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Dark and bright envelope solitons have been generated from a single magnetostatic carrier wave with
attractive nonlinearity. The solitons were formed through the mode beating of two microwave input signals
with frequency separations of 3–30 MHz for an in-plane magnetized single crystal yttrium-iron-garnet film in
the magnetostatic backward volume wave configuration. Numerical modeling based on the Ginzburg-Landau
equation model gave good agreement with the data.
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Two different types of envelope solitons, bright and dark,
can propagate in nonlinear dispersive media. The description
of these envelope solitons is typically given by the cubic
one-dimensional nonlinear SchrödingersNLSd equation. The
key factors, which determine the solutions of the NLS equa-
tion, are the dispersionD and nonlinearN coefficients.
Physically these two coefficients represent the curvature of
the frequency versus wave number dispersion and the change
in the carrier frequency with signal amplitude, respectively.
It is convenient to use these factors to characterize wave
propagation in nonlinear dispersive waveguiding media.
When the sign of the product of the dispersion parameterD
and nonlinear parameterN is opposite, one has attractive
nonlinearity, which describes media where bright soliton for-
mation is possible. When the sign of this product is positive,
one has repulsive nonlinearity, which describes media where
dark soliton formation is possiblessee, e.g., Refs. 1 and 2d.
In the situations that could be theoretically treated in the
frames of the nonlinear SchrödingersNLSd equation model,
the formation of bright and dark solitons under these condi-
tions is well established. Examples include deep water, plas-
mas, optical fibers, electrical transmission lines, and mag-
netic films.2–4 Some of the evident demonstrations have been
for magnetostatic wave solitons in magnetic films.5–11A the-
oretical treatment of magnetostatic wave soliton formation in
magnetic films leading to the NLS equation model and con-
sequently to the existence of both bright and black envelope
solitons was given in Ref. 12.

This paper reports the experimental generation of two dif-
ferent envelope solitons trains for a single carrier wave
propagating in a magnetic medium with attractive nonlinear-
ity. The soliton trains are generated through the nonlinear
mode beating of two copropagating magnetostatic backward
volume wavesMSBVWd excitations in a thin yttrium–iron–
garnetsYIGd film. Furthermore, a theoretical model based on
the Ginzburg-Landau equation is presented to explain the
observed phenomena.

These results contrast significantly with previous micro-
wave magnetic envelopesMMEd soliton work as cited
above. In those works, it was possible to explain the experi-
mentally obtained results by applying the NLS equation
model. In other words, the sign of the productDN was al-

ways a key factor in the excitation of bright or dark solitons.
When the condition,DN,0, was satisfied, one obtained
bright solitons. For the conditionDN.0, one always ob-
tained dark solitons.

The present realization of MSBVW dark solitons for
DN,0 was obtained with two balanced equal amplitude co-
propagating high power cw input signals. Unbalanced input
signals give the expected bright solitons. These results show
that, dependent only on the amplitude of the input signals,
one can have bright or dark solitons for a single carrier wave
configuration and a given sign of theDN product. Numerical
modeling based on the Ginzburg-Landau equation gives
good agreement with the data. This theoretical confirmation
indicates that the response is closely related to spin wave
nonlinear damping, which is due to decay instability pro-
cesses.

The experiments utilized a long and narrow 6.9mm thick
single crystal YIG film strip in a MSBVW transducer struc-
ture. The low loss liquid phase epitaxy film had unpinned
surface spins. A 50mm wide input microstrip antenna was
used for excitation. The cw microwave input signals were
obtained from synchronized stable frequency sources. A
movable output antenna in the form of a small 200mm diam
inductive loop13 was used to measure the signal level in the
strip as a function of distance from the input antenna. These
signals were analyzed in the time and frequency domains
with a fast oscilloscope and a microwave spectrum analyzer,
respectively.

The YIG film was magnetized in-plane by an applied field
H along the long edge of the film and the propagation direc-
tion. The choice of frequency and wave number operating
points was based on low power measurements of the MS-
BVW frequencyvk as a function of wave numberk. These
vkskd dispersion data were obtained with a single cw fre-
quency applied to two microstrip lines at opposite ends of
the YIG film. For a givenvk value, the standing wave MS-
BVW interference response profile along the film was mea-
sured with the movable probe to obtain the wavelengthl and
wave numberk=2p /l. These data also yielded the MSBVW
band edge frequency at zerok, taken asvB, and the group
velocity ng=]vk/]k as a function ofvk andk. A nominalH
value of 1310 Oe was used to set the band edge atfB
=vB/2p=5690 MHz.
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For the soliton experiments, the two input frequencies
were varied over the lowk region of thevkskd dispersion
curve, with input power levels up to 25 dBm. The MSBVW
signals were measured at distances from approximately
4–8 mm from the input. Input cw powers above about
18 dBm were needed to produce a pronounced instability
response. Results similar to those shown below could be ob-
tained for f1 and f2 frequency values from about
5597 to 5567 MHz, and corresponding nominal wave num-
ber values from 100 to 200 rad/cm. The separation fre-
quency, Df = uf1− f2u, where f2 was varied, ranged from
3 to 30 MHz. ForDf values below about 3 MHz, the output
signals became severely distorted. ForDf values above
30 MHz, there was no multiharmonic instability response for
the available input powers.

The interference between the copropagating MSBVW sig-
nals atf1 and f2 gave the expected harmonic response at low
power and a nonlinear response at high power. The form of
the nonlinear response was found to depend critically on the
relative values of the two input power levels. When the two
powers were unequal, the nonlinear response was in the form
of cnoidal waves or bright soliton trains. When the two pow-
ers were balanced, the nonlinear response was in the form of
dark soliton trains.

This bright/dark changeover is the key result of this re-
port. Heretofore, and as noted above, the MSBVW configu-
ration and the corresponding attractive nonlinearity have
been used to produce only bright solitons or bright soliton
trains. From the standard notion based on the nonlinear
Schrödinger equation model, one would expect to see only
bright solitons for the magnetization waves with an attractive
nonlinearity. The present data, however, clearly show that
one can generate dark solitons for this configuration. There-
fore, in the course of these experiments, it became clear that
another theoretical model should be used to explain the ob-
served phenomena.

Figure 1 shows representative results on the transition
from bright to dark soliton trains that is obtained due to
relative changes in the two input power levelsP1 andP2. For
all of the traces shown,f1 and f2 were set to 5590 and
5595 MHz, respectively, with corresponding low power MS-
BVW k1 andk2 values of 180 and 170 rad/cm, respectively.
The probe position was 5 mm from the input transducer. The
solid curves in the left and right side graphs show the de-
tected voltage amplitudesAd versus time and power versus
frequency profiles, respectively, for differentP1 andP2 com-
binations. All time profiles are scaled to the maximum am-
plitude. The frequency profiles are shown with uncalibrated
decibel scales. The dashed curve insc-id shows a phasesPd
profile as well. Graphssa-id and sa-iid correspond toP1
=19 dBm andP2=25 dBm and an input power ratio of 1:4.
Graphssc-id and sc-iid are for equal input powers atP1=P2
=19 dBm. Graphssb-id and sb-iid are for an intermediate
case atP1=19 dBm andP2=24 dBm.

The time traces in Fig. 1 show the key result, namely, the
evolution from a train of bright solitons insa-id for unequal
cw input powers to a train of dark solitons insc-id when the
two cw input powers are equal. The train of bright pulses in
sa-id appears against a substantial background. Higher pow-
ers than those available here would be expected to reduce

this background and give a further steepening and narrowing
of the pulses. The train of dips insc-id corresponds to the
type of profile expected for dark solitons. The fact that the
dips in sc-id are sharp and go essentially to zero voltage
means that these are black solitons. This black soliton char-
acter is further supported by the phase profile insc-id. The
dashed curve here shows a clear and distinct 180° jump in
the phase at the cusp points in the amplitude profile. This is
a well-established signature for a black soliton.2

The power versus frequency profiles insa-iid–sc-iid pro-
vide further insight into the effect of the input signal makeup
on the soliton response. WhenP2 is 6 dB greater thanP1, as
in sad, the dominant peak in the power spectrum is atf2 and
the temporal response is in the form of a cnoidal wave or
bright soliton train. The key here is in the unbalanced high
power cw input signals. In contrast, when the input powers
are equal, as inscd, the power spectrum shows two main
peaks with equal amplitudes and the temporal response is in
the form of a dark soliton train. The data show that this
particular combination of powers and frequencies gives
black solitons, a specific subclass of dark soliton as dis-
cussed above. The key here is in the balanced high power
input signals.

A simple explanation for the formation of dark solitons
for magnetostatic spin waves with attractive nonlinearity is
given here, based on the fact that the soliton trains are de-
rived from cw excitation and mode beating rather that the
pulse inputs used for most of the previous MME soliton
experiments. In the cw mode beating process, parametric
spin wave interactions with large wave-number transfer are
possible.14 These scattering processes, where a low wave-
number spin wave scatters into a high wave-number excita-
tion, create the possibility for additional nonlinear loss pro-
cesses, often called decay instability processes. The time
scale for these processes is on the order of the low power
relaxation time. For YIG films, this time is in the range of

FIG. 1. Normalized voltage amplitudesAd versus time traces
and corresponding power versus frequency profiles for a probe de-
tection point 5 mm from the input transducer, with two cw input
signals at frequenciesf1=5590 MHz and f2=5595 MHz. The
power scales insa-iid, sb-iid, andsc-iid correspond to the right hand
vertical axes. The input powerP1 was 19 dBm for all traces. TheP2

input powers were as indicated for each set of graphs. Graphsc-id
also shows a phasesPd vs time profile.
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hundreds of nanoseconds. Such nonlinear decay processes
can, in principle, play an important role in the formation of
solitons from cw input signals, even though they are not
important for the production of MME solitons from short
input pulses with typical durations in the 10–20 ns range.

In order to examine the quantitative effects of nonlinear
damping on soliton train formation in mode beating experi-
ments, numerical modeling based on the one-dimensional
nonlinear evolutional equation with linear and nonlinear
damping terms has been performed. Note that, physically
nonlinear damping terms come from the parametric pro-
cesses, such as four wave decay and higher-order instabili-
ties, which may occur simultaneously with modulational in-
stability of the solitonic type. These parametric processes can
contribute significantly to the total decay of the intense initial
waves.15

The starting equation was the full torque equation of mo-
tion for the magnetization. It proves convenient to work with
a reduced scalar complex response parameteru, defined
throughu=m/21/2Ms, wherem is the root mean squaresrmsd
transverse dynamic magnetization response. A series of
transforms yields a working equation of the form

]u

]t
+ ng

]u

]z
+ h0u − iFD

2

]2u

]z2 − sN − induuu2uG = Usz,td.

s1d

This equation is a particular case of the Ginzburg-Landau
equation,16 previously studied, for example, in the context of
solitons in nonlinear optics.4 It also may be termed the one-
dimensional nonlinear SchrödingersNLSd equation with ad-
ditional linear and nonlinear damping terms. Theh0, D, N,
andn parameters denote, respectively, the low power relax-
ation rate, the dispersion]2vk/]k2, the nonlinear response
coefficient ]vk/]uuu2, and the nonlinear damping. All indi-
cated derivatives are evaluated at the appropriatesk,vkd op-
erating point and atuuu=0. TheUsz,td term has a form simi-
lar to the time varying magnetic driving fieldhsz,td
=h0szdeivktseiDvt/2+Re−iDvt/2d, wherez is the propagation co-
ordinate, v=psf1+ f2d is the average angular frequency,
Dv=2puf1− f2u is the frequency separation,R is a relative
amplitude control parameter, andt is time. It is important to
note that this driving magnetic field is highly localized in
space. It is defined by electric current, which is specified
only in the narrow spatial zone where the input antenna is
positioned. In other words, the right-hand term of Eq.s1d
describes a localized excitation source.

For the analysis, Eq.s1d was Fourier transformed to yield
a system of nonlinearly coupled first order differential equa-
tions for the spatial Fourier amplitudes of the dynamic mag-
netization. These equations were then solved numerically by
the Runge-Kutta method. At each temporal step, the spatial
MSBVW wave form profile was constructed from the com-
puted Fourier spectrum by inverse fast Fourier transform
techniques.

The calculations were done withD and ng set to
1300 rad/cm2 and −3.63106 cm/s, respectively, based on
the low powervkskd dispersion curve data and MSBVW fits
to these data. The low power relaxation rateh0 was set to

4.43106 rad/s, based on direct probe measurements of the
spatial decay of the low power MSW amplitude with cw
input at one end of the film only. TheN parameter was set at
−1.131010 rad/s, based on the linear theoretical MSBVW
vkskd dispersion response, but withMs replaced byMss1
− uuu2/2d.17 The nonlinear damping parametern was deter-
mined from a full analysis of the input power dependent
output response for a single cw input signal following.14 This
analysis gaven=23109 rad/s.

The computations were done for the experimental input
frequenciesf1 and f2. The input drive amplitudes controlled
by h0 and R were varied to give a range of corresponding
input amplitudesu1 andu2 at z=0. Output amplitude versus
time profiles were obtained at various distances from the
input point for differentu1 and u2 amplitude combinations.
These amplitudes were adjusted to give output profiles that
mimicked the experimental responses as close as possible.
As a quantitative point of contact with the experiment, the
input uuu2 values, taken asuuinu2, were also converted to the
corresponding input powerPin, based on a full MSBVW
microstrip transducer coupling analysis.18 For the transducer
and film parameters in the experiment, thisuuinu2/Pin conver-
sion is 7.7310−5 mW−1.

Figure 2 shows representative results from the modeling
for choices of theu1 and u2 input amplitudes that give a
reasonable match to the experimental time traces in Fig. 1.
The format is the same as for seriessid traces in Fig. 1, with
all signals normalized to the peak values. Thesad, sbd, andscd
graphs were obtained for a commonu1 value of 0.082, and
with u2 set at 0.246, 0.227, and 0.082, respectively. From the
uuinu2/Pin calibration, these amplitudes correspond toP1
=19.4 dBm andP2 values of 29.0, 28.3, and 19.4 dBm, re-
spectively. TheP2 values are shown above their respective
graphs. Note, in particular, thatP2. P1 for sad and sbd and
P1=P2 for scd, with the same sequence as in Fig. 1.

The evolution of the time traces fromsad, whereu1 andu2
are unbalanced, toscd, where these input amplitudes are

FIG. 2. Normalized amplitude versus time traces obtained from
the numerical analysis for cw input signals at frequenciesf1

=5590 MHz andf2=5595 MHz. The input powerP1 was set at
19.4 dBm for all traces. TheP2 input powers were set as indicated
for each graph. The “cal” denotes that these powers are calibrated
values, based on a theoretical reduced input poweruuinu2 vs input
powerPin calibration of 7.7310−5 mW−1.
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equal, is strikingly similar to the results in Fig. 1. Forsad,
with u2.u1 and P2. P1, the nonlinear mode beating re-
sponse is close to the bright soliton train signal in Fig. 1sad.
For scd, with u2 set equal tou1, the computed trace almost
perfectly reproduces the black soliton train in Fig. 1scd.
While the match up in the time traces is impressive, one
should also note that the corresponding input powers in two
cases are approximately 4 dB too high, relative to the experi-
ment. It is important to keep in mind that the calibration
from theu values to power in dBm is purely theoretical, and
the errors here could be substantial. The important point is
that the inclusion of nonlinear damping can lead to dark
solitons, as seen experimentally, even when such signals
would not be formed based on the basic evolutional equation
without damping.

In summary, this work reports on experimental observa-
tion of the simultaneous formation of temporal dark and

bright soliton trains from a single magnetostatic carrier wave
with attractive nonlinearity. The MSBVW dark and bright
soliton trains were obtained from the induced modulational
instability, which resulted from the mode beating of two cw
signals at moderate power. The observed responses can be
modeled from the Ginzburg-Landau equation. The qualita-
tive agreement between the theoretical and measured traces
indicates that nonlinear damping and decay instability con-
siderations are the key to this type of spin wave soliton re-
sponse.
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