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In this paper, we present an analysis of coupling effects in joined parallel phononic crystal waveguides. The
finite difference time domainsFDTDd method with periodic boundary condition is adopted to analyze the band
gaps and dispersion relation of phononic waveguides. The defect modes of a single phononic waveguide are
analyzed and first discussed to serve as a basis for a joined waveguides system. Then, the dispersion relation
and displacement field of supermodes of joined waveguides are calculated and discussed. Both displacement
pattern and transmission coefficient of the defect modes are calculated. To transfer the power from one
waveguide to another, the coupling lengths are evaluated by numerical experiments and can be understood by
the concept of beat length. Finally, we analyze an elastic waveguide coupler and demonstrate that the coupler
can potentially be employed as a power switch of the acoustic wave.
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I. INTRODUCTION

In recent years, much research has been devoted to pho-
tonic crystals that demonstrate the band gaps of electromag-
netic sEMd wave propagation in periodic dielectric media.
Due to the analogy between elastic waves and electromag-
netic waves, inhomogeneous media consisting of different
elastic materials have also become a topic of academic inter-
est. Such inhomogeneous structures, named “phononic crys-
tals,” typically consist of two or more materials with a peri-
odic arrangement. The acoustic band gapsABGd is similar to
the optic band gap in photonic crystals in that the acoustic
wave propagation in a certain frequency range is
forbidden.1–3 In addition to bulk acoustic waves, band gaps
for surface acoustic waves have also been demonstrated.4–6

The existence of large acoustic band gaps has been revealed
by several phononic crystal examples made of solid or fluid
constituents.7–11

The total band gap of elastic wave propagation toward
any direction in the phononic crystals has been predicted and
observed.12 The localization of elastic waves with the ar-
rangement of defects in phononic crystals as a linear wave-
guide was also studied through the calculation of the trans-
mission coefficient.13 The research of waveguide structures
such as linear straight waveguides with resonant cavities or
with a vertical stub was reported.14–17Alternative inclusions
of phononic crystals were also discussed, and a narrow pass
band was designed in a liquid-based phononic crystal
structure.18,19These studies inspired the research of coupling
behavior of joined parallel linear phononic crystal
waveguides in this paper.

When one linear waveguide is close enough to another in
a phononic crystal structure, the coupling effect between the
two waveguides is so strong that they are bounded as a single
system. Each eigenvalue corresponding to an eigenstate of
the single waveguide splits into two values in the case of the
joined waveguides system. This exciting phenomenon is
similar to what appeared in photonic crystals.20–22

The calculations in our work are based on the finite dif-
ference time domainsFDTDd method. The defect mode of
elastic wave propagation is analyzed with the periodic

boundary condition by applying the Bloch theorem. The su-
permodes of joined parallel phononic crystal waveguides are
studied so that the beat phenomenon is revealed to evaluate
the coupling lengths of the system of joined waveguides.
Therefore, an elastic wave coupler is demonstrated and, fur-
ther, an enhanced coupler is presented. Due to a stronger
coupling effect, the enhanced coupler shortens the coupling
length and reduces the size of the coupler.

To make our arguments clear, the method of calculation
and defect modes of a single waveguide in the phononic
crystals are introduced in Sec. II. The coupling effect of
joined parallel waveguides is reported in Sec. III. Later, the
dispersion relation and displacement field of supermodes for
the coupling waveguides are discussed. The coupling length
in a system of two joined waveguides is also introduced. The
analysis of an elastic coupler in the system of two
waveguides is in Sec. IV. Lastly, a summary of the results is
presented in Sec. V.

II. DEFECT MODES OF A PHONONIC CRYSTAL
WAVEGUIDE

In previous research, the acoustic band gap of elastic
wave propagation in phononic crystals was identified by cal-
culating the dispersion curves or the transmission coefficient.
The most popular technique employed to analyze the disper-
sion relation of elastic waves in phononic crystals is the
plane wave expansionsPWEd method. The PWE method
transforms the elastic wave equation into Fourier space and
solves the simplified eigenvalue problem. With the arrange-
ment of defects, the straight linear waveguide can still be
analyzed by the PWE method with the concept of a super-
cell. However, to solve the eigenvalue problem of PWE with
the supercell condition, it takes a great number of wave vec-
tors in the reciprocal space to guarantee an accurate value of
modes and limits the efficiency of calculation.

Generally, the three-dimensional heterogeneous finite dif-
ference formulation with staggered grids is adopted to study
the wave propagation in phononic crystals. The composite
structures of phononic crystals can be easily calculated by

PHYSICAL REVIEW B 71, 174303s2005d

1098-0121/2005/71s17d/174303s8d/$23.00 ©2005 The American Physical Society174303-1



replacing the material constant of the corresponding location.
Tanakaet al.23 first introduced the Bloch theorem to treat the
periodic boundary condition of the unit cell of phononic
crystals. By recording the displacement inside the unit cell
and taking the Fourier transformation, the eigenfrequencies
of a given wave vectork are indicated by selecting the reso-
nance peaks of the spectrum. The advantages of adopting the
FDTD method to calculate dispersion curves include less
calculation time, more material-selecting flexibility, and in-
clusion shape variation. Due to the discrete grids, one pos-
sible error is the approximate shape of inclusions. In this
paper, the FDTD method is employed to solve the supercell
problem for obtaining dispersion relations of single wave-
guide defect modes and joined waveguides supermodes. To
be more efficient, the parallelism computation program with
a message passing interfacesMPId is realized and the calcu-
lations are executed on a PC cluster system with 16 CPUs.

The phononic crystal, which we take into consideration, is
a solid/solid two-dimensional phononic crystal consisting of
epoxy as the base and steel as the cylinders. The lattice con-
stant a of the phononic crystal structure is 8 mm, and the
radius of the cylinder is 3 mm. In this case, the filling ratiof
is equal to 0.442. To simulate the wave propagation in the
structure using the FDTD method, each unit cell is divided
into 24324 grids, with a time step interval of 20 ns. The
density and elastic constant C11 and C44 of steel are assumed
as 7900 kg/m3, 280.2 GPa, and 82.9 GPa, respectively, and
those for epoxy are 1180 kg/m3, 7.61 GPa, and 1.59 GPa. In
the two-dimensional phononic crystal cases, as shown in Fig.
1, the elastic wave propagates within theX-Y plane perpen-
dicular to the cylinders and the phononic structure is infinite
along theZ direction. Thus, the polarization modes of elastic
waves can be decoupled into the in-plane mode and the anti-
plane modesX-Y planed. The present work is to study phe-
nomena of waveguides, and therefore we consider the in-
plane mode wave propagation, which includes longitudinal
and transverse waves.

Dispersion curves of steel/epoxy phononic crystal are cal-
culated first. The displacement is recorded within 200 000
time steps and the Fourier transform is applied to find the
resonance frequencies. Our result shows that the total band
gap of this phononic crystal is located between 86 kHz and
197 kHz. By applying the concept of a supercell, dispersion
curves of a linear straight waveguide in phononic crystals
can be calculated by combining several basic unit cells. The

elastic wave mostly propagates within the waveguide, but
also leaks slightly to the neighboring area. The allowed
modes inside the waveguide include the extended modes,
which fall outside the total band gap, and defect modes,
which fall in the range of total band gaps. The results are
consistent with those reported by Khelifet al.15

To investigate the coupling effect of waveguides, we con-
sider a supercell consisting of 8.531 unit cells and a wave-
guide with a 6 mm widthsthe distance between two neigh-
boring cylinders on both sidesd. The inset of Fig. 2sad shows
the cross section of the single waveguide, and a dashed-
dotted line denotes the mirror plane of the structure. Similar
to the conventional acoustic waveguides, the defect modes in
Fig. 2sad can be classified as symmetric modesssolid linesd
and antisymmetric modessdashed linesd, with respect to the
mirror plane of the waveguide. In the range of total band
gap, the symmetric modes extend in the frequency intervals
99–156 and 169–198 kHz, and the antisymmetric modes ex-
tend in intervals 142–163 and 187–198 kHz.

The defect modes of the waveguide are identified by the
transmission coefficients and the displacement fields. First,
we launch a Gaussian weighted plane-wave package with a

FIG. 1. The oblique view of a two-dimensional phononic crystal
waveguide. The lattice constanta and the width of waveguided are
marked in the figure.

FIG. 2. sColor onlined Defect modes of the elastic wave inside
the phononic crystal waveguide.sad Dispersion curves of defect
modes.sbd The transmission coefficient through the waveguide.
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central frequency of 140 kHz and with a duration of 100ms.
The transmission coefficient is obtained by taking a Fourier
transform of the average of elastic wave displacements re-
corded across the waveguide and comparing the spectra with
those without phononic crystals. Since the polarization of a
longitudinal wave is along theX direction, the longitudinal
wave excites the symmetric modes. Likewise, polarization of
the transverse wave is along theY direction, therefore induc-
ing antisymmetric modes inside the single waveguide. Figure
2sbd shows that the transmission coefficient of the elastic
wave propagating inside the waveguide is a function of fre-
quency. In our example, the studied waveguide is 15 lattice
constants in length, which, accordingly, lets the transmission
coefficient fully reflect the properties of the band gap. For
the symmetric modes, a gap exists below 102 kHz and an-
other gap is in the interval 155–172 kHz, while the pass
bands for antisymmetric modes are between 144 and
164 kHz and those higher than 188 kHz. Indeed, the defect
modes are clearly identified by the transmission coefficients.

Next, we apply the FDTD approach to calculate the dis-
placement fields of elastic waves. We consider the phononic
crystal structure containing 8.5310 unit cells. The periodic
condition is used along the boundaries in theZ direction for
the two-dimensional structure. In addition, the perfectly
matched layersPMLd24,25 is adopted as the absorbing bound-
ary condition for the boundaries in theX and Y directions.
The longitudinal wave, with a specific central frequencyf, is
generated to excite symmetric defect modes, while the trans-
verse wave is stimulated for antisymmetric defect modes.

In Fig. 3sad, we show the displacement fields of point A
marked in Fig. 2sad. The symmetric mode is excited by the
longitudinal wave with 105 kHz.UX and UY represent the
displacement components along theX andY directions; their
values of the cross section are shown in the gray scale. The
white color and black color represent the maximum value

and minimum value, respectively. For better understanding,
we also plot the displacement components alonga-a8 to
identify the modes with a solid line representingUX and a
dashed line representingUY. Obviously, the displacement
components in both directions are symmetric to the mirror
plane of the waveguide. Meanwhile, Fig. 3sbd shows the re-
sult of point B in Fig. 2sad with the 160 kHz transverse
wave, which belongs to the antisymmetric modes. We note
that the displacement fields of the chosen points A and B in
Fig. 2sad demonstrate the symmetric and antisymmetric
modes, thereby coinciding with the transmission analyses
shown in this section.

III. COUPLINGS OF PHONONIC CRYSTAL WAVEGUIDES

The manipulation of defects in photonic crystals induced
several optic communication applications, including the low
loss transmission bending structures and wavelength division
multiplexing sWDMd devices.20 The analogy of photonic
crystals and phononic crystals inspires the research of cou-
pling phononic crystal waveguides. In the following, we
present analyses of joined parallel phononic crystal
waveguides.

A. Coupling effect and supermodes of coupling phononic
waveguides

Waveguide in a phononic crystal structure can be consid-
ered as a composition of adjacent point defects. Thus, the
individual modes of point-defect unit cells will couple as the
defect modes of a waveguide. Similarly, two waveguides will
join together as a single system when one linear waveguide
is close enough to another. The eigenvalue corresponding to
eigenstates of the single waveguide will split into different
modes, which results in a coupling effect between these two
joined waveguides. Dispersion curves of coupling modes of
the system can be calculated as those in the single waveguide
using the FDTD method. We consider a system of two linear
straight waveguides with the width of each waveguide being
6 mm, coincidentally the same as the previous case in Sec.
II. In this case, there is one row of phononic unit cells be-
tween the two waveguides, as shown in the inset of Fig. 4sad.
The two nearby waveguides can be considered as one joined
system which supports thesupermodes, i.e., the allowed de-
fect modes of the system. They can also be obtained by the
dispersion relation.

The supermodes of the system of joined waveguides are
calculated with a supercell consisting of 1031 unit cells.
Figure 4sad demonstrates the results of dispersion curves.
The solid lines are the supermodes of the coupling
waveguides system and the dashed lines are the defect modes
of a single waveguide system, as shown in Fig. 2sad. The
dispersion curves of the system of two waveguides appear in
pairs due to the coupling effects. Thus, it seems that the
supermodes are split from defect modes of the single wave-
guide. In this phononic crystal structure, if the number of
rows of phononic unit cells between two waveguides is
larger than two, then the coupling effect is hard to detect.
Apparently, the coupling effect of waveguides depends on
the distance between two waveguides.

FIG. 3. Elastic wave displacement fields inside the phononic
crystal waveguide.sad The displacement fields of the 105 kHz lon-
gitudinal wave which belongs to the symmetric mode.sbd The dis-
placement fields of the 160 kHz transverse wave which belongs to
the antisymmetric mode.
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It can be understood that for two identical waveguides,
the lowest-order modes include evenssymmetricd and odd
santisymmetricd polarity with respect to the mirror plane be-
tween the waveguides. In this case, the cross section of the
two joined waveguides is shown in the inset of Fig. 4sad,
with a dashed-dotted line representing the mirror plane.

Symmetric and antisymmetric types of supermodes are
marked in Fig. 4sad. Solid arrows indicate symmetric super-
modes and dashed arrows indicate antisymmetric super-
modes. Similarly, the types of supermodes are examined in
two ways: the analysis of transmission coefficients and dis-
placement fields.

Transmission coefficient is calculated by comparing the
spectra of penetrating waves, as we mentioned in Sec. II. To
examine the mode type of a system of two joined
waveguides, the incident waves include both the longitudinal
wave and the transverse wave. Unlike the symmetric mode,
which is only excited by longitudinal waves in a single
waveguide, both symmetric and antisymmetric modes can be
excited by longitudinal waves in the system of joined
waveguides. Symmetric and antisymmetric cases are con-
trolled by modulating the phase of incident waves. The sym-
metric santisymmetricd case of longitudinal waves means the
incident longitudinal wave is symmetricsantisymmetricd
with respect to the mirror plane. The transmissions are
shown in Fig. 4sbd. A solid line shows the symmetric super-
mode while a dashed line shows the result of the antisym-
metric supermode. In comparison with the joined parallel
waveguides, the result of the longitudinal wave inside a
single waveguide in Fig. 2sbd is also plotted as a dotted line.
We find that the frequency range of the symmetric super-
mode shifts toward lower frequency while the range of the
antisymmetric supermode shifts toward higher frequency.
This phenomenon helps make the supermodes clear in Fig.
4sad. Symmetric and antisymmetric cases of transverse
waves are also calculated, and transmissions of both cases
are shown in Fig. 4scd. The definition of the lines is the same
as those of Fig. 4sbd. The frequency ranges of the super-
modes also have a similar tendency to that of the longitudi-
nal wave.

The chosen displacement fields in Fig. 5 show propaga-
tion modes of the elastic wave. The setup of the numerical
calculation is similar to the examples of Fig. 3, except that
the structure is composed of 10310 unit cells. In this ex-
ample, elastic waves of the central frequencyf =110 kHz
propagating inside the system of two joined waveguides are
demonstrated. The longitudinal waves are excited at these
two waveguide entrances with the symmetric supermode in
the synchronous phase and the antisymmetric supermode in
the inverse phase, both with respect to the mirror plane. The
displacement fields are shown in Figs. 5sad and 5sbd. The
definition of the color and lines in Fig. 5 is the same as that
in Fig. 3. Since the incident waves are polarized along theX
direction, the displacement componentUX is significantly
larger thanUY. The results in Fig. 5sad clearly demonstrate
the symmetry of bothUX and UY. On the other hand, the
results in Fig. 5sbd show the antisymmetric property. The
wavelength is evaluated by lattice constanta, and the values
are 5.9a and 4.7a in Figs. 5sad and 5sbd, respectively. It re-
veals that wave vectork of the symmetric supermode is
larger than that of the antisymmetric supermode for waves
with the same central frequency. This result is also in good
agreement with the modes indicated in Fig. 4sad.

B. Coupling length of coupling waveguides

Supermode dispersion of a system of joined parallel
waveguides implies that if there is a constant frequency

FIG. 4. sColor onlined The supermodes of the system of joined
phononic crystal waveguides.sad The dispersion curves of the su-
permodes. Solid arrows indicate the symmetric supermode and
dashed arrows indicate the antisymmetric supermodes.sbd Trans-
mission coefficients of symmetric and antisymmetric longitudinal
wave cases.scd Transmission coefficients of symmetric and anti-
symmetric transverse wave cases.
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source inside the waveguide, then it is possible that there are
more than two allowed modes with different wave vectorsk.
Hence, the beat phenomenon performs in the system of
joined parallel waveguides if both symmetric and antisym-
metric supermodes arise. The following study reveals the
beat phenomenon due to the coupling effect of joined
waveguides.

Numerical experiments of wave propagation in the system
of two joined waveguides are conducted by using the FDTD
method. To investigate the mode coupling effect, we employ
a simple linear two-waveguide structure which has one row
of unit cells between the waveguides as shown in Fig. 6sad.
In Fig. 6sbd, an elastic wave withf =110 kHz propagating
into the upper waveguide from the left entrance will transfer
back and forth between the lower and upper waveguides. A
similar result is also observed for the elastic wave withf
=140 kHz in Fig. 6scd. The necessary distance for the elastic
wave to transfer from one waveguide to another is called the
coupling length. It can be observed that the coupling length
of the elastic wave off =110 kHz is smaller than the one of
f =140 kHz, whose values are 11.7a and 22.5a, respectively.
In Fig. 6sdd, the elastic wave off =155 kHz also transfers
between the two waveguides with the coupling length being
about 25.1a. However, since there are more than two allowed
modes of the elastic wave, the energy transformation pattern
between the two waveguides is more complicated than the
cases off =110 and 140 kHz. We choose the frequency range
of 105–145 kHz for later calculations because of the simple
split-modes condition. FDTD numerical experiments con-
clude the correlation curve of coupling length and elastic
wave frequency as the solid line in Fig. 7, where the cou-
pling length varies from 7.9a to 22.5a in the range
105–145 kHz.

We note that the coupling length can be analyzed with the
knowledge of beat frequency in traditional optics.26 Beat
phenomena between the symmetric and antisymmetric
modes arise when excitation is neither symmetric nor anti-
symmetric. Since the corresponding wave vectorsk of the
symmetric and antisymmetric supermodes are different when
the elastic wave has the same frequency, the relative phase of
these modes will shift when the wave propagates. Therefore,
the coupling length is estimated as half a beat length of the
two supermodes and can be derived from the dispersion
curves. Beat lengthLB is computed asLB=2p / ukS−kAu,
wherekS and kA are the corresponding symmetric and anti-
symmetric wave vectors of the chosen frequency and can be
decided from supermode dispersion curves. For example, the
corresponding normalized wave vectors are 0.446 and 0.379
for the elastic wave off =110 kHz in Fig. 4. Thus, the beat
length can be evaluated asLB=2a/ u0.446−0.379u<29.85a
and the coupling length is approximately 14.9a. The pre-

FIG. 5. Displacement fields of the elastic wave propagation in-
side the phononic crystal waveguide.sad The 110 kHz antisymmet-
ric supermode elastic wave.sbd The 110 kHz symmetric supermode
elastic wave.

FIG. 6. Amplitude fields which show power transfer between
joined parallel phononic crystal waveguides.sad The cross section
of the system of joined waveguides.sbd The amplitude field for the
110 kHz incident wave.scd The amplitude field for the 140 kHz
incident wave.sdd The amplitude field for the 155 kHz incident
wave.

FIG. 7. sColor onlined The relationship between the coupling
lengths and frequency of elastic waves. The dashed line is the cal-
culated half a beat length and the solid line is the result of FDTD
numerical experiments.
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dicted coupling length by the calculation of half a beat length
is represented by the dashed line in Fig. 7.

Thus, the coupling length is a function of frequency de-
pending on the difference of the wave vectors of super-
modes. The larger the difference is, the shorter the coupling
length will be. The coupling length relations obtained from
calculation of the beat length and FDTD numerical experi-
ments show the same tendency. The mismatch may be
caused by the input of the longitudinal wave source. Hence,
the power of the symmetric and antisymmetric supermodes
is not equal. The power transfer between two waveguides
requires that both the symmetric and antisymmetric super-
modes can propagate in the structure. In the present case, the
power transfer does not occur below 100 kHz since antisym-
metric supermodes do not exist. Our analysis mainly focuses
on the range 105–145 kHz, or the coupling length cannot be
evaluated by the beat frequency analysis because there are
too many allowed modes of the elastic wave. For example,
with f =155 kHz, it causes a larger mismatch of coupling
lengths in Fig. 7 for frequencies higher than 145 kHz.

IV. ANALYSIS OF AN ELASTIC WAVE COUPLER

The beat phenomenon of the two-waveguide system
proves the elastic wave power transfer between two joined
waveguides is feasible with a necessary coupling length,
which varies with different frequencies. The similar coupling
effect of photonic crystals has been adopted to serve as the
wavelength division multiplexingsWDMd in optic commu-
nication devices.20 In phononic crystal structure, joined
waveguides can potentially be employed as a power switch
of the acoustic wave, which can also control the mechanical
power. The concept is realized by patterning the coupler
length to switch the elastic wave with a specific frequency. In
the system of joined waveguides, across stateappears when
incident elastic waves switch from one waveguide into an-
other and the coupler length is an odd multiple of the cou-
pling length. However, thebar state20 appears when the elas-
tic wave propagates in and out through the input waveguide,
causing the coupler length to be an even multiple of the
coupling length.

In Fig. 8sad, we show an elastic wave coupler with an
interactive length of 33a with one entrance on the left side
and two exits on the right side. From the relationship shown
in Fig. 7, we estimate that the coupler will perform the cross
state at 109 kHz for the elastic wave and at 121 kHz for the
bar state. Numerical experiments are shown in Figs. 8sbd and
8scd, respectively. The displacement field of the propagating
wave with f =109 kHz shows that the coupler demonstrates a
cross state while the coupler withf =121 kHz acts as a bar
state. It is worth noting that although the elastic wave reso-
nates in the joint area of outlets in Fig. 8scd, the power leaves
the coupler remaining in the bar state, as we predicted. To
quantify the efficiency of power transfer, we analyze the dis-
placement of each exit. Power exchange ratios between two
outputs are 26 dB for the cross state and 28 dB for the bar
state. Therefore, the system of two waveguides consisting of
solid/solid phononic crystal can potentially be treated as an
elastic wave coupler for the elastic wave in the solid media,

and the selection of waves with different central frequencies
is controlled by the coupling length of the coupler.

Obviously, a coupler with a shorter coupling length is
more flexible for the purpose of application. The previous
analysis shows that the greater the coupling effect, the larger
the difference of supermodes. Therefore, an enhanced system
of joined parallel waveguides is proposed. The inset of Fig. 9
shows the design of the cross section of enhanced joined
waveguides. The structure is similar to the waveguides in
Fig. 4 except that the diameter of unit cells between the
waveguides I and II, i.e., the separation of the joined parallel

FIG. 8. An elastic wave coupler and displacement fields of
propagating waves.sad The cross section of the elastic wave coupler
with a coupler length of 33a. sbd The amplitude of the 109 kHz
elastic wave which shows a cross state.scd The amplitude of the
121 kHz elastic wave which shows a bar state.

FIG. 9. sColor onlined The dispersion relation of the enhanced
joined parallel waveguides.
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waveguides, is smallers4 mm in this cased. Dispersion
curves shown in Fig. 9 validate our enhanced design in
which the variation of wave vectors for different supermodes
is larger than that of the previous structure. Further, relation
between the coupling length and separations6 mm,
5.33 mm, 4.67 mm, and 4 mmd of the joined parallel
waveguides is studied and shown in Fig. 10. The result
shows that the smaller the separation, the shorter the cou-
pling length.

To design an enhanced coupler, the enhanced joined
waveguides with a separation of 4 mm are chosen. The
length of the enhanced coupler is 20a, which is smaller than
the standard coupler of 33a with a separation of 6 mm. The
enhanced coupler performs a cross state at 112.8 kHz and a
bar state at both 119.5 and 110.2 kHz. Table I shows the
comparison of the two mentioned couplers. The result shows
that power exchange ratios of the enhanced coupler are
smaller than those of the standard one, but still larger than
12 dB. Obviously, with the enhanced joined waveguides, the
size of the enhanced elastic wave coupler can be reduced and
multiselection in the same coupler is possible.

Although the above analyses show that the bulk wave
coupler proposed is promising, we note that the big diffrac-
tion loss of bulk waves has to be faced. One interesting al-
ternative is to use surface wave propagation in a two-
dimensional phononic crystal.6 Detailed analysis of such a

surface wave coupler awaits further study. It is worth noting
that in the study of a surface wave coupler, the existing im-
age technique27,28 can be employed to check the validity of
computation results.

V. SUMMARY

In this paper, we have investigated the coupling phenom-
enon of joined parallel phononic crystal waveguides. Two-
dimensional steel/epoxy phononic crystal and the FDTD
method are employed to study the coupling effects of joined
phononic waveguides. The supermodes resulting from the
coupling effect between the joined waveguides can be treated
as split modes of the defect modes. We demonstrated that
supermodes are indeed symmetric and antisymmetric modes
which split from defect modes of a single waveguide. The
result shows that the symmetric supermode shifts toward a
lower frequency while the antisymmetric mode veers toward
a higher frequency. A beat phenomenon between symmetric
and antisymmetric modes arises when both modes are ex-
cited. The coupling lengths needed to transfer the power
from one waveguide to another are evaluated by numerical
experiments, and results can be interpreted by the concept of
beat length. Finally, an enhanced elastic waveguide coupler
is proposed and demonstrated that the coupling length can
obviously be reduced.
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