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An efficient scheme for evaluating the critical temperatures of ferromagnetic, antiferromagnetic, and ferri-
magnetic crystals with multiple sublattices is presented. The approach is based on a pairwise Heisenberg
Hamiltonian and a random-phase approximationsTyablikov’s decouplingd for magnon Green’s functions. The
pair exchange interactions are derived from self-consistent electronic structure calculations using a magnetic
force theorem. The developed technique is applied to hexagonal gadolinium and its selected intermetallic
compounds GdX sX=Mg,Rh,Ni,Pdd with CsCl and CrB structures. The calculated critical temperatures are
quite sensitive to a neglect of the nonmagneticsXd element; their values are in a fair agreement with
experiment.
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I. INTRODUCTION

Before the era of relatively fast and cheap computers, the
description of solid state was possible only within crude ap-
proximations or using model approaches. These model ap-
proaches were successful from many aspects. However, their
parameters remained undetermined, or in better cases, they
had to be obtained by fitting experimental data.

The Heisenberg model Hamiltonian has been introduced
in the first half of last century. Since then it has often been
used for evaluation of finite temperature magnetic properties
of different systems. A number of approximations have been
devised to its treatment. The simplest one is the mean-field
approximationsMFAd. It allows us to obtain critical tempera-
tures and magnetizations very easily. However, it is known,
that it overestimates the exact critical temperature given by
the model.

On the opposite side, there are Monte Carlo simulations,
which, if introduced properly, can lead to exact results of the
Heisenberg model. Unfortunately, these methods are rather
demanding from the point of view of computer resources,
particularly, when there is a large number of parameters, i.e.,
for long-range exchange interaction, which occur in metals.

An approximative method better than MFA is based on
random-phase approximationsRPAd. This method employs
the Green’s functions technique. Its central idea is a decou-
pling of higher order Green’s function in the equation of
motion. RPA was introduced for spin 1/2 by Tyablikov1 and
later extended and generalized by Callen2 for Bravais lattices
with general spin quantum number. While it does not de-
scribe correctly all details of low-temperature behavior, it
performs much better than MFA. An important property of
RPA is, that for positive exchange interactions, RPA critical
temperature is lower than the exact critical temperature.3 It

means, that combining MFA with RPA provides an upper and
lower bound of critical temperaturessalthough, one would
naturally expect, that RPA result is closer to the exact resultd.

In recent years, interest for model hamiltonians is increas-
ing due to the possibility to obtain values of their parameters
from modern parameter-free theory of electronic structure of
solids. The enormous growth of computer power allows to
perform rather realisticab initio bandstructure calculations at
the zero temperature within density functional theory.4 Reli-
able nonzero temperatureab initio calculational schemes5

remain an unsolved task and quantum Monte Carlo methods6

are still too demanding on the computer time to be practical.
But we can relatively easily calculate model parametersab
initio and then study nonzero temperature properties within
the given model. This has been demonstrated by a number of
authors for finite-temperature properties of ferromagnetic
transition-metal-based systems studied within the classical
Heisenberg Hamiltonian.7–13 The concept of local magnetic
moments in metallic systems is justified by an adiabatic
approximation14,15 valid especially for systems with well-
developed magnetic momentssMn, Fed.

Theoretical investigations of nonzero temperature proper-
ties sspecific heat, susceptibility, resistivityd of rare-earth-
based systems employed the crystal-field Hamiltonian during
the last decade.16–19 Recent studies have indicated that the
classical Heisenberg model can serve as a good starting point
for quantitative estimations of their magnetic transition
temperatures.20,21

In the rare-earth metals and intermetallic compounds, the
exchange interactions are usually of the Ruderman-Kittel-
Kasuya-YosidasRKKY d type.22 These interactions are long
range and this leads to a vast number of non-negligible
Heisenberg Hamiltonian parameters. This is a difficult task
for Monte Carlo simulations and thus the RPA would be a
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very useful tool. Although in the published literature there
are works describing the RPA approach to fully compensated
antiferromagnets,23,24 to our best knowledge, the RPA for-
malism has not yet been described in sufficient detail and
generality for the case of multiple-sublattice magnetic struc-
tures containing nonequivalent sublattices.

The extension to multiple sublattice cases turned out to be
nontrivial and it is the main topic of this paper, which is
organized as follows. The formalism is given in the Sec. II
and the method of solution of the RPA equations is described
in the Sec. III. In Secs. IV and V we apply the developed
formalism to selected Gd-based compounds. First, in Sec. IV
we briefly describe the method we used to obtain exchange
parameters and in Sec. V we use them to evaluate the critical
temperature within the MFA and the extended RPA formal-
ism. Finally, in the Appendix we give a proof for a multiple
sublattice structure, that the RPA provides lower critical tem-
peratures than the MFA.

II. FORMALISM

The isotropic Heisenberg Hamiltonian can be written in
the following form:

Ĥ = − o
i j ,AB

Jij
ABŝi,A · ŝj ,B − o

i,A
bAŝi,A

z , s1d

whereJij
AB are exchange parameters;i , j are unit cell indices;

A,B are sublatticesbasis sited indices;bA is proportional to
the magnetic field parallel to thez axis at basis siteA; and
ŝi,A;sŝi,A

x , ŝi,A
y , ŝi,A

z d are spin operators operating in unit celli
on basis siteA. SA is then the magnitude of the spin at basis
site A. The crystal periodicity is reflected in the relation
Jij

AB=Ji−j ,0
AB ; the on-site exchange parameters are zeroJii

AA=0.
The developed formalism is based on Green’s function

technique. We define thesretardedd Green’s functionsana-
logically to Callen2d

Gij
ABsa;td = −

i

"
Qstdkfŝi,A

+ std,expsaŝj ,B
z dŝj ,B

− gl, s2d

wherea is an auxiliary parameter andfX̂,Ŷg=X̂Ŷ−ŶX̂ is a
commutator. Hereŝi,A

± = ŝi,A
x ± iŝi,A

y ; their time dependence is
understood within the Heisenberg picture.Qstd is a step
function, i.e.,Qstd=1 for tù0, zero otherwise. The mean

value in Eq. s2d means kÂl=TrfrÂg=Trfexps−bĤdÂg /

Trfexps−bĤdg with Ĥ being the Heisenberg Hamiltonian,
Eq. s1d, andb=1/kBT with kB being the Boltzmann constant
andT a temperature.

The equation of motion for the Green function leads to

]

]t
Gij

ABstd = −
i

"
dstdkfŝi,A

+ ,expsaŝj ,B
z dŝj ,B

− gl −
1

"2Qstd

3kffŝi,A
+ std,Ĥg,expsaŝj ,B

z dŝj ,B
− gl. s3d

The double commutator can be easily evaluated and
after the RPA decoupling according to Tyablikov1

kfŝi,A
+ ŝj ,B

z ,X̂s−tdgl<kŝj ,B
z lkfŝi,A

+ ,X̂s−tdgl we get closedsbut in-
finited set of equations for the Green’s function

]

]t
Gij

ABsa;td = −
i

"
dstdkfŝi,A

+ ,expsaŝj ,B
z dŝj ,B

− gl

+
2i

"
o
k,C

Jik
ACfkŝi,A

z lGkj
CBstd − kŝk,C

z lGij
ABstdg

−
i

"
bAGij

ABsa;td. s4d

This infinite set of equations can be reduced to a finite set
taking an advantage of the translation symmetry of the crys-
tal. After performing Fourier transformation in timefFsvd
=esdv /2pde−ivtFstdg and a lattice Fourier transformation
fFABsqd=ole

−iq·RlFl0
ABg, our set of equations reduces to

s"v − bAdGABsa;v,qd =
1

2p
kfŝA

+,expsaŝB
zdŝB

−gldAB

− 2o
C

hJACsqdkŝA
zlGCBsa;v,qd

− JACs0dkŝC
z lGABsa;v,qdj s5d

or in the more matrixlike form we can write

o
C
H"vdAC − dACSbA + o

D

2JADs0dkŝD
z lD

+ kŝA
zl2JACsqdJGCBsv,qd

=
1

2p
kfŝA

+,expsaŝB
zdŝB

−gldAB. s6d

For convenience, we define a matrixNsqd

NABsqd = dABSbA

2
+ o

C

JACs0dkŝC
z lD − kŝA

zlJABsqd. s7d

With the help of this matrix we can express the Green’s
function in the following form:

GABsv,qd =
1

2p
kfŝA

+,expsaŝB
zdŝB

−glfh"v1 − 2Nsqdj−1gAB.

s8d

The fluctuation-dissipative theoremsFDTd states that25

kŶX̂stdl = −E dveivt
2" Im G

X̂Ŷ

srd svd

eb"v − 1
. s9d

Application of FDT for X̂; ŝA
+ and Ŷ;expsaŝA

zdŝA
− at t

=0 leads to the linear relation between the mean value of
product of operators and their commutator

kexpsaŝA
zdŝA

−ŝA
+l = kfŝA

+,expsaŝA
zdŝA

−gllA, s10d

wherea-independent parameterslA can be expressed using
Eqs.s7d–s9d as
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lA = −
1

V
E dvE dq

2" Imhfs"v + i0+d1 − 2Nsqdg−1jAA

eb"v − 1

=
1

V
E dqo

B

UABsqd
1

e2bnBsqd − 1
U BA

−1sqd, s11d

where columns ofUsqd are right eigenvectors of non-
Hermitean matrixNsqd and nBsqd are corresponding right
eigenvalues;V is the volume of the first Brillouin zonesBZd.

The last equation in expressions11d holds only if all ei-
genvalues ofNsqd are realsfor all qd and if there exists an
eigenvector for each eigenvalue. These conditions coincide
with the physical requirements, that poles of Green’s func-
tion must be real and of first order. Violation of these condi-
tions spoils the formalism and indicates, that the assumed
collinear magnetic structure is not consistent with the ex-
change interactionsJij

AB entering the calculation.
By writing Nsqd=SKsqd, where SAB=dABkŝA

zl and
KABsqd=oCJACs0dskŝC

z l / kŝA
zld−JABsqd we can rewrite the

eigenproblemswe drop theq dependence for a whiled Nx
=nx into an equivalent generalized eigenvalue problemKx
=nS−1x, where matricesS andK are HermiteansS is more-
over diagonald. From the basic properties of the generalized
eigenvalue problem we can conclude, that for ferromagnets
all eigenvalues are realsbecauseS−1 is then positive defi-
nited, while for antiferromagnets and ferrimagents this is not
guaranteed. Therefore for antiferromagnets and ferrimagnets
we always need to check, whether all the eigenvalues are
real.

We define an auxiliary functionFAsad;kexpsaŝA
zdl. Then

ksŝA
zdnl= us]adnFAsadua=0. Using this function after straightfor-

ward but lengthy operator-algebra manipulations we can re-
write Eq. s10d into a differential equation forFAsad2

FA9sad + FA8sad
lAe−a + slA + 1d
lAe−a − slA + 1d

− FAsadSAsSA + 1d = 0.

s12d

It is interesting to note, that these differential equations
are fully independent, but their solutions are coupled through
a-independentlA constants, which depend onkŝA

zl of all sub-
lattices. This independency of resulting differential equations
allowed us to use basis-site independent parametera in the
definition of Green’s functions2d.

Under the boundary conditions

FAs0d = 1, s13d

p
m=−SA

SA

us]a − mdFAsadua=0 = 0 s14d

this differential equation has a known unique solution2

FAsad =
lA

2SA+1e−aSA − s1 + lAd2SA+1esSA+1da

flA
2SA+1 − s1 + lAd2SA+1gfs1 + lAdea − lAg

. s15d

Its derivative ata=0 gives

uFA8sadua=0 = kŝA
zl

=
sSA − lAds1 + lAd2SA+1 + sSA + 1 +lAdlA

2SA+1

s1 + lAd2SA+1 − lA
2SA+1 .

s16d

When we are interested in the critical temperature, these
formulas can be simplified. At first, the external magnetic
field is zerosi.e., all bA→0d. Then, in the limitb→bC, the
mean values of moments vanishkŝA

zl→0 and this causeslA

to diverge. The expansion of Eq.s16d in lA gives

kŝA
zl =

SAsSA + 1d
3lA

+ OslA
−2d. s17d

In this limit the eigenvalues ofNsqd go to zero. Then we
can simplify the exponential in the definition oflA fEq. s11dg
to obtain

lA =
1

V
E dqo

B

UABsqd
1

e2bnBsqd − 1
U BA

−1sqd

→ 1

2b

1

V
E dqfN−1sqdgAA. s18d

Combining the last two equations we obtain

kŝA
zl =

2SAsSA + 1dbC

3
H 1

V
E dqfN−1sqdgAAJ−1

s19d

which in contrast to Eq.s11d does not require a diagonaliza-
tion at eachq point in the Brillouin zone.

In the classical limit, where we replace spin operators in
Eq. s1d by angular momentum vectors of size one parallel to
the local magnetizations8 stheir size is absorbed into the size

of J̃i j
AB exchange parameters; we will denote scaled variables

by tildesd, we can perform a similar derivation. The semi-
classical equivalent of Eq.s16d is

ks̃A
zl = Ls1/lAd = LS2bH 1

V
E dqfÑ−1sqdgAAJ−1D , s20d

whereLsxd=cothsxd−1/x is the Langevin function.
WhenbA=0, in the limitb→bC swherekŝA

zl→0d Eq. s20d
leads to the same result as Eq.s19d with SAsSA+1d replaced

by one. By scaling exchange parametersJ̃i j
AB=Jij

ABSASB and

ŝ̃A= ŝA/SA also in the quantum case, Eq.s19d will change into

kŝ̃ A
zl =

2sSA + 1dbC

3SA
H 1

V
E dqfÑ−1sqdgAAJ−1

s21d

and the abovementioned classical limit is obtained forSA
→`. The advantage of this scaled form is, that it effectively
allows us to treat magnetic structures containing sublattices
with different spin quantum numbersSA including the clas-
sical spinssSA→`d.

Using Eqs.s16d ands20d we can calculate sublattice mag-
netizations and Eq.s21d defines the critical temperature of a
multiple sublattice ferromagnet within the RPA. These three
equations are the main results of this article. Moreover, it can
be shown that the RPA critical temperature is lower than the
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MFA value T C
RPA,T C

MFA ssee the Appendixd.
Our formalism leads to identical results to the Ref. 23 for

there treated magnetic orders. It can be shown, that also the
spin-spiral approach in Ref. 20, which particularly forQ
=sp /ads1,1,1d leads to an antiferromagnetic order, is con-
sistent with our results.

III. METHOD OF SOLUTION OF RPA EQUATIONS

Equationss16d together with Eqs.s11d ands7d allow us to
calculate sublattice magnetizations in an iterative way. The
zero-steplA constants can be obtained from the mean-field
sublattice magnetizations9 and then we iterate Eqs.s16d and
s11d until the self-consistency is achieved.

The limiting procedure, which led to Eq.s19d, has de-
stroyed the information about absolute values of mean values
of spin moments. Scaling all spins with the same constant
does not change this relation. This allows us to treat all spin
moments as components of vector with a fixed norm; we can
set this norm to 1. These scaled moments are used to define
theNsqd matrix, from which we calculate new-step moments
using formulasnote thatbC is omitted hered

kŝA
zlnew=

2SAsSA + 1d
3

H 1

V
E dqfNoldsqd−1gAAJ−1

. s22d

If scaling the new-step moments leads within a given toler-
ance to the same vector as before, we have achieved the
self-consistency and the scaling factor coincides with the
critical temperature.

In general, there may exist more fixed points satisfying
self-consistency, and correspondingly more values for criti-

cal temperature. Correctly, one should take the maximumTC
solution. However, the experience showed us, that the RPA
changes only slightly the ratios between spin moments at
different sites from the MFA solution, so we can easily check
the physical solution by comparison with the maximumTC
MFA solution.

There is, though, a complication in the numerical imple-
mentation of BZ integration, which appears both in calcula-
tion of sublattice magnetization and critical temperatures.
There occurs a divergence in the integrand forq=0, which
spoils the convergence of BZ integration. To overcome this
difficulty we use an analytic deconvolution method.15 Within
this method we replace the matrixNsqd by Nsqd+z1 with z a
small sin general complexd number. Then one can easily
verify, that

fs0d < 4fsi«d − fs2i«d − fs« + i«d − fs− « + i«d s23d

up to the fourth order in«—a small real number. The error
approaches zero with decreasing«.

IV. CALCULATION OF EXCHANGE INTERACTIONS

The exchange interactions were obtained by mapping the
Heisenberg Hamiltonian to the convergedab initio electronic
structure calculations. The same procedure was applied for
example in Refs. 15 and 20, therefore we only briefly de-
scribe the method and implementation.

Electronic structure calculations were performed using
tight-binding sTBd linear muffin-tin orbitalssLMTOd within
the atomic spheres approximationssASAd.26 Although this
method uses an approximatedssphericald form of potential in
the atomic spheres, in Gd-based compounds this should per-

FIG. 1. Site and spin-projected densities of
states in GdX compounds within the open-core
model. The position of arrows indicates the en-
ergy of spin-up and spin-down 4f states.
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form well, because Gd shells up to 5s, 5p, 4f are spherically
symmetric and valence states are well represented by plane
waves. Similar statements can be applied to nonmagneticX
sublattices in GdX compounds studied in this paper. They do
not carry orbital moments and their valence states strongly
hybridize with Gd valence states. Still, to check TB-LMTO
ASA results more thoroughly, we performed electronic struc-
ture calculations within more involved, full-potentialsFPd
linearized augmented plane-waves methodsLAPWd imple-
mented in theWIEN2K package.27 Calculated densities of
states and magnetic moments within both methods show a
good agreement. Site and spin resolved densities of states of
all four GdX compounds are shown in Fig. 1.

Structure parameters were taken from experiment.28,29 In
order to improve the description of localized 4f states of Gd
beyond standard local spin density approximationsLSDAd,4
we treated them using the open-core method.30 For rare-earth
4f electrons this often performs better, than treating them
within the valence band, as has been shown for example in
Refs. 20 and 21.

We applied magnetic force theorem to evaluation of en-
ergy changes due to infinitesimal rotations of local moments
with respect to the ordered magnetic state.8 This procedure
within TB-LMTO-ASA formalism leads to the formula

Jij
AB =

1

8pi
E

C

TrfDi,Aszdgij ,AB
↑ szdD j ,Bszdgji ,BA

↓ szdgdz. s24d

Integration is performed along a contour in complex plane,
which encircles occupied part of valence band. The trace
sums over the angular momentum indicesL=sl ,md. Quanti-
tiesgij ,AB

s szd ss= ↑ ,↓—spin indexd andDi,Aszd are connected
with so-called auxiliary Green functions and potential func-
tions, respectively, of the TB-LMTO-ASA method.26

V. APPLICATION TO GD-BASED COMPOUNDS

A. Hexagonal close-packed Gd

Hexagonal close-packedshcpd Gd crystal is the simplest
test case for the developed formalism. It has two symmetri-
cally equivalent Gd sublattices. This system was already
studied within MFA in Ref. 21 and within RPA by Franek31

using a simplified treatment specifically developed for hcp
structure. Within this treatment the critical temperature can
be calculated by an explicit formula. Our generalized treat-
ment, which involves iterative calculation, leads for given
parameterssdeconvolution parameters, number ofq points,
cutoff distanced to identical results. We extend these results
with an analysis ofTC dependence on cutoff distanceRmax of
exchange interactions in order to obtain the estimate of error
of the calculatedTC.

The hcp Gd crystal is a metal, the exchange interactions
are of long-range RKKY character. Into the calculation we
included 256 symmetrically nonequivalent exchange interac-
tions Jij . This is equivalent to theRmax<7.35a, where a
=3.629 a.u. is an experimental value of the lattice parameter
sexperimental value ofc/a=1.597 was adoptedd.29

The dependence of calculatedTC on Rmax is shown in Fig.
2. Using this figure we estimate the RPA value of the critical

temperature of hcp GdT C
RPA<296 K±4 K. The MFA esti-

mate is T C
MFA <334 K±2 K in agreement with published

results.21 The RPA result is in excellent agreement with the
experimental value 293 K.22

B. GdX compounds„X=Rh,Mg… with CsCl structure

Intermetallic GdX compoundssX=Mg,Rhd provide an-
other good test cases for the developed formalism. Their
structure consists of two penetrating simple cubic sublattices.
Exchange interactions are of RKKY type, i.e., their magni-
tude decreases approximately with third power of distance,
see Fig. 3. Due to their long-range character it is necessary to
includeJij

AB between rather distant neighbors. The Gd sublat-
tice carries a large and localized magnetic moment and ex-
change interactions between Gd sites are the dominating
mechanism for magnetic ordering. TheX sublattice is non-
magnetic. Fromab initio electronic structure calculations we
obtain only very small induced magnetic moments for this

FIG. 2. Dependence of calculatedTC of hcp Gd on cutoff dis-
tance for exchange interactions within MFAsdashed curved and
RPA ssolid curves; displayed for several different deconvolution
parameters«d.

FIG. 3. Exchange interactions in GdMg between sublattices as a
function of distancesin lattice parametersd.
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sublattice. The magnitudes of exchange interactions with and
within this sublattice are one or two orders smaller than
Gd-Gd exchange interactions. In such cases most of the re-
cent treatments usually completely neglect nonmagnetic
sites. Applying the developed multiple sublattice RPA for-
malism we will show, that the influence of nonmagnetic sub-
lattice can be in fact non-negligible and has to be included
into calculations in order to obtain reliable results.

We calculated the critical temperature of two GdX sX
=Mg,Rhd compounds within both MFA and RPA treatment.
From the numerical point of view, within the RPA, the cal-
culation depends on two parameters. The deconvolution pa-
rameter«, which occurs in Eq.s23d, and the number of
points in the BZ sampling. The dependence of calculated
critical temperature on both of these parameters is shown for
GdMg in Fig. 4. We see, that the general behavior is follow-
ing: the critical temperature decreases with increasing num-
ber ofq points until reaching a narrow minimum, after which
it slightly increases and stabilizes. Such behavior was ob-
served in all treated compounds, sometimes with damped
oscillations before reaching a stable value. The initial de-
crease can be understood in terms of decreasing influence of
the divergence in theq=0 point with growing number ofq
points. After that the calculated critical temperature stabilizes
after some damped oscillations.

To test the influence of nonmagnetic sublattice on calcu-
lated critical temperatures, we did two sets of calculation. In
the first one we calculated the critical temperature by includ-

ing all exchange interactions for both sublattices using the

developed formalism. In the second setsdenoted asT̃Cd we
excluded all interactions with and within nonmagnetic sub-
lattice, effectively doing a single sublattice calculation. The
results are collected in the Table I. It is interesting that in-
clusion of nonmagnetic sublattice into the calculation leads
to the increase of the calculated critical temperaturesboth in
MFA and RPAd. That increase is up to 40%sRPA for GdMgd.
It is important to note, that for GdRh without Rh sublattice,
the RPA calculation of critical temperature did not converge.
Because maximum of norm ofJABsqd matrix occurs at non-
zero q, this indicates that in this system would occur some
more complicated magnetic ordering than ferromagnetism.
This however contradicts the experiment.28 Here we just
note, that for a more detailed study one can try to generalize
the multiple sublattice RPA formalism in a way similar to the
treatment of spin spirals in Ref. 20. Anyway, in both treated
cases the influence of nonmagnetic sublattice on the results is
by far not negligible.

Because of the long-range character of RKKY interaction
ssee Fig. 3d, we were also interested in the dependence of
calculated critical temperature on the cutoff distanceRmax for
included exchange parameters. The dependence of calculated
critical temperature of GdMg within both RPA and MFA as a
function of the cut-off distance is plotted in Fig. 5. In our
calculation the maximum cutoff distance was approximately
10a, wherea is lattice parameter. This corresponds to ap-
proximately 250 symmetrically nonequivalent neighbors of a
given site. The figure shows, that in these metallic systems it
is very important to include interactions between rather dis-
tant neighbors. Plots of this kind are the source of error bars
shown in Table I.

C. GdX compounds„X=Ni,Pd… with CrB structure

The structure of intermetallic GdX compounds withX
=Ni or Pd is of CrB type. It is base centered orthorhombic
structure with four sublatticesstwo formula units per primi-
tive unit celld. Dominating exchange interactions are again
between Gd atoms. Also in these compounds, the exchange
interactionsssee Fig. 6d are of RKKY type. Interestingly, we
observe a faster convergence of the calculated critical tem-
perature with respect to theRmax sFig. 7d in comparison to
GdX compounds with CsCl structure considered in this work.

The magnetism of theX sublattice is not yet fully clear
from experimental data. In the literature there are some evi-
dences for existence of non-negligible itinerant magnetic

TABLE I. Radii s of the TB-LMTO-ASA atomic spheres of the individual sublattices and the magnetic momentsm inside them;
experimentalsT C

expd and calculated random-phasesT C
RPAd and mean-fieldsT C

MFAd critical temperatures. The calculations, whereX sublattice
was neglected, are denoted by tildes.

sGdfa.u.g sXfa.u.g mGdfmBg mXfmBg T C
expfKg T C

RPAfKg T̃ C
RPAfKg T C

MFAfKg T̃ C
MFAfKg

GdRh 3.351 3.351 7.177 −0.0842 24–29.5 21±1 33.4±0.5 16±1

GdMg 3.543 3.543 7.419 0.1645 119–120 85±1 60±1 91±1 66±1

GdNi 3.614 2.677 7.375 −0.0873 73 97.5±0.5 85.0±0.5 120.5±0.3 104.0±0.3

GdPd 3.716 2.753 7.304 −0.0321 39.5 56.5±0.5 55.0±0.5 68.3±0.1 66.2±0.1

FIG. 4. Dependence of calculated critical temperature of GdMg
within RPA on number ofq points and deconvolution parameter.
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moments originating from Ni 3d states,32,33but this seems to
be still under debate. From the calculational point of view,
our DFT calculations lead to negligible magnetic moments
on Ni sublattices consistently within both TB-LMTO-ASA
andWIEN2K approaches, see Table I.

Again to test the importance of full four-sublattice calcu-
lation, we calculated the critical temperature also without
considering the exchange interactions with and within the
non-magnetic sublattice. Results are summarized in Table I.
While in the GdPd the effect of nonmagnetic sublattice is at
the level of 3%, in the GdNi compound including interac-
tions with Ni sublattice seems to be very important. The
calculated critical temperatures with and without Ni sublat-
tice differ by <20%.

A possible explanation of this difference lies in the size of
the Ni and Pd magnetic moments. Within the classical Heis-
senberg model the exchange parametersJAB are scaled by the
sizes of magnetic moments of sublatticesA and B. The Pd
momentsssee Table Id are 2.7 times smaller than Ni mo-
ments, while Gd moments are of course comparable in both
compounds. If we assume the same exchange mechanism

and neglect the small differences in lattice parameters, this
leads to 2.7 times smallerJGduPd exchange interactions and
7.4 times smallerJPduPd interactions in comparison to GdNi
compound.sThis semi-quantitatively agrees withab initio
calculatedJij

AB exchange integrals.d And this is actually the
order of ratio of the effects of nonmagnetic sublattices onTC
in GdNi and GdPd.

In both these compounds the calculated critical tempera-
ture overestimates the experimentalTC. With nonmagnetic
sublattice excluded the results are in better agreement with
experiment. As we see, this is a fortituous case and a com-
plete treatment gives different results. Therefore we again
stress, that neglecting the nonmagnetic sublattices in calcu-
lation of critical temperatures can lead to substantial errors if
their effect is not verified to be really negligible.

VI. CONCLUSIONS

We extended the random phase approximation for Heisen-
berg Hamiltonian to allow for description of general crystal
structures with multiple sublattices. This extension allowed
us to calculate critical temperatures of hcp Gd and GdX com-
pounds containing more than one sublattice, where exchange
interactions are of long-rangesRKKY d character.

Our results have confirmed that a combination of this
technique withab initio calculation of exchange parameters
is a promising approach to the description of nonzero tem-
perature magnetic properties of solids. We were able to re-
produce the broad scatter of the critical temperatures ranging
from ,25 K for GdRh to,300 K for hcp Gd.

As an another important result, we have shown, that the
effect of nonmagnetic sublattices on magnetic properties can
be non-negligible and should be considered in calculations.
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FIG. 5. Dependence of calculated critical temperature of GdMg
within RPA and MFA on the cutoff distanceRmax of included ex-
change parameterssa is the lattice parameterd.

FIG. 6. Exchange interactions in GdNi between sublattices as a
function of distance.

FIG. 7. Dependence of calculated critical temperature of GdNi
within RPA sfor several different deconvolution parameters«d and
MFA on the cutoff distanceRmax of included exchange parameters.
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APPENDIX: PROOF OF THE RELATION TC
RPA,TC

MFA

Let us transform the non-Hermitean matrixNsqd into a
related Hermitean matrixMsqd=S−1/2NsqdS1/2 with elements

MABsqd = dABSbA

2
+ o

C

JACs0dkŝC
z lD − ÎkŝA

zlJABsqdÎkŝB
zl.

sA1d

This transformation is directly applicable only to ferromag-
nets due to the square roots of mean values of magnetic
moments. It is evident, that both matrices have identical ei-
genvalues. An advantage is, that the matrixVsqd of eigen-
vectors of Msqd is unitary, i.e., VsqdV†sqd=1 and
V†sqdMsqdVsqd is diagonal. It is easy to show that all Eqs.
s10d–s21d remain valid, if one replacesNsqd with Msqd and
Usqd with Vsqd, respectively. In particular, we can calculate
magnetizations and critical temperatures of ferromagnets in
this way. This transformation greatly simplifies the proof of
the general relation between MFA and RPA critical tempera-
turessand also some numerics due to advantageous proper-
ties of Hermitean matricesd, but its applicability to ferromag-
nets only is quite limiting.

Now we will show, that an antiferro- and ferrimagnets can
be transformed into effective ferromagnets with the same
critical temperature. Let us study the following transforma-
tion slet eA=sgnkŝA

zld:

kŝA
zl → eAkŝA

zl andJij
AB → eAJij

ABeB, sA2d

i.e., Jij
AA remain unchanged. An inspection of the structure of

the elements ofNsqd reveals thatNsqdAB→eANsqdAB. It is
then easy to see, that for the elements of the inverted matrix
we obtainfN−1sqdgAB→eBfN−1sqdgAB. Particularly, the trans-
formed equations19d

eAkŝA
zl =

2SAsSA + 1dbC

3
H 1

V
E dqeAfN−1sqdgAAJ−1

sA3d

is equivalent to original equation, but now allkŝA
zl are posi-

tive.
This completes the proof, that transformation given by

Eq. sA2d does not influence the results of calculation of criti-
cal temperatures. However, the transformedNsqd has differ-
ent eigenvalues and therefore sublattice magnetizations and
spin-wave spectra are differentsi.e., nonphysicald after ap-
plying this transformation.

Anyway, for well defined, stable collinear magnetsfno
complex eigenvalues; see the discussion after Eq.s11dg we
can allways calculate the critical temperatures starting from a
sreal or effectived ferromagnetic systemfapplying transfor-
mation sA2d if necessaryg using the Hermitean matrixMsqd
instead ofNsqd in Eq. s19d.

The critical temperature in the MFA is related to asgen-
eralizedd eigenvalue problem for the real symmetric matrix
JABs0d, namely,

o
B

JABs0dkŝB
zl =

3kBT C
MFA

2SAsSA + 1d
kŝA

zl. sA4d

Note, that transformationsA2d does not influence the critical
temperature either in MFA. Since the physical critical tem-
perature corresponds to the maximum eigenvalue, we can
write alternatively

3kBT C
MFA

2
= max

oAB
JABs0dkŝA

zlkŝB
zl

oA
fSAsSA + 1dg−1kŝA

zl2
, sA5d

where the maximum is taken over all real values ofhkŝA
zlj.

The RPA critical temperature is found from self-consistent
conditionsfcf. see Eq.s19dg,

kŝA
zl−1 =

3kBT C
RPA

2SAsSA + 1d
1

V
E dqfM−1sqdgAA, sA6d

where the non-Hermitean matrixNsqd has been substituted
ssee aboved by the Hermitean matrixMsqd defined by Eq.
sA1d with zero external magnetic fieldsbA=0d.

Let us consider the spectral decomposition of the matrix
Msqd,

MABsqd = o
C

VACsqdmCsqdVCB
† sqd, sA7d

where Vsqd are unitary matrices diagonalizing the matrix
Msqd andmCsqd are its eigenvalues. Then

fM−1sqdgAB = o
C

VACsqdmC
−1sqdVCB

† sqd. sA8d

Let us assume that the matrixMsqd sfor the particular set
of hkŝA

zlj satisfying the RPA self-consistency conditiond is
positive definite almost everywhere in the BZ. This condition
coincides with a stability of the studied collinear magnetic
structure. With the use of the well-known inequality between
the arithmetic and harmonic averages of positive quantities,
one can derive a relation

1

V
E dqfM−1sqdgAA =

1

V
E dqo

C

VACsqdmC
−1sqdVCA

† sqd

. F 1

V
E dqo

C

VACsqdmCsqdVCA
† sqdG−1

= F 1

V
E dqMAAsqdG−1

= Fo
C

JACs0dkŝC
z lG−1

. sA9d

In the last step we employed the sum rule

1

V
E dqJAAsqd = 0, sA10d

that is equivalent to vanishing of the on-site exchange pa-
rameters in the real spacesJii

AA=0d.
From the last inequalitysA9d and the RPA-selfconsistency

condition sA6d we obtain
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o
B

JABs0dkŝB
zl .

3kBT C
RPA

2SAsSA + 1d
kŝA

zl sA11d

which after multiplication bykŝA
zl and summation overA

yields a relation

3kBT C
RPA

2
,

oAB
JABs0dkŝA

zlkŝB
zl

oA
fSAsSA + 1dg−1kŝA

zl2
. sA12d

A comparison with the expressionsA5d for theT C
MFA proves

finally the relationT C
RPA,T C

MFA.
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