
Finite-size scaling of the correlation length above the upper critical dimension in the five-
dimensional Ising model

Jeff L. Jones and A. P. Young*
Department of Physics, University of California, Santa Cruz, California 95064

sReceived 7 December 2004; revised manuscript received 31 January 2005; published 31 May 2005d

We show numerically that correlation length at the critical point in the five-dimensional Ising model varies
with system sizeL asL5/4, rather than proportional toL, as in standard finite-size scalingsFSSd theory. Our
results confirm a hypothesis that FSS expressions in dimensiond greater than the upper critical dimension of
4 should haveL replaced byLd/4 for cubic samples with periodic boundary conditions. We also investigate
numerically the logarithmic corrections to FSS ind=4.
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I. INTRODUCTION

Finite-size scaling1,2 sFSSd has been extremely useful in
extrapolating numerical results on finite systems in the vicin-
ity of a critical point to the thermodynamic limit, in order to
get information on critical singularities. The basic hypothesis
of FSS is that the linear size of the systemL enters in the
ratio L /j` wherej` is the correlation length of the infinite
systemswhich we will call the “bulk” correlation length for
convenienced and which diverges as the critical temperature
Tc is approached as

j` < c0t
−n, s1d

where

t ;
T − Tc

Tc
s2d

measures the deviation from criticality. Herec0 is a nonuni-
versal “metric factor”3 and we use the symbol' to signify
“asymptotically equal to.” Hence, if a quantityX diverges in
the bulk ast−yxn, the FSS form for the behavior ofX is

X

X0
< LyxP±S L

j`
D < LyxX̃sc1L

1/ntd, s3d

whereX0 andc1 are nonuniversal scale factors, and6 refers

to t_0. The scaling functionsP± andX̃ areuniversal.3 In the
last expression in Eq.s3d, we have taken the argument of the
function P± in the first expression to the power 1/n, in order
that temperature appears linearly. This has the advantage that

a singlesmooth functionX̃, appliesbothabove and belowTc,
whereastwo functionsP± are needed in the first expression
in Eq. s3d.

It is often convenient to considerdimensionlessquantities,
because these are expected to haveyx=0. Two commonly
studied examples aresid the “Binder ratio”4

g ;
1

2
S3 −

km4l
km2l2D < W±S L

j`
D < g̃sc1L

1/ntd, s4d

where m is the order parameter, andsii d the ratio of the
correlation lengthof the finite systemjL to the system size3,5,6

jL

L
< U±S L

j`
D < j̃sc1L

1/ntd. s5d

The definition ofjL is not uniquesthough any reasonable
definition will give the same scaling formd. We shall give one
definition, which is often used in numerical work, in the next

section. Again, the scaling functions,W±, g̃, U± and j̃, are
universal.

Note from Eqs.s4d and s5d that, for dimensionless quan-
tities like g andjL /L, data for different sizesintersect at the
critical temperature. Hence, dimensionless quantities are
very convenient because they locate the critical temperature
in a simple way, from the crossing point, without needing to
know the values of other quantities such as exponents. Fur-

thermore, since the scaling functionsg̃sxd and j̃sxd are uni-
versal the values ofg andjL /L at the crossing pointsi.e., at
Tcd are also universal.

Finite size scaling, as represented here by Eqs.s3d–s5d, is
expected to be valid in the limitL→`, t→0, with L1/nt
arbitrary. Originally proposed on phenomenological grounds,
a justification for FSS was later provided by Brézin7 using
renormalization groupsRGd arguments, at least for the case
of systems without disorderswhich is the only case we dis-
cuss hered. However, Brézin7 also noted that FSS breaks
down at the “upper critical dimension”8 du=4. One can un-
derstand this intuitively since, ford.du critical exponents
are given byd-independent mean field values, e.g.,n=1/2,
and the corresponding field theory is a free theorysi.e., the
fluctuations are Gaussiand since the effective coupling con-
stant vanishes at long length scales. This coupling constant is
irrelevant in the RG sense, but singularities occur when it
tends to zero, so that it cannot simply be set to its “fixed
point” value of zero. Singularities arising from this danger-
ous irrelevant variable lead to a breakdown of scaling rela-
tions involving the dimensionality, which are known as “hy-
perscaling relations.” An example isdn=2−a, wherea, the
specific heat exponent, is equal to 0 ford.4. Standard FSS
implies hyperscaling, so that violation of hyperscaling means
that there must also be a breakdown of the standard FSS
expressions in Eqs.s3d–s5d for d.4.

Nonetheless, since the bulk behavior ford.4 is trivial,
one might imagine that, in this limit, the size dependence can
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be also be expressed in fairly simple way and this turns out
to be the case. A natural hypothesis9,10 for cubic samples
with periodic boundary conditions is that, ford.4, FSS for-
mulae can still be applied but with the system sizeL replaced
by a larger length11

, = A1L
d/4, s6d

whereA1 is nonuniversal.
This hypothesis makes FSS consistent with mean field

exponentsswhich are independent ofd and violate hyper-
scalingd for d.4. We shall see that physically, is the cor-
relation length at the critical point. With this replacement,
Eqs.s3d–s5d becomesrememberd.4 hered

X

X0
< ,yxP±S ,

j`

D < Ldyx/4X̃sc2L
d/2td, s7d

g < W±S ,

j`

D < g̃sc2L
d/2td, s8d

jL

l
< U±S ,

j`

D, i.e.,
jL

Ld/4 < A1j̃sc2L
d/2td, s9d

with c2 nonuniversal, where we have noted thatn=1/2 for
d.4. As before, the scaling functions are universal, so that
the value ofg at the crossing point atTc is universal. Fur-
thermore, this universal value has been calculated.7,12We see
that, at criticality,jL is of orderLd/4, which is much greater
thanL for large sizes, a result which, at first, seems surpris-
ing. The value ofjL /Ld/4 at criticality, however, isnonuni-
versal because of the factor ofA1 in Eq. s9d. This factor
occurs because, has dimensions of length, so that, for Eq.
s6d to be dimensionally correct,A1 must be proportional to
a1−d/4, wherea is a microscopic length scale; e.g., the lattice
spacing. Quantities involving microscopic length scales are
not universal, so thatA1 is not universal.

There has been extensive discussion13–18 as to whether
Eq. s8d applies to the five-dimensional Ising model in the
limits L→`, t→0. Apparently it does,14,18 although there
appear to be several corrections to FSS that conspire to give
a “crossing” for small sizes at a value ofg that differs from
the calculated universal12 value.

As noted above, a surprising feature of Eq.s9d is that the
correlation length of the finite system at the critical point is
greater than the system size. To our knowledge there does
not appear to have been any direct verification of this pre-
diction for d.4 by numerical simulations. In this paper, we
confirm the prediction in Eq.s9d by Monte Carlo simulations
on the five-dimensional Ising model. We also carry out simi-
lar simulations for the four-dimensional Ising model, for
which logarithmic corrections to standard FSS are expected.7

In Sec. II we describe the model and some aspects of the
simulations. The results in five dimensions are presented in
Sec. III, and the results in four dimension are presented in
Sec. IV. We summarize our results in Sec. V.

II. THE MODEL

The Hamiltonian is given by

H = − Jo
ki,jl

SiSj , s10d

where the Ising spins take valuesSi = ±1, and the sitesi are
on a hypercubic lattice ind dimensions of sizeN=Ld. We
taked=4 and 5, and apply periodic boundary conditions. The
sum is over nearest neighbor pairs of sites, and from now on
we setJ=1.

The magnetization per spin is given by

m=
1

N
o
i=1

N

Si , s11d

and the Binder ratio is then given in terms of moments ofm
by Eq. s4d. The correlation length of the finite system, is
given by the following finite difference expression:6

jL =
1

2 sinskmin/2d
ÎCskmind

Cs0d
− 1, s12d

where

Cskd =
1

N
o
i,j

kSiSjlexpfik · sRi − R jdg s13d

is the Fourier transform of the spin-spin correlation function,
andkmin=s2p /Lds1,0,0d is the smallest nonzero wave vec-
tor on the lattice. AboveTc and forL→`, Eq. s12d gives the
usual second moment definition of the correlation length.

We perform Monte Carlo simulations using the Wolff19

cluster algorithm to reduce the effects of critical slowing
down.

III. RESULTS IN FIVE DIMENSIONS

Data for jL /L are shown in Fig. 1 for sizes 4øLø16.

FIG. 1. Data forjL /L in d=5. Clearly the data do not intersect
at a common point, as would be expected if the conventional FSS
expressionfEq. s5dg applied.
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According to standard FSSfEq. s5dg, the data would intersect
at a common point, which is clearly not the case. However,
according to the modified FSS expression in Eq.s9d, data for
jL /L5/4 should intersect at a common point, and Fig. 2 shows
that this works reasonably well. Figure 2 therefore provides
convincing evidence that the correlation length at the critical
point varies asL5/4 in five dimensions, rather than being

proportional toL, as would be expected in standard FSS.
A scaling plot of the data in Fig. 2 according to the second

expression in Eq.s9d is shown in Fig. 3. Note that in addition
to the vertical axis being scaled byL5/4, rather thanL as in
standard FSS,T−Tc is scaled byL5/2, rather thanL1/ns=L2d as

FIG. 2. Data forjL /L5/4 in d=5. Clearly the data intersect close
to a common point, as expected for the modified FSS expression in
Eq. s9d. The vertical line is atT=8.7785, which is our best estimate
for Tc.

FIG. 3. A scaling plot for the data in Fig. 2 according to the
second expression in Eq.s9d with Tc=8.7785.

FIG. 4. Data for the Binder ratio ind=5. The vertical dashed
line corresponds toT=8.7785, which is our best estimate ofTc from
the correlation length data, see Fig. 3. The horizontal dashed line
corresponds tog=0.4058. . ., the predictedssee Refs. 7 and 12d uni-
versal value.

FIG. 5. Data forjL /L in d=4. According to conventional FSS
fEq. s5dg, the data should have a common intersection. This is
clearly not the case.
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in standard FSS. Apart fromL=4, for which the data are
consistently too low presumably because of corrections to
FSS, the data scale well withTc=8.7785. By considering
different choices forTc we estimate thatTc=8.7785s5d, con-
sistent with the more accurate result 8.778 44s2d in Ref. 18.

For completeness, we also show results for the Binder
ratio in Fig. 4. As found in other work,13,15–18 the data for
small sizes intersect at a value ofg larger than the
predicted7,12 universal value of 0.4058… . The data for larger
sizes have intersections at somewhat smaller values and
presumably18 would reach the universal value forL→`.

IV. RESULTS IN FOUR DIMENSIONS

In four dimensions, Brézin7 argued thatjL~Lslog Ld1/4 at
criticality, so that we expect that FSS expressions should be
modified by the replacement

L → , = A2Lsln Ld1/4, sd = 4d. s14d

In Fig. 5, we show a plot forjL /L si.e., without the logarith-
mic factord. Clearly the data do not show a common inter-
section. However, including the logarithmic factor, the plot
in Fig. 6 shows a good intersection with only small correc-
tions to FSS. The factor lnL can be replaced by lnsL /L0d
where L0 is a microscopic scale, and with an appropriate
choice of L0 we get sharper intersections. However,
lnsL /L0d=sln Lds1+ln L0/ ln Ld, so that includingL0 corre-
sponds to anadditivecorrection to FSSswhich vanishes only
logarithmicallyd. It is difficult to separate this from other
corrections to FSS, and so we do not feel we can give a
reliable estimate forL0.

We also consider the possibility that logarithmic correc-
tions to FSS might also apply ind=5, rather than the power
law correction in Eq.s6d. However, the data forjL /Lsln Ld1/4

in Fig. 7 clearly does not show a common intersection. Simi-
larly, we find that a plot ofjL /L ln L also does not show a
common intersection. Hence, we feel that our data rules out
logarithmic corrections to FSS ind=5, but supports the
modification in Eq.s6d.

V. CONCLUSIONS

We have demonstrated that the FSS behavior of the cor-
relation lengthsfor a cubic sample with periodic boundary
conditionsd in five dimensions follows Eq.s9d, which is the
expected modification of FSS for the cased.4. This pro-
vides confirmation that the standard FSS expressions, e.g.,
Eqs. s3d–s5d, can be simply modified aboved=4 by the
replacement11 L→,~Ld/4, which gives Eqs.s7d–s9d. This
had been verified before for the Binder ratio, but not, to our
knowledge, for the correlation length. It is interesting that the
correlation length at the critical point is of order, and hence
much bigger than the system sizeL. This is possible because
the long wavelength fluctuations are non-interacting near
criticality for d.4. We also demonstrated the expected loga-
rithmic modification to FSS of the correlation length ford
precisely equal to 4.

It is also interesting to ask what are the corresponding
results withd.4 for other geometries and boundary condi-
tions. For the “strip” geometry, where the sample is infinite
in one direction and of sizeL in the others, Brézin7 showed
that the correlation length at the critical point varies as
Lsd−1d/3 swhich is reasonable since FSS is done only with

FIG. 6. Data forjL /Lsln Ld1/4 in d=4. The data intersect at close
to a common point.

FIG. 7. Data forjL /Lsln Ld1/4 in d=5. Clearly the data do not
intersect at a commont point, indicating that the assumption of loga-
rithmic corrections to FSS does not work ind=5, although it is
correct atd=4 ssee Fig. 6d.
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respect to thed−1 finite dimensionsd. It is then natural to
expect that FSS will then work withL replaced throughout
by Lsd−1d/3.

For free boundary conditions, it seems obvious that even
for d.4 the behavior of the system will be affected whenjL

becomes of orderL, rather than only change whenjL be-
comes of order the much larger length,. Hence we expect
that the standard FSS expressions, Eqs.s3d–s5d would apply
with n=1/2. Theratio j` /, may also enter but, since,@L
for largeL, such terms would presumably be corrections to

the scaling terms which involvej` /L. Since FSS for models
with free boundary conditions ind.4 is poorly understood,
it would be interesting to investigate such models in some
detail.
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