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Analyses of mode coupling in joined parallel phononic crystal waveguides
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In this paper, we present an analysis of coupling effects in joined parallel phononic crystal waveguides. The
finite difference time domaifFDTD) method with periodic boundary condition is adopted to analyze the band
gaps and dispersion relation of phononic waveguides. The defect modes of a single phononic waveguide are
analyzed and first discussed to serve as a basis for a joined waveguides system. Then, the dispersion relation
and displacement field of supermodes of joined waveguides are calculated and discussed. Both displacement
pattern and transmission coefficient of the defect modes are calculated. To transfer the power from one
waveguide to another, the coupling lengths are evaluated by numerical experiments and can be understood by
the concept of beat length. Finally, we analyze an elastic waveguide coupler and demonstrate that the coupler
can potentially be employed as a power switch of the acoustic wave.
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I. INTRODUCTION boundary condition by applying the Bloch theorem. The su-

In recent years, much research has been devoted to phg_ermodes of joined parallel phononic crystal waveguides are
tonic crystals that demonstrate the band gaps of electromagtudied so that the beat phenomenon is revealed to evaluate
netic (EM) wave propagation in periodic dielectric media. the coupling lengths of the system of joined waveguides.
Due to the ana|ogy between elastic waves and e|ectromad—heref0|’e, an elastic wave Coupler is demonstrated and, fur-
netic waves, inhomogeneous media consisting of differenther, an enhanced coupler is presented. Due to a stronger
elastic materials have also become a topic of academic integoupling effect, the enhanced coupler shortens the coupling
est. Such inhomogeneous structures, named “phononic cryksngth and reduces the size of the coupler.
tals,” typically consist of two or more materials with a peri- ~ To make our arguments clear, the method of calculation
odic arrangement. The acoustic band ¢ABG) is similarto  and defect modes of a single waveguide in the phononic
the optic band gap in photonic crystals in that the acousti€rystals are introduced in Sec. Il. The coupling effect of
wave propagation in a certain frequency range igoined parallel waveguides is reported in Sec. lll. Later, the
forbidden!=2 In addition to bulk acoustic waves, band gapsdispersion relation and displacement field of supermodes for
for surface acoustic waves have also been demonsttdted. the coupling waveguides are discussed. The coupling length
The existence of large acoustic band gaps has been revealéda system of two joined waveguides is also introduced. The
by several phononic crystal examples made of solid or fluicanalysis of an elastic coupler in the system of two
constituentg-1! waveguides is in Sec. IV. Lastly, a summary of the results is

The total band gap of elastic wave propagation towardoresented in Sec. V.
any direction in the phononic crystals has been predicted and
observed? The localization of elastic waves with the ar-
rangement of defects in phononic crystals as a linear wave-
guide was also studied through the calculation of the trans-
mission coefficient? The research of waveguide structures In previous research, the acoustic band gap of elastic
such as linear straight waveguides with resonant cavities avave propagation in phononic crystals was identified by cal-
with a vertical stub was reporté@*’ Alternative inclusions culating the dispersion curves or the transmission coefficient.
of phononic crystals were also discussed, and a narrow pa3$e most popular techniqgue employed to analyze the disper-
band was designed in a liquid-based phononic crystasion relation of elastic waves in phononic crystals is the
structuret®1°These studies inspired the research of couplingplane wave expansiotPWE) method. The PWE method
behavior of joined parallel linear phononic crystal transforms the elastic wave equation into Fourier space and
waveguides in this paper. solves the simplified eigenvalue problem. With the arrange-

When one linear waveguide is close enough to another iment of defects, the straight linear waveguide can still be
a phononic crystal structure, the coupling effect between thanalyzed by the PWE method with the concept of a super-
two waveguides is so strong that they are bounded as a singtell. However, to solve the eigenvalue problem of PWE with
system. Each eigenvalue corresponding to an eigenstate tife supercell condition, it takes a great number of wave vec-
the single waveguide splits into two values in the case of theors in the reciprocal space to guarantee an accurate value of
joined waveguides system. This exciting phenomenon isnodes and limits the efficiency of calculation.
similar to what appeared in photonic cryst#ls’? Generally, the three-dimensional heterogeneous finite dif-

The calculations in our work are based on the finite dif-ference formulation with staggered grids is adopted to study
ference time domaiffFDTD) method. The defect mode of the wave propagation in phononic crystals. The composite
elastic wave propagation is analyzed with the periodicstructures of phononic crystals can be easily calculated by

1. DEFECT MODES OF A PHONONIC CRYSTAL
WAVEGUIDE
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FIG. 1. The oblique view of a two-dimensional phononic crystal § 139 Defect modes
waveguide. The lattice constamtind the width of waveguide are w 120
marked in the figure.
110
replacing the material constant of the corresponding location 100
Tanakaet al?2first introduced the Bloch theorem to treat the 90
periodic boundary condition of the unit cell of phononic 80 [ Extended mode .
crystals. By recording the displacement inside the unit cell 70 R
and taking the Fourier transformation, the eigenfrequencies 0 01 02 03 04 05 06 07 08 09 1
of a given wave vectok are indicated by selecting the reso- T Wave Vector (k,*a/r) X
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calculation time, more material-selecting flexibility, and in- &

clusion shape variation. Due to the discrete grids, one pos® -10
sible error is the approximate shape of inclusions. In this§ 5
paper, the FDTD method is employed to solve the supercel @
problem for obtaining dispersion relations of single wave- §
guide defect modes and joined waveguides supermodes. T& 40

be more efficient, the parallelism computation program with F D 7
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lations are executed on a PC cluster system with 16 CPUs. 80 90 100 110 120 130 140 150 160 170 180 190 200
The phononic crystal, which we take into consideration, is Frequency (kHz)

a solid/solid two-dimensional phononic crystal consisting of
epoxy as the base and steel as the cylinders. The lattice con- FIG. 2. (Color onling Defect modes of the elastic wave inside
stanta of the phononic crystal structure is 8 mm, and thethe phononic crystal waveguidéa) Dispersion curves of defect
radius of the cylinder is 3 mm. In this case, the filling ratio modes.(b) The transmission coefficient through the waveguide.
is equal to 0.442. To simulate the wave propagation in the
structure using the FDTD method, each unit cell is dividedelastic wave mostly propagates within the waveguide, but
into 24X 24 grids, with a time step interval of 20 ns. The also leaks slightly to the neighboring area. The allowed
density and elastic constant {and G4 of steel are assumed modes inside the waveguide include the extended modes,
as 7900 kg/r, 280.2 GPa, and 82.9 GPa, respectively, andvhich fall outside the total band gap, and defect modes,
those for epoxy are 1180 kgAn7.61 GPa, and 1.59 GPa. In which fall in the range of total band gaps. The results are
the two-dimensional phononic crystal cases, as shown in Figonsistent with those reported by Kheif al1®
1, the elastic wave propagates within they plane perpen- To investigate the coupling effect of waveguides, we con-
dicular to the cylinders and the phononic structure is infinitesider a supercell consisting of 84l unit cells and a wave-
along theZ direction. Thus, the polarization modes of elasticguide with a 6 mm width(the distance between two neigh-
waves can be decoupled into the in-plane mode and the antboring cylinders on both sidesThe inset of Fig. 2a) shows
plane modeX-Y plang. The present work is to study phe- the cross section of the single waveguide, and a dashed-
nomena of waveguides, and therefore we consider the irdotted line denotes the mirror plane of the structure. Similar
plane mode wave propagation, which includes longitudinato the conventional acoustic waveguides, the defect modes in
and transverse waves. Fig. 2(@) can be classified as symmetric modsslid lineg
Dispersion curves of steel/epoxy phononic crystal are caland antisymmetric moddslashed lines with respect to the
culated first. The displacement is recorded within 200 000mirror plane of the waveguide. In the range of total band
time steps and the Fourier transform is applied to find thegap, the symmetric modes extend in the frequency intervals
resonance frequencies. Our result shows that the total barg®-156 and 169-198 kHz, and the antisymmetric modes ex-
gap of this phononic crystal is located between 86 kHz andend in intervals 142-163 and 187—-198 kHz.
197 kHz. By applying the concept of a supercell, dispersion The defect modes of the waveguide are identified by the
curves of a linear straight waveguide in phononic crystalgransmission coefficients and the displacement fields. First,
can be calculated by combining several basic unit cells. Theve launch a Gaussian weighted plane-wave package with a
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() 105 kHz and minimum value, respectively. For better understanding,

we also plot the displacement components al@eag’ to
identify the modes with a solid line representiblg and a
dashed line representingy. Obviously, the displacement
components in both directions are symmetric to the mirror
plane of the waveguide. Meanwhile, FigbB shows the re-
sult of point B in Fig. Za) with the 160 kHz transverse
wave, which belongs to the antisymmetric modes. We note
that the displacement fields of the chosen points A and B in
Fig. 2@ demonstrate the symmetric and antisymmetric
modes, thereby coinciding with the transmission analyses
shown in this section.

Ill. COUPLINGS OF PHONONIC CRYSTAL WAVEGUIDES

The manipulation of defects in photonic crystals induced
several optic communication applications, including the low
loss transmission bending structures and wavelength division
multiplexing (WDM) devices?® The analogy of photonic

FIG. 3. Elastic wave displacement fields inside the phononiccrystals and phononic crystals inspires the research of cou-
crystal waveguide(a) The displacement fields of the 105 kHz lon- pling phononic crystal waveguides. In the following, we

gitudinal wave which belongs to the symmetric mo@®. The dis- present analyses of joined parallel phononic crystal
placement fields of the 160 kHz transverse wave which belongs t9\/aveguides.

the antisymmetric mode.

A. Coupling effect and supermodes of coupling phononic

central frequency of 140 kHz and with a duration of 106 waveguides

The transmission coefficient is obtained by taking a Fourier
transform of the average of elastic wave displacements re- Waveguide in a phononic crystal structure can be consid-
corded across the waveguide and comparing the spectra widred as a composition of adjacent point defects. Thus, the
those without phononic crystals. Since the polarization of andividual modes of point-defect unit cells will couple as the
longitudinal wave is along th& direction, the longitudinal defect modes of a waveguide. Similarly, two waveguides will
wave excites the symmetric modes. Likewise, polarization ofoin together as a single system when one linear waveguide
the transverse wave is along tielirection, therefore induc- is close enough to another. The eigenvalue corresponding to
ing antisymmetric modes inside the single waveguide. Figureigenstates of the single waveguide will split into different
2(b) shows that the transmission coefficient of the elastionodes, which results in a coupling effect between these two
wave propagating inside the waveguide is a function of frejoined waveguides. Dispersion curves of coupling modes of
qguency. In our example, the studied waveguide is 15 latticéhe system can be calculated as those in the single waveguide
constants in length, which, accordingly, lets the transmissionising the FDTD method. We consider a system of two linear
coefficient fully reflect the properties of the band gap. Forstraight waveguides with the width of each waveguide being
the symmetric modes, a gap exists below 102 kHz and ar6 mm, coincidentally the same as the previous case in Sec.
other gap is in the interval 155-172 kHz, while the pasdll. In this case, there is one row of phononic unit cells be-
bands for antisymmetric modes are between 144 antiveen the two waveguides, as shown in the inset of Rig. 4
164 kHz and those higher than 188 kHz. Indeed, the defecthe two nearby waveguides can be considered as one joined
modes are clearly identified by the transmission coefficientssystem which supports treipermodesi.e., the allowed de-
Next, we apply the FDTD approach to calculate the dis-fect modes of the system. They can also be obtained by the
placement fields of elastic waves. We consider the phononidispersion relation.
crystal structure containing 8610 unit cells. The periodic The supermodes of the system of joined waveguides are
condition is used along the boundaries in #hdirection for  calculated with a supercell consisting of X@ unit cells.
the two-dimensional structure. In addition, the perfectlyFigure 4a) demonstrates the results of dispersion curves.
matched laye(PML)?4?%is adopted as the absorbing bound-The solid lines are the supermodes of the coupling
ary condition for the boundaries in thé and Y directions.  waveguides system and the dashed lines are the defect modes
The longitudinal wave, with a specific central frequerficis ~ of a single waveguide system, as shown in Figg).2The
generated to excite symmetric defect modes, while the translispersion curves of the system of two waveguides appear in
verse wave is stimulated for antisymmetric defect modes. pairs due to the coupling effects. Thus, it seems that the
In Fig. 3(a), we show the displacement fields of point A supermodes are split from defect modes of the single wave-
marked in Fig. 2a). The symmetric mode is excited by the guide. In this phononic crystal structure, if the number of
longitudinal wave with 105 kHzUy and Uy represent the rows of phononic unit cells between two waveguides is
displacement components along andY directions; their  larger than two, then the coupling effect is hard to detect.
values of the cross section are shown in the gray scale. Thipparently, the coupling effect of waveguides depends on
white color and black color represent the maximum valuethe distance between two waveguides.
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Symmetric and antisymmetric types of supermodes are
marked in Fig. 4a). Solid arrows indicate symmetric super-
modes and dashed arrows indicate antisymmetric super-
modes. Similarly, the types of supermodes are examined in
two ways: the analysis of transmission coefficients and dis-
placement fields.

Transmission coefficient is calculated by comparing the
spectra of penetrating waves, as we mentioned in Sec. Il. To
examine the mode type of a system of two joined
waveguides, the incident waves include both the longitudinal
wave and the transverse wave. Unlike the symmetric mode,
which is only excited by longitudinal waves in a single
waveguide, both symmetric and antisymmetric modes can be
excited by longitudinal waves in the system of joined
waveguides. Symmetric and antisymmetric cases are con-
trolled by modulating the phase of incident waves. The sym-
metric (antisymmetri¢ case of longitudinal waves means the
incident longitudinal wave is symmetri€antisymmetri¢
with respect to the mirror plane. The transmissions are
shown in Fig. 4b). A solid line shows the symmetric super-
mode while a dashed line shows the result of the antisym-
metric supermode. In comparison with the joined parallel
waveguides, the result of the longitudinal wave inside a
single waveguide in Fig.(B) is also plotted as a dotted line.
We find that the frequency range of the symmetric super-
mode shifts toward lower frequency while the range of the
antisymmetric supermode shifts toward higher frequency.
This phenomenon helps make the supermodes clear in Fig.
4(a). Symmetric and antisymmetric cases of transverse
waves are also calculated, and transmissions of both cases
are shown in Fig. &). The definition of the lines is the same
as those of Fig. ). The frequency ranges of the super-
modes also have a similar tendency to that of the longitudi-
nal wave.

The chosen displacement fields in Fig. 5 show propaga-
tion modes of the elastic wave. The setup of the numerical
calculation is similar to the examples of Fig. 3, except that
the structure is composed of QO unit cells. In this ex-
ample, elastic waves of the central frequerfcyl10 kHz
propagating inside the system of two joined waveguides are
demonstrated. The longitudinal waves are excited at these
two waveguide entrances with the symmetric supermode in
the synchronous phase and the antisymmetric supermode in
the inverse phase, both with respect to the mirror plane. The
displacement fields are shown in Figgaband 3b). The
definition of the color and lines in Fig. 5 is the same as that
in Fig. 3. Since the incident waves are polarized alongkhe

g direction, the displacement componedy is significantly
larger thanUy. The results in Fig. @) clearly demonstrate

permodes. Solid arrows indicate the symmetric supermode anf® symmetry of botty and Uy. On the other hand, the

dashed arrows indicate the antisymmetric supermog@gsTrans-

results in Fig. ®) show the antisymmetric property. The

mission coefficients of symmetric and antisymmetric longitudinalWavelength is evaluated by lattice constangnd the values
wave cases(c) Transmission coefficients of symmetric and anti- are 5.% and 4.2 in Figs. 3a) and §b), respectively. It re-
symmetric transverse wave cases.

veals that wave vectok of the symmetric supermode is
larger than that of the antisymmetric supermode for waves

It can be understood that for two identical waveguideswith the same central frequency. This result is also in good

the lowest-order modes include evé&ymmetrig and odd

agreement with the modes indicated in Figa)4

(antisymmetri¢ polarity with respect to the mirror plane be-

B. Coupling length of coupling waveguides

tween the waveguides. In this case, the cross section of the
two joined waveguides is shown in the inset of Figa)4 Supermode dispersion of a system of joined parallel
with a dashed-dotted line representing the mirror planewaveguides implies that if there is a constant frequency
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FIG. 6. Amplitude fields which show power transfer between
ZI—»X joined parallel phononic crystal waveguidéa) The cross section
Min, 0 Max,  —mmmmmmmmm Uy of the system of joined waveguidg®) The amplitude field for the
110 kHz incident wave(c) The amplitude field for the 140 kHz
FIG. 5. Displacement fields of the elastic wave propagation in-incident wave.(d) The amplitude field for the 155 kHz incident
side the phononic crystal waveguide) The 110 kHz antisymmet- wave.
ric supermode elastic wavéh) The 110 kHz symmetric supermode

elastic wave. We note that the coupling length can be analyzed with the

source inside the waveguide, then it is possible that there akﬂOWIedge of beat frequency in traqmonal opt?ésBeat .
more than two allowed modes with different wave vectars Pnénomena between the symmetric and antisymmetric
Hence, the beat phenomenon performs in the system dpodes arise when excitation is neither symmetric nor anti-
joined parallel waveguides if both symmetric and antisym-Symmetric. Since the corresponding wave vectorsf the
metric supermodes arise. The following study reveals théymmetric and antisymmetric supermodes are different when
beat phenomenon due to the coupling effect of joinethe elastic wave has the same frequency, the relative phase of
waveguides. these modes will shift when the wave propagates. Therefore,
Numerical experiments of wave propagation in the systerﬁhe coupling length is estimated as half a beat Ieng_th of t_he
of two joined waveguides are conducted by using the FDTDWO supermodes and can be derived from the dispersion
method. To investigate the mode coupling effect, we employurves. Beat lengtilLg is computed aslg=27/|ks=Ka|,
a simple linear two-waveguide structure which has one rowvhereks andk, are the corresponding symmetric and anti-
of unit cells between the waveguides as shown in Fig).6 Symmetric wave vectors of the chosen frequency and can be
In Fig. 6b), an elastic wave witff=110 kHz propagating decided from superque dispersion curves. For example, the
into the upper waveguide from the left entrance will transfercorresponding normalized wave vectors are 0.446 and 0.379
back and forth between the lower and upper waveguides. AOr the elastic wave of =110 kHz in Fig. 4. Thus, the beat
similar result is also observed for the elastic wave with €ngth can be evaluated ag=2a/(0.446-0.376~29.8%
=140 kHz in Fig. &c). The necessary distance for the elasticand the coupling length is approximately 1&.9he pre-
wave to transfer from one waveguide to another is called the

coupling length It can be observed that the coupling length ol S S L B L B
of the elastic wave of =110 kHz is smaller than the one of T 25 F - E
f=140 kHz, whose values are 1&.@nd 22.%, respectively. g
In Fig. 6(d), the elastic wave of =155 kHz also transfers s 20F 3
between the two waveguides with the coupling length being é 15 E E
about 25.4. However, since there are more than two allowed ‘g ] ]
modes of the elastic wave, the energy transformation pattern 8 10 | 3
between the two waveguides is more complicated than the I T T T
cases of =110 and 140 kHz. We choose the frequency range 100 110 120 130 140 150

of 105—145 kHz for later calculations because of the simple
split-modes condition. FDTD numerical experiments con-
clude the correlation curve of coupling length and elastic FIG. 7. (Color online The relationship between the coupling
wave frequency as the solid line in Fig. 7, where the coudengths and frequency of elastic waves. The dashed line is the cal-
pling length varies from 7#® to 22.% in the range culated half a beat length and the solid line is the result of FDTD
105-145 kHz. numerical experiments.

Frequency (kHz)
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dicted coupling length by the calculation of half a beat length @
is represented by the dashed line in Fig. 7.

Thus, the coupling length is a function of frequency de- =
pending on the difference of the wave vectors of super-
modes. The larger the difference is, the shorter the coupling
length will be. The coupling length relations obtained from (b) £=109 kHz
calculation of the beat length and FDTD numerical experi-
ments show the same tendency. The mismatch may be - —
caused by the input of the longitudinal wave source. Hence, e i kL .
the power of the symmetric and antisymmetric supermodes
is not equal. The power transfer between two waveguides
requires that both the symmetric and antisymmetric super-
modes can propagate in the structure. In the present case, the
power transfer does not occur below 100 kHz since antisym- | o ssseean »
metric supermodes do not exist. Our analysis mainly focuses
on the range 105-145 kHz, or the coupling length cannot be
evaluated by the beat frequency analysis because there are
too many allowed modes of the elastic wave. For example,
with f=155 kHz, it causes a larger mismatch of coupling FIG. 8. An elastic wave coupler and displacement fields of
lengths in Fig. 7 for frequencies higher than 145 kHz. propagating wavega) The cross section of the elastic wave coupler

with a coupler length of 3 (b) The amplitude of the 109 kHz

elastic wave which shows a cross std®. The amplitude of the
IV. ANALYSIS OF AN ELASTIC WAVE COUPLER 121 kHz elastic wave which shows a bar state.

® 0000
becooe cooe

(©) f~121 kHz

The beat phenomenon of the two-waveguide system
proves the elastic wave power transfer between two joine@nd the selection of waves with different central frequencies
waveguides is feasible with a necessary coupling lengthis controlled by the coupling length of the coupler.
which varies with different frequencies. The similar coupling ~ Obviously, a coupler with a shorter coupling length is
effect of photonic crystals has been adopted to serve as tHgore flexible for the purpose of application. The previous
wavelength division multiplexingW!DM) in optic commu- anaIygs shows that the greater the coupling effect, the larger
nication device€® In phononic crystal structure, joined the difference of supermodes. Therefore, an enhanced system
waveguides can potentially be employed as a power switcRf joined parallel waveguides is proposed. The inset of Fig. 9
of the acoustic wave, which can also control the mechanicahows the design of the cross section of enhanced joined
power. The concept is realized by patterning the Coup|ewaveguides. The structure is similar tq the waveguides in
length to switch the elastic wave with a specific frequency. InFig. 4 except that the diameter of unit cells between the
the system of joined waveguidescass stateappears when Waveguides I and Il, i.e., the separation of the joined parallel
incident elastic waves switch from one waveguide into an-
other and the coupler length is an odd multiple of the cou-
pling length. However, thbar stat&® appears when the elas- 210 | Extended mode 7
tic wave propagates in and out through the input waveguide 200
causing the coupler length to be an even multiple of the 190
coupling length. 180

In Fig. 8@a), we show an elastic wave coupler with an
interactive length of 38 with one entrance on the left side &
and two exits on the right side. From the relationship shownx
in Fig. 7, we estimate that the coupler will perform the cross & 150
state at 109 kHz for the elastic wave and at 121 kHz for the@ 140
bar state. Numerical experiments are shown in Fi@s. &nd 130
8(c), respectively. The displacement field of the propagating™ ,,,
wave withf=109 kHz shows that the coupler demonstrates a
cross state while the coupler wiftr121 kHz acts as a bar
state. It is worth noting that although the elastic wave reso-

220 T T T T T T T T T

170
160

H

requ

Anti-symmetrlic supermodes
110

100

nates in the joint area of outlets in Figc® the power leaves %0 Symmetric supermodes ]
the coupler remaining in the bar state, as we predicted. Tc 80 [ Extended mode .
quantify the efficiency of power transfer, we analyze the dis- 70 I S S S E—

placement of each exit. Power exchange ratios between tw 0 01 02 03 04 05 06 07 08 09 1
outputs are 26 dB for the cross state and 28 dB for the bal r Wave Vector (k,*a/r) X

state. Therefore, the system of two waveguides consisting of
solid/solid phononic crystal can potentially be treated as an FIG. 9. (Color online The dispersion relation of the enhanced
elastic wave coupler for the elastic wave in the solid mediajoined parallel waveguides.
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25 : ] TABLE |. Comparison of the two couplers.
S 2F 3
£ - E Cross state Bar state
g 15F -
2 ok E Coupler Frequency Power ratios Frequency Power ratios
?31 : : separation/length  (kHz) (dB) (kHz) (dB)
o S5F e
C 3 6 mm/3& 109 26 121 28
s 4 mm/2G& 112.8 19 119.5 18
100 110 120 130 140 150 110.2 12
Frequency (kHz)

FIG. 10. (Color online The coupling lengths of joined parallel surface wave coupler awaits further study. It is worth noting

waveguides with different separations. that in the study of a surface wave coupler, the existing im-
age techniqu&-?8 can be employed to check the validity of

waveguides, is smallef4 mm in this case Dispersion Ccomputation results.
curves shown in Fig. 9 validate our enhanced design in

. . - V. SUMMARY
which the variation of wave vectors for different supermodes . . _ .
is larger than that of the previous structure. Further, relation In this paper, we have investigated the coupling phenom-
between the coupling length and separati¢ mm, €non 01_‘ joined parallel phononic _crystal waveguides. Two-
5.33 mm, 4.67 mm, and 4 mmof the joined parallel dimensional steel/epoxy phononic crystal and the FDTD
waveguides is studied and shown in Fig. 10. The resulff€thod are employed to study the coupling effects of joined

shows that the smaller the separation, the shorter the coifhononic waveguides. The supermodes resulting from the
pling length. coupling effect between the joined waveguides can be treated

To design an enhanced coupler, the enhanced joineﬁs split modes of the defect modes. We demonstrated that
wavequides with a separation of 4,mm are chosen Thgupermodes are indeed symmetric and antisymmetric modes
len tt? of the enhanced pcou ler is&2@vhich is smaller thf;m which split from defect modes of a single waveguide. The
th 9 tandard I faaNpth " 6 Th result shows that the symmetric supermode shifts toward a

€ standard coupier o Ith & Separation of 6 mm. The 6 frequency while the antisymmetric mode veers toward
enhanced coupler performs a cross state at 112.8 kHz and

aahigher frequency. A beat phenomenon between symmetric
bar state at both 119.5 and 110.2 kHz. Table | shows th&n4 antisymmetric modes arises when both modes are ex-
comparison of the two mentioned couplers. The result showgiteq. The coupling lengths needed to transfer the power

that power exchange ratios of the enhanced coupler amgom one waveguide to another are evaluated by numerical
smaller than those of the standard one, but still larger tha@xperiments, and results can be interpreted by the concept of
12 dB. Obviously, with the enhanced joined waveguides, thgeat length. Finally, an enhanced elastic waveguide coupler
size of the enhanced elastic wave coupler can be reduced apgdproposed and demonstrated that the coupling length can

multiselection in the same coupler is possible. obviously be reduced.
Although the above analyses show that the bulk wave
coupler proposed is promising, we note that the big diffrac- ACKNOWLEDGMENTS
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