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The theoretic renormalization-group approach is applied to the study of short-time critical behavior of the
d-dimensional spin systemssmodel Ad in the presence of quenched impurities with a long-range correlations
decaying asr−sd−rd. The asymptotic scaling laws are studied in the frame of a double expansion ine=4−d and
r with r of ordere. In d,4, the initial slip exponentsu8 of the magnetization andu of the response function,
are calculated up to two-loop order. The crossover between fixed points is obtained. The long-time limit of the
fluctuation-dissipation ratio is found in the aging regime, and its connection to equilibrium quantities is
discussed. The comparison of our results with those of other systems without long-range correlated quenched
impurities is also investigated.
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I. INTRODUCTION

For critical dynamic systems, it has traditionally been be-
lieved that universal scaling behavior exists in the long-time
regime of dynamic evolution. However, in 1989, it was dis-
covered that starting from macroscopic initial states, the
macroscopic short-time stages 0! t! tt sherett is the relax-
ation timed of dynamic processes display universal behavior
dominated by initial slip exponentsu and u8.1 In recent
years, universal short-time scalings that govern the nonequi-
librium relaxation have been found in various models.2–8 In
general, after the system initially at a high temperatureTi
with a small magnetizationm0 is suddenly quenched to the
critical temperatureTc!Ti, in the short-time regime, not
only does the order parameter show an critical initial in-
creasemstd,m0t

u8 before crossing over to the long-time be-
havior ,t−b/snzd, but it also gives the response
function Gsr ,t ,t8d,st / t8du and the correlation function
Csr ,t ,t8d,st / t8du−1 for t8→0.

The short-time phenomena are also characterized by the
nonequilibrium correlation length3 jstd s,t1/zd. The length
scalejstd is initially small and grows as time increases, ar-
riving at its equilibrium valuej=js`d,uT−Tcu−n for TùTc.
It is believed that the singularity of the temporal correlation
is essential to the short-time scaling and the scaling can
emerge in the early stage of the evolution even though all
correlations are still short ranged. As long as the spatial di-
mensiond is smaller than the critical dimensiondc, the order
parameter follows a mean-field ordering process because the
mean-field critical temperatureTc

smfd is larger than the actual
critical temperatureTc. This ordering causes an amplification
of the initial order parameter at short timest, ti ! tt, where

ti ,m0
−1/su8+b/nzd.1 For d.dc, mean-field theory applies and

there is no critical increase.
If the system does not reach the equilibrium all the re-

sponse functions and correlation functions will depend both
on the waiting timet8 sthe “age” of the systemd and the
observation timet. The distance from equilibrium of an ag-
ing system, evolving at a fixed temperatureT, may be char-
acterized the breaking of the fluctuation-dissipation theorem

in terms of the fluctuation-dissipation ratio9–11 sFDRd

Xrst,t8d = TGsr,t,t8d/]t8Csr,t,t8d. s1d

When t ,t8. tt,uT−Tcu−nz, dynamics of fluctuations are de-
scribed by the equilibrium dynamics of the system, and the
fluctuation-dissipation theorem holds and thusXrst ,t8d=1.
However, this is no longer true in the aging timet ,t8, tt.
Consequently,Xrst ,t8dÞ1 becomes a nontrivial function of
both t and t8.

Physically,Xrst ,t8d=1 is realized in the high-temperature
phasesT.Tcd after the initial quench. Since the relaxation
time is small, the system relaxes rapidly to equilibrium.12 On
the other hand, if eitherT,Tc or T=Tc, an infinite spin
system does not reach equilibrium on some finite time scale
but instead undergoes either phase-order kinetics13 or non-
equilibrium critical dynamics.1 In recent years, several
works9–12,14–18have been devoted to the study of FDR for
systems exhibiting domain growth.13 or for aging systems
such as glasses and spin glasses, showing that in the low-
temperature phase,Xrst ,t8d is a nontrivial functions of its two
arguments. In particular, for domain-growth systems, analyti-
cal and numerical studies indicate that the limit of FDR,

Xr=0
` = lim

t8→`

lim
t→`

Xr=0st,t8d, s2d

vanishes through the low-temperature phase.12,14–18It is the
slow motion of the domain boundaries that is responsible for
Xr=0

` =0. This feature can be understood from the fact that the
long-time memory of coarsening systems tends to vanish,
unlike in the mean-field glass model in which it does not, so
that Xr=0st ,t8d.0 even at long times.16 However, the situa-
tion is different for the quench from the high temperatureTi
to the critical temperatureTc!Ti, as ordered domain does
not exist. It has been argued thatXr=0

` is a new nonequilib-
rium critical quantity characteristic of the different universal-
ity class. In exactly solvable cases,11,12,18,19in various Monte
Carlo studies,18,20–22and in field-theoretical calculations,23–25

Xr=0
` has values ranging between 0 and 1/2. Using standard

renormalization group procedures, and its values ofXr=0
` for
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Osnd vector model23 is in very good agreement with numeri-
cal simulations for the two- and three-dimensional Ising
model.18,21,22

It is interesting whether and how this critical behavior is
altered by introducing in the systems a small amount of im-
purities leading to models with quenched disorder. The
theory of second-order phase transitions in the presence of
quenched impurities was worked out and developed by the
authors26–29 for the case of short-range correlated quenched
impuritiessSCQId. It is consistent with the Harris criterion,30

which states a random transition-temperature system pos-
sesses the same critical exponents and critical properties as
the corresponding pure system ifap=2−dnp is negative
swhere ap and np are the specific heat exponent and the
correlation-length exponent of the pure system, respectively,
and d is the dimensionality of the systemd. However, for
ap.0, the impurities can leads to new critical behavior.
These impurities are described by the random local transition
temperatureTcsxd, with short-range correlations in disorder
that are proportional tod function.

In 1983, Weinrib and Halperin31 extended the theory for
SCQI to the case of the long-range correlated quenched im-
purities sLCQId, which is more relevant to experimental re-
sults of interest.32 The LCQI is characterized by the correla-
tion function of the random local transition temperature
kTcsxdTcsydl−kTcsxdlkTcsydl, which falls off with distance as
a power lawux−yu−sd−rd swherer characterizes the decay rate
of the correlationsd. It was shown that forr.0, the Harris
criterion is modified to besd−rdnp−2.0, which means the
LCQI is irrelevant.31 For rø0, the LCQI is reduced as the
SCQI, and the normal Harris criteriondnp−2=−ap.0 is
recovered.

The renormalization-groupsRGd approach can be used to
investigate the case with LCQI, provided thatd−r andd are
close to 4. For the static properties, it is found that a new
fixed-point characteristic of LCQI describes a second-order
phase transition, with the correlation-length exponentn
evaluated asn=2/sd−rd,31 which is exact and holds in all
orders in perturbation theory.33 For the dynamical critical
properties, the results of Refs. 34–36 have shown that the
LCQI affects the equilibrium critical dynamics in one-loop
approximation, leading to new values of the dynamic expo-
nentz.

In this work we will analyze the short-time critical behav-
ior and the aging properties of spin systems with the LCQI.
Although the static and equilibrium dynamical critical prop-
erties of the systems with LCQI have been under intensive
theoretical and experimental study,31–36 its nonequilibrium
dynamics is less investigated. The aim of the present paper,
based on the theoretic RG approach, is to make a more de-
tailed investigation of the critical behavior of the systems
with LCQI, to give a check of the expected scaling laws, and
to predict the universal dynamical quantitiesssuch asu8 and
Xr=0

` d, which could be measured in Monte Carlo simulations
and experiments and could be used to identify a universality
class. Using a double expansion ine and r, we calculate
initial slip exponentsu8 and u in the two-loop approxima-
tion. In particular, forn=1, u8 is found to take the nontrivial
value instead of vanishing35 at first order inr. The discussion

of the crossover between fixed points modifies one-loop re-
sults in Refs. 31 and 35. The limit FDRXr=0

` is also calcu-
lated in the aging regime. It is argued that the relation be-
tweenXr=0

` and the static Parisi functionPsqd37 is dependent
on the impurities.

The paper is organized as follows. In Sec. II, the dynam-
ics of the model with LCQI is defined. In Sec. III, using the
theoretic RG approach, the asymptotic scaling laws are ob-
tained. In Sec. IV, the initial slip exponents are studied in the
frame of a double expansion ine=4−d and r, with r of
order e. The scaling behavior of the two-time response and
correlation functions for zero momentum is obtained as well
as the long-time limit FDR in the aging time in Sec. V. The
crossover between fixed points is discussed in Sec. VI. Fi-
nally, Sec. VII contains some discussion and conclusions.

II. THE MODEL

In equilibrium at temperatureT, the Osnd symmetric
Hamiltonian describing the spin systems with LCQI is given
by

Hfsg =E ddxH1

2
s¹sd2 +

t

2
s2 +

g

4!
ss2d2 +

1

2
fs2J , s3d

where s=ssid are n-component order parameter fields, and
s2=oa=1

n sisi. fsxd describes the static random-temperature
impurity with the meankfsxdlf=0 and the long-range corre-
lationskfsxdfsx8dlf=fg1+g2s−¹2d−r/2gdsx−x8d. The angular
bracketk¯lf indicates the Gaussian configuration average
with the impurities. In momentum space, the Fourier trans-
form of the LCQI correlations isg1+g2p

−r. Note that in the
case ofg2=0 or rø0, the problem reduces to the description
of the SCQI.26–28 In particular the correlation function for
LCQI with r=1 describes straight lines of impurities or
straight dislocation lines of random orientation, whereas ran-
dom planes of impurities would give tor=2.

In the absence of impuritiesfi.e., fsxd=0 or g1=g2=0g,
the Osnd symmetric Hamiltonians1d for n=4 can be used to
describe the spiral magnets Tb, Dy, and Ho, which belong to
the same universality as NbO2, DyC2, and TbAu2.

38 In the
presence of LCQI, the Os4d model was applied to x-ray and
neutron critical scattering experimentsfsuch as Hossee Ref.
39d and Tb ssee Ref. 40dg, which revealed two different
length scales for critical fluctuations. It is argued that the
emergence of the longer of the two length scales is a conse-
quence of the presence of the LCQI in the neighborhood of
the sample surface.32 In this part of the sample, a crossover
to critical behaviorscorresponding to the longer length scaled
dominated by the LCQI fixed point31 takes place, while the
bulk displays the critical behavior of the pure systems38,41

scorresponding to the shorter length scaled.
In this paper, the dynamics to be discussed has no conser-

vation law, and is called the model A dynamics,42 which is
controlled by the Langevin equation
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]ts
isx,td = − l

dHfsg
dsisx,td

+ jisx,td, s4d

where l is the kinetic coefficient. The random forcesj
=sjid are assumed to be Gaussian with a mean of zero and
correlations kjisx,tdj jsx8 ,t8dlj=2ldi jdsx−x8ddst− t8d. The
angular bracketk¯lj indicates an average with the thermal
noise.

The equilibrium critical dynamics of the Osnd model can
be generated by the Langevin equations4d and the Hamil-
tonians3d. In the following, we are interested in the nonequi-
librium relaxation from the initial states0sxd=ssx,t=0d,
which is macroscopically prepared at some very high tem-
peratureTi @Tc. This initial state with short-range correla-
tions corresponds to a distribution Pfs0g~exph
−t0eddxfs0sxd−m0g2/2j. Here m0 is a homogeneous initial
order parameter.t0 has a physically interesting fixed point
t0

* = +`, which corresponds to a sharply prepared initial state
with initial order m0 and zero correlation length.1 An initial
condition with long-range correlations may lead to different
universality class, e.g., shown for the sphere model.12

As shown in Ref. 43, the dynamics expressed in Eqs.s3d
ands4d can be cast in field theoretical form in terms of a path
integral that involves a set of conjugated variabless and s̃.
The variables̃ has a simple physical interpretation in terms
of the response field, sometimes called Martin-Siggia-Rose
response field.44 All correlation and response functions can
then be obtained by the path integral over phase space vari-
abless and s̃. The generating functional for all the nonequi-
librium connected correlation and response functions is now
given by

Wfh,h̃g = ln E Dsis̃,sdexpF− Lfs̃,sg −E ddx
t0

2
ss0 − m0d2

+E
0

`

dtE ddxshs+ h̃s̃dG , s5d

whereh and h̃ are the source fields for the fieldss and s̃,
respectively. The effective action functionalLfs̃,sg is given
by

Lfs̃,sg =E
0

`

dtE ddxHs̃Fṡ+ lst − ¹2ds+
lg

6
ss2G − ls̃2J

−
l2

2
E ddxfg1 + g2s− ¹2d−r/2gFE

0

`

dts̃sx,tdssx,tdG2

.

s6d

Here we have used a prepoint discretization with respect to
time so that the step functionQst=0d=0. The contribution
fproportional toQs0dg to Lfs̃,sg arising from the functional
determinant detfdjsx,td /dssx,tdg then vanishes.

For g=g1=g2=0, the generating functionals6d becomes
Gaussian and can be easily evaluated in momentum space.
The free response functionGp

sodst ,t8d=kspstds̃−pst8dlG and the

free correlation functionCp
sodst ,t8d=kspstds−pst8dlG are, re-

spectively,

Gp
sodst,t8d = Qst − t8dexpf− lsp2 + tdst − t8dg, s7d

Cp
sodst,t8d =

1

t + p2e−lsp2+tdut−t8u + St0
−1 −

1

t + p2De−lsp2+tdst+t8d.

s8d

III. RENORMALIZATION AND CRITICAL SCALING

With the help of Eqs.s7d and s8d, one now sets a pertur-
bation expansion ordered by the number of loops in the
Feynman diagrams. It is convenient to consider the Dirichlet
boundary conditionst0= +` andm0=0. The general case is
recovered by treating the parameterst0

−1 andm0 as additional
perturbations. The models6d with Dirichlet boundary condi-
tions must be renormalized. For this purpose, notice that the
free correlation function simplifies to

Cp
sDdst,t8d ;

1

t + p2hexpf− lsp2 + tdut − t8ug

− expf− lsp2 + tdst + t8dgj.

The relationsṡ0sxd=2ls̃0sxd ands0sxd= s̃0sxd /t0 are invariant
under renormalization.

A dimensional analysis of Eq.s6d allows us to carry out a
double expansion ine=4−d and r, with e and r of the
same order to calculate the connected Green functions

G
NÑ

M
=ksNs̃Ñs̃0

Ml. However, the calculation results in integrals
divergent at the upper critical dimensiondc=4. To obtain a
meaningful theory, the divergence must be absorbed into the
renormalizations of the model parameter and the fields. We
will adopt the dimensional regularization with minimal sub-
traction scheme,45 and introduce renormalized quantities
through some multiplicative factors

sb = Zs
1/2s, s̃b = Zs̃

1/2s̃, s̃0b = sZs̃Z0d1/2s̃0,

lb = sZs/Zs̃d1/2l, tb = Zs
−1Ztt,

gb = Kd
−1meZs

−2Zuu, g1b = Kd
−1meZs

−2Zu1
u1, s9d

g2b = Kd
−1me+rZs

−2Zu2
u2.

Here the subscript b denotes the bare quantity
Kd=21−dp−d/2fGsd/2dg−1.

As usual, the RG equation is derived by exploiting the
fact that the unrenormalized Green functions

G
NÑb

M
=ksb

Ns̃b
Ñs̃0b

M l are independent of the external momentum
scalem. This leads to the RG equation

hm]m + zl]l + kt]t + bu]u + bu1
]u1

+ bu2
]u2

+ 1
2fNgs + Ñgs̃ + Msgs̃ + g0dgjG

NÑ

M
= 0 s10d

for the renormalized Green functionsG
NÑ

M
=ksNs̃Ñs̃0

Ml. Here
bw= um]mwu0 sfor w=u,u1,u2d andA= um]m ln Bu0 sfor A=gs,
gs̃, g0, k, z, andB=Zs,Zs̃,Z0,t ,l, respectivelyd are Wilson
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functions. The symbolu0 means thatm-derivatives are calcu-
lated at fixed bare parameters.

At the fixed pointsw* =su* ,u1
* ,u2

*d, using dimensional
analysis and the solution of Eq.s10d, we derive the scaling
laws

G
NÑ

M shx,tj,t,l,w* ,md = l sd−2+hsdN/2+sd+2+hs̃dsÑ+Md/2+h0M/2

3G
NÑ

M shlx,lztj,tl−1/n,l,w* ,md,

s11d

where hs=gssw*d, hs̃=gs̃sw*d, and h0=g0sw*d are the
anomalous dimensions. The long-time critical exponents are
determined by the relationsh=hs, z=2+shs̃−hd /2 and
1/n=2−ksw*d.

According to the general scaling laws11d and s0=t0
−1s̃0,

we find the autocorrelation functionCstd=kssx,tds0sxdl dis-
playing the scaling form

Cstd = tu8−d/zfastt1/snzdd, s12d

where the initial slip exponentu8 is defined by
u8=−shs+hs̃+h0d / s2zd. The RG analysis of nonequilibrium
critical relaxation also yields the scaling form of the order
parametermstd;ukssx,tdluh̃=h=0, which is expanded in powers
of m0; i.e.,

mstd = m0t
u8fmsm0t

u8+b/snzd,tt1/snzdd, s13d

where the function fms0,0d is finite, while for x→`,
fmsx,0d,1/x, which leads to the long-time behavior
mstd, t−b/snzd.4,42

The short-time scaling behavior of correlation and re-
sponse functions can be obtained by a short-time expansion
of the fieldsssx,td ands̃sx,td, as done in Ref. 1. By means of
Green functionss11d, one will find for t→0

ssx,td = t1−uwst/jzds̃0sxd + ¯ , s14d

s̃sx,td = t−uw̃st/jzds̃0sxd + ¯ , s15d

where ws0d and w̃s0d are finite quantities. The exponent
u is defined by u=−h0/ s2zd and satisfies the scaling
relationzs1+u8−ud=2−h. By means of the Green functions
s11d, one will find that two-point response function
Gsx−x8 ,t ,t8d=G11

0 sx ,x8 ; t ,t8d and two-point correlation
function Csx−x8 ,t ,t8d=G20

0 sx ,x8 ; t ,t8d are given by, respec-
tively,

Gsr,t,t8d = r−sd−2+h+zdS t

t8
Du

fGsrtn,tt1/snzdd, s16d

Csr,t,t8d = r−sd−2+hdS t

t8
Du

fCsrtn,tt1/snzdd, s17d

for t8→0, neglecting corrections due tot0
−1.

As already mentioned in Sec. I, the violation of the
fluctuation-dissipation theorem out of thermal equilibrium
can be characterized by the FDRXrst ,t8d, defined in Eq.s1d.
In the present theoretical representation, Eq.s1d is rewritten
as

Xrst,t8d = lGsr,t,t8d/]t8Csr,t,t8d. s18d

For r =0, and using Eq.s11d in the above equation, one has

Xr=0st,t8d = fxslzt,lzt8,l−1/ntd = fxst/t8,1,tt81/snzdd, s19d

where fxs` ,1 ,0d is finite. In T=Tc, it is easy to show that
limt8→0 Xr=0st ,t8d=Xr=0

` , which has been conformed in Ref.
23. If we insert the expansionss14d and s15d in the Green
functionsG11

0 and G20
0 , and take into account Eq.s11d, we

find immediately the FDR fort8→0, Xr=0st ,t8d= f̃ xstt81/snzdd.
It is independent oft if t. t8. This suggests thatXr=0

` not only
appears fort8→0 but also for allt / t8@1.

In momentum space, the following quantity related to the
FDR,

X̃pst,t8d = lGpst,t8d/]t8Cpst,t8d, s20d

is introduced,23 whereGpst ,t8d and Cpst ,t8d are the Fourier
transforms ofGsr ,t ,t8d andCsr ,t ,t8d, respectively. When the
model is not at its critical point, i.e.,tÞ0, the limit of this
ratio for t8→` is 1 for all values ofp, according to the idea
that in the high-temperature phase, all modes have a finite
equilibration time, so that equilibrium is approached
quickly and the fluctuation-dissipation theorem holds; i.e.,

X̃pst ,t8d=1. For the critical model, i.e.,t=0, the nonequilib-
rium dynamics consists in the growth of the dynamical cor-
relation length,jstd, t1/z. Critical fluctuation of large wave
vectors,pjstd@1, are almost equilibrated, while those with
small wave vectors,pjstd!1, still retain their nonequilib-

rium initial condition.22 As a consequenceX̃pÞ0st ,t8d=1 in
large-time limit. It is argued that its zero-momentum long-

time behavior,X̃p=0
` =limt8→` limt→` X̃p=0st ,t8d, is equal to

the same limit of the FDR forr =0; i.e.,

X̃p=0
` = Xr=0

` s21d

to all orders.23 This fact allows an easier perturbative com-
putation in momentum space of the universal quantityXr=0

` .
From RG arguments it is expected the functionsGpst ,t8d

andCpst ,t8d scale, forp=0 andT=Tc, as1,23

Gp=0st,t8d = S t

t8
Du

st − t8ds2−h−zd/zAGFGst8/td, s22d

Cp=0st,t8d = ls2−hd/zt8S t

t8
Du

st − t8ds2−h−zd/zACFCst8/td.

s23d

HereAG andAC are the nonuniversal amplitudes, satisfying
the relations1−udXr=0

` =AG/AC. The functionsFG andFC are
universal withFGs0d=FCs0d=1. Whereas the theory of local
scale transformations showFGsxd=1,46 RG calculations at
two-loop order give small corrections to this sample
behavior.23

IV. INITIAL SLIP EXPONENTS

In this section, using the doublese ,rd expansion, we com-
pute the Feynman graphs and determine theZ factors for the
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model A with the LCQI. As a result, we obtain the Wilson
functions in the two-loop approximation in the form of the
expansion series in the renormalized verticesu, u1, u2. At the
two-loop level, all Wilson functions are given by

bu = − eu +
n + 8

6
u2 − 6su1 + u2du −

3n + 14

12
u3

+
11n + 58

6
su1 + u2du2 −

41

2
su1 + u2d2u +

r

2
u2u,

s24d

bu1
= − eu1 +

n + 2

3
uu1 − 2su1 + u2du1 − 2su1 + u2d2

− 8su1 + u2d3 −
5

2
su1 + u2d2u1 −

5sn + 2d
36

u2u1

+ sn + 2dusu1 + u2d2 +
5sn + 2d

6
usu1 + u2du1 +

r

2
u2u1,

s25d

bu2
= − se + rdu2 +

n + 2

3
uu2 − 2su1 + u2du2 −

5sn + 2d
36

u2u2

−
5

2
su1 + u2d2u2 +

5sn + 2d
6

usu1 + u2du2 +
r

2
u2

2, s26d

gs =
n + 2

72
u2 −

n + 2

12
usu1 + u2d +

1

4
su1 + u2d2 +

r

4
u2,

s27d

gs̃ = 2su1 + u2d +
n + 2

72
S12 ln

4

3
− 1Du2 −

n + 2

4
usu1 + u2d

+
11

4
su1 + u2d2 −

r

4
u2, s28d

g0 = −
n + 2

6
u −

n + 2

6
Sln 2 −

1

2
Du2 −

n + 2

6
f2 + ln 2 −Î3 lns2

+ Î3dgusu1 + u2d, s29d

k =
n + 2

6
u − u1 − u2 −

5sn + 2d
72

u2 −
5

4
su1 + u2d2

+
5sn + 2d

12
usu1 + u2d +

r

4
u2 s30d

andz=sgs̃−gsd /2.
Equations6d allows us to study the infrared asymptotic

properties of the Green functions which are dominated by the
scaling solution of the RG equationss24d–s26d at the stable
fixed pointsw* =su* ,u1

* ,u2
*d. Here we are only interested in

the behavior is governed by the fixed point characteristic of
the LCQI system. Since Wilson functions have the combina-
tions of u1+u2 and ru2, to second order ine and r it is
convenient for the LCQI fixed point to take the form

u* =
6s3r + 2ed

5n + 4
+

3

2s5n + 4d3f9s16 − 8n − 5n2dr2

+ 8s32 + 8n + 5n2dre + s80 + 8n + 5n2de2g, s31d

u1
* + u2

* =
sn + 8dr + s4 − nde

2s5n + 4d
+

1

16s5n + 4d3f9s64 + 16n

+ 76n2 + 15n3dr2 + 16s64 + 48n + 72n2 + 5n3dre

+ s192 − 272n − 236n2 − 215n3de2g, s32d

ru2
* = fsn + 8dr + s4 − ndegf4sn − 1dr

+ sn − 4deg/f2s5n + 4d2g. s33d

To second order ine and r, initial slip exponents are
given by

u8 =
2sn − 1dr + 3ne

4s5n + 4d
+

1

32s5n + 4d3fns272 + 104n + 65n2de2

− 6s32 − 32n + 58n2 + 5n3dre − s64 − 336n + 156n2

+ 35n3dr2g +
sn + 2ds3r + 2ed

8s5n + 4d2 Hfsn + 8dr + s4 − ndeg

3fln 2 −Î3 lns2 +Î3dg + 12s3r + 2edln
3

2
J , s34d

u =
sn + 2ds3r + 2ed

4s5n + 4d
−

n + 2

16s5n + 4d3fs16 + 136n + 25n2de2

− s16 − 248n + 25n2dre + 216n2r2g

+
sn + 2ds3r + 2ed

8s5n + 4d2 hfsn + 8dr + s4 − ndegfln 2 −Î3 lns2

+ Î3dg + 12s3r + 2edln 2j, s35d

which are valid forn.1. Their values in the first order ine
andr, has already been obtained in the Ref. 35. Up to two-
loop order, forn.1 the values of the long-time exponentsh,
z andn are consistent with the existing results.34

For the special case of the Ising-likesn=1d, the inclusion
of the termu2Þ0 breaks the accidental degeneracy26,27,31in
the fixed point equations whenu2=0. However, the Ising
LCQI fixed point is unstable forr=Osed. For r=Ose1/2d, the
LCQI fixed point has the values of

u* =
2

3
s2e + 3rd +

1

18
r2, s36d

u1
* =

1

6
s2e + 3rd −

17

72
r2, s37d

u2
* = −

e

6
+

53

144
r2. s38d

The corresponding exponents forn=1 are then given by

h = − r2/48, s39d

n ; 2/s4 − e − rd, s40d
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z= 2 +
1

6
se + 3rd + S 1

36
+ ln

4

3
Dr2, s41d

u8 = e/12 +f1/36 − 3 ln 2 + 4 ln 3 −Î3 lns2 +Î3dgr2/8,

s42d

u = r/4 + e/6 − f4/9 − 5 ln 2 +Î3 lns2 +Î3dgr2/8, s43d

to second order inÎe.

V. THE LIMIT FDR

The relaxation of the system from the nonequilibrium ini-
tial state is characterized by two different regimes:23 a tran-
sient one with nonequilibrium evolution fort, tt, and a sta-
tionary one with equilibrium evolution of fluctuations for
t. tt. For t, tt, the fluctuation-dissipation theorem does not
hold, and a dependence of the behavior of the system on
initial condition is expected.

The aim of this section is the computation of the critical
nonequilibrium two-point response functionGpst ,t8d and
correlation functionCpst ,t8d. Since we are only interested in
the limit of FDR, we sett=0 and the external momentum
p=0 in the following. In order to cancel the dimensional
poles ine, r expansion, we has to use Eq.s9d to render the
Green function finite. In the following, we setl=1 to lighten
the notation. The dependence onl of the final formulas may
be simply obtained byt→lt, where t is the generic time
variable. Using one-loop renormalization, the calculation
shows that the response functionGp=0st ,t8d and the correla-
tion functionCp=0st ,t8d are given by, respectively,

Gp=0st,t8d = 1 +
n + 2

24
u* ln

t

t8
−

1

2
su1

* + u2
*dflnst − t8d + gEg,

s44d

Cp=0st,t8d = 2t8 +
n + 2

12
u* t8Sln

t

t8
+ 2D

+ su1
* + u2

*dt8F1 − gE − lnst − t8d

+
t + t8

2t8
ln

t − t8

t + t8
G , s45d

which are fully compatible with the expected scaling forms
s22d and s23d with one-loop exponentss2−h−zd /z
=−su1

* +u2
*d /2 andu=fsn+2d /24gu* ,35 and the new results

AG = 1 −
1

2
su1

* + u2
*dgE, s46d

AC = 2 +
n + 2

6
u* − su1

* + u2
*dgE, s47d

FCsxd = 1 +
1

2
su1

* + u2
*dS1 +

1 + x

2x
ln

1 − x

1 + x
D , s48d

and FGsxd=1. HeregE=0.577. . . is Euler’s constant. Using
Eq. s20d, the fluctuation-dissipation ratio for the long-time
limit and for finite times, are, respectively,

X̃p=0
` =

1

2
−

n + 2

48
u* s49d

X̃p=0st,t8d =
1

2
−

n + 2

48
u* −

1

8
su1

* + u2
*dln

t − t8

t + t8
. s50d

Hereu* ,u1
* ,u2

* all take one-loop values. Equations49d is also
obtained from the relations1−udXr=0

` =AG/AC. For one-loop
LCQI fixed point in Eqs. s31d–s33d for n.1, or Eqs.
s36d–s38d for n=1, the limit FDR is given by

X̃p=0
` =

1

2
−

n + 2

8s5n + 4d
s2e + 3rd, if n Þ 1,

=1/2 −r/8, if n = 1. s51d

In experiments or simulations, instead of measuring
Gp=0st ,t8d, one considers the integrated responses, i.e., the
zero-field-cooled susceptibilityxzfcst ,t8d=let8

t dt9Gp=0st ,t9d
and the thermoremanent susceptibilityxtrmst ,t8d
=le0

t8dt9Gp=0st ,t9d. At one-loop order, they are given by, re-
spectively,

xzfcst,t8d = t − t8 +
n + 2

24
u*St − t8 − t8 ln

t

t8
D

−
1

2
su1

* + u2
*dst − t8dflnst − t8d + gE − 1g, s52d

xtrmst,t8d = t8 +
n + 2

24
u* t8S1 + ln

t

t8
D −

1

2
su1

* + u2
*dfsgE − 1dt8

− st − t8dlnst − t8d + t ln tg. s53d

For t / t8@1 or t8→0, xtrmst ,t8d<Xr=0
` Cp=0st ,t8d, and

xzfcst ,t8d<Xr=0
` fCp=0st ,td−Cp=0st ,t8dg, which agree with the

Refs. 18 and 22.

VI. THE CROSSOVER

As mentioned in Sec. IV, the zeros of the functions
bw=0 for w=u,u1,u2 give the fixed pointsu* , u1

* , u2
* . Eigen-

values of the fixed points are obtained by diagonalizing the
matrix of the derivatives ofbu, bu1

, bu2
with respect tou, u1,

u2 about each of the fixed points. The critical behavior of the
system is stable for positive eigenvalues. In this section we
pay attention to the stability properties of three nontrivial
physical fixed pointssi.e., the pure, SCQI, and LCQI fixed
pointsd, and their related crossovers.

Whenr=rp sor r=rsd with

rp =
n − 4

n + 8
e +

sn + 2ds13n + 44d
sn + 8d3 e2, s54d
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rs =
4 − n

4sn − 1d
e +

ns55n2 − 500n − 32d
512sn − 1d3 e2, s55d

for nÞ1, the LCQI scaling behavior associated with the
critical exponents and the limit FDR, crosses over to the
pure1,23 for SCQI ssee Ref. 28dg behavior. For r,rp
sor r,rsd, the scaling regime governed by the pure fixed
point sor the SCQI fixed pointd is stable. Ifr.maxsrs,rpd
andr.0, the LCQI is relevant and the behavior controlled
by the LCQI fixed point is expected. These behaviors are
consistent with the modified Harris criterion.31

For the special case of the Ising-likesn=1d, the inclusion
of the termu2Þ0 breaks the accidental degeneracy26,27,31in
the fixed point equations whenu2=0. However, the Ising
LCQI fixed point is unstable forr=Osed; only when
r.2s6e /53d1/2−36e /53 it is stable. At r=2s6e /53d1/2

−36e /53, the Ising LCQI and SCQI fixed points are coinci-
dent, and the critical exponents as well as the limit FDR
change continuously to their SCQI values.24,27,28

The calculation of the fixed-point stability also shows that
in d,4, the puresor SCQId fixed point is stable whenn is
greatersor lessd than a critical valuen1 sor n2d, given by

n1 = n8S1 +
3n8e

16
−

sn8 + 2dsn82 + 23n8 + 60d
144n8

se − rdD ,

s56d

n2 = n9S1 −
3n9e

16
+

127n92 − 572n9 − 32

1152
se + 4rdD ,

s57d

with n8=4se+2rd / se−rd and n9=4se+rd / se+4rd. The
LCQI fixed point is stable only in the regionn2,n,n1,
while for n.n1 or n,n2 the LCQI is irrelevant. The cross-
over to the LCQI fixed point from the pure fixed point is
expected atn=n1, and a further crossover to the SCQI fixed
point from the LCQI fixed point is expected atn=n2. When
r=0 si.e., the LCQI is irrelevantd, one finds crossover be-
tween the SCQI and pure fixed points atn=n1=n2=4s1−ed,
which agrees with the result of Ref. 26.

In dimensionsd=3, the SCQI is relevant only for the
Ising model since the specific-heat exponentap of the pure
systems is positive forn=1, and is negative fornù2.30 Un-
fortunately, due to the slow crossover in dilute Ising
sytems,28 it is probably difficult to measure the symptotic
exponentsu8 andu in simulations or real experiments. How-
ever, if a system with the LCQI could be made, and if the
correlations of the impurities are sufficiently long ranged, the
critical behavior governed by the LCQI fixed point can be
well observed. As pointed out in Ref. 32, the correspondence
between the nature of defects and the value ofr could be
established by the polishing procedure. Using the surface
treatment, the behavior described by the LCQI fixed point
may be displayed in some crystalline mixtures of the Ising-
like uniaxial antiferromagnetse.g., FeF2, MnF2d with a non-
magnetic materialse.g., ZnF2d. The occurrence of the LCQI
in these mixtures is due to the elastic interaction of defects.36

For nù2, the SCQI is irrelevant to the critical behavior,
but the crossover between the LCQI and pure critical scaling
behaviors may be observed. It has been argued that the LCQI
is an origin32 to this kind of crossover in Ho and Tb. Like the
two length scales revealed in static properties of Ho and Tb,
dynamical scalings should be observed in the dynamical
critical scattering experimemts.

Some values of the exponents obtained in this work for
d=3 andr=1, are listed in Table I. The values ofh, g, n, z
for n.1 agree with Ref. 34, but disagree with Ref. 36. For
n=4 ande=r=1, the exponentn=1.0 supports the experi-
mental values for the longer length scale, which range
around 1.0 in Ho and Tb.32,39,40g=1.971 is close to the lower
limit of its measured value, which ranges between 2 and 5 in
Ho.39 For n=e=r=1, u8 is smaller than its corresponding
pure value 0.131ssee Ref. 1d and Monte Carlo value
0.108s2d,47 but is larger than its SCQI value 0.087.28 In the

Ising case, the exponentX̃p=0
` =0.375 is different from the

pure ones0.458d and the SCQI ones0.416d.23,24Those values
show that the critical properties are changed by the LCQI.

VII. DISCUSSION AND CONCLUSIONS

In the following, we focus on the pole the LCQI plays in
the short-time scaling behavior. Let us first notice that both
the response and the correlation functions measure the fluc-
tuations of the order parameter fields. For the short time after
quench, the LCQI scaling behaviors are governed by the ini-
tial slip exponentsu andu8. Since the initial slip exponentsu
andu8 are positive, one expects, according to Eqs.s13d, s16d,
ands17d, an initial increase of the fluctuations. The stronger
the fluctuations, the bigger the values ofu andu8. Of course,
the increase depends uponr, d, andn. Since fluctuations are
reduced as the dimension becomes larger or the decay rate of
the LCQI correlationsr becomes smaller,u andu8 decrease
when d increases orr decreases. For fixedr and d, more
internal degrees of freedomslarger nd help the fluctuations
increase, which leads to the increase ofu and u8 with in-
creasingn.

It is interesting to compare the initial critical increase af-
fected by the LCQI with that by the SCQI, long-range inter-
action sLRId, and cubic anisotropy. The LRI decaying as
r−d−s corresponds to the added termsa/2ds¹s/2sd2 in Eq. s3d.
The stable regions of the LCQI, SCQI, long-range interac-
tion sLRId, and cubic anisotropy aren2,n,n1, n,4,
s,2−h, and n.nc, respectively. Here 2,nc,4. The ef-
fect of the pure LRI on initial critical increase6 is similar to

TABLE I. The values ofh, g, n, z, u8, and X̃p=0
` for d=3, r

=1, andn=1,2,3,4.

h g n z u8 X̃p=0
`

n=1 −0.021 2.021 1.0 2.982 0.091 0.375

n=2 0.010 1.990 1.0 2.737 0.207 0.321

n=3 0.019 1.981 1.0 2.494 0.210 0.336

n=4 0.021 1.971 1.0 2.371 0.214 0.344
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that of the LCQI for smallers. However, for larges, when
n exceeds some threshold value, the effect of the mean fields
is much stronger than in the case with LCQI, and then leads
to the decreasing of the fluctuations of the initial increase.
For givend andn, u8 increases slowly asr increases. While
in the LRI systems without6 or with8 SCQI or with cubic
anisotropy,7,49 it increases more quickly to its corresponding
short-range values1,7,28 if keeping 0,r=2s−d,1. For in-
stance, in d=3, the values of u8 corresponding to
r=0.1,0.3,0.6,0.9,1 forn=1,5 arelisted in Table II and
Table III, respectively, with their corresponding nonrandom
valuesup8,

1,6 SCQI valuesusr8 ,8,28 and cubic valuesucub8 .7,49

For fixedd ands, the exponentsu8 anducub8 are all smaller
thanup8, as in Table II and III. That is because the SCQI and
cubic anisotropy impede the formation and development of
the order parameter, and then decrease the initial critical in-
crease. However, in the presence of the LCQI, the situation
seems delicate. Ifr=2s−3, u8.up8 for largen. Whenn=1,
u8.up8 for smallr, but for larger one can reach the opposite
effect. This could be explained by assuming that the LCQI
suppresses the effect of the mean fields due to largen. As to
n=1, in Eq. s6d the SCQIg1 is generated by the LCQIg2
even if g1=0. In the case withg2Þ0, the fact thatg1 has a
tendency to impede the growing of the order parameter leads
to slowly increasing ofu8.

Our static and dynamical results, in principle, may be
tested by some experiments in the magnetic systems such as
Ho and Tb, or random Ising-like uniaxial antiferromagnets,
in particular, in these systems with straight dislocation lines
of random orientation in a sample. Examination of the initial
exponentu8 may be carried out by short-time Monte Carlo
simulations.5 The numerical evaluation of the limit FDRXr=0

`

may be obtained as the slope of the integrated reponse func-
tion when plotted versus the correlationCsr =0,t ,t8d or
Cp=0st ,t8d by the large-scale Monte Carlo simulations.18,22 In
addition the simulation of the Ising-Glauber model may give
a direct measurement of the FDRXr=0st ,t8d for any time t
andt8, t.21 To one-loop order, since the LCQI fixed point is
stable whenr.2s6e /53d1/2 for the Ising system, the value of
Xr=0

` is smaller than its pure23 and SCQI ones.24 The univer-

sal scaling functionFCsxd in Eq. s48d has received a greater
contribution than its pure and SCQI ones23,24for any givenx,
which should be observable in the simulations.

Unlike the case below the critical temperatureTc, at criti-
cality, for the pure ferromagnet systems, the FDRXr=0st ,t8d
is not a function of the correlation functionCsr =0,t ,t8d.18 It
is instead a function of the ratiot / t8. In the presence of

impurities, our results confirm this; i.e.,X̃p=0st ,t8d is only
dependent of the ratiot / t8. However, since the correlation
and response functions are expected to scale as1,23,48

Cp=0st ,t8d= t8s2−hd/zf̃cst / t8d and Gp=0st ,t8d= t8s2−h−zd/zf̃gst / t8d
fwhere the scaling functionsf̃ csxd and f̃ gsxd both vary as

,xu8 for x@1g, respectively, and if the normalized two-point
correlation

C̃st,t8d = Cp=0st,t8d/Cp=0st,td = st8/tds2−hd/zf̃cst/t8d/ f̃ cs1d

is introduced,X̃p=0st ,t8d can be expressed as a function ofC̃;

i.e., X̃p=0st ,t8d=X̃p=0fC̃p=0st ,t8dg. Thus, Xr=0st ,t8d=Xr=0fC̃sr
=0,t ,t8dg if C̃sr =0,t ,t8d=Csr =0,t ,t8d /Csr =0,t ,t8d.

Is the amplitude ratioXr=0st ,t8d or X̃p=0st ,t8d related to
equilibrium quantities? This remains an interesting open
question.23,50 In Ref. 37, Franzet al. have shown the FDR
Xr=0st ,t8d is linked to the Parisi functionPsqd through the
relation Xr=0sqd=e0

qdq8Psq8d if Xr=0st ,t8d=Xr=0fCsr
=0,t ,t8dg, wherePsqd is the overlap probability distribution
in equilibrium state. This relation holds for some domain-
growth models and continuous spin-glass modelssnote that it
does not hold for models with a threshold as thep spind at
low temperature.50 For the pure ferromagnetic modelfwhich
is described by the Hamiltonians3d without impuritiesg, the
fact that the system has two degenerate minima of the poten-
tial is responsible for the nontrivialPsqd at the low-
temperature phase.17 Whereas for the critical dynamics, since
the double well potential does not exist, it is not easy to find
some Psqd related toXr=0. Only for two-dimensionalXY
model without impurities, a nontrivial Parisi function is
found, but it has to be generalized to finite-time and finite-
size dependencies.20

However, the situation is different if impurities are intro-
duced in the systems. As it was shown in Refs. 51 and 52, at
the critical point the system with SCQI has a macroscopic
number of the local minima solutions of the saddle-point
equation corresponding to the Hamiltonians3d for t+fsxd
,0. In each of these solutions, one finds two local minimum
configurations of the fieldssxd, which is different in the pure
case, wherein the solution of the saddle-point equation is
unique. The fluctuations of the SCQIfsxd,0 can lead to
realization in a system of numerous regions withssxdÞ0
displaying through the numerous local minimal energy con-
figurations separated from the ground state by finite barriers.
In order to get the Parisi function, one should integrate in an
RG way over fluctuations around the local minima configu-
rations. For the case with LCQI, the situation is similar to the
case with SCQI, but may be more complicated. As a result,

for T=Tc, it is expected thatXr=0st ,t8d or X̃p=0st ,t8d will be

TABLE II. The values ofu8 for d=3 andn=1 togetherusr8 in
Refs. 8 and 26 andup8 in Refs. 1 and 6.

r=2s−d 0.1 0.3 0.6 0.9 1

u8 0.0834 0.0840 0.0861 0.0896 0.0911

usr8 0.0117 0.0330 0.0611 0.0863 0.0868

up8 0.0202 0.0548 0.0954 0.1261 0.1306

TABLE III. The values ofu8 for d=3 andn=5 togetherucub8 in
Ref. 7 andup8 in Refs. 1 and 6.

r=2s−d 0.1 0.3 0.6 0.9 1

u8 0.1758 0.1889 0.2045 0.2152 0.2178

ucub8 0.0183 0.0573 0.1176 0.1763 0.1895

up8 0.0186 0.0589 0.1220 0.1838 0.1980
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corresponding to the combination of many nontrivial Parisi
functions that may be dependent of local minima configura-
tions.

The model discussed here also helps to investigate the
scaling properties of polymers. In the limitn→0, the equi-
librium behavior of the model discussed here is mapped to
the statistical properties of polymers in porous media with
LCQI,53 which described a model of self-avoiding walks in a
randomly diluted lattice. From Eqs.s54d and s55d, in the
polymer limit n→0, it is found that the SCQI is irrelevant
for self-avoiding walks or polymers as long asrø−e. If
r.−e /2+11e2/64 andr.0, the LCQI is relevant for poly-
mers. For the case ofr=0, which corresponds to the SCQI,
the model reproduces the well-known values of the critical
exponent for the pure self-avoiding walk model.45

Further, our results also suggest many interesting lines for
the future investigation. An important question is what are
the short-time scalings and the limit FDR in disordered elec-
tron systems with LCQIssee Ref. 54d and whether the spin
systems with anisotropic LCQI are totally correlated ined
dimensions and randomly distributed in the remainingd-ed
space directions.55

In summary, short-time critical dynamics of spin systems
with LCQI is studied in doublese ,rd expansion. The expo-

nentsu8 andu governing the scaling behavior characteristic
of the LCQI in the short-time regime are computed to second
order ine andr. Up to the first order ine ,r, the limit FDR
Xr=0

` , which is the universal characteristic of nonequilibrium
dynamics, is computed at criticality. We also obtain these ,rd
expansion for the response and correlation functions, and the
integrated responses for vanishing external momentum. Our
results show that the LCQI exerts a strong influence on the
short-time dynamics forr.maxsrp,rsd sor n2,n,n1d. In
d,4, the puresor SCQId fixed point is stable only whenn is
greatersor lessd than a critical valuen1 sor n2d, or is stable
for r,rp sor r,rsd. Our results are compared with those
obtained previously for the models without the LCQI, and it
is found that although these models have some similar prop-
erties in initial critical increase, the LCQI leads to new prop-
erties and modifies further the short-time behavior.
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