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Short-time dynamics of spin systems with long-range correlated quenched impurities
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The theoretic renormalization-group approach is applied to the study of short-time critical behavior of the
d-dimensional spin systen{snodel A in the presence of quenched impurities with a long-range correlations
decaying as~(@?). The asymptotic scaling laws are studied in the frame of a double expansiertind and
p with p of ordere. In d<<4, the initial slip exponentg’ of the magnetization ané of the response function,
are calculated up to two-loop order. The crossover between fixed points is obtained. The long-time limit of the
fluctuation-dissipation ratio is found in the aging regime, and its connection to equilibrium quantities is
discussed. The comparison of our results with those of other systems without long-range correlated quenched
impurities is also investigated.
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I. INTRODUCTION in terms of the fluctuation-dissipation ratid! (FDR)
For critical dynamic systems, it has traditionally been be- X, (t,t') = TG(r,t,t')/3, C(r,t,t"). (1)

lieved that universal scaling behavior exists in the long-time

regime of dynamic evolution. However, in 1989, it was dis-whent,t’ >t,~|T-T,™*% dynamics of fluctuations are de-
covered that starting from macroscopic initial states, thescribed by the equilibrium dynamics of the system, and the
macroscopic short-time stages<d<t, (heret, is the relax-  fluctuation-dissipation theorem holds and thxgt,t')=1.
ation timg of dynamic processes display universal behavioryowever, this is no longer true in the aging tihg’ <t..

dominated by initial slip exponentg and ¢'.* In recent  ConsequentlyX,(t,t’) # 1 becomes a nontrivial function of
years, universal short-time scalings that govern the nonequisgint andt’.

librium relaxation have bee.n'f.ound in various modefsin Physically, X, (t,t')=1 is realized in the high-temperature
general, after the system initially at a high temperattife yhase(T>T,) after the initial quench. Since the relaxation
with a small magnetizatiom, is suddenly quenched to the 0 js small, the system relaxes rapidly to equilibritfhon
critical temperaturelo<Tj, in the short-time regime, Not ihe gther hand, if eithel <T. or T=T,, an infinite spin
only does the o’rder parameter show an critical initial Ir]'system does not reach equilibrium on some finite time scale
creasem(t) ~myt” before crossing over to the long-time be- pyt instead undergoes either phase-order kingties non-
havior ~t#02  put it also gives the response equilibrium critical dynamics. In recent years, several
function G(r,t,t')~(t/t')’ and the correlation function works-1214-18have been devoted to the study of FDR for
C(r,t,t") ~ (t/t")** for t' —0. systems exhibiting domain growtf.or for aging systems

The short-time phenomena are also characterized by theuch as glasses and spin glasses, showing that in the low-
nonequilibrium correlation length&(t) (~t¥?). The length temperature phas¥,(t,t') is a nontrivial functions of its two
scaleé(t) is initially small and grows as time increases, ar-arguments. In particular, for domain-growth systems, analyti-
riving at its equilibrium valugé=&(«) ~ |T-T ™ for T=T..  cal and numerical studies indicate that the limit of FDR,
It is believed that the singularity of the temporal correlation . o
is essential to the short-time scaling and the scaling can Xizo= lim t“nl Xi=o(t,t'), (2
emerge in the early stage of the evolution even though all v
correlations are still short ranged. As long as the spatial divanishes through the low-temperature ph#sé-18|t is the
mensiond is smaller than the critical dimensial, the order  sjow motion of the domain boundaries that is responsible for
parameter follows a mean-field ordering process because the® =0. This feature can be understood from the fact that the
mean-field critical temperaturE(cmf) is larger than the actual long-time memory of coarsening systems tends to vanish,
critical temperaturd . This ordering causes an amplification unlike in the mean-field glass model in which it does not, so
of the initial order parameter at short timest; <t,, where  that X,_o(t,t’)>0 even at long time¥ However, the situa-
ti~mgl/("’+ﬁ’”2).1 For d>d., mean-field theory applies and tion is different for the quench from the high temperatiiye
there is no critical increase. to the critical temperatur@,<T,, as ordered domain does

If the system does not reach the equilibrium all the re-not exist. It has been argued thg§t, is a new nonequilib-
sponse functions and correlation functions will depend bottium critical quantity characteristic of the different universal-
on the waiting timet’ (the “age” of the systeinand the ity class. In exactly solvable casEst281%n various Monte
observation timé. The distance from equilibrium of an ag- Carlo studies®2°-?2and in field-theoretical calculatiort$;%
ing system, evolving at a fixed temperatdfemay be char- X2, has values ranging between 0 and 1/2. Using standard
acterized the breaking of the fluctuation-dissipation theorenienormalization group procedures, and its valueXof for
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O(n) vector modet is in very good agreement with numeri- of the crossover between fixed points modifies one-loop re-
cal simulations for the two- and three-dimensional Isingsults in Refs. 31 and 35. The limit FDRZ, is also calcu-
mode|18:21.22 lated in the aging regime. It is argued that the relation be-
It is interesting whether and how this critical behavior is tweenX/~, and the static Parisi functioR(g)*” is dependent
altered by introducing in the systems a small amount of im-on the impurities.
purities leading to models with quenched disorder. The The paper is organized as follows. In Sec. Il, the dynam-
theory of second-order phase transitions in the presence @fs of the model with LCQI is defined. In Sec. lIl, using the
quenched impurities was worked out and developed by théheoretic RG approach, the asymptotic scaling laws are ob-
author$®=2for the case of short-range correlated quenchedained. In Sec. IV, the initial slip exponents are studied in the
impurities(SCQ). It is consistent with the Harris criteriol,  frame of a double expansion ia=4—-d and p, with p of
which states a random transition-temperature system posrdere. The scaling behavior of the two-time response and
sesses the same critical exponents and critical properties gsrrelation functions for zero momentum is obtained as well
the corresponding pure system df,=2-dv, is negative as the long-time limit FDR in the aging time in Sec. V. The
(where a,, and v, are the specific heat exponent and thecrossover between fixed points is discussed in Sec. VI. Fi-
correlation-length exponent of the pure system, respectivelyjally, Sec. VIl contains some discussion and conclusions.
and d is the dimensionality of the systgemHowever, for
a,>0, the impurities can leads to new critical behavior.

These impurities are described by the random local transition Il. THE MODEL
temperaturel(x), with short-range correlations in disorder
that are proportional t@ function. In equilibrium at temperaturdl, the Qn) symmetric

In 1983, Weinrib and Halperifi extended the theory for amiltonian describing the spin systems with LCQI is given
SCQI to the case of the long-range correlated quenched inj;

purities (LCQI), which is more relevant to experimental re-
sults of interest? The LCQI is characterized by the correla-
tion function of the random local transition temperature 1 - 9 1

(T T(Y))—(T(x)XT(y)), which falls off with distance as H[s] = f dix) =(Vs)?+ =+ =(s9)?+ =¢s° ¢, (3)
a power lawjx —y|~@* (wherep characterizes the decay rate 2 2 4 2

of the correlations It was shown that fop>0, the Harris
criterion is modified to béd-p)v,-2>0, which means the

LCQI is irelevant! For p<0, the LCQI is reduced as the where s=(s) are n-component order parameter fields, and

SCQI, and the normal Harris criteriotiv,—2=—a, >0 is $?=3"_8s. ¢(x) describes the static random-temperature
recovered. P P impurity with the mear{¢(x)),=0 and the long-range corre-

The renormalization-groufRG) approach can be used to 1ations(@(x)¢(x'))4=[91+gx(~V?)#?]8(x—x"). The angular
investigate the case with LCQI, provided tliatp andd are ~ bracket(:--), indicates the Gaussian configuration average
close to 4. For the static properties, it is found that a newwith the impurities. In momentum space, the Fourier trans-
fixed-point characteristic of LCQI describes a second-ordeform of the LCQI correlations ig); +g,p . Note that in the
phase transition, with the correlation-length exponent case ofg,=0 orp=<0, the problem reduces to the description
evaluated ag'=2/(d-p),3! which is exact and holds in all of the SCQI?®-28 In particular the correlation function for
orders in perturbation theo?y. For the dynamical critical LCQI with p=1 describes straight lines of impurities or
properties, the results of Refs. 34-36 have shown that thstraight dislocation lines of random orientation, whereas ran-
LCQI affects the equilibrium critical dynamics in one-loop dom planes of impurities would give {o=2.
approximation, leading to new values of the dynamic expo- In the absence of impuritig§.e., ¢(x)=0 or g;=g,=0],
nentz. the Q(n) symmetric Hamiltoniar{1) for n=4 can be used to

In this work we will analyze the short-time critical behav- describe the spiral magnets Tb, Dy, and Ho, which belong to
ior and the aging properties of spin systems with the LCQIthe same universality as NBODyC,, and TbAy.38 In the
Although the static and equilibrium dynamical critical prop- presence of LCQI, the @) model was applied to x-ray and
erties of the systems with LCQI have been under intensivaeutron critical scattering experimeriich as Hqsee Ref.
theoretical and experimental stutlyZ® its nonequilibrium  39) and Tb (see Ref. 4§, which revealed two different
dynamics is less investigated. The aim of the present papeength scales for critical fluctuations. It is argued that the
based on the theoretic RG approach, is to make a more demergence of the longer of the two length scales is a conse-
tailed investigation of the critical behavior of the systemsquence of the presence of the LCQI in the neighborhood of
with LCQI, to give a check of the expected scaling laws, andhe sample surfac®.In this part of the sample, a crossover
to predict the universal dynamical quantitigsich as¢’ and  to critical behaviorcorresponding to the longer length sgale
X'_,), which could be measured in Monte Carlo simulationsdominated by the LCQI fixed poittttakes place, while the
and experiments and could be used to identify a universalitpulk displays the critical behavior of the pure systéis
class. Using a double expansion énand p, we calculate (corresponding to the shorter length sgale
initial slip exponentsy’ and 6 in the two-loop approxima- In this paper, the dynamics to be discussed has no conser-
tion. In particular, fom=1, ¢ is found to take the nontrivial vation law, and is called the model A dynamfésyhich is
value instead of vanishidgat first order inp. The discussion controlled by the Langevin equation
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. SHls] . GO(t,t') = O(t—t")exg— N(p?+ D)(t—t')] (7)
S (X,t) == N— +&(x1), 4 P '
i (X, 1) 3S() §(x,1) (4)
where \ is the kinetic coefficient. The random forces Cgo)(t,t’):%e‘“pz”)“‘t'+(751— z)e'“pz"r)(“t').
=(¢&) are assumed to be Gaussian with a mean of zero and TP T+p
correlations (£'(x,t)&(x’,t')),=2\8" 8(x-x")d(t-t"). The (8)
angular bracket: - ), indicates an average with the thermal
noise.
The equilibrium critical dynamics of the (@) model can IIl. RENORMALIZATION AND CRITICAL SCALING
be generated by the Langevin equati@) and the Hamil- With the help of Eqs(7) and(8), one now sets a pertur-

tonian(3). In the following, we are interested in the nonequi- pation expansion ordered by the number of loops in the

librium relaxation from the initial statesy(x)=s(x,t=0),  Feynman diagrams. It is convenient to consider the Dirichlet

which is macroscopically prepared at some very high tempoundary conditions,=+% andm,=0. The general case is

peratureT;>T.. This initial state with short-range correla- recovered by treating the paramete{géandmo as additional

tions corresponds to a distribution P[so]cexpy  perturbations. The modé6) with Dirichlet boundary condi-

~70J dX[so(X) ~me]?/2}. Heremy is a homogeneous initial tions must be renormalized. For this purpose, notice that the

order parameterr, has a physically interesting fixed point free correlation function simplifies to

7-6: +0o, which corresponds to a sharply prepaﬂ;zj initial state 1

with initial order my and zero correlation lengthAn initial D)+ +7) — (2 _y

condition with long-range correlations may lead to different G (Lt) T+ pz{eXF[ MpZ+ plt=t]

universality class, e.g., shown for the sphere mégel. 2 ,
As shown in Ref. 43, the dynamics expressed in Egs. ~ex= MpT+ Dt )]}

and(4) can be cast in field theoretical form in terms of a pathThe relationssy(x) = 2\5,(x) andsy(x) =5,(X)/ 7o are invariant

integral that involves a set of conjugated varialdesnd's. under renormalization.

The variablés has a simple physical interpretation in terms A dimensional analysis of Eq6) allows us to carry out a

of the response field, sometimes called Martin-Siggia-Roselouble expansion ire=4-d and p, with € and p of the

response field?* All correlation and response functions can same order to calculate the connected Green functions

then be obtained by the path integral over phase space Va"(iSM~:<sN§~N§'3">. However, the calculation results in integrals
abless ands. The generating functional for all the nonequi- d.NN t at th itical di ioh=4. To obtai
librium connected correlation and response functions is now Ivergent al the upper critica imensid=4. To 0 ain a
given by meanlngf_ul theory, the divergence must be absorbe.d into the
renormalizations of the model parameter and the fields. We
~ _ 470 will adopt the dimensional regularization with minimal sub-
Wh,h]=1In fD(IS.S)eX —EB,S]—fd XE(So—mo)2 traction schemé® and introduce renormalized quantities

through some multiplicative factors

+f ‘“f ddx(hs+ﬁ~8>], (5) $=22% %=Z% %= (220"%,
0
~ _ — -1
whereh and h are the source fields for the fieldsand, No=(ZJZ)N, =207,
respectively. The effective action functiond[s,s] is given
by Op= KG'nZ2ZM, Guo=Kg'nZZ,u1,  (9)
L[3,s]= fo dtf ddx{s[s+ ANr-V?)s+ Egssz} - )\sz} O2b = K ' PZ5Z, .

\2 o 2 Here the subscript b denotes the bare quantity

——fddx[gl+gz(— VZ)‘P’Z]lJ df"s(x,t)s(x,t)} . Kg=2vdqdr(d/2)1
2 0 As usual, the RG equation is derived by exploiting the
(6) fact that the unrenormalized Green functions

M/ NeNzM ;
. . o . G~ = are independent of the external momentum
Here we have used a prepoint discretization with respect to NN\b (SSySon) P

time so that the step functio(t=0)=0. The contribution ~Sc@lex. This leads to the RG equation

[proportional to®(0)] to L[S,s] arising from the functional

determinant dgpé(x,t)/ 8s(x,t)] then vanishes. {’“a“Jr ENN ¥ K702+ Budut Buyduy + Pudu,

For g=0,=0,=0, the generating functiondb) becomes + 3N+ Nve+ M + c™-o 10

Gaussian and can be easi(l;g evaluated in momentum space. 2N+ Nys (% YO)]} NN (10
H 0 Y — V= ’ =

The free response functid®,”(t,t") =(s,()S.p(t"))g and the ¢4 the renormalized Green functior@&";\;(s““s“ég"). Here

free correlation functiorcg’)(t,t’):<sp(t)&p(t’))e are, re-  B,= ud Wy (for w=u,u;,u,) andA= ud, In Bl (for A=,

spectively, Yo Yo K, {, andB=Zg,7Zz,Z,, 7,\, respectively are Wilson
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functions. The symbd}, means thaj.-derivatives are calcu-
lated at fixed bare parameters.

At the fixed pointsw"=(u",u;,u,), using dimensional
analysis and the solution of E¢LO), we derive the scaling
laws

GLAN (Xt 7AWy ) = [ (=247 NI2+(c+2:+7) (N+M)/ 2+ 7gM/ 2

X G ({1,178}, 747V N W ),
(11)

where 75=y(W), 75=%W), and 7=y(W) are the

PHYSICAL REVIEW B 71, 174433(2005

X (t,t") = NG(r,t,t')/3, C(r,t,t'). (18

Forr=0, and using Eq(11) in the above equation, one has
szo(t!t,) = fx(th,IZt/,I—llVT) = fx(t/t,lllﬁ,l/(VZ))l (19)

where f,(0,1,0) is finite. In T=T,, it is easy to show that
limy o Xi=o(t,t")=XZo, which has been conformed in Ref.
23. If we insert the expansiord4) and (15) in the Green
functions GY; and G, and take into account Eq11), we
find immediately the FDR fot’ — 0, X,q(t,t') =f(7t'?).

It is independent of if t>t'. This suggests tha¢_, not only
appears fot’ — 0 but also for allt/t">1.

anomalous dimensions. The long-time critical exponents are™ |, omentum space, the following quantity related to the

determined by the relationg;=7,, z=2+(7—7n)/2 and
1/v=2-k(W").

According to the general scaling lai¢1) and 50275150,
we find the autocorrelation functio@(t) =(s(x,t)sy(x)) dis-
playing the scaling form

C(t) — tf)’—dIZfa( 7,tll(vz)), (12)

where the initial slip exponentd’ is defined by
0' =—(ns+ 75+ 1)/ (22). The RG analysis of nonequilibrium

critical relaxation also yields the scaling form of the order

parametem(t) = (s(X,1))|r=n=0, Which is expanded in powers
of my; i.e.,

m(t) - nbtﬁ’fm(n,bta’+ﬁl(vz)’ 7,tl/(uz)), (13)

where the functionf(0,0) is finite, while for x—oo,

fm(x,0)~1/x, which leads to the long-time behavior
m(t) — t_B/(VZ).4’42

FDR,

Xo(t,t') = AGp(t,t')/dy Cy(t ), (20)

is introduced’® where G(t,t') and Cy(t,t’) are the Fourier
transforms ofG(r,t,t’) andC(r,t,t"), respectively. When the
model is not at its critical point, i.ez# 0, the limit of this

ratio fort’ — is 1 for all values ofp, according to the idea
that in the high-temperature phase, all modes have a finite
equilibration time, so that equilibrium is approached
quickly and the fluctuation-dissipation theorem holds; i.e.,

Xp(t,t")=1. For the critical model, i.ez=0, the nonequilib-
rium dynamics consists in the growth of the dynamical cor-
relation length,&(t) ~t¥2 Critical fluctuation of large wave
vectors,pé(t)>1, are almost equilibrated, while those with
small wave vectorspé(t) <1, still retain their nonequilib-

rium initial condition??> As a consequenciquo(t,t’):l in

The short-time scaling behavior of correlation and re-large-time limit. It is argued that its zero-momentum long-
sponse functions can be obtained by a short-time expansidime behavior,Xi;:O:Iimt,_,\,,c limg_.. Xp=o(t,t"), is equal to

of the fieldss(x,t) ands(x,t), as done in Ref. 1. By means of
Green functiong11), one will find fort—0

s(x,t) = et/ ETF(X) + -+, (14)

3(x,1) = (1 E9F(X) + -+, (15)

the same limit of the FDR for=0; i.e.,

X2 0= X2 (21)

to all orders®® This fact allows an easier perturbative com-
putation in momentum space of the universal quarity,.
From RG arguments it is expected the functi@t,t’)

where ¢(0) and @(0) are finite quantities. The exponent andC,(t,t) scale, forp=0 andT=T, ad23

0 is defined by #=-7,/(22) and satisfies the scaling
relationz(1+6’ — 6)=2-#. By means of the Green functions
(11), one will find that two-point response function
G(x—x’,t,t’):Ggl(x,x’;t,t’) and two-point correlation
function C(x—x’,t,t’):Ggo(x,x’ ;t,t") are given by, respec-
tively,

t 6
G(r,t,t') = (d=2+n )<t_’> fo(r,t70?), (16)

t %
Cr,tt') = r‘(d‘2+’7)(t—,) fo(r,t7H02), (17)

for t” — 0, neglecting corrections due bgl.

0
Gpeolt,t') = (f) (t=t) & 2AGRG(t' D), (22)

t 4
Coolt,t') = W"?)/Zt’(t—,) (t=t")@7T22AF(t'1).

(23

Here Ag and Ac are the nonuniversal amplitudes, satisfying
the relation(1-60)X_,=Ag/Ac. The functions=¢ andF¢ are
universal withF5(0)=F(0)=1. Whereas the theory of local
scale transformations shofg(x)=1/¢ RG calculations at
two-loop order give small corrections to this sample

As already mentioned in Sec. I, the violation of the Pehavior®

fluctuation-dissipation theorem out of thermal equilibrium

can be characterized by the FDR(t,t’), defined in Eq(1).
In the present theoretical representation, @g.is rewritten
as

IV. INITIAL SLIP EXPONENTS

In this section, using the double, p) expansion, we com-
pute the Feynman graphs and determinezliactors for the
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model A with the LCQI. As a result, we obtain the Wilson . 6(3p+2e) 3 > o
functions in the two-loop approximation in the form of the u= 5n+4 2(5n+4)3[9(16_ & -5n9)p
expansion series in the renormalized vertiags,, u,. At the
two-loop level, all Wilson functions are given by +8(32 + 8+ 5n°)pe+ (80 + &+ 5n0)€”],  (31)
n+8 3n+14
- — — * * 4 - n)E 1
Bu=—eu+ u? = 6(uy + Up)u u’ + _(n+8)p+( + 9(64 + 1
i L A Ty BT C Yt
LS8 - 2+ uy2u+ Lo, + 7607+ 150%) p? + 16(64 + 481+ 720 + 5n°) pe
2 Z +(192 - 272 - 2362 - 2159 €], (32)
(24)
, puy =[(n+8)p+ (4 -n)el[4n-1)p
n+
Buy =~ eyt U = 2(Ug + Uy~ 2(ug + Up)? +(n—4)ell[2(5n + 4)7]. (33
5 5(n+2) To second order ire and p, initial slip exponents are
- 8(uy+ Up)* - E(Ul + Up) Uy — Tuzul given by
2(n=1)p+3ne 1 )
5(n + 2) p 0 = + 5[N(272 + 104 + 65n°) €
+(N+2)u(uy + Uy + (U + Up)Uy + Uy, 4Gn+4)  325n+4)
25 - 6(32 — 3 + 5877 + 5n°)pe — (64 — 3361 + 15672
n+2)(3p+2
3507 + M{[(n +8)p+(4-n)]
n+2 51n+2) , 8(5n +4)
Buzz‘(6+P)U2+TUU2‘2(U1+U2)U2‘ 35 "W 3
X[IN2 -3 1In(2 +V3)]+12(3p+ 2¢)In = ¢, (34)
5 2 5(” + 2) P 2 2
- E(ul +Uy)Up + 6 u(uy + up)u, + 5l (26)
n+2)(3p+2 n+2
p= N+ 2B+ 2 J[(16+ 1361+ 257 2
n+2 , n+2 1 , P 4(5n + 4) 16(5n + 4)
=—Uu-— + +—(uq + + =
¥e= oy W T Ul ) (U F )T L, ~ (16 - 2481+ 25n2) pe + 21602
(27) (N+2)(3p + 2¢) -
+——————{[(N+8)p+(4-n)e][In2-3In(2
Soneap L+8)p+ (4=l 23 In
n+2 4 , N+2 -
Ys=2(Up +Uy) + —5 (12 ln:—3 -1ju"- TU(ul +Up) +13)]+12(3p + 2¢)In 2}, (35)

11 p which are valid fom>1. Their values in the first order ia
+—(Up+uy)?-“uy, (28)  andp, has already been obtained in the Ref. 35. Up to two-
4 4 loop order, fom> 1 the values of the long-time exponents
z and v are consistent with the existing resuifs.
Vo= - n+ 2u _n+ 2(|n o }) 2_ &2[2 +In2-\3In(2 For the special case of the Ising-like=1), the inclusion
2 of the termu, # 0 breaks the accidental degener&¢y-3tin

6 6

= the fixed point equations whem,=0. However, the Ising
*V3)Juluy + up), (29 LCQI fixed point is unstable fop=0(e). For p=0(€*?), the
LCQI fixed point has the values of
n+2 5(n+2) , 5 5
K=———U=U~Uy~———U"~—(Ug+ Uy . 2 1,
6 2 4 U= 2 (2e+3p) + o0 (36)
5n+2
+ ( )U(Ul +Up) + BUz (30)
e ‘ U= 226+ 3p) - 12 (37)
S v

and {=(ys— 1y /2.

Equation(6) allows us to study the infrared asymptotic
properties of the Green functions which are dominated by the U= — £, Epz (39)
scaling solution of the RG equatioli24)—(26) at the stable 2 6 144 °
fixed pointsw"=(u",u;,u,). Here we are only interested in . :
the behavior is governed by the fixed point characteristic of The corresponding exponents for 1 are then given by

the LCQI system. Since Wilson functions have the combina- n=-pl48, (39
tions of u;+u, and pu,, to second order ire and p it is
convenient for the LCQI fixed point to take the form v=2/(4-€-p), (40
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1 1 4 1 1+x, 1-x
— = el - 2 — ok * -~ -~
z 2+6(s+3p)+(36+ln 3)p , (41) Fce(x) 1+2(u1+u2)(1+ . In 1+x>' (48)
_ _ and Fg(x)=1. Hereyg=0.577... is Euler’s constant. Using
0 = €l12+[1/36 -3In2+4In 3 +31In(2 +3)]p?%8, Eqg. (20), the fluctuation-dissipation ratio for the long-time
(42) limit and for finite times, are, respectively,
~ 1 n+2,
6=pld+el6-[4/9-5In2+3In(2 +\3)]p%8, (43 2 48
to second order ine. < 1 n+2, 1, ., t-t
Xp=o(t,t") = >~ 18 u 8(u1+ u,)In R (50)
V. THE LIMIT FDR Hereu",u;, U, all take one-loop values. Equatio#9) is also

The relaxation of the system from the nonequilibrium ini- obtained from the relatiofll - 6)X—o=Ag/ Ac. For one-loop

tial state is characterized by two different regirdés: tran- L3CéQI 3?3)(?(1 pth ;]n II'Eq'Sllg?l)Dllzz_('%)' for bn>1, or Egs.

sient one with nonequilibrium evolution féxt,, and a sta- (36)~(38) for n=1, the limit 'S given by

tionary one with equilibrium evolution of fluctuations for ~. 1 n+2 )

t>t,. Fort<t,, the fluctuation-dissipation theorem does not Xp=0= 5~ m@é*’ 3p), if n#1,

hold, and a dependence of the behavior of the system on

initial condition is expected. .
The aim of this section is the computation of the critical =1/2-p/8, if n=1. (5D

nonequilibrium two-point response functio@,(t,t’) and In experiments or simulations, instead of measuring

correlation functioGC(t,t’). Since we are only interested in szo(t,t’), one considers the integrated responses, i.e., the

the limit of FDR, we setr=0 and the external momentum zero-field-cooled susceptibility(zfc(t,t’)=)\f§,dt”szo(t,t”)

p=0 in the following. In order to cancel the dimensional ;n4 the thermoremanent susceptibility xym(t,t’)

poles ine, p expansion, we has to use H®) to render the

— t' gy " H
Green function finite. In the following, we skt 1 to lighten =NodU'Gp=((t,1"). At one-loop order, they are given by, re-

the notation. The dependence pmwf the final formulas may spectively,
be simply obtained by— \t, wheret is the generic time n+2 ,
variable. Using one-loop renormalization, the calculation Xzedt,t) =t -t + 22 Y (t—t'—t’ In t_'>
shows that the response functi@-q(t,t") and the correla-
tion functionC_4(t,t’) are given by, respectively, 1. . , ,
i - S+ U=t n(t-t) + ye -1, (52
n+2, t 1 ., .
Gp-o(t,t') =1+ uln———=(u +u)lin(t=t") + yl,
p—O( ) 24 t’ 2( 1 2)[ ( ) ')/E] (t t,) y n+?2 *t,<1 I t) 1( X *)[( 1)t,
, =t + u +IN—)——(U,+U -
(44) Xtrm 4 t o\t 2 Ye
—(t-t)In(t-t") +tint]. (53
+ 2 * ’ ! ! 00 !
Coo(t,t) =2t + n_u t’(ln 1, + 2) For t/t'>1 or t'—0, xum(t,t")=XZCpolt,t’), and
12 t Xzidt, 1) = X2 [Cpoolt, ) = Cpoolt, 1)1, which agree with the
.. Refs. 18 and 22.
+(Uptu)t' | L=y —In(t-t")
VI. THE CROSSOVER
t+t" t-t
+2—t,ln m] (45 As mentioned in Sec. IV, the zeros of the functions

Bw=0 forw=u,uy, U, give the fixed points’, u;, u,. Eigen-
values of the fixed points are obtained by diagonalizing the
matrix of the derivatives o, Bu,» Bu, with respect ta, uy,
u, about each of the fixed points. The critical behavior of the
system is stable for positive eigenvalues. In this section we
pay attention to the stability properties of three nontrivial
Ac=1 _}(u*l_,_ U;)J’E, (46) physical fixed pointdi.e., the pure, SCQI, and LCQI fixed
2 points, and their related crossovers.
Whenp=p, (or p=py) with

n-4 (n+2)(13n+44)
= €
n+8 (n+8)3

which are fully compatible with the expected scaling forms
(220 and (23) with one-loop exponents(2-7%-2)/z
=—(u;+U,)/2 and #=[(n+2)/24]u" *° and the new results

n+2

é, (54)

Ac=2+— U = (U) + Uy e, (47) P
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_ 4-n n(55n” - 5000 - 32) 2 55 TABLE 1. The values ofy, %, v, z, ¢, and X’_, for d=3, p
ps—4(n_1)e 512An- 1)° ' =1, andn=1,2,3,4.

for n# 1, the LCQI scaling behavior associated with the i v v z o' X
critical exponents and the limit FDR, crosses over to the
purel123 [or SCQI (see Ref. 28 behavior. Forp<pp n=1 -0.021 2.021 1.0 2.982 0.091 0.375
(or p<ps), the scaling regime governed by the pure fixed "=2 0010 ~ 1.990 1.0 2737 0207 0321
point (or the SCQI fixed pointis stable. Ifp>maxps, p,) n=3 0.019 1981 1.0 2494 0210 0.336
andp>0, the LCQI is relevant and the behavior controlled n=4 0.021 1971 1.0 2371 0214 0.344
by the LCQI fixed point is expected. These behaviors are
consistent with the modified Harris criterigh.

For the special case of the Ising-like=1), the inclusion Forn=2, the SCQI is irrelevant to the critical behavior,
of the termu, # 0 breaks the accidental degenef&&/2lin  but the crossover between the LCQI and pure critical scaling
the fixed point equations whem,=0. However, the Ising behaviors may be observed. It has been argued that the LCQI
LCQI fixed point is unstable forp=0O(e); only when is an origir¥? to this kind of crossover in Ho and Tb. Like the
p>2(6e/53)°-36¢/53 it is stable. At p=2(6e/53)'? two length scales revealed in static properties of Ho and Tb,

-36¢/53, the Ising LCQI and SCQI fixed points are coinci- dynamical scalings should be observed in the dynamical

dent, and the critical exponents as well as the limit FDRCritical scattering experimemts.

change continuously to their SCQI vali#ésg’-28 Some values of the exponents obtained in this work for
The calculation of the fixed-point stability also shows thatd=3 andp=1, are listed in Table I. The values af v, v, z

in d<4, the pure(or SCQ) fixed point is stable when is for n>1 agree with Ref. 34, but disagree with Ref. 36. For

greater(or less than a critical valuen, (or n,), given by n=4 ande=p=1, the exponeni=1.0 supports the experi-
mental values for the longer length scale, which range

3n'e (0" +2)(n'2+ 230" +60) around 1.0 in Ho and T#:3940y=1.971 is close to the lower
+ 16 144 (e=p)), limit of its measured value, which ranges between 2 and 5 in
Ho.2° For n=e=p=1, ¢ is smaller than its corresponding
(56)  pure value 0.131(see Ref. 1 and Monte Carlo value
0.1082),” but is larger than its SCQI value 0.087In the

, 3n"e 1272 -57MN"-32 Ising case, the exponent;_,=0.375 is different from the
np=n"l1- 16 T 1152 (e+4p)], pure ong0.458 and the SCQI oné0.416.2324Those values
show that the critical properties are changed by the LCQI.

nlzn’<1

(57)

with n'=4(e+2p)/(e—p) and n"=4(e+p)/(e+4p). The
LCQI fixed point is stable only in the region,<n<n;,
while for n>n; or n<n, the LCQI is irrelevant. The cross- In the following, we focus on the pole the LCQI plays in
over to the LCQI fixed point from the pure fixed point is the short-time scaling behavior. Let us first notice that both
expected ah=n,, and a further crossover to the SCQI fixed the response and the correlation functions measure the fluc-
point from the LCQI fixed point is expected atn,. When  tuations of the order parameter fields. For the short time after
p=0 (i.e., the LCQI is irrelevant one finds crossover be- quench, the LCQI scaling behaviors are governed by the ini-
tween the SCQI and pure fixed pointsratn;=n,=4(1-¢), tial slip exponent® and#’. Since the initial slip exponeni
which agrees with the result of Ref. 26. and ¢’ are positive, one expects, according to HdS), (16),

In dimensionsd=3, the SCQI is relevant only for the and(17), an initial increase of the fluctuations. The stronger
Ising model since the specific-heat exponeptof the pure  the fluctuations, the bigger the valuesédnd ¢'. Of course,
systems is positive fon=1, and is negative fon=23°Un-  the increase depends uppnd, andn. Since fluctuations are
fortunately, due to the slow crossover in dilute Isingreduced as the dimension becomes larger or the decay rate of
sytems?® it is probably difficult to measure the symptotic the LCQI correlationg becomes smalle and ¢’ decrease
exponents)’ and @ in simulations or real experiments. How- whend increases op decreases. For fixed and d, more
ever, if a system with the LCQI could be made, and if theinternal degrees of freedofitarger n) help the fluctuations
correlations of the impurities are sufficiently long ranged, theincrease, which leads to the increasefolnd 6" with in-
critical behavior governed by the LCQI fixed point can becreasingn.
well observed. As pointed out in Ref. 32, the correspondence It is interesting to compare the initial critical increase af-
between the nature of defects and the valug afould be fected by the LCQI with that by the SCQI, long-range inter-
established by the polishing procedure. Using the surfacection (LRI), and cubic anisotropy. The LRI decaying as
treatment, the behavior described by the LCQI fixed point @ corresponds to the added tetar 2)(V®%s)? in Eq. (3).
may be displayed in some crystalline mixtures of the Ising-The stable regions of the LCQI, SCQI, long-range interac-
like uniaxial antiferromagneie.g., Fek, MnF,) with a non-  tion (LRI), and cubic anisotropy ar@,<n<n;, n<4,
magnetic materiale.g., Znk). The occurrence of the LCQlI o<2-7, andn>n,, respectively. Here n.<4. The ef-
in these mixtures is due to the elastic interaction of defécts. fect of the pure LRI on initial critical increa8és similar to

VII. DISCUSSION AND CONCLUSIONS
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TABLE II. The values of#’ for d=3 andn=1 togetherg,, in sal scaling functior-c(x) in Eq. (48) has received a greater

Refs. 8 and 26 andj, in Refs. 1 and 6. contribution than its pure and SCQI oA&%for any givenx,
which should be observable in the simulations.
p=20-d 01 0.3 0.6 0.9 1 Unlike the case below the critical temperatiig at criti-
H !
o 00334 00840 00861 00896 0.0911 cality, for the pure ferromagnet systems, the FRR(t,t’)

i i i i - 1) 18
00117 00330 00611 00863 0.0868 is r_lotafunctlon of_the correlatlo_n fL{nctlcm(r 0,t,t").*° It
sf is instead a function of the ratit/'t’. In the presence of
0,’) 0.0202 0.0548 0.0954  0.1261 0.1306 . . . Y N

impurities, our results confirm this; i.eX,-o(t,t") is only
dependent of the ratit/t’. However, since the correlation

that of the LCQI for smaller. However, for larger, when  and response functions are expected to scale®4’

n exceeds some threshold value, the effect of the mean fie'Qszo(t,t’):t’(z"?)/zfc(t/t’) and szo(t,t’)=t’(2"7‘2)’zfg(t/t’)

is much stronger than in the case with LCQI, and then lead : LT 7
to the decreasing of the fluctuations of the initial increase.EWhere the scaling function&,(x) and fg(x) both vary as

For givend andn, @' increases slowly as increases. While ~x" for x>> 1], respectively, and if the normalized two-point
in the LRI systems withofitor with® SCQI or with cubic ~ correlation
anisotropy,*° it increases more quickly to its corresponding  _ _ _
short-range valuég-28if keeping 0< p=20-d<1. For in- C(t,t') = Cpglt,t)/Cpmg(t,t) = (/) 272 (t/1)/ (1)
stance, in d=3, the values of # corresponding to 5 B
p=0.1,0.3,0.6,0.9,1 fon=1,5 arelisted in Table Il and s introducedX,=(t,t') can be expressed as a function®f
Table Ill, respectively, with their corresponding nonrandom: Xt ) =X T C ()], Thus. Xeen(t t) =X._[C
values ,° SCQI valuesg,>2® and cubic values,,,’*° 8., Xp=olt, ) p=al Cpmolt, )] THUS, Xox(t, 1) =Xe=o CIY
=0,t,t")] if C(r=0,t,t")=C(r=0,t,t')/C(r=0,t,t').

0[

sr
For fixedd and o, the exponent®’ and 6., are all smaller

than 0,’3, as in Table Il and Ill. That is because the SCQl and Is the amplitude ratioX,—o(t,t") or X,-o(t,t') related to
cubic anisotropy impede the formation and development o&quilibrium quantities? This remains an interesting open
the order parameter, and then decrease the initial critical inquestior?®*° In Ref. 37, Franzt al. have shown the FDR
crease. However, in the presence of the LCQI, the situatiodX,_o(t,t’) is linked to the Parisi functiorP(q) through the
seems delicate. Ip=20-3, §'> ¢, for largen. Whenn=1,  relation X—o(@)=/3dq'P(q") if  X_o(t,t")=Xo[C(r
0 > 0;) for smallp, but for largep one can reach the opposite =0,t,t")], whereP(q) is the overlap probability distribution
effect. This could be explained by assuming that the LCQIlin equilibrium state. This relation holds for some domain-
suppresses the effect of the mean fields due to largs to  growth models and continuous spin-glass modetge that it
n=1, in Eq.(6) the SCQIg; is generated by the LCQd,  does not hold for models with a threshold as thepin) at
even ifg;=0. In the case witlg, # 0, the fact thag, has a  low temperaturé® For the pure ferromagnetic modavhich
tendency to impede the growing of the order parameter leads described by the Hamiltoniaf8) without impuritied, the
to slowly increasing o' fact that the system has two degenerate minima of the poten-
Our static and dynamical results, in principle, may betial is responsible for the nontriviaP(q) at the low-
tested by some experiments in the magnetic systems such gsmperature phasé Whereas for the critical dynamics, since
Ho and Th, or random Ising-like uniaxial antiferromagnets,the double well potential does not exist, it is not easy to find
in particular, in these systems with straight dislocation linessome P(q) related toX,—,. Only for two-dimensionalXY
of random orientation in a sample. Examination of the initial odel without impurities, a nontrivial Parisi function is

exponentd’ may be carried out by short-time Monte Carlo found, but it has to be generalized to finite-time and finite-
simulations® The numerical evaluation of the limit FDRZ,  size dependenciés.
may be obtained as the slope of the integrated reponse func- However, the situation is different if impurities are intro-
tion when plotted versus the correlatidd(r=0,t,t") or  gyced in the systems. As it was shown in Refs. 51 and 52, at
Cp=o(t, ') by the large-scale Monte Carlo simulatiofi$?In  the critical point the system with SCQI has a macroscopic
addition the simulation of the Ising-Glauber model may givenumber of the local minima solutions of the saddle-point
a direct measurement of the FDR_((t,t’) for any timet equation corresponding to the Hamiltoni&d) for 7+ ¢(x)
andt’ <t.2! To one-loop order, since the LCQI fixed pointis <0. In each of these solutions, one finds two local minimum
stable wherp>2(6¢€/53)'/2 for the Ising system, the value of configurations of the field(x), which is different in the pure
X/~ is smaller than its pufé and SCQI oned! The univer-  case, wherein the solution of the saddle-point equation is
unique. The fluctuations of the SC@(x) <0 can lead to
TABLE III. The values ofé’ for d=3 andn=5 togetherf,,in  realization in a system of numerous regions with) # 0
Ref. 7 andg, in Refs. 1 and 6. displaying through the numerous local minimal energy con-
figurations separated from the ground state by finite barriers.
p=20-d 01 03 06 0.9 L In order to get the Parisi function, one should integrate in an
o 0.1758  0.1889 02045 02152 0.2178 RG way over fluctuations around the local minima configu-
o 0.0183 00573 01176 01763 01895 rations. For the case with LCQI, the situation is similar to the

cub H H
o 00186 00589 01220 01838 01980 C2S€ with SCQI, but may be more complicated. As a result,

P for T=T,, it is expected thaX,_q(t,t") or ipzo(t,t’) will be
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corresponding to the combination of many nontrivial Parisinentsé’ and # governing the scaling behavior characteristic
functions that may be dependent of local minima configuraof the LCQI in the short-time regime are computed to second
tions. order ine andp. Up to the first order irg, p, the limit FDR

The model discussed here also helps to investigate thg”  which is the universal characteristic of nonequilibrium
scaling properties of polymers. In the limit-0, the equi-  dynamics, is computed at criticality. We also obtain thg)
librium behavior of the model discussed here is mapped @xpansion for the response and correlation functions, and the
the Stg‘;'anal properties of polymers in porous media Withiniegrated responses for vanishing external momentum. Our
LCQI,>* which described a model of self-avoiding walks in a yoqjts show that the LCQI exerts a strong influence on the
randomly.d[luted Iatpc_e. From Eq454) and (5.5),. in the short-time dynamics fop>maxp,,ps) (0Or n,<n<ny). In
polymer limit n—0, it is found that the SCQI is irrelevant d<4, the pure(or SCQ) fixed point is stable only when is

for self-avoiding walks or polymers as long as<-e. If o .
p>—el2+112/64 andp >0, the LCQI is relevant for poly- greater(or lesg than a critical valuen; (or ny), or is stable
X for p<p, (or p<py). Our results are compared with those

mers. For the case @f=0, which corresponds to the SCQI, s _ . -
the model reproduces the well-known values of the critical®Pt@ined previously for the models without the LCQI, and it

exponent for the pure self-avoiding walk mod!. is found that although these models have some similar prop-
Further, our results also suggest many interesting lines forties in initial critical increase, the LCQI leads to new prop-

the future investigation. An important question is what areerties and modifies further the short-time behavior.

the short-time scalings and the limit FDR in disordered elec-

tron systems with LCQ[see Ref. 5%and whether the spin
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