in relation to the
gate voltage. The fitting parametersDn, kcorr and −2psEF

−V0d /"vx are shown in Table I. Using this set of fitting
parameters extracted from the conductance, we also fitted the
supercurrent according to Eq.s6d. Here the only fitting pa-
rameter is the classical time of flightt0 of the quasiparticles,
which is shown in Table I. The time of flightt0 influences
only the step height of the critical current, but not its position
on the gate voltage axis. The fitted graphs for the conduc-
tanceGIVC and critical currentIC are shown in Fig. 3.

From Table I we see that the steps in the conductance and
critical current appear at almost equidistant gate voltage in-
tervals, as the correction factorkcorr is practically 1 for all
steps. Furthermore the “sharpness” of the steps, which is
given by −2psEF−V0d /"vx, is of the same order of magni-
tude for all the steps. The average transmission probability
extracted from Table I isDeff=0.775. This can be attributed
to the finite barrier potential at the 2DEG-Nb interface. A
rough estimate18 of the barrier strengthZ at the interface can
be derived from the relationRN=RShs1+2Z2d where RN

=38 V is the resistance of the SQPC at zero gate voltage and

FIG. 3. sad Critical currentIC sopen symbolsd and conductance
GIVC sfull symbolsd extracted from the current-voltage characteris-
tics as a function of the gate voltageVg at T=25 mK. The solid
lines are fitssfor details see the textd. The mode number is indicated
by ann. The upper curve is the differential zero bias conductance
Gac measured at 200 mT which has been shifted by 2e2/h for clar-
ity. sbd A closeup of the critical currentIC sopen symbolsd and
conductanceGIVC sfull symbolsd extracted from the current-voltage
characteristics. Solid lines are fitssfor details see the textd.

TABLE I. Fitting parameters for the conductanceGIVC and criti-
cal currentIC ssee the textd.

Channel 1 2 3 4 5 6

Dn 0.80 0.95 0.70 0.50 1.00 0.70
−2psEF−V0d

"vx

10 10 15 15 15 40

kcorr 1.00 0.98 1.03 1.00 1.00 1.00

t0 spsd 12 3.5 3.0 0.45 0.76 0.65

T. BAUCH et al. PHYSICAL REVIEW B 71, 174502s2005d

174502-4



RSh the Sharvin resistanceRSh=sh/2e2dslF /2Wd. With W
=10 mm andlF=16.5 nm we get for the Sharvin resistance
RSh=10.7V which results in a barrier strengthZ=1.1 or
transmission probabilityDZ=0.45. The reason forDZ being
smaller thanDeff can be attributed to the inhomogeneity
along the 2DEG-Nb interface which will result in a varying
transmission probability along the interface.DZ is an average
transmission probability along the junction widthW
=10 mm and Deff is a local measure of the transmission
probability on the length scale of the constriction widthWg
=100 nm which can differ substantially fromDZ. Another
reason could be that the conductance in the bias voltage
range between 100mV and 150mV is still slightly affected
by Andreev reflection at the 2DEG/Nb interface.9

The height of the steps of the supercurrentIC as a function
of gate voltageVg in Fig. 3 depends on the gate voltage. The
step height increases for increasing step number. This effect
is reflected in the fitted values for the time of flightt0 ssee
Table Id. The step height fornø3 is smaller than 2 nA which
could be attributed to a reduced measured critical current due
to spurious noise in the measurement setup and thermal fluc-
tuations. The Josephson energy of a junction with a critical
current of 1 nA corresponds to a temperature of 24 mK,
which is the bath temperature of our experiment. For steps
n=5 and n=6 we have a step height ofDIc.5 nA. The
respective time of flights are smaller than 1 ps and are in

agreement with the expected valuet0.L /vF=0.4 ps.
From the critical current at zero gate voltageIC0

=8.5 mA which is carried byN=2W/lF.1200 transport
modes we would expect an average critical current step
height DIC= IC0lF /2W.7 nA, which agrees well with the
magnitude of the critical current quantization observed here.

VI. CONCLUSION

We have measured the conductance and supercurrent of a
S-2DEG-S Josephson junction SQPC. Both the conductance
and the supercurrent showed a steplike structure as a func-
tion of gate voltage. Unlike the data presented in Ref. 9 we
observed that the steps in the supercurrent and the conduc-
tance are correlated. Furthermore, we could see evidence of a
critical current in the SQPC which was carried by the first
open transport mode in the SQPC. We could fit the gate
voltage dependence of the critical current and conductance
with parameters typical for our junction.
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