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The tight-binding Stoner model of band magnetism is generalized to account for local charge neutrality by
working within the tight-binding-bondsTBBd representation of the binding energy. We show that the analytic
forces within this TBB Stoner model take a very simple form because neither the renormalization in the on-site
energies due to local charge neutrality nor the change in local magnetic moments due to atomic displacement
enters explicitly. Thisd band TBB Stoner model is found to reproduce qualitatively the variations in local
moments on and around point defects that are predicted by first principles density functional theory. In
agreement with experiments, the formation energies show that the most stable self-interstitial defect is the
k110l dumbbell.
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I. INTRODUCTION

Point defects play a critical role in the evolution of the
mechanical properties of metals under neutron irradiation,
their aggregation into voids or clusters leading to swelling
and creep, and possible structural failure. It is, therefore, not
surprising with the renewed worldwide interest in fusion
power that attention is focusing on those structural materials
with promising irradiation resistance, namely alloys based on
the bcc transition metals vanadium1 or iron.2 Recently, com-
putationally intensive first-principles density-functional
theorysDFTd calculations have been performed on the ener-
getics of point defects in vanadium, predicting that thek111l
dumbbell is the most stable self-interstitial with a formation
energy of 3.1 eV.3 This ab initio DFT database has then been
used to fit an interatomic Finnis-Sinclair potential for
vanadium4 which has allowed the molecular dynamics simu-
lation of the threshold displacement energy,5 a first step to-
wards modeling the behavior of the displacement cascades.6

Modeling damage evolution in bcc iron under neutron ir-
radiation, however, is complicated by the presence of mag-
netism. As is well known, the stability of the bcca-phase is
driven by the large magnetic energy of 0.5 eV/atom,7 which
overcomes the preference for the hcp structure displayed by
the nonmagnetic isovalent 4d and 5d elements ruthenium
and osmiumsand indeed also the high pressuree-phase of
irond. Spin-polarized DFT calculations have demonstrated
that the local moment on an iron atom is very sensitive to its
environment. For example, the magnetic moment on the
k110l dumbbell self-interstitial is predicted to be reduced by
90% in magnitude and have opposite spin direction to the
bulk magnetization.8 This nonparallel alignment and low
spin state of the moment is reminiscent of the experimental
and theoretical behavior of the fccg-phases of iron and its
invar alloys.9–12 Unfortunately, this sensitivity of the local
magnetic moment to its atomic environment implies that it
will be difficult to find a single, simple interatomic potential
that will be able to simulate damage evolution reliably in bcc
iron or the more complex ferritic steels.2 Proper recognition
must be given to a better understanding and description of

the magnetic contribution to the binding energy.
The tight-bindingsTBd approximation provides a natural

framework for bridging between the first-principles DFT cal-
culations and the semiempirical interatomic potentials for
nonmagnetic materials. By coarse graining the TB electronic
structure in terms of atom-centered moments and bond-
centered interference paths13 interatomic bond-order poten-
tials sBOPsd may be derived that correctly predictsrather
than fitd the observed structural trends across the periodic
table of elements.14 For the sp valent elements, analytic
BOPs have been obtained that handle the bond breaking and
remaking that occurs during film growth.15 For thed valent
transition metals and intermetallics, numerical BOPs have
been used to model dislocation behavior.16–18

The Stoner model of band magnetism19 allows the TB
approximation to be generalized to magnetic materials. This
model of itinerant magnetism has been justified from the
density functional theory.20 Twenty-one years ago Hasegawa
and Pettifor21 showed that a finite-temperature theory of
band magnetism, including onlyd states, could account
qualitatively for the experimental P-T phase diagram of iron
with its occurrence of theasbccd, gsfccd, dsbccd, andeshcpd
phases. More recently, ad-state TB Stoner model has been
applied successfully to model planar defects in bcc iron by
Yesilletenet al.22 They found that the intergranular cohesion
along symmetric tilt boundaries depended strongly on the
magnetic structure at the interface, the local moments being
enhanced by up to 18% compared to the bulk.

In this paper we generalize the TB Stoner model of band
magnetism to include charge self-consistency, which is im-
portant for a realistic treatment of point defects. In particular,
as we are dealing with metallic systems with perfect screen-
ing, we will assume that each atom remains locally charge
neutralsLCNd. This is achieved by adjusting the on-site en-
ergies up or down until all the atoms have zero net charge.23

In order for this self-consistent TB model to satisfy the fro-
zen potential or force theorem,24,25 we must work within the
TB bond representation for the binding energy26–29 rather
than the conventional TB band representation. This guaran-
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tees that the renormalization or shift in the on-site energies
does not enter the TB expression for the force.

The plan of the paper is as follows. We derive the TB
bond Stoner model in the next section. We then present the
results for iron in Sec. III, retaining only the valenced states.
In Sec. III A we calculate the bulk properties of pure iron.
The energies, equilibrium atom volume, magnetic moment,
and elastic constants are presented for three different struc-
tures bcc, fcc, and hcp. In Sec. III B we use the TBd bond
Stoner model to predict the formation energies and local
magnetic structures of vacancies and self-interstitials in bcc
iron. In Sec. IV we conclude.

II. TIGHT-BINDING-BOND STONER MODEL

The TB bond model was introduced in order to handle
local charge neutrality within metallic binary alloys27 and
compounds.26 For nonmagnetic systems, the binding energy
within density functional theorysDFTd can be written as

EDFT = Eband− Edc + Eii − Eatom. s1d

The first term is obtained by summing over all the occu-
pied eigenstates in the band, the second term is the usual
double counting correction for the electron-electron interac-
tions, the third term is the ion-ion repulsionsassuming the
core electrons have been pseudized awayd, and the last term
is the energy of the atoms when they are removed to infinity.
Within the conventional TB band model the second and third
contributions in Eq.s1d are grouped together as a single pair-
wise repulsive term. If LCN is now introduced, then the re-
sultant shifts in the on-site energies will affect only the band
contribution and not this empirical repulsive pairwise term.
This immediately implies that the TB band model fails to
satisfy the frozen potential or force theorem,24,25which states
that the first order change in the band energy contribution is
exactly cancelled by a similar shift in the double counting
term in Eq.s1d

The TB bondsTBBd model avoids this problem by sepa-
rating out the on-site and inter-site contributions within the
band energy. The former term is grouped with the double
counting and ion-ion contributions, which together now rep-
resent the electrostatic interaction between overlapping neu-
tral atoms.28,29 Within the orthogonal TBB model, this elec-
trostatic interaction is further grouped with the overlap
repulsion and represented empirically by a single repulsive
pairwise contribution.30 The TBB binding energy for a non-
magneticsNMd system can then be written in the physically
intuitive form as

ETBB
NM = Ebond

NM + Eprom+ Erep, s2d

where all atoms are constrained to be LCN.
The nonmagnetic bond energy is given by

Ebond
NM = 2o

ia
EeF

se − eia
0 dniasedde, s3d

where the prefactor 2 accounts for the spin-degeneracy of the
nm state andeF is the Fermi energy.eia

0 and nia are the
on-site energy and local density of states, respectively, asso-

ciated with orbitala on site i. This can be decomposed in
terms of the individual bond energies between orbitalsa and
b on neighboring sitesu and j , namely

Ebond
NM = 2 o

ia,jb

siÞ jd

ria,jbHjb,ia, s4d

where the prefactor 2 accounts for the spin degeneracy of the
nonmagnetic state.ria,jb andHjb,ia are elements of the den-
sity matrix, and two-center orthogonal TB Hamiltonian ma-
trix, respectively. Thus an individual bond energy is given by
the product of an intersite Hamiltonian matrix element and
corresponding density matrix or bond order,13–18 as Coulson
showed in 1939.31

The second term in Eq.s2d is the promotion energy. For
an sd band model this would take the form

Eprom= o
i

sed
0 − es

0dDNid s5d

if the nonmagnetic s-d atomic energy level splitting
sed

0−es
0d is assumed to take a fixed value for a given element.

DNid gives the change in the number ofd electrons associ-
ated with sitei compared to the free atom state. Due to LCN
we haveDNis=−DNid. For a pured band model the promo-
tion energy is zero. Finally, the last term in Eq.s2d is usually
represented by a simple repulsive pairwise contribution, al-
though for more quantitative predictions of defect behavior it
may take a more complicated many-body formssee, for ex-
ample, Refs. 16–18.d

The Stoner model introduces magnetism by including the
presence of local exchange fields within the band energy of
Eq. s1d. In particular, for collinear magnetic states, up and
down spin electrons will see different on-site energies ac-
cording to whether their spin is parallel or antiparallel to the
local magnetic moment. DefiningI as the Stoner exchange
integral, the local on-site energies for thed-band model take
the form

eid
s = eid

0 ±
1

2
Imi , s6d

wheremi is the difference in the number ofd electrons on
site i with spin parallel and antiparallel to the local moment,
respectively. The minussplusd sign is taken if the spins is
parallel santiparalleld to the direction of the local magnetic
moment. The local exchange splitting on atomi

Di = Imi s7d

is then determined self-consistently so that the magnetic mo-
ment mi predicted as output implies from Eq.s7d the same
exchange fieldDi as used as input. The above collinear
model can be easily generalized to include noncollinear mag-
netic states32–34such as those observed in the fccg-phase of
iron.10,12

The binding energy within the TBB model can now be
extended to treat magnetism by including the exchange fields
within the band energy and subtracting off in Eq.s1d the
double counting Stoner exchange energyEX, where
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EX = −
1

4o
i

Imi
2. s8d

This leads to the expected TBB form:

ETBB= Ebond+ sEX − EX
atomd + Eprom+ Erep, s9d

where

Ebond= o
s=↑,↓

o
ia,jb

siÞ jd

ria,jb
s Hjb,ia s10d

and

EX − EX
atom= −

1

4o
i

Ismi
2 − matom

2 d s11d

with matom being the magnetic moment of the free atom. For
the ferromagnetic state, Eq.s9d is equivalent to the well-
known Stoner result,19 the first term resulting in the increase
in kinetic energy on flipping the spins from the minority to
majority band, the second term representing the correspond-
ing gain in exchange energy.

The forces may be easily evaluated. The TBB binding
energy, Eq.s9d, may be rewritten as

ETBB= o
s=↑,↓

o
ia,jb

ria,jb
s Hjb,ia

s − o
ia

ria,ia
s eia

s

+ sEX − EX
atomd + Eprom+ Erep s12d

since fori = j we haveHia,jb
s =eia

s dab. Therefore, differentiat-
ing with respect to an atomic coordinater k, the force on
atomk is given by

Fk = − o
s=↑,↓

o
ia,jb

ria,jb
s ]Hjb,ia

s

]r k
+

]EX

]r k
−

]Erep

]r k
. s13d

The first term in Eq.s13d is the usual Hellmann-Feynman
force resulting from the first contribution in Eq.s12d. The
second term in Eq.s13d is the derivative of the double
counted exchange energy resulting from combining the sec-
ond and third terms in Eq.s12d. The promotion energy does
not contribute to the force within the LCN model provided
ed

0−es
0 remains constant.23,28 Finally, it follows from Eqs.s6d

and s8d that the on-site contribution in the first term of Eq.
s13d cancels the derivative of the double counted exchange
term. Hence we recover the simple expression for the force
within the TBB model

Fk = − o
s=↑,↓

o
iaÞ jb

ria,jb
s ]Hjb,ia

s

]r k
−

]Erep

]r k
. s14d

We see at once that the first-order shifts in the on-site ener-
gies do not enter Eq.s14d so that the TBB representation
satisfies the frozen potential or force theorem.24,25Moreover,
since the local exchange fields and moments have all been
determined self-consistently through Eq.s7d, the binding en-
ergy is stationary with respect to eitherDi or mi. Hence,
although the local moments and exchange fields are sensitive
to small displacements of an atom, these changes do not
enter the TBB force in Eq.s14d. Thus the forces are imme-

diately available for atomistic relaxations or MD simulations
once the density matrixsor bond-order matrixd has been ob-
tained. We have implemented this scheme by using the
k-space routine in theOXON code,35 which we have general-
ized to include magnetism within the TBB Stoner model as
described above. We have not used the order N routine
within the OXON code because thek-space method provides
not only exact Hellmann-Feynman forces for relaxation of
the defects, but also very accurate DOS about the Fermi level
for treating the presence of magnetism.

III. RESULTS

A. Bulk properties

We begin by fitting the TBB model to the equilibrium
bulk properties of bcc iron. We retain only the valenced
orbitals within the basis as there is no clear improvement if a
more complex model, such assd, is introduced.36 We assume
that the repulsive energy is described by the sum of a short-
range Yukawa potential plus a longer range exponential,
namely

Erep =
1

2o
i,j
S B

rij
me−qrij + Ae−prijD , s15d

where A, B, p, q, and m are fitting parameters. Thedds,
ddp, andddd bond integrals are approximated by a power
law, namely

tsrd = tsr0dsr/r0d−n, s16d

wherer0 is the equilibrium nearest-neighbor bond length of
the bcc ferromagnetic ground state of iron.

Initial values of the bond integrals were obtained using
the third-generation LMTO method which accurately repro-
duces the DFT band structure of transition metals within a
minimal basis set.37 The resultant bond integrals lead tod
band densities of states for the bcc, fcc, and hcp crystal struc-
tures that predict within a Jones-type analysis the observed
structural trends across the transition metal series.38 The
number ofd electronsNd was taken from these LMTO cal-
culations for nonmagnetic bcc iron. We chose the initial
value of the Stoner exchange integralI =0.632 eV, which
Zhong et al.39 found reproduced the experimental magnetic
moment of bcc iron within theirsd TB Stoner model. Initial
values of the repulsive parameters were then found by find-
ing the best fit to the experimental equilibrium volume and
elastic moduli of bcc iron and the DFT energy difference
between nonmagnetic fcc iron and ferromagnetic bcc iron.7

All the parameters were then reoptimized together to fit the
above experimental and DFT data within thed TBB model.

Table I gives the resultant parameters. The exponentsn of
the dd hopping integrals are close to the value of 5 which
was predicted by Heine40 from a simple approximation
within resonant scattering theory. The corresponding non-
magnetic density of statessDOSd for bcc, fcc, and hcp are
shown in Fig. 1. As expected, thesed band DOS mirror very
closely those for canonicald bands.41

The resultant TB binding energy curves relative to the
ferromagneticsFMd bcc ground state energy are shown as a

MAGNETIC PROPERTIES OF POINT DEFECTS IN… PHYSICAL REVIEW B 71, 174115s2005d

174115-3



function of atomic volume in Fig. 2 for the nonmagnetic
sNMd, antiferromagneticsAFMd, and FM metastable phases
of iron with respect to fcc and bcc in the left-hand panel and
hcp and bcc in the right-hand panel. These TB curves reflect
the trends displayed by DFT in Figs. 2 and 6 of Ref. 7,
respectively. However, the specific equilibrium energy values
listed in Table II demonstrate that this comparison between
TB and DFT is at best qualitative. For example, the TB mag-
netic energy of the bcc FM phase is found to be 38% too
small compared to DFT.

Figure 3 shows that the magnetic moments for the FM
and AFM phases behave in the way observed in Ref. 7 as the
volume decreases. In particular, the moment collapses pre-
cipitously as a step-function in the FM hcp phase, whereas it
collapses more gently as the square root in the AFM fcc and
hcp phases. The much larger value of the AFM hcp moment
predicted by TB compared to DFT in Table II is a direct
consequence of the TB equilibrium volume being 6% larger
and hence moving the very small DFT moment up the square
root singularity in Fig. 3.

Table III shows that this TB model gives reasonably quan-
titative values for the shear moduli of the FM bcc ground
state phase of iron, which is not unexpected given that the
experimental values were used in the fit. Importantly, how-
ever, the TB model predicts that the NM bcc phase has a
negative value of the tetragonal shear modulus. This agrees
with other TB and DFT results that find the NM bcc structure
of group VIII transition metals to be mechanically
unstable.45,46

B. Points defects

The formation energy of a point defect is calculated from

DE = EdefsNdefd −
Ndef

N
EsNd, s17d

whereNdef andN are the number of atoms per unit cell in the
defect structure and perfect lattice, respectively.EdefsNdefd

FIG. 3. sColor onlined Magnetic moments of iron as functions of
atomic volume.

TABLE I. Tight-binding, exchange, and repulsive energy pa-
rameters fitted within thed approximation to the TBB Stoner
model, respectively.Nd gives the number ofd electrons. The data in
the bond integrals columns give the bcc first nearest-neighbor equi-
librium value t0 seVd and the exponentn. The repulsive energy
parameters are listed according to Eq.s15d.

Nd I seVd dds ddp ddd

Values 6.8 0.77 −0.6877 0.4196 −0.0392

Exponentn 4.5 4.0 4.0

AseVd psÅ−1d BseVd m qsÅ−1d

Values −8.623104 2.92 1.23105 1 2.68

FIG. 1. Nonmagneticd band density of states for bcc, fcc, and
hcp structures. The zero of energy is taken at the Fermi energy
which corresponds to 6.8d electrons.

FIG. 2. sColor onlined Binding energy curves relative to the
ferromagneticsFMd bcc ground state energy for nonmagneticsNMd,
antiferromagneticsAFMd, and FM metastable phases of iron with
respect to fccshcpd and bcc in the left-sright-d hand plane.
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and EsNd are the corresponding total binding energies per
unit cell. The defect formation volume is calculated using the
method of Simonelliet al.,47 in which the Kanzaki forces are
computed to obtain the dipolar tensorP. The defect relax-

ation volumeDV is given by TrsPd /3B, whereB is the bulk
modulus. The vacancy formation volume is then

Vv
f = V0 + DV, s18d

whereV0 is the atomic volume of the perfect lattice.
The point defect calculations presented below used 216k

points for the 54 atom unit cells, 125k points for the 128
atom unit cells, and 64k points for the 250 atom unit cells.
We checked the convergence of the energies and forces with
respect to the number ofk points. We found that the number
of k points quoted above allow five significant figures for the
binding energy and four significant figures for the force on
individual atoms.

1. Vacancy

The formation energy and formation volume of a single
vacancy are shown in Table IV. We see that our TBB Stoner
model predicts a vacancy formation energy that is 14%
smaller than the DFT value8 but which lies within the two
experimental values.48,49The vacancy formation volume is in
good agreement with both DFT and experiment.42 A com-
parison of the TBB and DFT atomic shell relaxations about
the vacancy is illustrated in Fig. 4. We see that the TBB
predictions underestimate the amount of relaxation of the
first neighbor shell, but reflect the oscillatory behavior over
more distant neighbors.

The behavior of the local magnetic moments about an
unrelaxed vacancy is shown in Fig. 5. As expected, we find
that LCN damps down the amplitude and range of oscilla-
tions about the vacancy compared to the case without LCN.

TABLE III. Shear moduli of bcc iron. Experimental and density
functional theorysDFTd results from Refs. 43 and 44, respectively.

C8 sGpad C44 sGpad

NM

TBB −158 178

DFT −110 141

FM

TBB 36 118

DFT 69 99

Experiment 43 116

TABLE IV. Vacancy and self-interstitial formation energiesseVd and vacancy formation volumesper atomic volumed of bcc iron.Evac
un is

unrelaxed vacancy formation energy. Two experimental values of vacancy formation energy are from Refs. 48 and 49, respectively, whereas
experimental formation volume is from Ref. 50. Density functional theorysDFTd values are from Refs. 8 and 51.

Evac
f Evac

un Vv
f /V0 Efk100l Efk110l Efk111l

TBB s54 atomsd 1.68 1.75 0.93 5.37 4.36 4.72
TBB s128 atomsd 1.66 1.74 0.92 5.13 4.28 4.55
TBB s250 atomsd 1.65 1.74 0.92 5.11 4.25 4.52

DFT Ref. 8s54 atomsd 1.95 2.24 0.90 4.37 3.41 4.11
DFT Ref. 49s128 atomsd 2.07 4.64 3.64 4.34

Experiment 1.53,2 0.95

TABLE II. Calculated equilibrium atomic volumesÅ3d, energy
relative to the bcc ground stateseV/atomd, bulk modulussGPad, and
magnetic momentsmB/atomd for nonmagneticsNMd, ferromagnetic
sFMd, and antiferromagneticsAFMd phases of iron with respect to
the bcc, fcc, and hcp structures. Experimental and density func-
tional theorysDFTd predictions are from Refs. 42 and 7, respec-
tively. The DFT results for FM hcp iron are given for the high spin
statesRef. 7d.

Volume sÅ3d DE seV/atomd B sGpad m smB/atomd

bcc-Fe

FM bcc

TBB 11.57 0 168 2.62

DFT 11.44 0 174 2.17

Experiment 11.70 0 172 2.22

NM bcc

TBB 10.73 0.30 314 0

DFT 10.59 0.48 276 0

fcc-Fe

AFM fcc

TBB 10.84 0.04 219 1.59

DFT 10.69 0.10 193 1.30

NM fcc

TBB 10.70 0.09 328 0

DFT 10.34 0.15 293 0

hcp-Fe

AFM hcp

TBB 11.04 0.04 144 2.04

DFT 10.40 0.10 202 0.37

NM hcp

TBB 10.39 0.06 338 0

DFT 10.32 0.08 291 0

FM hcp

TBB 12.41 0.13 131 3.07

DFT 12.03 0.22 174 2.55
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2. Self-interstitials

The formation energies of thek100l, k110l, and k111l
dumbbell self-interstitials are presented in Table IV. The
structures were relaxed at the equilibrium volume of the bcc
FM state. We see that the convergence with respect to cell
size is fast, as previous studies have also observed.8 The
distances between the two dumbbell atoms in their relaxed
configurations are found to be 1.97, 1.92, and 1.85 Å for the
k100l, k110l, and k111l dumbbells, respectively. The other
atoms around the point defect are only slightly perturbed,
which are displaced by less than 0.25 Å, apart from thek111l
neighbors of thek111l dumbbell which more outwards by
0.61 Å. We see that thed approximation to the TBB Stoner
model overestimates the formation energies by about 20%
compared to the DFT values.8 Nevertheless, the relative sta-

bility of the three dumbbells is maintained with thek110l
predicted as the most stable in agreement with
experiment.50,51

The behavior of the local magnetic moment on the dumb-
bell atoms and their neighbors is given in Table V for a 129
atom until cell. We see that thed approximation to the TBB
Stoner model qualitatively reproduces the DFT8 variations in
moments about the three defects. In particular, it finds the
antiparallel alignment of thek110l dumbbell moment com-
pared to the bulk direction that was first predicted by DFT.8

IV. CONCLUSION

We have generalized the tight-binding Stoner model of
band magnetism to account for local charge neutrality, which
is essential for a proper treatment of defects in metals. This
requires working within the TB bond representation of the
binding energy rather than the conventional TB band repre-
sentation, in order to satisfy the Pettifor-Andersen force
theorem. We have shown that the analytic forces within this
TBB Stoner model still take a very simple form because
neither the renormalization in the on-site energies due to lo-
cal charge neutrality nor the change in local magnetic mo-
ments due to atomic displacement enters explicitly.

We have applied this TBB Stoner model to a study of the
point defects in ferromagnetic bcc iron, retaining only the
valenced orbitals within the bonding contribution. We find
that the results qualitatively reproduce the variations in the
local magnetic moments on and around defects which are
predicted by density functional theory. However, the magni-
tude of the vacancy formation energy is 15% too small and
that of the dumbbell self-interstitials 20% too large. Future
work will introduce a more accurate description of the envi-
ronmental dependence of both the bond integrals52 and re-
pulsive energy16 in order to ensure their better transferability.
This more robust TBB Stoner model should allow the mag-
netic energies of iron atoms in different local environments
to be rapidly calculated and fitted by a simple analytic ex-

FIG. 4. sColor onlined Nearest-neighbor shell relaxations about
a vacancy at the center of a 53 atom unit cell within the TBB model
with LCN sfull curved and DFTsdashed curved. The latter values
are from Ref. 8.

FIG. 5. sColor onlined Local magnetic moments on neighboring
atoms about unrelaxed vacancy at the center of a 53 atom unit cell
within the TBB model with LCNsfull curved and without LCN
sdashed curved.

TABLE V. TBB and DFT sRef. 8d values of the local magnetic
moment of the dumbbell atoms and their neighbors for a 129 atom
unit cell.

Neighbor

Moment smB/atomd

k100l k110l k111l

TBB dumbbell 0.17 −0.20 0.18

DFT 0.18 −0.18 0.28

TBB 111 2.26 0.84 0.73

DFT 2.25 1.87 1.16

TBB 111̄ 2.26 0.84 2.65

DFT 2.25 1.87 2.41

TBB 11̄1 2.26 2.73 2.65

DFT 2.25 2.52 2.41

TBB 1̄11 2.26 2.73 2.65

DFT 2.25 2.52 2.41
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pression. This magnetic potential in conjunction with a non-
magnetic bond-order potential could then be applied to simu-
lating atomistically radiation damage in bcc iron and its
alloys.
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