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An efficient scheme for evaluating the critical temperatures of ferromagnetic, antiferromagnetic, and ferri-
magnetic crystals with multiple sublattices is presented. The approach is based on a pairwise Heisenberg
Hamiltonian and a random-phase approximatidyablikov's decoupling for magnon Green’s functions. The
pair exchange interactions are derived from self-consistent electronic structure calculations using a magnetic
force theorem. The developed technique is applied to hexagonal gadolinium and its selected intermetallic
compounds GH (X=Mg, Rh,Ni,Pd with CsCl and CrB structures. The calculated critical temperatures are
quite sensitive to a neglect of the nonmagnd®® element; their values are in a fair agreement with

experiment.
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I. INTRODUCTION means, that combining MFA with RPA provides an upper and

lower bound of critical temperaturgglthough, one would

Before the era of relatively fast and cheap computers, theaturally expect, that RPA result is closer to the exact rgsult
description of solid state was possible only within crude ap- In recent years, interest for model hamiltonians is increas-
proximations or using model approaches. These model apng due to the possibility to obtain values of their parameters
proaches were successful from many aspects. However, thdiom modern parameter-free theory of electronic structure of
parameters remained undetermined, or in better cases, theglids. The enormous growth of computer power allows to
had to be obtained by fitting experimental data. perform rather realistiab initio bandstructure calculations at

The Heisenberg model Hamiltonian has been introducethe zero temperature within density functional thebReli-
in the first half of last century. Since then it has often beerable nonzero temperatur initio calculational schemes
used for evaluation of finite temperature magnetic propertiesemain an unsolved task and quantum Monte Carlo mefhods
of different systems. A number of approximations have beerare still too demanding on the computer time to be practical.
devised to its treatment. The simplest one is the mean-fielBut we can relatively easily calculate model parametdrs
approximationMFA). It allows us to obtain critical tempera- initio and then study nonzero temperature properties within
tures and magnetizations very easily. However, it is knownthe given model. This has been demonstrated by a number of
that it overestimates the exact critical temperature given byauthors for finite-temperature properties of ferromagnetic
the model. transition-metal-based systems studied within the classical

On the opposite side, there are Monte Carlo simulationsHeisenberg Hamiltoniafr:*® The concept of local magnetic
which, if introduced properly, can lead to exact results of themoments in metallic systems is justified by an adiabatic
Heisenberg model. Unfortunately, these methods are rath@pproximatiod®1® valid especially for systems with well-
demanding from the point of view of computer resourcesdeveloped magnetic momerteln, Fe).
particularly, when there is a large number of parameters, i.e., Theoretical investigations of nonzero temperature proper-
for long-range exchange interaction, which occur in metalsties (specific heat, susceptibility, resistivityof rare-earth-

An approximative method better than MFA is based onbased systems employed the crystal-field Hamiltonian during
random-phase approximatigiRPA). This method employs the last decad®'° Recent studies have indicated that the
the Green'’s functions technique. Its central idea is a decowelassical Heisenberg model can serve as a good starting point
pling of higher order Green’s function in the equation of for quantitative estimations of their magnetic transition
motion. RPA was introduced for spin 1/2 by Tyablikeand  temperatured®-?!
later extended and generalized by Calléar Bravais lattices In the rare-earth metals and intermetallic compounds, the
with general spin quantum number. While it does not de-exchange interactions are usually of the Ruderman-Kittel-
scribe correctly all details of low-temperature behavior, itKasuya-YosidaRKKY) type?? These interactions are long
performs much better than MFA. An important property ofrange and this leads to a vast number of non-negligible
RPA is, that for positive exchange interactions, RPA criticalHeisenberg Hamiltonian parameters. This is a difficult task
temperature is lower than the exact critical temperatute. for Monte Carlo simulations and thus the RPA would be a
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very useful tool. Although in the published literature there ¢ . i " o
are works describing the RPA approach to fully compensated G (@1 =- %5(T)<[Si,A' expasp)s gl)
antiferromagnet$2* to our best knowledge, the RPA for- \
malism has not yet been described in sufficient detail and I ACT CB N AB
generality for the case of multiple-sublattice magnetic struc- * %EC J-k°[<ng)ij (7) - <3i,C>Gii (7]
tures containing nonequivalent sublattices. _

The extension to multiple sublattice cases turned out to be _ I—b G %(a: 1) 4)
nontrivial and it is the main topic of this paper, which is g AT A
organized as follows. The formalism is given in the Sec. Il L ) .
and the method of solution of the RPA equations is described 1 hiS infinite set of equations can be reduced to a finite set
in the Sec. Ill. In Secs. IV and V we apply the developedtak'”g an advanta_\ge of the translation symmetry of the crys-
formalism to selected Gd-based compounds. First, in Sec. V- After performing Fourier transformation in tin{é(w)
we briefly describe the method we used to obtain exchangg/ (dw/2m)e {WF(?E%] and a lattice Fourier transformation
parameters and in Sec. V we use them to evaluate the criticaFas(@) =2 “IF°], our set of equations reduces to
temperature within the MFA and the extended RPA formal-
ism. Finally, in the Appendix we give a proof for a multiple
sublattice structure, that the RPA provides lower critical tem-
peratures than the MFA.

1
(hw — ba)Gpgla; w,q) = 5([:@:: expa¥)sg1) das

- 22 {JAC(Q)<§ZA>GCB(3; ,q)
Il. FORMALISM ¢

The isotropic Heisenberg Hamiltonian can be written in ~IncO(&ICas(@ 0.k (5)

the following form:

H=- 2 H%A- 8- 2 b A D
ij AB iA

or in the more matrixlike form we can write

> {ﬁw‘SAC_ 5Ac(bA +> ZJAD(O)<§ZD>)
C D
whereJ;}® are exchange parameteisj are unit cell indices;
A,B are sublatticebasis sit¢ indices; b, is proportional to + <§A>2JAC(q)}GCB(qu)
the magnetic field parallel to theaxis at basis sité; and
S52=(§4.8A,5 ) are spin operators operating in unit cell 1 ., o
on basis sited. S, is then the magnitude of the spin at basis = Z([SA, exp(ass)Sg]) Sag- (6)
site A. The crystal periodicity is reflected in the relation
JrB=J% . the on-site exchange parameters are Z&f0. , ,
] i-j,00
The developed formalism is based on Green’s function':or convenience, we define a matfixq)

technique. We define théetarded Green’s function(ana- b
logically to Caller) Negl@) = %(5’* +3 JAC<0><éé>) - &e@- (7)
C

i
GMB(a; 1) = - —O (D)8 (1), expa¥ 5)5 &), 2
i@ h (DS, exrta 0 o) @ With the help of this matrix we can express the Green’s

i . A A an aAn function in the following form:
wherea is an auxiliary parameter an,Y]=XY-YX is a

commutator. Heres ,=§,+i§ ; their time dependence is 1

understood within the Heisenberg pictu®(7) is a step GAB(w,q)=2—<[§Z,exria%)§é]>[{ﬁwl—2N(Q)}_1]AB-
function, i.e.,®(7)=1 for 7=0, zero otherwise. The mean 4

value in Eq. (2) means (A)=TrpA]=Tr exp(-BH)A]/ (®)
Trlexp(-pH)] with H being the Heisenberg Hamiltonian, ~ The fluctuation-dissipative theoretRDT) states thab
Eq. (1), and B8=1/kgT with kg being the Boltzmann constant

andT a temperature. L - 2h1Im G%(w)
The equation of motion for the Green function leads to YX(7)=~- J dwe"‘”w. (9
d i - ey ne 1 A - agsn
&—GQB(T) =- %5(7')<[3,A1 expa p)Sel) - ﬁ@)(T) Application of FDT for X=38; and Y=exp(a%)s, at 7
T =0 leads to the linear relation between the mean value of
x([[?g*A(T),ﬁ],exliaqu B8 (3)  product of operators and their commutator
The double commutator can be easily evaluated and (exp(@)5:50) = (5, exp@Z) & DAa, (10)

after the RPA decoupling according to Tyablikov

<[§+,A§jz,5,5<(—7)]>“(é,-z,BX[éifA,X(—T)D we get closedbut in-  wherea-independent parameteks, can be expressed using
finite) set of equations for the Green’s function Eqgs.(7)—<9) as
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- 20 1m{{ oo +10)] = 2(0)] Han P4(aleco= )
)\A "o do dq eﬁﬁw
) o — (Sa= A1+ )\A)ZSA+1 +(S+1 +)\A))\iSA+1
: y B - (L+\ )28A+1 — 2\ 251 .
K d - o 1" : ’ 11 A A
Q J q% AB(q)eZﬁvBm) -1 a(Q) (11) .
where columns ofU(q) are right eigenvectors of non- When we are interested in the critical temperature, these

Hermitean matrixN(q) and vg(q) are corresponding right formulas can be simplified. At first, the external magnetic

eigenvaluesf) is the volume of the first Brillouin zoneBZ). field is zero(i.e., allb,—0). Th_en, in the Iimit,{B—>,BC, the
The last equation in expressidhl) holds only if all ei- ~Mean values of moments vanié¥) —0 and this causexs,

genvalues ofV(q) are real(for all g) and if there exists an (0 diverge. The expansion of EQL6) in As gives

eigenvector for each eigenvalue. These conditions coincide W SA(Sat1) >
with the physical requirements, that poles of Green’s func- (8= +O(\L). (17)
tion must be real and of first order. Violation of these condi- A

tions spoils the formalism and indicates, that the assumed In this limit the eigenvalues of(q) go to zero. Then we
collinear magnetic structure is not consistent with the excan simplify the exponential in the definition df [Eq. (11)]

change interactionﬂ,AB entering the calculation. to obtain
By writing N(qﬂzSK(q), where Syg=dxg(Ss) and 1 1
K_AB(q)=ECJAC(O)(<§ZC>/<§§>)—JAB(q) we can rewrite the AA=—qu2 Une(®) Zgig@ 7Y sA(®)
eigenproblem(we drop theq dependence for a whileNx Q B el -1
=pX into an equivalent generalized eigenvalue probler 1
=157, where matrice$ andK are Hermitear(S is more- —_ = f da[N"Xq) ] ana- (18
over diagonal From the basic properties of the generalized 20
eiger_walue problem we can conc_lude, that for fe_rromagnets Combining the last two equations we obtain
all eigenvalues are redbecauses™ is then positive defi-
nite), while for antiferromagnets and ferrimagents this is not @)= 25(Sat+ DB 1 dafN-t - 9
guaranteed. Therefore for antiferromagnets and ferrimagnets W= 3 QO AIN"H(@)]aa (19)
we always need to check, whether all the eigenvalues are ) ] ]
real. which in contrast to Eq(11) does not require a diagonaliza-
We define an auxiliary functiod,(a) = (expa&)). Then  tion at eachy point in the Brillouin zone. _
(&)= (9)"PA(@)|az0. Using this function after straightfor- In the classical limit, where we replace spin operators in

ward ut ey oprator-igea maripatons e can e ()Y 1L Tomtenn vecor o S0 e ol
write Eq. (10) into a differential equation fo ,(a)? 9

of TJiAB exchange parameters; we will denote scaled variables
€2+ (\y+1) by tildes, we can perform a similar derivation. The semi-

N
Dp(a) + Dp(a) =2 ~Pp()SA(Sa+ 1) =0. classical equivalent of Eq16) is

MEE=(Aa+ 1)
12) 1 (< -
( <§,§>:c<1/xA>:£(2ﬁ{5 f do[N 1<q>]AA} ) (20
It is interesting to note, that these differential equations
are fully independent, but their solutions are coupled througlwhere £(x)=coth(x) - 1/x is the Langevin function.
a-independenk , constants, which depend ¢&) of all sub- Whenb,=0, in the limit 3— B¢ (where(s;) — 0) Eq. (20)
lattices. This independency of resulting differential equationgeads to the same result as Efj9) with S\(Sx+1) replaced
allowed us to use basis-site independent paranzeterthe Py one. By scaling exchange parametd{i‘gz Jﬁ_\BSASB and

definition of Green’s functior2). 2" . . . .
Under the boundary Con(;ﬁiti)ons Sa=5a/ S, also in the quantum case, E49) will change into
L, 2St 1)/30{ 1

- -1
Pp(0)=1, (13) Gw= J dQ[N_l(Q)]AA} (21)

3S, Q

Sa and the abovementioned classical limit is obtained Sgr
IT (93—~ M®PA(@)|4zo=0 (14) —o0. The advantage of thi_s scaled form is, th_aft it effectiv_ely
m=-Sx allows us to treat magnetic structures containing sublattices

with different spin quantum numbef, including the clas-

this differential equation has a known unique solution sical spins(Sy— ).
Using Egs(16) and(20) we can calculate sublattice mag-
LA - (1 4)\)) Pt g SR netizations and Eq(21) defines the critical temperature of a

Pa(a) = N2~ (1422 (1 + A0 €f — Al (15) multiple sublattice ferromagnet within the RPA. These three
equations are the main results of this article. Moreover, it can
Its derivative ata=0 gives be shown that the RPA critical temperature is lower than the
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states in GX compounds within the open-core
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MFA value T £PA<T Y7 (see the Appendjx cal temperature. Correctly, one should take the maxirigm

Our formalism leads to identical results to the Ref. 23 forsolution. However, the experience showed us, that the RPA
there treated magnetic orders. It can be shown, that also th@hanges only slightly the ratios between spin moments at
spin-spiral approach in Ref. 20, which particularly f@xr  different sites from the MFA solution, so we can easily check
=(wl/a)(1,1,)) leads to an antiferromagnetic order, is con-the physical solution by comparison with the maximiig
sistent with our results. MFA solution.

There is, though, a complication in the numerical imple-
mentation of BZ integration, which appears both in calcula-
tion of sublattice magnetization and critical temperatures.

. . There occurs a divergence in the integrand det0, which
Equations(16) together with Eqst11) and(7) allow usto g5 the convergence of BZ integration. To overcome this

calculate sublattice magnetization; in an iterative way. ,Thedifficulty we use an analytic deconvolution metht§dNithin
zero-stepk, constants can be obtained from the mean-fieldyis method we replace the matfiq) by N(q) +2z1 with za

sublattice magnetizatiohsnd then we iterate Eq§16) and small (in general complexnumber. Then one can easily
(12) until the self-consistency is achieved. verify, that

The limiting procedure, which led to Eq19), has de-
stroyed the information about absolute values of mean values f(0) = 4f(ie) — f(2ie) — f(e +ie) —f(—e+ie) (23
of spin moments. Scaling all spins with the same constant .
AP to the fourth order ir—a small real number. The error
ﬁpproaches zero with decreasing

Ill. METHOD OF SOLUTION OF RPA EQUATIONS

does not change this relation. This allows us to treat all spi
moments as components of vector with a fixed norm; we ca
set this norm to 1. These scaled moments are used to define
the N(q) matrix, from which we calculate new-step moments
using formula(note thatB is omitted herg

IV. CALCULATION OF EXCHANGE INTERACTIONS

The exchange interactions were obtained by mapping the
R 2Sa(Sa+ 1)) 1 N _1 -1 Heisenberg Hamiltonian to the convergadlinitio electronic
(Sa new= T o adeIU\om(Q) Iaa( - (220 structure calculations. The same procedure was applied for
example in Refs. 15 and 20, therefore we only briefly de-

If scaling the new-step moments leads within a given tolerscribe the method and implementation.
ance to the same vector as before, we have achieved the Electronic structure calculations were performed using
self-consistency and the scaling factor coincides with thedight-binding (TB) linear muffin-tin orbitals(LMTO) within
critical temperature. the atomic spheres approximatio®sSA).26 Although this

In general, there may exist more fixed points satisfyingmethod uses an approximategbherical form of potential in
self-consistency, and correspondingly more values for critithe atomic spheres, in Gd-based compounds this should per-
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form well, because Gd shells up ts,Bp, 4f are spherically 350 —
e O O

symmetric and valence states are well represented by plan
waves. Similar statements can be applied to nonmagixetic C
sublattices in GH compounds studied in this paper. They do 300
not carry orbital moments and their valence states strongly E
hybridize with Gd valence states. Still, to check TB-LMTO ~ 273}
ASA results more thoroughly, we performed electronic struc-* 250
ture calculations within more involved, full-potentiéFP) o N
linearized augmented plane-waves mettibdPW) imple- 225
mented in thewlEN2k package.’ Calculated densities of

states and magnetic moments within both methods show :
good agreement. Site and spin resolved densities of states ¢ 1755_
all four GdX compounds are shown in Fig. 1. r

3250

-0 MFA TC
GoRPAT,e=10K
=8 RPA T e= 0.3K
ooRPAT, e= 0.1K
AARPA TC, £=0.0K

200F

Structure parameters were taken from experimd&ftin 50— s e g
order to improve the description of localizedl gtates of Gd R /2
beyond standard local spin density approximatio8DA),*
we treated them using the open-core metffgor rare-earth FIG. 2. Dependence of calculatdg of hcp Gd on cutoff dis-

4f electrons this often performs better, than treating thentance for exchange interactions within MR#ashed curveand
within the valence band, as has been shown for example iRPA (solid curves; displayed for several different deconvolution
Refs. 20 and 21. parameters).

We applied magnetic force theorem to evaluation of en-
ergy changes due to infinitesimal rotations of local momentsemperature of hcp G&f RPA~296 K+4 K. The MFA esti-
with respect to the ordered magnetic staehis procedure mate is T ~334 K+2 K in agreement with published
within TB-LMTO-ASA formalism leads to the formula results?! The RPA result is in excellent agreement with the

experimental value 293 R

1
JG\B:FJ Tr[Ai,A(Z)giTj,AB(Z)Aj,B(Z)gjli,BA(Z)]dZ- (24
e

B. GdX compounds(X=Rh,Mg) with CsClI structure
Integration is performed along a contour in complex plane, . .
which encircles occupied part of valence band. The trace 'ntermetallic G&X compounds(X=Mg,Rh) provide an-
sums over the angular momentum indi¢es(l,m). Quanti- other good test cases for the Qevelpped formahsm. The|r
tiesg7 g2 (=1, |—spin indey andA; A(2) are connected structure cqnsusts Qf two penetrating S|mple. cubic s_ublattlcgs.
with so-called auxiliary Green functions and potential func-EXChange interactions are of RKKY type, i.e., their magni-

tions, respectively, of the TB-LMTO-ASA methd#. tude Qecreases appr(_)X|mater with third power of distance,
see Fig. 3. Due to their long-range character it is necessary to

includeJi’?B between rather distant neighbors. The Gd sublat-
V. APPLICATION TO GD-BASED COMPOUNDS tice carries a large and localized magnetic moment and ex-
change interactions between Gd sites are the dominating
mechanism for magnetic ordering. Thesublattice is non-
Hexagonal close-packeithcp Gd crystal is the simplest magnetic. Fronab initio electronic structure calculations we

test case for the developed formalism. It has two symmetripbtain only very small induced magnetic moments for this
cally equivalent Gd sublattices. This system was already

studied within MFA in Ref. 21 and within RPA by Frangk 60
using a simplified treatment specifically developed for hcp
structure. Within this treatment the critical temperature can
be calculated by an explicit formula. Our generalized treat- 40r
ment, which involves iterative calculation, leads for given

A. Hexagonal close-packed Gd

parametergdeconvolution parameters, number gfpoints, Mool
cutoff distance to identical results. We extend these results ::
with an analysis off ; dependence on cutoff distanBg,,, of =
exchange interactions in order to obtain the estimate of errol = 0

of the calculatedr.

The hcp Gd crystal is a metal, the exchange interactions
are of long-range RKKY character. Into the calculation we
included 256 symmetrically nonequivalent exchange interac-
tions J;j. This is equivalent to théR;,~7.3%, where a 404
=3.629 a.u. is an experimental value of the lattice paramete
(experimental value of/a=1.597 was adopted®

The dependence of calculatéd on R« is shown in Fig. FIG. 3. Exchange interactions in GdMg between sublattices as a
2. Using this figure we estimate the RPA value of the criticalfunction of distancdin lattice parametejs

20
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86.70 ing all exchange interactions for both sublattices using the
86.65 - —e— £=00K ] developed formalism. In the second $éénoted ad ) we
O g=1.0K excluded all interactions with and within nonmagnetic sub-
8660 It ] lattice, effectively doing a single sublattice calculation. The
results are collected in the Table I. It is interesting that in-
Z 86551 T clusion of nonmagnetic sublattice into the calculation leads
s to the increase of the calculated critical temperatbigh in
= 86350 7 MFA and RPA. That increase is up to 40¢&RPA for GAMg.
8645 | | It is important to note, th'a.t for GdRh Withou't Rh sublattice,
' the RPA calculation of critical temperature did not converge.
86.40 | i Because maximum of norm dfg(q) matrix occurs at non-
zeroq, this indicates that in this system would occur some
86.35 Ll el Lol ol more complicated magnetic ordering than ferromagnetism.
10° 10° 107 10 This however contradicts the experiméhtHere we just
g-points in 15! BZ note, that for a more detailed study one can try to generalize

the multiple sublattice RPA formalism in a way similar to the
Yreatment of spin spirals in Ref. 20. Anyway, in both treated
cases the influence of nonmagnetic sublattice on the results is
by far not negligible.
sublattice. The magnitudes of exchange interactions with and Because of the long-range character of RKKY interaction
within this sublattice are one or two orders smaller thanisee Fig. 3, we were also interested in the dependence of
Gd-Gd exchange interactions. In such cases most of the reajculated critical temperature on the cutoff distaRgg, for
cent treatments usually completely neglect nonmagnetighcluded exchange parameters. The dependence of calculated
sites. Applying the developed multiple sublattice RPA for-critical temperature of GdMg within both RPA and MFA as a
malism we will show, that the influence of nonmagnetic subfunction of the cut-off distance is plotted in Fig. 5. In our
lattice can be in fact non-negligible and has to be includedtalculation the maximum cutoff distance was approximately
into calculations in order to obtain reliable results. 10a, wherea is lattice parameter. This corresponds to ap-
We calculated the critical temperature of two XGdX  proximately 250 symmetrically nonequivalent neighbors of a
=Mg, Rh) compounds within both MFA and RPA treatment. given site. The figure shows, that in these metallic systems it
From the numerical point of view, within the RPA, the cal- is very important to include interactions between rather dis-
culation depends on two parameters. The deconvolution paant neighbors. Plots of this kind are the source of error bars
rametere, which occurs in Eq.23), and the number of shown in Table I.
points in the BZ sampling. The dependence of calculated
critical temperature on both of these parameters is shown for
GdMg in Fig. 4. We see, that the general behavior is follow-
ing: the critical temperature decreases with increasing num- The structure of intermetallic Gd compounds withX
ber ofqg points until reaching a narrow minimum, after which =Ni or Pd is of CrB type. It is base centered orthorhombic
it slightly increases and stabilizes. Such behavior was obstructure with four sublatticegwo formula units per primi-
served in all treated compounds, sometimes with dampetive unit cel). Dominating exchange interactions are again
oscillations before reaching a stable value. The initial debetween Gd atoms. Also in these compounds, the exchange
crease can be understood in terms of decreasing influence mtteractions(see Fig. 6 are of RKKY type. Interestingly, we
the divergence in thg=0 point with growing number off  observe a faster convergence of the calculated critical tem-
points. After that the calculated critical temperature stabilizeperature with respect to thg,, (Fig. 7) in comparison to
after some damped oscillations. GdX compounds with CsCl structure considered in this work.
To test the influence of nonmagnetic sublattice on calcu- The magnetism of th& sublattice is not yet fully clear
lated critical temperatures, we did two sets of calculation. Inffrom experimental data. In the literature there are some evi-
the first one we calculated the critical temperature by includdences for existence of non-negligible itinerant magnetic

FIG. 4. Dependence of calculated critical temperature of GdM
within RPA on number ofy points and deconvolution parameter.

C. GdX compounds(X=Ni,Pd) with CrB structure

TABLE I. Radii s of the TB-LMTO-ASA atomic spheres of the individual sublattices and the magnetic momeiiside them;
experimental T £P) and calculated random-pha€eR3™) and mean-fieldT ¥ critical temperatures. The calculations, whrsublattice
was neglected, are denoted by tildes.

ssdau]l  sfau]l  medusl  mdugl  TEAK]  TEAK] O TEAK]  TERAK] TERAK]

GdRh 3.351 3.351 7.177 —-0.0842 24-29.5 21+1 33.4+0.5 16+1
GdMg 3.543 3.543 7.419 0.1645 119-120 85+1 60+1 91+1 66+1
GdNi 3.614 2.677 7.375 —-0.0873 73 97.5+£0.5 85.0+£0.5 120.5+0.3 104.0+0.3
GdPd 3.716 2.753 7.304 -0.0321 39.5 56.5+0.5 55.0+0.5 68.3+0.1 66.2+0.1
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100— T T — T T T T T T T T T T T LA A L L EL N B B B
/’G\‘*e"“"e"'"e ..... GG 120 :V._‘V.—"V“'V““V---v—--V--~v-—-v---v-—-v----v -
80 O
— 100+~ 1
g N
va) 60— 0] &)
e 0-OMFAT, = el i
aRPAT.e=00K | ©-oRPA T, £=00K
ol 6oRPAT,e=01K | i aRPAT.e=0.1K
A-4RPAT,e=03K 6-oRPAT,£=03K
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FIG. 5. Dependence of calculated critical temperature of GdMg FIG. 7. Dependence of calculated critical temperature of GdNi
within RPA and MFA on the cutoff distanc@,, of included ex- within RPA (for several different deconvolution parametejsand
change parametefa is the lattice parametgr MFA on the cutoff distancé&,a Of included exchange parameters.

moments originating from Ni@states’>33but this seems to  and neglect the small differences in lattice parameters, this

be still under debate. From the calculational point of view,leads to 2.7 times smallgigy pq €xchange interactions and

our DFT calculations lead to negligible magnetic moments7.4 times smalledpq_pq interactions in comparison to GdNi

on Ni sublattices consistently within both TB-LMTO-ASA compound.(This semi-quantitatively agrees withb initio

andWIEN2K approaches, see Table I. calculatedJ:® exchange integralsAnd this is actually the
Again to test the importance of full four-sublattice calcu- order of ratio of the effects of nonmagnetic sublatticesTgn

lation, we calculated the critical temperature also withoutin GdNi and GdPd.

considering the exchange interactions with and within the In both these compounds the calculated critical tempera-

non-magnetic sublattice. Results are summarized in Table ture overestimates the experimentgl. With nonmagnetic

While in the GdPd the effect of nonmagnetic sublattice is akublattice excluded the results are in better agreement with

the level of 3%, in the GdNi compound including interac- experiment. As we see, this is a fortituous case and a com-

tions with Ni sublattice seems to be very important. Theplete treatment gives different results. Therefore we again

calculated critical temperatures with and without Ni sublat-stress, that neglecting the nonmagnetic sublattices in calcu-

tice differ by =~20%. lation of critical temperatures can lead to substantial errors if
A possible explanation of this difference lies in the size oftheir effect is not verified to be really negligible.

the Ni and Pd magnetic moments. Within the classical Heis-

senberg model the exchange paramelggsare scaled by the VI. CONCLUSIONS

sizes of magnetic moments of sublatticksand B. The Pd

moments(see Table )l are 2.7 times smaller than Ni mo-  We extended the random phase approximation for Heisen-

ments, while Gd moments are of course comparable in botRerg Hamiltonian to allow for description of general crystal

compounds. If we assume the same exchange mechanis#ffuctures with multiple sublattices. This extension allowed

us to calculate critical temperatures of hcp Gd anK@dm-

30— y g ' ' L e o pounds containing more than one sublattice, where exchange
interactions are of long-rang®KKY) character.
20l Our results have confirmed that a combination of this
technique withab initio calculation of exchange parameters
- is a promising approach to the description of nonzero tem-
ARl perature magnetic properties of solids. We were able to re-
_ produce the broad scatter of the critical temperatures ranging
k) ol from ~25 K for GdRh to~300 K for hcp Gd.
o As an another important result, we have shown, that the
effect of nonmagnetic sublattices on magnetic properties can
10 be non-negligible and should be considered in calculations.
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APPENDIX: PROOF OF THE RELATION TgPA<T¢™ i T VA
_ o 2 e ONE) = s (3R (A4)
Let us transform the non-Hermitean matfi¥q) into a B 25\(Sa+ 1)

i i —gq-1 Q112 i
related Hermitean matrix(q)=5""*N(q)s"* with elements Note, that transformatioA2) does not influence the critical

temperature either in MFA. Since the physical critical tem-

Mag(q) = 5AB<b_A +23Ac(0)<§zc)) _ V”EA)‘JAB(q)\/@' perature corresponds to the maximum eigenvalue, we can
2 write alternatively

(A Tl DO

This transformation is directly applicable only to ferromag- 2 EA[SA(SA+ 1)]‘1<§i>2'
nets due to the square roots of mean values of magnetic

moments. It is evident, that both matrices have identical eiwhere the maximum is taken over all real value(@&f)}.
genvalues. An advantage is, that the matriq) of eigen- The RPA critical temperature is found from self-consistent
vectors of M(q) is unitary, i.e., V(q)Vi(q)=1 and conditions[cf. see Eq(19)],

Vi(@)M(q)V(q) is diagonal. It is easy to show that all Egs. RPA

(10—(22) remain valid, if one replace&(q) with M(q) and &)y1l= SkeTc ™ 1 J dalM () Ian, (AB)
U(q) with V(q), respectively. In particular, we can calculate 2S5\(S+1)Q

magnetizations and critical temperatures of ferromagnets i\ nere the non-Hermitean matriX(q) has been substituted
this way. This transformation greatly simplifies the proof of (see aboveby the Hermitean matrixi(q) defined by Eq.

the general relation between MFA and RPA critical tempera-%l) with zero external magnetic fiekb,=0).

t_ures(and al§o SOme numerics due 0 ad_yantageous PTOPET et us consider the spectral decomposition of the matrix
ties of Hermitean matricgsbut its applicability to ferromag- M(q)

nets only is quite limiting.
Now we will show, that an antiferro- and ferrlr_nagnets can Mag(Q) = > VAc(Q)Mc(Q)VI;B(Q), (A7)

be transformed into effective ferromagnets with the same C

critical temperature. Let us study the following transforma-

tion (let ex=sgn(sL)): where V(q) are unitary matrices diagonalizing the matrix
" M(qg) and uc(q) are its eigenvalues. Then
a a AB AB
(S0 — ealSa) andJy™ — endyep, (A2) M @]ae= 2 Vad@pc@Vig@).  (A8)
C

i.e., JﬁA remain unchanged. An inspection of the structure of i
the eiements ofN(q) reveals thaiN(q) s — exN(Q)ag: It i Let us assume that the matrik(q) (for the particular set

then easy to see, that for the elements of the inverted matri@f (S0} satisfying the RPA self-consistency conditjois
we obtain[N"%(q)]xs— ea[N"X(q)]ap. Particularly, the trans- Positive definite almost everywhere in the BZ. This condition

formed equatior(19) coincides with a stability of the studied collinear magnetic
structure. With the use of the well-known inequality between
-1 the arithmetic and harmonic averages of positive quantities,
(S = M{é f dqu[I\I‘l(q)]AA} one can derive a relation
1 1 _
A3 35 f dalM ™ (@]an= ¢ J da 2 Vac(@) g (@)VEAQ)
C
is equivalent to original equation, but now &) are posi- 1 -1
tive. > lﬁ J daX vAc<q>Mc<q>VEA<q)}
This completes the proof, that transformation given by c

Eqg. (A2) does not influence the results of calculation of criti- -1
cal temperatures. However, the transforméd) has differ- == f dqMaa()

ent eigenvalues and therefore sublattice magnetizations and
spin-wave spectra are differefite., nonphysical after ap- - [2 JAC(O)<§ZC>]‘1_ (A9)
plying this transformation. C

Anyway, for well defined, stable collinear magnét®

complex eigenvalues; see the discussion after(Ef] we N the last step we employed the sum rule

can allways calculate the critical temperatures starting from a 1

(real or effective ferromagnetic systerfapplying transfor- Q f dgJaa(@) =0, (A10)
mation (A2) if necessaryusing the Hermitean matriXl(q)

instead ofN(q) in Eq. (19). that is equivalent to vanishing of the on-site exchange pa-

The critical temperature in the MFA is related tdgen-  rameters in the real spacé{?A:O).
eralized eigenvalue problem for the real symmetric matrix ~ From the last inequalityA9) and the RPA-selfconsistency
Jag(0), namely, condition (A6) we obtain

174408-8
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38 RPA

> Ins(0)(&) > (5% (A11)
B

285(Sa+ 1)

which after multiplication by(s;) and summation oveA
yields a relation

PHYSICAL REVIEW B 71, 174408(2005

3k T RPA EAB Jne(0)(5A)(55)
< .
2 2SS+ DITHE?

MFA
T C

(A12)

A comparison with the expressidA5) for the

proves
finally the relationT BPA< T ¥FA,
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