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We have studied the Raman intensities of low-frequency phonon modes in germaniumsGed nanocrystals
sNCd with varying sizes by using a microscopic valence force field model. The results are compared with the
predictions of the continuum model of Lamb using a projection method. We found that thel =0 spheroidal
Lamb modes are Raman active in the parallel polarization scattering geometry, while thel =2 spheroidal Lamb
modes are active in the crossed polarization geometry. This result agrees with the group theory prediction that
the torsional Lamb modes arenot Raman active, but is in disagreement with the identification of torsional
Lamb modes in the crossed polarization Raman spectra of NC suggested by many authors.
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I. INTRODUCTION

Quantum dots and nanocrystalssNCd have attracted great
interest in recent years both for their fundamental science1

and potential applications. In particular, as the size of NC
decreases, the ratio of atoms located at or near the surface of
the NC increases dramatically. Surface atoms are subject to
forces different from those in the interior of NC, so their
vibrational properties are different, and their interaction with
electrons confined in the NC is also expected to be different.

So far there are practically no experimental techniques
which can measure directly the surface phonons in NC using
either electrical or optical measurements. In principle, a low-
temperature inelastic electron scanning tunneling microscope
can be a sensitive technique for investigating surface phonon
modes in NC and their interaction with electrons. Until these
experiments can be performed, low-frequencys10–20 cm−1d
Raman scattering experiments are the only experimental re-
sults available for comparisons between theory. Such low-
frequency Raman modes in spherical NC of various semi-
conductors embedded in glasses have been reported, for
example, in NC of GesRef. 2d and CdSsRef. 3d embedded in
GeO2 glass, and in CdSSe doped silica-based glasses.4 One
characteristic of these Raman modes is that their frequency
scales linearly with the inverse of the diameter of the NC.
They have typically been interpreted as the spheroidal and
torsional vibration modes of a continuum elastic sphere
whose properties have been calculated by Lamb.5 According
to this model, the frequencies of these spheroidal and tor-
sional modes are quantized in terms of two quantum num-
bers: a branch numbern and the angular momentuml. Since
the model assumes the NC to be an elastic continuum, it is
expected to be valid only for large NC, but not for nm-sized
NC containing, say, less than 1000 atoms.

In this paper, we have calculated the Raman spectra of
low-frequency phonon modes of Ge NC containing 885 to
7289 atomsslargest diameterd,6.8 nmd by applying a Ra-
man polarizability model to the phonon modes computed

with a microscopic valence force field modelsVFFMd.6 Our
results on the phonon density of states in Ge NC have al-
ready appeared in a brief report.7 In the present paper, we
also compare the computed Raman intensities of the phonon
modes with the Raman selection rules of the Lamb modes.
We found that for the large NCsi.e., d,6.8 nmd the micro-
scopic results agree well with the Raman selection rules of
the continuum model based on group theory. However, for
small NC ssuch as whend,4 nmd the continuum model
breaks down. Our results indicate that the identification of
torsional modes in the Raman spectra of NC proposed by
many authors is erroneous.

This paper is organized in the following way. In the next
section, we describe our theoretical approach; in Sec. III we
show our calculated results and compare with existing ex-
perimental data; and in Sec. IV we summarize and conclude.

II. THEORETICAL APPROACHES

A. Valence force field model (VFFM)

The theoretical model used to investigate phonon modes
in Ge NC is the VFFM,6 developed to calculate phonon
modes in semiconductor NC and quantum dotssQDsd in re-
cent years.8–13 In this model, the change of the total energy
due to the lattice vibration is described by the following:6

E =
1

2o
i

C0SDdi

di
D2

+
1

2o
j

C1sDu jd2, s1d

whereC0 and C1 are two parameters that describe, respec-
tively, the change in the total energy due to changes in the
bond length and the bond angle, and the summation is over
all the bond lengths and bond angles. To simplify the diago-
nalization of the dynamic matrix, the vibration modes of the
NC are classified according to the point-group symmetry of
the structurestetrahedral orTd for Ged. This allows us to
study the NC vibrational modes belonging to different irre-
ducible representations. One of the limitations of this model

PHYSICAL REVIEW B 71, 174305s2005d

1098-0121/2005/71s17d/174305s10d/$23.00 ©2005 The American Physical Society174305-1



is that it cannot reproduce both the sound velocity and the
zone-boundary acoustic phonon frequency accurately at the
same time. Since we focus on the phonons in the low-
frequency range in this study, we used the Ge parameters
sC0=47.7 andC1=2.8 eVd sRef. 6d obtained by fitting the
elastic constants.

B. Displacement vectors of spheroidal and torsional Lamb
modes

In order to compare the NC modes calculated by VFFM
with the Lamb modes, we need the analytical forms of the
displacements of the Lamb modes. For ease of reference the
derivations are summarized below.

Lamb’s theory begins with the equation of motion for the

displacement vectorDW of a three-dimensional elastic con-
tinuum spherical body with densityr

r]2DW /]2t = sl + md ¹ s¹ ·DW d + m¹2DW . s2d

The two Lamb constantsl andm are related to the longitu-
dinal svld and transversesvtd sound velocities of the con-
tinuum byvl =Îsl+2md /r, vt=Îm /r.

The spheroidal modes are defined by displacement vec-

tors DW lu
sSd

DW lu
sSd = ¹ fS+ a ¹ 3 ¹ 3 AW , s3d

wherea is a constant determined by the stress-free boundary

condition,fs andAW are, respectively, scalar and vector func-
tions, defined by

fS= j lshrdPl
mscosudHcosmf

sinmf
Jexph− ivtj,

in spherical coordinatessr ,u ,fd and

AW = sxfV,yfV,zfVd,

in Cartesian coordinates with

fV = j lskrdPl
mscosudHcosmf

sinmf
Jexph− ivtj.

In the above definitionsv is the vibration frequency,j lsrd are
the spherical Bessel functions,Pl

m are the Legendre polyno-
mials indexed by the angular momentum numbersl and m.
The subscriptu in Eq. s3d is related tom by u=m+ l +1 and
runs from 1 to 2l +1. The torsional modes are defined by

displacement vectorsDW lu
sTd

DW lu
sTd = ¹ 3 AW . s4d

In the above definitions the parametersh and k have the
dimensions of wave vectors and are related to the longitudi-
nal and transverse sound velocity byh=v /vl and k=v /vt.
Under a stress-free boundary condition the mode frequencies
v are determined by the solution of the following equations.
For torsional modes,h=kR swhere R is the radius of the
sphered has to satisfy

df j l+1shd/ j lshdg/dh = 0. s5d

Theh values for torsional modes do not depend on materials
and are universal. On the other hand, the frequencies of sphe-
roidal modes depend on bothh andk, which have to satisfy
the following relationswith j=hRd:

2fh2 + sl − 1dsl + 2dhh j l+1shd/ j lshd − sl + 1djgj j l+1sjd/ j lsjd

− 0.5h4 + sl − 1ds2l + 1dh2 + hh2 − 2lsl − 1dsl + 2dj

3h j l+1shd/ j lshd = 0. s6d

In this case the solutionsh depend on the material through
the ratiosvl /vtd. For the torsional modes under a stress-free
boundary condition the values ofh are discrete and therefore
the values ofv are usually labeled in increasing values by a
integer n sbranch numberd=0,1,2. . . and theangular mo-
mentum numberl.

By solving Eqs.s5d ands6d for the averaged values of the
longitudinal and transverse speedsvl =5.253105 cm/s and
vt=3.253105 cm/s appropriate for Ge, we have obtainedh
of Ge NC numerically for different values ofn and l. The
lowest values ofh for both spheroidal and torsional modes
are shown as a function ofl in Fig. 1. The curves are ar-
ranged with increasing values ofn starting with n=0. Be-
cause we have assumed a stress-free boundary condition, the
h values for both spheroidal and transverse Lamb modes are
quantized as shown in Fig. 1. In real samples the NC are
often embedded in a matrix and, as a result, their surfaces are
not stress-free. Thus,h may vary with external stress and
may not be the same as those shown in Fig. 1. As a result, the
frequency of the corresponding Lamb modes will also be

FIG. 1. Calculated values ofh for both spheroidalsSd and tor-
sional sTd Lamb modes as a function of the angular momentum
numberl. The solid lines join modes with the same branch number
n sa special case: joinl =1, n branch tol =2, n+1 branchd. h in-
creases withn in the sequence ofn=0,1,2. . . . Notethat the values
of h for the spheroidal mode are specific for Ge, with the choice of
transverse and longitudinal sound velocities given in the text. The
modes indicated with circles are found to be Raman active by pro-
jection onto ourN=7289 atom Ge NC as discussed in the text.
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different. More discussions onh and the corresponding
Lamb modes frequencies will be presented elsewhere. The
modes enclosed by circles in Fig. 1 are Raman active. Before
discussing the Raman intensity of these modes, we will first
consider the displacement vectors of some lower-order Lamb
modes.

s1d Displacements of spheroidal l=0 mode:
Neglecting the constant and time-dependent terms, we can

write the scalar functions of thel =0 spheroidal modes as
fS= j0shrd, fV= j0skrd. From Eq.s3d we obtain the displace-
ment vectors

DW 01
sSd = − h

j1shrd
r

sxeWx + yeWy + zeWzd. s7d

A simple group theory analysis shows that this mode belongs
to theA1 irreducible representations of theTd group.

Displacements ofl =1,2 spheroidal modes are summa-
rized in Appendixes A and B.

s2d Displacements of torsional l=1 modes:
There are three orthogonal torsional modes that form a

complete set of bases. Neglecting constants and time-
dependent terms, their displacement vectors can be derived
from fV=xj1skrd / r by substituting it into the expression for

AW and then using Eq.s4d to obtain

DW 11
sTd = − z

j1skrd
r

eWy + y
j1skrd

r
eWz. s8d

Similarly, from fV=yj1skrd / r and fV=zj1skrd / r we obtain,
respectively

DW 12
sTd = − x

j1skrd
r

eWz + z
j1skrd

r
eWx, s9d

and

DW 13
sTd = − y

j1skrd
r

eWx + x
j1skrd

r
eWy. s10d

Thesel =1 Lamb modes can be shown to form a set of com-
plete orthogonal bases by satisfying the following equations:

E E E DW 11
sTd ·DW 11

sTddV=E E E DW 12
sTd ·DW 12

sTddV

=E E E DW 13
sTd ·DW 13

sTddV,

E E E DW 11
sTd ·DW 12

sTddV=E E E DW 12
sTd ·DW 13

sTddV

=E E E DW 11
sTd ·DW 13

sTddV= 0.

They belong to the triply degenerateT1 representation of the
Td group.

Displacements of torsionall =2, and 3 modes are summa-
rized in Appendixes C and D.

C. Projection of lattice modes onto Lamb modes

We can compare the displacement vectors obtained from
the Lamb model and from the VFFM for discrete lattices by
projecting the atomic displacements of the NC modes along
the Lamb mode displacements. Since the displacements of
Lamb modes are continuous functions of space within a
sphere of radiusR while the vibration amplitudes of lattice
modes are discrete, all integrals over Lamb modes have to be
replaced by summation over discrete lattice points. In addi-
tion, the vibration amplitudes are normalized to 1 in the same
way as the vibrational amplitudes of NC obtained by the
VFFM are presented. We then sum theprojectionof all the
atoms in the NC and then square the sum to arrive at a
quantity that we label as themode projection quantity, or
MPQ. For example, suppose the displacement vector of a NC

lattice mode at an atoma is VW sad, while the displacement at

the same site of a spheroidall =0 Lamb mode isDW 01
sSdsad;

then, the projection of the lattice mode onto the spheroidal

Lamb mode is given byssad=VW sad ·DW 01
sSdsad. After we sum

ssad over all the atoms in the NC and then square, we obtain
MPQ=foassadg2. This definition can be easily extended to
Lamb modes withl .0, where the Lamb mode is defined by
2l +1 vectors.

MPQ is a measure of the “similarity” between a NC lat-
tice mode and a Lamb mode when the NC is treated as a
spherical continuum. It is equal to 1 exactly if all NC atoms
have exactly the same displacements as the Lamb mode at
the same positions. On the other hand, if we project a NC
mode onto a Lamb mode whose symmetry is not compatible
with it the MPQ is then zero. Thus, for a given NC lattice
mode, if we can find a Lamb mode with a MPQ value that is
both maximum and close to 1, we can conclude that this
lattice mode is almost identical to a Lamb mode. In such
cases we will label the lattice mode as a “NC Lamb mode”
and its frequency as a NC Lamb frequency.

D. Raman selection rule and intensities

As discussed in Ref. 14, the spheroidal Lamb modes
transform according to the following irreducible repre-
sentations of the rotational groupOs3d: Dg

s0d, Du
s2d, Dg

s2d, . . .,

while the torsional Lamb modes transform as:Dg
s1d, Du

s1d,
Dg

s3d, . . . . From the group theory and the matrix element
theorem,15 one can show that only spheroidal Lamb modes
with l =0,2 areRaman active.14,15 This selection rule is in
agreement with the results of Brillouin scattering experi-
ments in large NC where indeed only these modes are
observed.16 However, torsional Lamb modes have been
claimed to be observed experimentally with strength compa-
rable to spheroidal modes.2 One way to explain this result is
that the so-called torsional modes in the experimental spectra
are actuallyl =2 spheroidal modes with frequencies close to
the torsional modes. Another possible explanation is that the
Raman selection rule is not valid for small NC. For example,
if we treat the Ge NC as composed of discrete atoms with
local symmetry belonging to theTd group, then from group
theory we would derive the Raman selection rule for theTd
group: namely, that theA1, E, andT2 modes are all Raman
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active. By treating the NC as composed of discrete lattices,
one will obtain a different set of Raman selection rules. Us-
ing the projection method, one can determine the Raman
selection of Lamb modes based on the compatibility relation
between theOs3d and Td groups. Using this approach, one
can show that the spheroidal modes withl =0, 1, 2, and so on
all contain Raman-active lattice modes, while only the
l =2,3,… torsional modes contain Raman-active lattice
modes. These selection rules, however, do not predict the
strengths of the Raman modes except when they are zero.
For example, the Raman-active torsional modes may be
much weaker than those of the spheroidal modes. To com-
pute the Raman intensities of the lattice modes, we have
employed the bond-polarizability approximation discussed in
a previous paper.12 Using this model we have obtained the
Raman intensities of lattice modes in Ge NC containing 885
to 7289 atoms.

III. RESULTS AND DISCUSSION

A. Projection of lattice modes onto Lamb modes

In Figs. 2–4 we show the computed values of MPQsde-
fined in Sec. II Cd for five Ge NCs with different number of

atoms in the NC. In Fig. 2, all the NC modes are projected
onto the spheroidal Raman-activesn=1, l =0d Lamb mode.
From this figure, we see that when the number of atoms is
greater than 2869, the NC modes with the maximum compo-
nent of Lamb modes contain a single major peak whose
strength is greater than 80%. This suggests that, for large
NC, the lower-order spheroidal Lamb modes are also eigen-
modes of the discrete lattice. However, when the number of
atom is less than 1147, the Lamb mode contains two or more
lattice modes, although there is still a dominant contribution
from one mode whose strength can be as large as 65%. The
transition from only one dominant lattice mode in the pro-
jection to several modes seems to occur rather suddenly. In
the case of Ge NC we found that this occurs at a “critical”
diametersdd of about 4.0 nm.7 Below this size it is no longer
possible to derive the frequency of the Lamb modes from the
VFFM since several modes of different frequencies contrib-
ute to the Lamb mode. One way to understand this result is
to note that the frequency of the spheroidall =0 Lamb mode
depends on both longitudinal and transverse sound speeds. In
the microscopic lattice model, the longitudinal and trans-
verse sound speeds vary with the direction of propagation.
Thus, when the Lamb mode is composed of modes propagat-
ing along different directions these modes will have slightly
different frequencies. In such cases, the frequency of the
mode with the maximum MPQ will still satisfy approxi-
mately the linear dependence ons 1/dd as discussed in Ref.
7.

In Fig. 3, we select a small and a large NC and separately
plot the projection of their lattice modes onto the torsional
Lamb modesfwith n=0 andl =2 sad, l =3 sbd, and l =4 scd,
respectively. The results for thel =1 mode are not shown
since it is Raman inactiveg according to their irreducible rep-
resentations. One should note the drastic change in the ver-
tical scale from a mode with one symmetry to another in
these plots. From these figures we conclude that, in general,
only a mode with a specific symmetry among the five pos-
sible ones dominates the Lamb mode both for large and
small NC. For example, for thel =2 torsional mode it is the
E symmetry modes, while for thel =3 torsional mode it is
modes withT2 symmetry. The Lamb components in other
symmetries are too small to be significant. This suggests that
the compatibility relation between theOs3d and Td groups
can be a guide to predict the relative magnitude of the pro-
jection of the lattice modes onto the Lamb modes even for
relatively small NC. These figures also show that for NC of
a given size, the NC modes generally contain fewer Lamb
modes with larger values ofl.

In Fig. 4, we project the lattice modes onto torsional
Lamb modes with different values ofn sn=0,1,2, and 3d but
with the same value ofl =3. In this case we find that, in
general, the lower-ordersor small values ofnd Lamb modes
are also eigenmodes of the discrete lattice even for small NC.
However, for larger values ofn the Lamb mode typically is
composed of a large number of lattice modes and the Lamb
model breaks down. This trend is more obvious with largern
as the size of the NC decreases.

One of the reasons for the above trends is that the wave-
length of the Lamb mode becomes smaller asn increases,
while the frequency of a Lamb mode can be as large as one

FIG. 2. Mode projection quantitysMPQd for n=1 andl =0 sphe-
roidal Lamb modes. Note that asN becomes less than 2869scorre-
sponding tod,4.9 nmd, the Lamb modes start to become com-
posed of more than one lattice mode, although the mode
frequencies continue to follow the 1/d dependence as long asd
.4 nm, as discussed in the text.
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FIG. 3. The MPQ for then=0 sad l =2; sbd l =3; andscd l =4 torsional Lamb modes.
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wants by choosingn and l large enough. However, in reality
the phonon frequencies in a lattice are finite. In particular,
the transverse acoustic phonons in bulk Ge have a cutoff
frequency of about 100 cm−1 determined by the lattice con-
stant. When the NC frequency approaches this cutoff fre-
quency, it is impossible for a single NC lattice mode to re-
produce the Lamb modes.

B. Radial amplitude distribution function of NC

To explore further the correspondence between the NC
lattice modes and the Lamb modes, we further define a func-
tion which we will label as the radial amplitude distribution
function sor RADF for shortd. The rationale behind this defi-
nition is that a spherical discrete lattice can be divided into
spherical shells. LetNshlsrd be the number of atoms located
on a shell of radiusr. Next, we sum the squares of the vi-
bration amplitudes of a specific mode over all these atoms
and then divide this sum byNshlsrd. The resultant quantity is
the RADF of that particular mode for the NC mode. The
RADF for the Lamb modes, on the other hand, are easily
computed from the Lamb theory. For example, for then=0
torsional Lamb mode RADF isj l

2sklrd, with k1=5.75/R, k2

=2.51/R, k3=3.86/R, whereR is the radius of the NC. While
the RADF for the Lamb modes are continuous functions ofr,
the corresponding RADF tend to show fluctuations and de-
viations from the curve for the Lamb modes. Figure 5 shows
the RADFs for the lattices modes which correspond to the

n=0 and l =1,2, and 3torsional Lamb modes in a Ge NC
with 7289 atomssclosed squaresd calculated from the VFFM.
For comparison, the RADF obtained from the Lamb theory
are plotted as continuous curves. We can see similarity be-
tween the two sets of results in their overall dependence onr.
In particular, for high values ofl the mode amplitudes tend to
be largest near the NC surface. In other words, then=0
torsional Lamb modes with largel are essentially surface
modes. However, we also notice significant difference be-
tween the lattice and Lamb modes mainly near the NC sur-
face. The RADF of the lattice modes are often much higher
than the Lamb modes near the surface. This is because atoms
near the surface are less constrained in a discrete lattice
model than the surface of a continuum sphere.

C. Raman intensities of NC

In Figs. 6sad–6scd we show the Raman intensities for the
three Raman-active modessbelonging to theA1, E, and T2
irreducible representations, respectivelyd of five different-
sized Ge NC calculated from the Raman polarizability with
our VFFM. When compared to the corresponding phonon
density of states for the same crystals published in our earlier
paper,12 it is clear that the number of Raman-active modes is
a small subset of the total number of phonon modes. This
result is not surprising since the number of Raman modes is
expected to decrease as the crystal size becomes larger. If we
assume that NC is enough for the bulk Raman selection to
apply, then we expect only the zone-center modes to be Ra-
man active. When the NC size is reduced the wave vector
conservation in Raman scattering is relaxed, allowing modes
of nonzero wave vector to be Raman active provided these
modes have a wave vector equal to an integral multiple of
sp /dd, whered is the size of the NC. For the low-frequency
acoustic phonon modes their dispersions are linear, so the

FIG. 4. The MPQ for thel =3 andn=0,1, 2, and 3, torsional
Lamb modes. In this figurek is related to transverse sound velocity,
andR is the radius of the NC.

FIG. 5. The radial amplitude distribution functionsRADFd of
three torsional Lamb modes withsn, ld indicated in the figures.
These results have been computed for a Ge NC containing 7289
atomssd,6.8 nmd. The squares are the results for the NC, while
the continuous curves represent results for the Lamb modes.
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FIG. 6. The Raman intensitiessthe quantitiesAl
2 andGl

2 are the same as those defined in Ref. 12d of modes belonging to thesadA1; sbd
E; and scdT2 irreducible representations of theTd group.
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frequencies of these modes will be equally spaced. As dis-
cussed in Ref. 12, this appearance of almost equally spaced
modes is known as “mode folding.” In Fig. 6sad, we notice
that the strong RamanA1 symmetry Raman peaks are indeed
almost equally spaced. In Fig. 6sbd, all the Raman spectra of
E symmetry show two strong, low-frequency Raman peaks.
In NC with 7289 atoms these peaks have frequencies of 11.2
and 19.1 cm−1, respectively. The low-frequency Raman spec-
tra of theT2 symmetry modes shown in Fig. 6scd, are rather
similar to theE-symmetry Raman spectra, except for their
slightly higher Raman frequencies. For example, in NC with
7289 atoms the two lowest frequency Raman peaks occur at
12.9 and 21.7 cm−1, respectively.

By using the projection technique described earlier, we
can determine the contributions of the Raman peaks in Figs.
6sad–6scd to the corresponding Lamb modes. The results are
summarized in Table I. From this table, we note the follow-
ing important findings.s1d The strongest Raman peaks of
different symmetries and polarizations in NC of a given size
have comparable strengths. In the 7289 atoms NC these are
the A1 mode with frequency 19.6 cm−1, the E mode with
frequency 11.2 cm−1, and the T2 mode with frequency
12.9 cm−1. s2d All the spheroidal modes shown in Table I are
much stronger than the torsional modes, in agreement with
the selection rules derived from group theory. This suggests
strongly that all the experimentally observed Raman peaks in
NC are due to spheroidal Lamb modes and not the torsional
modes. This is in contrast to the identification of torsional
Lamb modes in the crossed polarization Raman spectra sug-
gested by many authors.2–4 s3d The strongest Raman peak
has A1 symmetry, but this mode does not have the lowest
frequency. This mode corresponds to then=1 andl =0 sphe-
roidal Lamb mode and is consistent with the identification of
the higher-frequency Raman peak observed in the parallel
polarization scattering geometry as a spheroidal Lamb mode
by most authors.2,4 s4d Experimentally the crossed polariza-
tion Raman peak was found to have a lower frequency.2 This
has been explained as a result of the lower sound speeds of
transverse acoustic phonons as compared to the longitudinal
acoustic phonons. We found that the lowest frequency Ra-
man peak is ofE symmetry, which should appear in the
parallel polarization geometry.

The lowest frequency Raman peak appearing in the
crossed polarization geometry is the 12.9 cm−1 T2 mode.

Projection onto the Lamb modes indicates that both of these
modes contribute to then=0 and l =2 spheroidal Lamb
mode. One can consider these low-frequencyE- andT2 sym-
metry lattice modes as derived from the splitting of then
=0 and l =2 spheroidal modes when the NC symmetry is
lowered toTd. Similarly, the two NC modes ofA1 symmetry
with almost degenerate frequenciess47.3 and 48.1 cm−1d and
comparable intensities also arise from splitting of the same
n=4, l =0 spheroidal Lamb mode.s5d The frequencies of two
E modess11.7 and 11.2 cm−1d corresponding to thel =2 tor-
sional and spheroidal Lamb modes are almost degenerate.
This reflects the very close values ofhsTd=2.46 andhsSd

=2.64 for n=0 and l =2 in Fig. 1. s6d For the “Raman-
forbidden” torsional Lamb modes, the intensity of thel =2
mode is less than that of thel =3 mode, in agreement with
the prediction of group theory.s7d The n=0, l =0 spheroidal
mode has negligible Raman intensity and therefore is not
shown at all in Table I.

From the above discussions, we conclude that the experi-
mental Raman peak in the parallel polarization geometry is
due to scattering from then=1, l =0 spheroidal Lamb mode.
The experimental Raman peak in the perpendicular polariza-
tion arises from then=0 andl =2 spheroidal Lamb mode. In
principle, this lower-frequency mode may by “contaminated”
by anE-symmetry mode which is allowed for parallel polar-
ization, especially since the experimental spectral resolution
in these low-frequency region is often 1 cm−1 or larger, so
that the low-frequencyE- andT2-symmetry lattice modes are
not resolved. One possible explanation for the polarized na-
ture of the experimental low-frequency mode is that we have
neglected the lattice anharmonicity, which may cause the
Raman-activen=0 andl =2 spheroidal Lamb mode to decay
into the almost degenerate Raman-inactive torsional mode.
In our previous paper we interpreted the Raman peak ob-
served with the crossed polarization as due to then=0 and
l =3 torsional Lamb mode. We now find that then=0 andl
=3 mode may lie close to the measured peak in position, but
its strength is too weak to account for the strong experimen-
tal Raman peak.

IV. SUMMARY

In summary, we have investigated in detail the low-
frequency Raman spectra of spherical Ge NC with various
diameters, up to about 6.8 nm, by computing the Raman po-
larizabilities based on a microscopic VFFM. The results are
compared to the Raman selection rules for the spheroidal and
torsional modes of a continuum Lamb model by using the
projection method. We found that the strongest Raman peaks
are due to thel =0 andl =2 spheroidal Lamb modes in agree-
ment with the Raman selection rules. This result agrees well
with the recent results of Brillouin scattering experiments in
large NC.16 When the calculated Raman intensities were
compared with the Raman experimental results, we found
that the Raman peaks observed in the parallel polarization
scattering geometry were due to thel =0 spheroidal andn
=1,4,6, etc. Lamb modes. The Raman peak with a lower
frequency observed in the perpendicular polarization is also
due to thel =2 but n=0 spheroidal Lamb mode. The tor-

TABLE I. Calculated Raman frequencies and intensities of a
few low-frequency modes in Ge NC with N=7289 atoms. The cor-
responding Lamb modes obtained by projection are also listed.

Irreducible
representations Lamb mode

Frequency
scm−1d

Raman intensity
sarbitrary unitd

A1 n=1, l =0, spheroidal 19.6 0.904

A1 n=4, l =0, spheroidal 47.3 0.237

A1 n=4, l =0, spheroidal 48.1 0.316

E n=0, l =2, torsional 11.7 0.00136

E n=0, l =2, spheroidal 11.2 0.430

T2 n=0, l =3, torsional 16.3 0.0197

T2 n=0, l =2, spheroidal 12.9 0.686
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sional Lamb modes can become Raman active when the NC
size is small, but their intensities are usually much smaller
than the spheroidal Lamb modes. The two Raman peaks ob-
served experimentally and reported in Ref. 2 are thel =0 and
l =2 spheroidal Lamb modes and do not involve the torsional
Lamb modes as suggested by the authors.
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APPENDIX A: DISPLACEMENTS FOR l =1 SPHEROIDAL
LAMB MODES

s1d DW 1i
sSd= ¹f1i

sSd+a1¹ 3 ¹ 3AW 1i
sSd, wherei =1,2, and 3;

AW 11
sSd=sx,y,zdxf1srd, f11

sSd=g1srdx; AW 12
sSd=sx,y,zdyf1srd, f12

sSd

=g1srdy, and so on with

f1srd = k
j1skrd
skrd

andg1srd = h
j1shrd
shrd

,

df1srd
dr

= − k2 j2skrd
skrd

and
dg1srd

dr
= − h2 j2shrd

shrd
,

a1 =
2j j2sjd

f− h j1shd + 2j2shdgh
.

With these definitions, one finds

¹ 3 ¹ 3 AW 11
sSd = H2f1srd + r

df1srd
dr

JiW

− x
df1srd

dr
Sx

r
iW +

y

r
jW +

z

r
kWD ,

¹ 3 ¹ 3 AW 12
sSd = H2f1srd + r

df1srd
dr

J jW

− y
df1srd

dr
Sx

r
iW +

y

r
jW +

z

r
kWD ,

and so on.

¹f11
sSd = g1srdiW + x

dg1srd
dr

Sx

r
iW +

y

r
jW +

z

r
kWD ,

¹f12
sSd = g1srd jW + y

dg1srd
dr

Sx

r
iW +

y

r
jW +

z

r
kWD ,

and so on.

DW 11
sSd, DW 12

sSd, DW 13
sSd belong to theT2 or Du

s1d irreducible repre-
sentation.

APPENDIX B: DISPLACEMENTS FOR l =2 SPHEROIDAL
LAMB MODES

DW 2i
sSd= ¹f2i

sSd+a2¹ 3 ¹ 3AW 2i
sSd, wherei =1, . . . ,5, with

f21
sSd = g2srdxy, AW 21

sSd = sx,y,zdxyf2srd, f22
sSd = g2srdyz,

AW 22
sSd = sx,y,zdyzf2srd, . . . ,f24

sSd = g2srdfx2 − y2g,

AW 24
sSd = sx,y,zdfx2 − y2gf2srd,

and so on.

¹f21
sSd = g2srdyiW + g2srdxjW + xy

rW

r

dg2srd
dr

,

¹ 3 ¹ 3 AW 21
sSd = yH3f2srd +

sr2 − 2x2d
r

df2srd
dr

JiW + xH3f2srd

+
sr2 − 2y2d

r

df2srd
dr

J jW − 2
xyz

r

df2srd
dr

kW ,

and similarly fori =2, . . . ,5.

f2srd = k2 j2skrd
skrd2 ,

g2srd = h2 j2shrd
shrd2 ,

df2srd
dr

= − k3 j3skrd
skrd2 ,

dg2srd
dr

= − h3 j2shrd
shrd2 ,

a2 = −
2f j2sjd − j j3sjdg

f6j2shd + 2h j3shd − h2j2shdg
.

DW 21
sSd, DW 22

sSd, and DW 23
sSd belong to theT2 representation, while

DW 24
sSd andDW 25

sSd belong to theE representation. In the rotational
group all five modes belong to theDg

s2drepresentation.

APPENDIX C: DISPLACEMENTS FOR THE l =2
TORSIONAL LAMB MODES

AW 21 = sx,y,zd j2skrdxy/r2,

DW 21
sTd = sxz,− yz,sy2 − x2dd j2skrd/r2,

AW 22 = sx,y,zd j2skrdyz/r2,

DW 22
sTd = ssz2 − y2d,xy,− xzd j2skrd/r2, . . .,

and

AW 25 = sx,y,zd j2skrds2z2 − x2 − y2d/r2,

MICROSCOPIC THEORY OF THE LOW FREQUENCY… PHYSICAL REVIEW B 71, 174305s2005d

174305-9



DW 25
sTd = s− 6yz,6xz,0d j2skrd/r2.

DW 21
sTd, DW 22

sTd, and DW 23
sTd belong to theT1 representation, while

DW 24
sTd, DW 25

sTd belong toE modes. In the rotational group these
five modes belong to theDu

s2d representation.

APPENDIX D: DISPLACEMENTS FOR l =3 TORSIONAL
LAMB MODES

AW 31 = sx,y,zd j3skrdsx2 − y2dz/r3,

DW 31
sTd = fsy2 − x2 − 2z2dy,sx2 − y2 − 2z2dx,4xyzg j3skrd/r3,

AW 32 = sx,y,zd j3skrds5z2 − 3r2dz/r3,

DW 32
sTd = f− 3s5z2 − r2dy,3s5z2 − r2dx,0g j3skrd/r3,

AW 33 = sx,y,zd j3skrds5z2 − r2dx/r3,

DW 33
sTd = f− 10xyz,s10x2 − 5z2 + r2dz,s5z2 − r2dyg j3skrd/r3,

AW 34 = sx,y,zd j3skrds5z2 − r2dy/r3,

DW 34
sTd = fs5z2 − 10y2 − r2dz,10xyz,− s5z2 − r2dxg j3skrd/r3,

AW 35 = sx,y,zd j3skrds3xy2 − x3d/r3,

DW 35
sTd = f6xyz,3sx2 − y2dz,3sy2 − 3x2dyg j3skrd/r3,

AW 36 = sx,y,zd j3skrds3x2y − y3d/r3,

DW 36
sTd = f3sx2 − y2dz,− 6xyz,3s3y2 − x2dxg j3skrd/r3,

AW 37 = sx,y,zd j3skrdxyz/r3,

DW 37
sTd = fxsz2 − y2d,ysx2 − z2d,zsy2 − x2dg j3skrd/r3.

DW 31
sTd, DW 32

sTd, DW 33
sTd, DW 34

sTd, DW 35
sTd, DW 36

sTd belong to theT1+T2 repre-

sentations, whileDW 37
sTd belongs to theA2 representation. In the

rotation group all seven modes belong to theDg
s3d represen-

tation.
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