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Finite-size scaling of the correlation length above the upper critical dimension in the five-
dimensional Ising model

Jeff L. Jones and A. P. Youhg
Department of Physics, University of California, Santa Cruz, California 95064
(Received 7 December 2004; revised manuscript received 31 January 2005; published 31 May 2005

We show numerically that correlation length at the critical point in the five-dimensional Ising model varies
with system size. asL%, rather than proportional th, as in standard finite-size scalif§SS theory. Our
results confirm a hypothesis that FSS expressions in dimedsgwaater than the upper critical dimension of
4 should have. replaced byL%* for cubic samples with periodic boundary conditions. We also investigate
numerically the logarithmic corrections to FSSdr4.
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I. INTRODUCTION & L) -~
L , . ~ Ut — | = &c L) (5)
Finite-size scaling? (FSS has been extremely useful in L &

extrapolating numerical results on finite systems in the vicin- o ) )

ity of a critical point to the thermodynamic limit, in order to The definition of&, is not unique(though any reasonable

get information on critical singularities. The basic hypothesisdefinition will give the same scaling fonmiWe shall give one

of FSS is that the linear size of the systémenters in the definition, which is often used in numerical work, |n~the next

ratio L/ &, where €, is the correlation length of the infinite section. Again, the scaling functiong/, g, U* and &, are

system(which we will call the “bulk” correlation length for universal.

conveniencgand which diverges as the critical temperature  Note from Eqgs.(4) and(5) that, for dimensionless quan-

T, is approached as tities like g and ¢, /L, data for different sizemtersect at the
critical temperature Hence, dimensionless quantities are

&= Cot™, (1) very convenient because they locate the critical temperature
in a simple way, from the crossing point, without needing to
know the values of other quantities such as exponents. Fur-

T-T, thermore, since the scaling functiog&x) and &(x) are uni-
t= T ) versalthe values ofy and ¢, /L at the crossing point.e., at
¢ T.) are also universal.
measures the deviation from criticality. Hezgis a nonuni- Finite size scaling, as represented here by E)s{(5), is
versal “metric factor® and we use the symbet to signify  expected to be valid in the limik —, t—0, with L1/t
“asymptotically equal to.” Hence, if a quanti¥ diverges in  arbitrary. Originally proposed on phenomenological grounds,

where

the bulk ast™«", the FSS form for the behavior of is a justification for FSS was later provided by Bréziming
renormalization grougRG) arguments, at least for the case
X ~ | Yxpt L ~ | YxX 1y of systems without disorddwhich is the only case we dis-
LYxp LYxX(c L), ©)] -
0 - cuss herg However, Brézif also noted that FSS breaks

. down at the “upper critical dimensiohtl,=4. One can un-
whereX, andc, are nonuniversal scale factors, andefers  gerstand this intuitively since, fad>d, critical exponents
tot=0. The scaling functionB* andX areuniversal® Inthe  are given byd-independent mean field values, e.g51/2,
last expression in Ed3), we have taken the argument of the and the corresponding field theory is a free the@w., the
function P* in the first expression to the powerd,/in order  fluctuations are Gaussiasince the effective coupling con-
that temperature appears linearly. This has the advantage thstaint vanishes at long length scales. This coupling constant is

asinglesmooth functiorX, appliesbothabove and below,,  irrelevant in the RG sense, but singularities occur when it
whereastwo functionsP* are needed in the first expression tends to zero, so that it cannot simply be set to its “fixed
in Eq. (3). point” value of zero. Singularities arising from this danger-

It is often convenient to considedimensionlesguantities,  0Us irrelevant variable lead to a breakdown of scaling rela-

because these are expected to hgye0. Two commonly tions involving the dimensionality, which are known as “hy-
studied examples ar@) the “Binder ratio* perscaling relations.” An example d¥=2-«, wherea, the

specific heat exponent, is equal to 0 tbr 4. Standard FSS
1 (m® L 1 implies hyperscaling, so that violation of hyperscaling means
= g ~G(e, L), 4 that there must also be a breakdown of the standard FSS
expressions in Eq$3)—(5) for d>4.
where m is the order parameter, an@) the ratio of the Nonetheless, since the bulk behavior tbr4 is trivial,
correlation lengtlof the finite systerj to the system siZ€®  one might imagine that, in this limit, the size dependence can
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be also be expressed in fairly simple way and this turns out 1
to be the case. A natural hypothdsisfor cubic samples

with periodic boundary conditions is that, fdi>4, FSS for-

mulae can still be applied but with the system dizeplaced 09
by alarger lengtht

- d/4
0=ALY4 (6) 0.8

whereA; is nonuniversal. 1

This hypothesis makes FSS consistent with mean field~_
exponents(which are independent af and violate hyper- 7' (.17
scaling for d>4. We shall see that physicallyis the cor-
relation length at the critical pointWith this replacement,

Egs. (3)—(5) become(rememberd>4 herg 06
X 14 ~
o= enyi<—) ~ LMX (e L¥2), 7
%o & 0.5
—~ V\F £ ~ T Ld/2 8
9= ~0(c,L™), ®) 8.74 8.76 8.78 8.8 8.82 8.84
T
& ~ Ui(£>, ie. % ~ Alz(chd/Zt)a 9 FIG. 1. Data for& /L in d=5. Clearly the data do not intersect
| & L at a common point, as would be expected if the conventional FSS

with ¢, nonuniversal, where we have noted thatl/2 for expressioriEq. (5)] applied.

d>4. As before, the scaling functions are universal, so that
the value ofg at the crossing point af, is universal. Fur- H=-3D SS, (10)

thermore, this universal value has been calculéféilVe see G

that, at criticality,£,_is of orderLY*, which is much greater . . L
thanL for large sizes, a result which, at first, seems surprisl(l)v rrllzrehtheerlinbgi]cslrggc?céa:(rg gﬁ:wuésnss:iirt ?)?ds;[zh:d f'lt_eds 3&5
ing. The value of¢ /LY* at criticality, however, isnonuni- yp ey

wersal because of e fator ob, 1 o, (9. This factor SE0=2705 and aoply perodc bounday conitons e
occurs becausé has dimensions of length, so that, for Eq. 9 P '

(6) to be dimensionally correc\; must be proportional to we setJ=1. Lo

al™¥ wherea is a microscopic length scale; e.g., the lattice The magnetization per spin is given by

spacing. Quantities involving microscopic length scales are 1 N

not universal, so thad; is not universal. m==->5, (11
There has been extensive discus$iolf as to whether Ni=1

Eq. (8) applies to the five-dimensional Ising model in the and the Binder ratio is then given in terms of momentsnof
limits L—c, t—0. Apparently it does!*® although there py Eq. (4). The correlation length of the finite system, is

appear to be several cqrrections to FSS that C_onspire to gi‘@ven by the following finite difference expressién:
a “crossing” for small sizes at a value gfthat differs from

the calculated univers#lvalue. £ = 1 | Ckmin) _ 1 (12)
As noted above, a surprising feature of E9). is that the ) Sin(Kmin/2) C(0) '
correlation length of the finite system at the critical point is

greater than the system size. To our knowledge there dog¥éhere

not appear to have been any direct verification of this pre- 1 .

diction for d>4 by numerical simulations. In this paper, we C(k) = NE (SS)exdik - (R —Ry)] (13

confirm the prediction in Eq9) by Monte Carlo simulations b

on the five-dimensional Ising model. We also carry out simi-is the Fourier transform of the spin-spin correlation function,

lar simulations for the four-dimensional Ising model, for anqk ..=(27/L)(1,0,0 is the smallest nonzero wave vec-

which logarithmic corrections to standard FSS are expetted;or on the lattice. Abovéd, and forL — =, Eq.(12) gives the
_In Sec. Il'we describe the model and some aspects of thgsyal second moment definition of the correlation length.

simulations. The results in five dimensions are presented in e perform Monte Carlo simulations using the W&lf

Sec. lll, and the results in four dimension are presented igjyster algorithm to reduce the effects of critical slowing

Sec. IV. We summarize our results in Sec. V. down.
Il. THE MODEL Ill. RESULTS IN FIVE DIMENSIONS
The Hamiltonian is given by Data for & /L are shown in Fig. 1 for sizes<4L<16.
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FIG. 2. Data for§ /L4 in d=5. Clearly the data intersect close
to a common point, as expected for the modified FSS expression i
Eq. (9). The vertical line is af=8.7785, which is our best estimate
for Te.

FIG. 4. Data for the Binder ratio id=5. The vertical dashed
fhe corresponds td=8.7785, which is our best estimateTffrom
the correlation length data, see Fig. 3. The horizontal dashed line
corresponds tg=0.4058.. ., the predicte@dee Refs. 7 and 12ini-

According to standard F%q. (5)], the data would intersect versal value.

at a common point, which is clearly not the case. However, , .
according to the modified FSS expression in &), data for proportional toL, as would be expected in standard FSS.

£./L5* should intersect at a common point, and Fig. 2 shows A Scaling plot of the data in Fig. 2 according to the second
that this works reasonably well. Figure 2 therefore provide€XPression in Eq(9) is shown in Fig. 3. Note that in addition

. . ) ” i < hei 14 :
convincing evidence that the correlation length at the criticaf® the vertical axis being scalegl/zw , rather tq/"j}”- asin
point varies asL%* in five dimensions, rather than being Standard FSS[-Tis scaled by >, rather thar.™*(=L") as
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FIG. 5. Data for¢ /L in d=4. According to conventional FSS
FIG. 3. A scaling plot for the data in Fig. 2 according to the [Eq. (5)], the data should have a common intersection. This is
second expression in E() with T,=8.7785. clearly not the case.
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FIG. 7. Data for£ /L(InL)Y*in d=5. Clearly the data do not
FIG. 6. Data forg /L(In L)**in d=4. The data intersect at close intersect at a commont point, indicating that the assumption of loga-
to a common point. rithmic corrections to FSS does not work @5, although it is
correct atd=4 (see Fig. 6.
in standard FSS. Apart frorh=4, for which the data are

consistently too low presumably because of corrections to We also consider the possibility that logarithmic correc-
FSS, the data scale well with,=8.7785. By considering tions to FSS might also apply =5, rather than the power
different choices foiT. we estimate thal.=8.778%5), con-  |aw correction in Eq(6). However, the data fog /L(In L)
sistent with the more accurate result 8.778244n Ref. 18.  in Fig. 7 clearly does not show a common intersection. Simi-
For completeness, we also show results for the Bindefarly, we find that a plot o, /L In L also does not show a
ratio in Fig. 4. As found in other work®15-18the data for common intersection. Hence, we feel that our data rules out

small sizes intersect at a value @ larger than the |ogarithmic corrections to FSS id=5, but supports the
predicted*?universal value of 0.4058 . The data for larger modification in Eq.(6).

sizes have intersections at somewhat smaller values and
presumably? would reach the universal value far— o,
V. CONCLUSIONS

IV. RESULTS IN FOUR DIMENSIONS We have demonstrated that the FSS behavior of the cor-
relation length(for a cubic sample with periodic boundary

In four dimensions, Brézinargued that = L(logL)"*at  conditiong in five dimensions follows Eq(9), which is the
criticality, so that we expect that FSS expressions should bexpected modification of FSS for the cage 4. This pro-
modified by the replacement vides confirmation that the standard FSS expressions, e.g.,
Egs. (3)—(5), can be simply modified abovd=4 by the
replacement L— € L% which gives Eqs.(7)—9). This
had been verified before for the Binder ratio, but not, to our
knowledge, for the correlation length. It is interesting that the
In Fig. 5, we show a plot fog /L (i.e., without the logarith-  correlation length at the critical point is of ordéand hence
mic factop. Clearly the data do not show a common inter-much bigger than the system sizeThis is possible because
section. However, including the logarithmic factor, the plotthe long wavelength fluctuations are non-interacting near
in Fig. 6 shows a good intersection with only small correc-criticality for d>4. We also demonstrated the expected loga-
tions to FSS. The factor Ih can be replaced by (h/Ly)  rithmic modification to FSS of the correlation length fir
where Ly is a microscopic scale, and with an appropriateprecisely equal to 4.
choice of L, we get sharper intersections. However, It is also interesting to ask what are the corresponding
IN(L/Lg)=(InL)(1+InLy/InL), so that includingLy corre-  results withd> 4 for other geometries and boundary condi-
sponds to amadditivecorrection to FSSwhich vanishes only tions. For the “strip” geometry, where the sample is infinite
logarithmically. It is difficult to separate this from other in one direction and of sizk in the others, Brézihshowed
corrections to FSS, and so we do not feel we can give #hat the correlation length at the critical point varies as
reliable estimate fot,. L@D3 (which is reasonable since FSS is done only with

L—€¢=AL(nL)Y* (d=4). (14)
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respect to thal-1 finite dimensions It is then natural to the scaling terms which involvé,/L. Since FSS for models
expect that FSS will then work with replaced throughout with free boundary conditions id>4 is poorly understood,
by LD/, it would be interesting to investigate such models in some
For free boundary conditions, it seems obvious that evedletail.
for d>4 the behavior of the system will be affected whign
becomes of ordet, rather than only change whef be-
comes of order the much larger lengthHence we expect We acknowledge support from the National Science
that the standard FSS expressions, E8s«5) would apply  Foundation under grant DMR0337049. We would like to
with »=1/2. Theratio £&./€ may also enter but, sinc&>L  thank Erik Luijten for helpful communications on an earlier
for largeL, such terms would presumably be corrections toversion of this manuscript.
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