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By a theoretical model consisting of Su-Schrieffer-Heeger Hamiltonian and a Hubbard term, the ground-
state and soliton excitation of an organic ferromagnetic polymerm-polydiphenylcarbene are investigated. As
the electron-phonon couplingl increases, there is a structure phase transition from a nondegenerate symmetric
phase to a twofold degenerate symmetry-breaking phase. Both of the ground-state phases are ferrimagnetic and
exhibit antiferromagnetic correlation between nearest-neighboring sites. There are domain-wall solitons de-
scribing the lattice deformation and spin envelopes describing spin localization ifl is greater than a critical
value, which depends on the electron-electronU.
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I. INTRODUCTION

Molecule-based ferromagnetic compounds have attracted
much attention since some organic ferrimagnets, such as
p-nitrophenyl nitronyl nitroxide sp-NPNNd,1–3 Dupeyre-
dioxyl sDTDAd,4–6 and 3-s4-chlorophenyld-1,5-dimethyl-6-
thioxoverdazylsp-CDTVd7 were synthesized. Recently, the
discovery of ferromagnetism in polymerized fullerenes8

stimulates renewed interest in organic ferrimagnetic systems.
The search for the mechanism of ferromagnetism in organic
materials is considerably challenging because these materials
do not involve spins of eitherd or f electrons in common
ferromagnetic materials.

From recent experimental studies of magnetic interac-
tions, well-known organic magnetic molecules with the fer-
rosantiferrodmagnetic ground state are comprised of
m-phenylene-bridged organic polyradicals. On the basis of
this fact, Mitani et al.9 proposed a theoretical scenario to
design organic high-spin polymers with the ferromagnetic
ground states by linking various radicals species through an
m-phenylene unit. A typical polymer model is shown in Fig.
1, in which coplanar benzene rings form a one-dimensional
chain through the bridging-carbon atom. The density-
function study shows that the spin densities on the bridging-
carbon atoms are parallelsferromagneticd and antiparallel
santiferromagneticd for the highest-spin and lowest-spin
states. In fact, this polymer was studied by Iwamuraet al.10

as an organic ferromagnetic polymer called
m-polydiphenylcarbenesm-PDPCd. Its ferromagnetic proper-
ties have been clarified by the periodic Kondo-Hubbard
model, in which each benzene ring has sixp electrons, while
the bridging-carbon atom has ap electron and a nonbonding
localized electron.11 The correlation betweenp electrons was
considered by the Hubbard model, and the ferromagnetic
correlation betweenp and nonbonding electrons at the
bridge sites was described by the periodic Kondo model.
Within mean-field theory, the ferromagnetic ground state was
obtained.

However, in previous works the distortion of lattice and
the electron-phononse-phd interaction was not considered
completely. It is well known that both the electron-electron

se-ed and electron-phonon interactions may have important
effect on optical, magnetic, and electric properties of real
quasi-one-dimensional materials. In polyacetylene, thee-ph
interaction induces doubly ground-state and nonlinear exci-
tationsssolitons, polarond, which play a central role in deter-
mining the electronic properties.12 In other conducting poly-
mers containing phenylene rings or quinoid rings, the
polaron and soliton are also investigated theoretically.13,14

Recently, in carbon systems, the polaron and fractionally
charged solitons or domains similar to the case of polyacety-
lene were also reported.15–17 Motivated by these theoretical
researches on hydrocarbons and carbon systems, some ques-
tions arise: are there solitons in the organic ferromagnetic
system shown in Fig. 1? Is there any relation between soli-
tons and ferromagnetism?

In this paper, we focus on the properties of the ground
state and the solitons of the system in Fig. 1. The model is
somewhat different from that in previous work.11 We assume
that four orbitals of bridging-carbon atoms issp3 hybridiza-
tion and there are two nonbonding itinerant electrons on each
bridging-carbon atom. We shall show that this assumption
will not alter the qualitative spin configuration. There are
eight itinerant electrons in a unit cell since each benzene ring
has sixp electrons. In order to produce the ferrimagnetic
ordering, the Hubbarde-e interaction should be considered.
On the other hand, to describe thee-ph interaction and lattice
deformation, the Su-Schrieffer-HeegersSSHd terms12 should

FIG. 1. Schematic structure ofm-PDPC. The notationl , i at each
site labelsith itinerant orbitals in thelth unit cell. Two dots at the
bridge site indicate two itinerant orbitals.Yl,i is the change of theith
bond length in thelth unit. Vertical dashed line labels reflection
plane.
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be included in the Hamiltonian. By using the Hartree-Fock
approximationsHFAd, we find that as thee-ph coupling in-
creases there are two kinds of ground-state phases sequen-
tially: a nondegenerate symmetric phase and a twofold de-
generate unsymmetric phase. Because of the existence of the
twofold degenerate ground state, solitons excitation can be
predicted. The domain wall describing the distortion of lat-
tice and the spin envelope describing the localization of spin
coexist. Because of the competition between thee-ph cou-
pling and thee-e interaction, the solitons exist only in a
range of thee-ph interaction, which depends on thee-e in-
teraction.

The remainder of this paper is organized as follows. The
model and the computational method are given in Sec. II.
The property of the ground state and the configuration of
soliton are studied in Sec. III. Finally, the discussion and
conclusion are given.

II. MODEL AND COMPUTATIONAL METHOD

Based on the discussion in Sec. I, the model Hamiltonian
consists of the SSH term and a Hubbard term.

H = Ht + HU + He, s1d

Ht = − o
kli ,kjl,s

tli ,kjscl,i,s
† ck,j ,s + H.c.d, s2d

HU = Uo
l,i

nl,i,↓nl,i,↑, s3d

He =
k

2o
l,i

Yl,i
2 , s4d

where Ht is the tight-binding Hamiltonian,HU is on-site
Hubbard repulsion, andHe is elastic energy.

In Eqs.s2d–s4d cl,i,s
† scl,i,sd are the creationsannihilationd

operators of electrons with spins= ↑ ,↓ on theith orbital in
the lth unit cell, respectively.nl,i,s is the number operator of
electrons.kli ,kjl labels the nearest neighbors,tli ,kj is the hop-
ping integral, andU is the on-sitee-e interaction and is as-
sumed to be common to all carbon orbitals.k is the elastic
constant of the lattice, andYl,i is the change of theith bond
length in thelth unit as shown in Fig. 1.

According to the topological structure in Fig. 1, the tight-
binding HamiltonianHt can be written explicitly

Ht = − o
l,s
Fo

i=2

7

st0 − gYl,idcl,i,s
† cl,i+1,s + st0 − gYl,8dcl,8,s

† cl,3,s

+ st0 − gYl,2dcl,1,s
† cl,3,s + st0 − gYl,1dcl−1,7,s

† scl,1,s + cl,2,sd

+ H.c.G . s5d

Here, t0 is the hopping integral without distortion of lattice,
andg is thee-ph coupling constant. Because the two orbitals
sl, 1 and l, 2d on the bridging carbon atom are orthogonal,
there is no hopping integral between them. In order to sim-

plify the problem, the hopping integralt0 is assumed to be
common to all bonds.

Because thee-e interactionU is not strong in hydrocarbon
systems, the Hartree-Fock approximationsHFAd is a good
start to study the band structure and distortion of the lattice
for this complicated Hamiltonian. For example, for other or-
ganic ferromagnetic polymer and light-emitting polymer, the
ground state and polarons are studied within the unrestricted
HFA.14,18 For carbon nanotubes and nanographite, the phase
diagrams are also investigated within the unrestricted
HFA.19,20 The e-e interaction in Hamiltonians3d can be
treated by HFA,

nl,i,↑nl,i,↓ = knl,i,↑lnl,i,↓ + knl,i,↓lnl,i,↑ − knl,i,↑lknl,i,↓l. s6d

The single-particle wave function of the system can be
expanded in site basis functions in the Wannier representa-
tion

cm = o
l,i,s

Zm,l,i
s cl,i,s

† u0l, s7d

where u0l is the true electron vacuum state,cm denotes the
mth eigenvector of the Hamiltonian, andZm,l,i

s is the expan-
sion coefficient.

We numerically solve the Schrödinger equation of the
system

− o
kli ,kjl

tli ,kjZm,k,j
s + Uknl,i,−slZm,l,i

s = em
sZm,l,i

s , s8d

knl,i,sl = o
m

soccd

Zm,l,i
s* Zm,l,i

s , s9d

whereknl,i,sl is the average with respect to the ground state,
soccd means those states occupied by electrons, andem

s is the
mth eigenvalue.

The lattice deformationYl,i can be obtained by minimiz-
ing the total energy of the system with respect toYl,i. The
spin densitykSl,i

z l can be obtained by

kSl,i
z l = 1

2sknl,i,↑l − knl,i,↓ld. s10d

The coupled Eqs. s8d and s9d can be solved
self-consistently.14,18 The starting geometry in the iterative
optimization process is usually the one with any initial val-
ues of displacementYl,i and the densityknl,i,sl. Then, by
solving Eqs.s8d and s9d, the new densityknl,i,sl is obtained.
By minimizing the total energy of the system, the new dis-
placementYl,i is also obtained. With these newYl,i and
knl,i,sl, the next iteration begins again. The stability of the
optimized geometry is always tested by using another start-
ing configuration and performing the optimization again.

In the following discussion, it is convenient to define a
dimensionless lattice deformation

yl,i = gYl,i/t0. s11d

Hence the elastic energy in Hamiltonians4d becomes
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He = t0o
l,i

yl,i
2 /pl, s12d

wherel=2g2/ st0pkd is a dimensionlesse-ph coupling con-
stant.

III. RESULTS AND DISCUSSION

We consider a periodic polymer chain that contains 30
unit cells, which have 210 carbon atoms andN=240 itinerant
orbitals and electrons. We solve Eqs.s8d and s9d self-
consistently. Because there are no reliable experimental data
for the parameters in Hamiltonains1d, we take parameters
similarly to the case of polyacetylene,12,21 in which the Hub-
bard energyU,4t0 and thee-ph coupling l,0.37. In the
following discussion, the hopping integralt0 is chosen as the
unit of energy. The band structure is shown in Fig. 2 forU
=0 and 1.0,l=0.2. ForU=0, we get eight energy bands with
spin degeneracy. The two localized bands with zero energy
are just at the Fermi surface and are highly degenerate. In the
half-filling case, just half of these two highly degenerate
bands are occupied by up-spin and down-spin electrons
equally. So the ground state is nonmagnetic forU=0. For
finite U, the spin degeneracy of eight energy bands are re-
moved. The electron band spectra contains eight up-spin en-
ergy bands and eight down-spin energy bands. In half-filling
case, the lowest three down-spin bands and five up-spin
bands are filled in the ground state. Consequently, the total
spin per unit cell isS=1 and the ground state is ferrimag-
netic.

It is well known that because ofe-ph interaction, one-
dimensional systems undergo the Peierls distortion. Figure 3
shows the distortion of latticeyl,i defined in Eq.s11d as a
function of thee-ph couplingl. It is seen that asl is small,
the deformationsyl,1=yl,2, yl,4=yl,5 are positive, whileyl,3
=yl,6, yl,7=yl,8 are negative. The positive and negative distor-

tions indicate protraction and contraction of the relevant
bonds, respectively. If thee-ph coupling is not considered,
the skeleton in Fig. 1 has the point symmetry with vertical
reflection plane. Apparently, forl,0.28, the point symme-
try in Fig. 1 is conserved, although with increasingl the
distortion is enhanced. Asl increases continuously to a criti-
cal valuelc=0.28, the distortion is not symmetric, namely,
yl,1Þyl,2, yl,4Þyl,5, yl,3Þyl,6, yl,7Þyl,8. This point symmetry
is broken, although the translation symmetry with a period of
seven sites is conserved. The result in Fig. 3 indicates that as
l increases there exists a structural phase transition from the
symmetric SY phase with reflection symmetry to the
symmetry-breakingsSYBd phase. This behavior is quite dif-
ferent from that in polyacetylene, in which the Peierls distor-
tion induces the spontaneous translation symmetry breaking,
namely, dimerization.

Thee-e interaction may have significant effect on the dis-
tortion. In polyacetylene, with increasingU, the dimerization
has a maximum at a definite value ofU.21 However, in the
present case, the feature of the distortion is quite different.
Figure 4 shows the distortionyl,i as a function ofU for l
=0.2 and 0.32. It is seen that forl=0.2, the ground state is
always sSYd phase and the reflection symmetry in original
lattice is kept although the distortions of different bonds are
different as thee-e interactionU increases. Forl=0.32 and
U,2.7, the ground state is the SYB phase. AsU increases
continuously toU=2.7, the reflection symmetry is recovered.
Comparing Fig. 3 to Fig. 4, one can find that there exists
competition between thee-ph coupling l and thee-e inter-
action U. The former favors the appearance of the SYB
phase and the latter suppresses it. Figure 5 gives a phase
diagram that shows two kinds of ground-state phases. AsU
is small, the criticale-ph coupling lc is nearly independent
of U and the appearance of SYB is mainly determined byl.
As U.1.8, with increasingU, it needs a greaterlc to induce
the SYB phase.

Now, we discuss the spin configuration in these two kinds
of ground states. Figure 6 shows the spin densitykSl,i

z l at
eight orbitals in a unit cell. AsU is very small, there is no net
spin at orbitals 3, 5, and 7. With increasingU, down-spins
appear at these sites, while up-spins at orbitals 1, 2, 4, 6, and

FIG. 2. Energy band structure of itinerant electrons forU=1.0
and 0,l=0.2. t0 is the unit of energy.

FIG. 3. Dimensionless change of bond lengthyl,i defined in Eq.
s11d salso refer to Fig. 1d as a function ofl for U=1.0.
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8 increase. There exist antiferromagnetic correlations be-
tween nearest neighbors, which are enhanced by the Hubbard
electron-electron repulsion. Apparently, forl=0.2, the spin
densities have the symmetric property of the ground-state SY
phase and their values are consistent with previous Kondo-
Hubbard model.11 For l=0.32 andU,2.7, the ground state
is the SYB phase. In Fig. 6sbd, the spin density at orbital 4 is
quite different from that at orbital 6, although they are the
same in Fig. 6sad. As U.2.7, the spin density is redistributed
with reflection symmetry.

In polyacetylene, thee-ph interaction induces a twofold
ground state so soliton excitations exist. In the present
model, as thee-ph coupling increases there are two kinds of
ground-state phases SY and SYB, sequentially. Apparently,
the symmetricsSYd phase is not degenerate so no soliton can
be predicted. However, the symmetry-breakingsSYBd phase
is twofold degenerate. Let us discuss it. In fact, the
symmetry-breaking distortions have two distinct patterns,
both of which have the same energy. One has the bonding
structure as shown in Fig. 3 forl.0.28 and is calledA
phase. If the bonding structure inA phase is changed by
reflection operation, namely,yl,1↔yl,2, yl,4↔yl,5, yl,3↔yl,6,

yl,7↔yl,8, then another patternB phase is obtained. In this
notation,↔ denotes exchanging the values of its two ends.
Hence the soliton excitation can be predicted in case of the
SYB state. Figure 7 shows the distortionyl,i when the soliton
configuration appears. The domain wall in the middle of the
chain has a width of about two unit cells. By the two sides of
the domain wall areA phase andB phase except at the
boundary of the chain, which bonding structures have the
relationyl,1↔yl,2, yl,4↔yl,5, yl,3↔yl,6, yl,7↔yl,8.

The spin configurations are quite different in cases with
and without a domain wall. Figure 8 shows the distribution
of the spin densities along the polymer chain for eight orbit-
als. One can find that spin envelopes form in the middle of
the chain. The spin densities by the two sides of the envelope
sor in A phase andB phased are the same for orbitals 1, 2, 5,

FIG. 4. yl,i as a function ofU for l=0.20 and 0.32.

FIG. 5. Phase diagram showing two kinds of ground-state
phases: symmetrysSYd and symmetry-breakingsSYBd.

FIG. 6. Spin densitykSl,i
z l on eight orbitals in a unit cell as a

function of U for l=0.20 and 0.32.

FIG. 7. yl,i shows the change ofith bond length in thelth unit
for U=1 andl=0.32. The domain wall with a width of two unit cell
appears in the middle of the chain.
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and 8. This is nothing but the reflection symmetry of the
bonding structures and spin density ofA phase andB phase.
Since orbitals 1, 2, 5, and 8 are on the reflection plane and
not changed by the reflection operation, the spin densities at
these orbitals are not changed by the reflection operation. For
other orbitals 3, 4, 6, and 7, the spin densities inA phase and
B phase have the relation:kSl,3

z l↔ kSl,7
z l, kSl,4

z l↔ kSl,6
z l. Be-

cause the twofold degenerate ground state is an essential pre-
requisite for the existence of solitons, the solitons exist only
for l.lc, which depends onU as the ground-state SYB
phase does.

It is worthy to note that the structural phase transition here
is different from the previous one-dimensionals1Dd Peierls
transition because of the special topological structure in the
present model. Let us discuss it. ForU=0, in the 1D model,
the Fermi surface is atk=p /2 for the half-filling case so that
the gap appears atk=p /2 and the lattice is dimerized be-
cause of Peierls transition. If the Fermi surface is not atk
=p /2 se.g., for other filling cases or other quasi-1D latticesd,
the lattice does not dimerize, but probably goes to an incom-
mensurate ground state. In the present model, forU=0, the
two localized bands with zero energy are just at the Fermi
surface and are highly degenerate. The Fermi wave vectorkF
is not at a definite point in Brillouin zone. As a result, if we
considere-ph coupling, following the picture of Peierls tran-
sition, the gap does not appear and the lattice will not dimer-
ize or go to an incommensurate ground state because the
Fermi wave vectorkF cannot be determined completely.

However, because of thee-ph couplingl, the lattice distor-
tion still appears by minimizing the total energy of the sys-
tem. For U=0, we get the symmetric phase forl,lc
=0.277 and the symmetry-breaking phase forl.lc frefer to
Fig. 5g. The behavior of the lattice distortion is similar to Fig.
3. Although the lattice distortion appears, the lattice period is
still seven sitesseight orbitalsd. This is different from the
previous 1D Peierls transition, in which the lattice period
doubles the original period because the Fermi surface is at
k=p /2. When thee-e interactionU is turned on, the two
localized bands at the Fermi surface split into two up-spin
and two down-spin bands with very small bandwidths. The
gap appears, and the ground state is ferrimagnetic. The im-
portant physics in this model is that there is a structural
phase transition, which is induced by thee-ph coupling l
and affected by Hubbard repulsionU. The gap behavior in
this model is quite different from the previous 1D Hubbard-
Peierls model. In present model, the gap is induced byU and
increased slightly byl. Because the Fermi surface is just at
the highly degenerate flat band, thee-ph coupling l cannot
independently induce the gap as it does in the previous 1D
Peierls transition.

In conclusion, by using a theoretical model consisting of
SSH Hamiltonian and Hubbard repulsions, we have studied
the ground-state and soliton excitation for an organic ferro-
magnetic polymerm-PDPC. As thee-ph coupling l in-
creases, there are two kinds of ground-state phases, both of
which are ferrimagnetic and exhibit antiferromagnetic corre-
lation between nearest-neighboring sites. Asl is small the
ground state is a nondegenerate symmetric phase, whereas
whenl is larger than a critical valuelc, the ground state is a
twofold degenerate symmetry-breaking phase. Because of
the existence of the SYB phase, there are domain-wall soli-
tons describing the lattice deformation and spin envelopes
describing spin localization. Because of the competition be-
tween thee-ph coupling and thee-e interaction, the SYB
phase and solitons exist only forl.lc, which depends on
U. The calculated spin densitiesssee Fig. 6d in the present
model are consistent with the previous Kondo-Hubbard
model in Ref. 11, in which the estimated values of the spin
densities are consistent with electron-nuclear double-
resonancesENDORd experiments. However, the structural
transition found in our model has not been reported experi-
mentally. The calculated results could allow for the discov-
ery of the structural transition and solitons in this system
experimentally.
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FIG. 8. Spin densitykSl,i
z l on the ith orbital in thelth unit for

U=1 andl=0.32. The spin envelopes appear in the middle of the
chain.
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