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Rare-gas solidssNe, Ar, Kr, and Xed under hydrostatic pressure up to 30 kbar have been studied by path-
integral Monte CarlosPIMCd simulations in the isothermal-isobaric ensemble. Results of these simulations
have been compared with available experimental data and with those obtained from a quasiharmonic approxi-
mationsQHAd. This comparison allows us to quantify the overall anharmonicity of the lattice vibrations and its
influence on several structural and thermodynamic properties of rare-gas solids. The vibrational energy in-
creases with pressure, but this increase is slower than that of the elastic energy, which dominates at high
pressures. In the PIMC simulations, the vibrational kinetic energy is found to be larger than the corresponding
potential energy, and the relative difference between both energies decreases as the applied pressure is raised.
The accuracy of the QHA increases for rising pressure.
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I. INTRODUCTION

The importance of anharmonic effects in solids has been
recognized long ago, as they are responsible for well-known
phenomena such as thermal expansion, pressure dependence
of the compressibility, phonon couplings, as well as isotope
dependence of structural properties and melting
temperature.1,2 These kinds of effects have been studied both
theoretically and experimentally for rare-gas solids for many
years3,4 because these are simple systems allowing fruitful
comparisons between theory and experiment. The inter-
atomic forces are weak, short range, and rather well under-
stood, so critical tests of appropriate theories by their ability
to predict properties of actual rare-gas crystals are relatively
simple. In particular, their thermodynamic properties are in-
teresting due to the large anharmonic contributions to their
lattice dynamics.

From a theoretical point of view, anharmonic effects in
solids have been traditionally studied by using approaches
such as the so-called quasiharmonic approximation
sQHAd.1,2 In this approach, frequencies of vibrational modes
are assumed to change with crystal volume, and for given
volume and temperature, the solid is supposed to be
harmonic.5,6 However, the QHA does not deal with phonon
interaction effects, which can be treated by perturbation
theory7 when anharmonicity is not large, or by different self-
consistent phonon theories for larger anharmonicities.8–11 A
different theoretical procedure is the Feynman path integral
method,12 which is well suited to study thermodynamic prop-
erties of solids at temperatures lower than the Debye tem-
peratureQD, where the quantum nature of the atomic nuclei
is relevant. The combination of path integrals with Monte
CarlosMCd sampling enables us to carry out quantitative and
nonperturbative studies of anharmonic effects in solids. The
path-integral Monte CarlosPIMCd technique has been ap-
plied earlier to study several properties of rare-gas
solids.13–19 In particular, it has predicted kinetic-energy val-
ues in good agreement with experimental data.20,21 An

effective-potential Monte Carlo theory22,23 has also been ap-
plied to study thermal and elastic properties of solid neon.

Anharmonic effects increase appreciably with tempera-
ture. This is now well known and has been explained quan-
titatively for rare-gas solids.5,22 In recent years, the effect of
pressure on these solids has attracted much attention from
both experimentalists24–27 and theorists.6,14,28,29 The influ-
ence of pressure on the anharmonicity of lattice vibrations is,
however, not well understood. It has been recently suggested
that pressure causes a decrease in this anharmonicity,30,31 in
line with earlier observations that the accuracy of the QHA
increases as pressure is raised.32 It has also been argued that
at high pressures, thermodynamic properties of solids can be
well described by classical calculations, i.e., dealing with the
atoms as classical oscillators in a given potential.33 This
seems to be, at first sight, contradictory with the fact that
pressure induces a larger zero-point vibrational energy of the
solid. These questions are indeed related to the ratio of the
vibrational energy to the whole internal energy on one side,
and to the size of the “intrinsic” anharmonicitysfurther than
the QHAd of the lattice vibrations on the other side.

In this paper, we study structural and thermodynamic
properties of rare-gas solids under pressure. This allows us to
study properties of these solids along well-defined isotherms,
and to analyze changes in anharmonic effects due to the re-
pulsive sfor compressiond and attractivesfor dilation, i.e.,
negative pressured parts of the interatomic potential. The in-
teratomic interaction is described by a Lennard-Jones poten-
tial. Results of the PIMC simulations are compared with
those yielded by a quasiharmonic approximation with the
same interatomic potential. This approach will help us to
quantify the influence of the “intrinsic” anharmonicity on the
considered properties.

The paper is organized as follows. In Sec. II, the compu-
tational method is described. In Sec. III, we present results
for energy, heat capacity, lattice parameter, and bulk modu-
lus. Finally, Sec. IV includes a discussion of the results and
the conclusions.
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II. METHOD

A. Path-integral Monte Carlo

Rare-gas atoms were treated as quantum particles inter-
acting through a Lennard-Jones potential:Vsrd=4efss / rd12

−ss / rd6g, with parameterse and s given in Table I, which
were employed in earlier simulations of these kinds of
crystals.18,19 In this table we also give the average atomic
mass of rare gases used in the calculations, as well as low-
temperature properties of the studied crystals at zero pres-
sure, as derived from PIMC simulationsssee belowd.
Lennard-Jones-type potentials have been employed in recent
years to model the atomic interaction in rare-gas
solids.16,17,22,23Although more sophisticated interaction po-
tentials have been developed, they do not seem to be signifi-
cantly superior to Lennard-Jones potentials in accounting for
the experimental data.16,22 This is not the case when one
considers rare-gas solids under high pressure, where three-
body potentials are necessaryssee belowd. For this reason,
our calculations are restricted to pressures not higher than
30 kbar.

Equilibrium properties of rare-gas solids have been calcu-
lated by PIMC simulations in the isothermal-isobaric en-
semblesNPTd. Simulations have been performed on 535
35 cubic supercells of the face-centered-cubic unit cell, in-
cluding 500 rare-gas atoms, and assuming periodic boundary
conditions. To check the convergence of our results with sys-
tem size, some MC simulations were carried out for other
supercell sizes, including 73737 supercells. We found that
finite-size effects for 53535 supercells are negligible for
the quantities studied heresthey are smaller than the statisti-
cal noised.

In the path-integral formulation of statistical mechanics,
the partition function is evaluated through a discretization of
the density matrix along cyclic paths, composed of a finite
numberNTr sTrotter numberd of “imaginary-time” steps.12 In
the numerical simulations, this discretization gives rise to the
appearance ofNTr replicas for each quantum particle. In this
way, the implementation of this method is based on an iso-
morphism between the quantum system and a classical one,
obtained by replacing each quantum particleshere, atomic
nucleusd by a cyclic chain ofNTr classical particles, con-
nected by harmonic springs with a temperature-dependent
constant. Details on this computational method can be found
elsewhere.34–36

To have a nearly constant precision for the simulation
results at different temperatures, we considered a Trotter

number that scales as the inverse temperature. At a givenT,
the actual valueNTr required to obtain convergence of the
results depends on the Debye temperatureQD shigher QD
needs largerNTrd. For the simulations at zero pressure, we
have takenNTrT=250 K for solid Ar andNTrT=200 K for
the other rare-gas solidssQD,90 K for Ar versus,70 K
for Ne, Kr, and Xed. Since vibrational frequenciessand the
associated Debye temperatured increase as the applied pres-
sure is raised, the Trotter number has to be correspondingly
increased. Thus, for a given solid and an applied pressure we
have takenNTr values roughly proportional to the zero-point
vibrational energy at the considered pressure. This means
thatNTr is increased by a factor of about 2 for Ar, Kr, and Xe
sabout three for Ned when pressure rises from zero to
30 kbar. Thus, the computational time required to carry out
PIMC simulations risessad as temperature is lowereds
~1/Td andsbd as pressure is raisedf~Evibs0d, zero-point vi-
brational energyg. For example, a PIMC simulation for solid
Ar at 5 K and zero pressuresNTr=50, N=500d is equivalent
in computational time to a classical MC simulation for
NTrN=25 000 atoms. This number increases by a factor of 2
at the same temperature andP=30 kbar.

Sampling of the configuration space has been carried out
by the Metropolis method at temperatures between 5 K and
the triple-point temperatureTtp of the different solids, as well
as at pressures up to 30 kbar. For given temperature and
pressure, a typical run consisted of the generation of 2
3104 quantum paths per atom for system equilibration, fol-
lowed by 33105 paths per atom for the calculation of en-
semble average properties. Other technical details are the
same as those used in Refs. 18 and 19.

The isothermal bulk modulusB can be obtained in the
NPT ensemble from the mean-square fluctuations in the lat-
tice parameter,sa

2. In this ensemble, fluctuations in the vol-
umeV of the simulation cell are given by37 sV

2 =VkBT/B, and
therefore

B =
kBT

9L3asa
2 , s1d

whereL is the side length of the simulation cell in units of
the lattice parametershere,L=5d.

B. Quasiharmonic approximation

In the following section, results of PIMC simulations are
compared with those derived from a QHA. This approxima-

TABLE I. Parameterss ande of the Lennard-Jones potential employed in this work and average isotopic
masskMl for rare gases. Calculated zero-temperature properties of rare-gas solids at zero pressure are also
given: lattice parametera, zero-point vibrational energyEvib, and elastic energyEel per atom, as derived from
PIMC simulations.

Element s sÅd e smeVd kMl samud a sÅd Evib smeVd Eel smeVd

Ne 2.782 3.084 20.18 4.4631 6.33 1.20

Ar 3.404 10.32 39.95 5.3115 7.99 0.43

Kr 3.638 14.17 83.80 5.6458 6.27 0.18

Xe 3.961 19.91 131.30 6.1316 5.54 0.10
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tion is based on a renormalization of the phonon frequencies
with volume, and for a given volume the solid is assumed to
be harmonic.1,2 This volume dependence of phonon frequen-
cies is usually described by a mode-dependent Grüneisen
parameter1,2 gnsqd=−] ln vnsqd /] ln V, wherevnsqd are the
frequencies of thenth mode in the crystal, and for small
volume changesgnsqd is assumed to be constant for each
mode. However, for the QHA calculations presented here, we
have not employed this description based on Grüneisen pa-
rameters. Instead of this, we calculate directly the actual
sharmonicd vibrational frequencies for each crystal volume
by diagonalizing the corresponding dynamical matrix.

For direct comparison with results of PIMC simulations,
we have employed for the QHA the same supercell as for the
simulations, i.e., a 53535 supercell with periodic boundary
conditions. This means that only theq=0 modes in the Bril-
louin zone of the supercell are included in the calculation,
since modes withqÞ0 violate the periodic boundary condi-
tions. Then, the total number of vibrational modes in the
QHA is 1497, i.e., three times the number of rare-gas atoms
in the supercell minus three translational degrees of freedom.
The point group symmetry of the simulation cell imposes
that many of these normal frequencies are degenerated. The
number of normal modes that are not symmetry equivalent is
72 for the supercell employed here. For each temperature, we
calculated the free energy as a function of volume, with the
corresponding phonon frequencies. The lattice parameter
was changed in steps of 10−3 Å, and from the volume deriva-
tive of the free energy we derived the equilibrium volume as
a function of pressure.

III. RESULTS

A. Energy

Once defined an interatomic potential, the internal energy
of a solid,EsV,Td, at given volume and temperature can be
written as

EsV,Td = E0 + EelsVd + EvibsV,Td, s2d

whereE0 is the minimum potential energy for thesclassicald
crystal atT=0, EelsVd is the elastic energy, andEvibsV,Td is
the vibrational energy. Since we are working in the
isothermal-isobaric ensemble, it is understood that the vol-
ume is implicitly given by the applied pressure, i.e.,V
=VsPd. For a given volumeV, the classical energy atT=0
increases by an amountEelsVd with respect to the minimum
energyE0. This elastic energyEel depends only on volume,
but at finite temperatures and for the realsquantumd solids, it
depends implicitly onT due to the temperature dependence
of V sthermal expansiond. The elastic energyEelsVd repre-
sents a nonnegligible part of the internal energy, even at zero
pressure. For example, in Ne it is found to be 1.2 and
2.1 meV per atom at 5 and 24 K, respectively. These values
are smaller for the other rare gases, as shown in Table I.

The vibrational energy,EvibsV,Td, depends explicitly on
both,V andT, and can be obtained by subtracting the elastic
energy from the internal energy. Values ofEvib derived from
our PIMC simulations forT→0 andP=0 are given in Table

I. Path-integral Monte Carlo simulations allow us to obtain
separately the kinetic energy,Ek, and potential energy,Ep,
associated to the lattice vibrations.34 Both energies are shown
in Fig. 1 for solid Ne as a function of temperature atP=0.
Circles and triangles correspond to the vibrational kinetic
and potential energy, respectively. Our results for the kinetic
energy are close to those derived earlier from PIMC simula-
tions with Lennard-Jones13,21,38 and Aziz38 interatomic po-
tentials. For comparison, we present also in Fig. 1 values of
the kinetic energy of Ne atoms, derived by Timmset al.20

from neutron Compton scattering in solid neonsblack dia-
mondsd. According to the results of our PIMC simulations,
Ek is larger thanEp by about 20%. The QHA predicts poten-
tial sand kineticd energy valuesssolid lined that are close to
the vibrational potential energy derived from our PIMC
simulations. Something similar happens for the other rare-
gas solids, withEk.Ep for all temperatures and pressures
studied here. The differenceEk−Ep decreases for increasing
atomic mass, and atT=5 K and zero pressure, we findEk
−Ep=0.67 and 0.059 meV/atom for Ne and Xe, respectively.
These energy differences increase slowly as pressure rises,
and take values of 0.75 and 0.060 meV/atom for Ne and Xe
at 30 kbar.

A quantitative estimation of the overall anharmonicity of
the atom vibrations is given by the parameter17 j=2sEk

−Epd / sEk+Epd, which should be zero for a harmonic solid at
any temperature, as follows from the virial theorem. For
rare-gas solids, it was shown earlier19 that j increases as
temperature rises, as expected for larger anharmonicity. In
Fig. 2 we show the pressure dependence of the parameterj
for different rare-gas solids atT=5 K, as derived from PIMC
simulations. One observes thatj decreases as pressure is
raised. The relative change in this parameter is largest for
Ne, for which it decreases by a factor of about 3.5. For Xe, it
changes by a factor<2.

The elastic energyEel increases fast as pressure rises. In
Fig. 3 we display the pressure dependence ofEel for sad Ne

FIG. 1. The temperature dependence of the vibrational energy of
solid neon. Circles and triangles correspond to kinetic and potential
energy, respectively, as derived from PIMC simulations. Error bars
of the simulation results are less than the symbol size. Dashed lines
are guides to the eye. The solid line is the result of the QHA.
Diamonds are kinetic-energy data for solid Ne, obtained by Timms
et al. sRef. 20d from neutron Compton scatteringsthe point atT
=0 is an extrapolation given by these authorsd.
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and sbd Ar, obtained from PIMCsopen squaresd and QHA
ssolid linesd. For comparison we also present results for the
vibrational energyskinetic plus potentiald obtained by both
procedures. As shown above,Ek for Ne at zero pressure is
about 20% larger thanEp, and thus the wholeEvib derived
from PIMC is 10% larger than that found in the QHAsEp is
nearly the same for both methodsd. This relative difference
decreases as pressure increases, and is almost inobservable
on the scale of Fig. 3. Note that close toP=0, Eel decreases
as P rises, reaches a minimum, and then increases continu-
ously for larger applied pressures. This is due to the fact that
at P=0 the crystal is expanded with respect to the volume
giving the minimum potential energy. With an applied pres-
sure of about 2 kbar, solid neon reaches the volume corre-
sponding to the classical minimumsgiving Eel=0d, and for
larger pressures the volume is further reduced, with an in-
crease inEel. Something similar happens for Ar and the other
rare-gas solids, although it is less appreciable on the scale of
Fig. 3sbd. For solid Ne we find that the vibrational energy is
larger thanEel at pressuresP,23 kbar. However,Eel rises
faster with pressure, and becomes the dominant part of the
internal energy for larger pressures. This behavior is qualita-
tively similar for the other rare-gas solids, as shown in Fig.
3sbd for Ar. The main difference is that the elastic energy for
Ar increases with pressure faster than for Ne, and becomes
larger thanEvib for P.12 kbar. In this context, the main
point concerning large pressures is thatdEel/dP.dEvib/dP.
This means that the ratioEel/Evib grows for increasing pres-
sure, and eventually the vibrational energy becomes a small
correction to the internal energy.

Note that in Fig. 3 we have included some points at nega-
tive pressuresthat is, solids under tensiond. This region with
P,0 was studied earlier for rare-gas solids by PIMC
simulations.39 It was found, in particular, that atT=5 K solid
Ne and Ar are metastable until reaching the corresponding
spinodal pressures of −0.9 and −2.5 kbar, where they be-
come mechanically unstable. Here we only comment that
energy results obtained from the QHA follow those yielded

by PIMC simulations also in this region of negative pres-
sures.

B. Heat capacity

We have calculated the heat capacityCp of rare-gas solids
for several pressures as a numerical derivative of the en-
thalpy,H=E+PV, with respect to the temperature. In Fig. 4
we present results derived from PIMC simulationsssymbolsd
for solid argon atP=0 and 15 kbar. Results of the quasihar-
monic approximation are shown as dashed lines. For com-
parison, we also present experimental results obtained by
Flubacheret al.40 for argon at atmospheric pressure. Results
of PIMC simulations atP=0 agree well with experimental
data for both Ne and Arsdata for Ne were given elsewhere18

and are not shown hered, except close toTtp, where the simu-
lation results are lower than the experimental ones in both
cases. However, forT&Ttp there can be a systematic error in
the experimental resultss,10% atTtpd, due to partial vapor-
izing of the solid.41 Our simulations were carried out for
perfect crystalsswithout vacanciesd, and thus we cannot con-
clude at this point if the observed difference is caused by a
failure of the Lennard-Jones potential employed here, or by
the experimental uncertainty nearTtp.

FIG. 2. The anharmonicity parameterj for rare-gas crystals as a
function of applied hydrostatic pressure. Symbols indicate results of
PIMC simulations atT=5 K. From top to bottom: Ne, Ar, and Xe.
Error bars are less than the symbol size. Lines are guides to the eye.
Results for Kr lie between those for Ar and Xe and are not shown
for clarity of the figure.

FIG. 3. The vibrational and elastic energy of solid Nesad and Ar
sbd at T=5 K, as a function of pressure. Symbols show results of
PIMC simulations:h: vibrational energy;s: elastic energy. Solid
lines are results of the quasiharmonic approximation. The error bars
of the simulation results are less than the symbol size.
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For zero pressure, the QHA gives results close to those of
PIMC at low temperaturessT,5 K for Ne andT,20 K for
Ard, but clearly overestimates the heat capacity at higher
temperatures. The relative error of the QHAscompared with
PIMCd increases as temperature is raised, as expected for an
increase insintrinsicd anharmonicity due to thermal effects.
In the case of Ne, this approximation breaks down atT
=22.6 K, due to a mechanical instabilitysthe solid becomes
unstable in the QHA at a temperature lower than the actual
Ttpd. For Ar this approach predicts a breakdown of the solid
at 86.2 K. These results are in line with earlier observations
on the validity temperature range of the QHA for these
solids4,5,42

For increasing pressure, the error of the QHA decreases.
This is in part due to the renormalization of vibrational fre-
quencies, which increase under an applied pressure, and
therefore shift the increase inCp to higher temperatures.
Moreover, the relative contribution of the vibrational energy
to the internal energy is reduced as pressure rises, and in
consequence the intrinsic anharmonicity of the vibrational
modessnot captured by the QHAd becomes less relevant for
the heat capacity.

C. Lattice parameter

At T=0, the differenceDas0d=as0d−acls0d between the
actual lattice parameteras0d and that corresponding to the
minimum potential energy of thesclassicald crystal, acls0d,
decreases as the atomic mass rises and quantum effects be-
come less relevant.17,43 From our PIMC simulations we
found at P=0 that Das0d ranges from 0.174 Å for Ne to
0.025 Å for Xe. Calculated values foras0d at zero pressure
are given in Table I. The temperature dependence of the lat-
tice parameter derived from this kind of PIMC simulation
agrees with experimental data for rare-gas solids.18,19 Such
an agreement is also found at low temperatures in the pres-
sure range considered heresPø30 kbard. In this pressure

range, the QHA predicts lattice parameters that follow
closely those given by the simulationsssee below the discus-
sion on the bulk modulusd.

For large pressures, it is known that the description of
rare-gas solids with effective interatomic potentials requires
the consideration of three-body terms14,24,44to reproduce the
actual equation of stateP-V. We have checked that the
Lennard-Jones potential considered here predictsP-V iso-
therms for solid Ar close to the experimental ones26 up to
pressures on the order of 50 kbar. For larger pressures, this
pair potential yields volumes larger than the real ones.

Even though thermal effects on the crystal volume change
in magnitude for different rare-gas solids at low temperatures
sT&5 Kd, these differences are less important at higher tem-
peratures. If one takes as a reference the classical lattice
parameteracls0d, the differenceDa=a−acls0d at tempera-
tures close toTtp of each solid amounts to<0.25 Å, as de-
rived from our PIMC simulations. This differenceDa is plot-
ted in Fig. 5 for the different solids as a function of pressure.
For each solid we present PIMC results along an isotherm:
Ne, T=20 K; Ar, 80 K; Kr, 110 K; and Xe, 160 K. These
results for the different rare-gas solids follow roughly the
same pressure dependence. Note that atP=0, Da is positive,
as a consequence of zero-point and thermal lattice expansion.
Under applied pressureDa decreases, reachingDa=0 for a
pressureP<2 kbar, and is negative for largerP. Lines in
this figure show results of the QHA, which follow closely
those of PIMC. The main difference between both sets of
results appears for Xe at pressures higher than 10 kbarsdia-
monds and dashed-dotted linesd. We conclude that the differ-
enceDa at temperatures nearTtp follows a pressure depen-
dence similar for all rare-gas solids considered here.

D. Bulk modulus

The isothermal bulk modulusB of rare-gas solids has
been calculated from our PIMC simulations by using Eq.s1d.
The temperature dependence ofB at zero pressure was stud-

FIG. 4. The heat capacity,Cp, of solid argon as a function of
temperature atP=0 and 15 kbar. Symbols: PIMC simulations;
dashed lines: quasiharmonic approximation; solid line: experimen-
tal data obtained by Flubacheret al. sRef. 40d at atmospheric pres-
sure. The error bars of the simulation results forP=0 are on the
order of the symbol size.

FIG. 5. The pressure dependence of the increment in lattice
parameter,Da=a−acls0d, with respect to the idealsclassicald crystal
with minimum potential energy. Symbols and lines indicate results
of PIMC simulations and QHA along a given isotherm for each
solid: Ne at 20 Ksh, solid lined, Ar at 80 K ss, dotted lined, Kr at
110 K sn, dashed lined, and Xe at 160 KsL, dashed-dotted lined.
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ied earlier18,19 and will not be presented here. We only note
that results obtained from this kind of simulations for Ar, Kr,
and Xe showed good agreement with experimental data up to
temperatures close toTtp.

18,19 Results found for the bulk
modulus of neon are lower than the experimental data atT
,18 K, and at higherT the experimentalB decreases faster
than that derived from the simulations. This seems to be a
general problem of this kind of calculation with Lennard-
Jones- and Tang-Toennis-type interatomic potentials.22,45

We now turn to the pressure dependence of the bulk
modulus for these solids. Results of our PIMC simulations
for Ne, Ar, and Xe atT=5 K are plotted in Fig. 6ssymbolsd.
The bulk modulus of Krsnot shown for clarityd lies between
those of Ar and Xe. Dashed lines are results of the QHA, and
solid lines represent experimental data obtained by Anderson
et al.46 for Ne and Anderson and Swenson47 for Ar and Xe.
The QHA predicts bulk moduli in good agreement with those
derived from PIMC simulations, indicating that this approxi-
mation is rather accurate for predicting theP-V equation of
state, as well as the derivative]P/]V, which gives the bulk
modulus.

Our calculated results for Ne agree well with experimen-
tal data in the pressure region under consideration. For the
other rare-gas solidssincluding Kr, not shown in Fig. 6d our
results are larger than the experimental data forP*10 kbar.
At 20 kbar, our method overestimates the bulk modulus of
Ar and Xe by about 5%. This is a consequence of the inter-
atomic pair potential employed in our calculations. As indi-
cated above, the limitation of pair potentials for describing
this kind of solid shows up as pressure rises, and eventually
three-body terms are necessary at high pressures.14,44

IV. DISCUSSION

Path-integral Monte Carlo simulations give in principle
the “exact” solution to the considered quantum problem,
with an accuracy depending on the considered Trotter num-
ber and the statistical error associated to the MC sampling.

Thus, the Lennard-Jones potential employed here gives a
good description of structural and thermodynamic properties
of rare-gas solids at zero pressure betweenT=0 and the
triple-point temperature. The equation of stateP-V is well
described by this potential in the pressure range considered
here sP,30 kbard. The bulk modulus of Ne is well repro-
duced, and for heavier rare gases PIMC simulations giveB
values larger than experiment atP*10 kbar.

In all solids considered here, and for different pressures
and temperatures, we have foundEk.Ep. The overall anhar-
monicity has been measured by the parameterj, which for
given T and P decreases as the atomic mass is raised. Al-
though this parameter is by no means a unique and absolute
measure of the whole anharmonicity, for a family of similar
materials it is useful to give us a quantitative estimation of
anharmonic effects as a function of atomic mass, tempera-
ture, and pressure. In the limitP=0 andT→0, j changes
from 0.21 for Ne to 0.02 for Xe. This indicates a large an-
harmonicity of the lattice vibrations in Ne, even atT=0. For
comparison, we note that covalent solids at low temperatures
show much lower values ofj. Thus, for diamond, silicon,
and germanium one finds, forT/QD!1, differences between
Ep andEk smaller than 1%, and atT,QD they are less than
3%.43,48,49Another point of interest is that for such covalent
materials the vibrationalEp was found to be larger thanEk,
just the opposite to the trend found for rare-gas solids. Then,
the fact thatEp,Ek, obtained for the rare-gas solids studied
here, is not general in solids, and can be due to the particular
nature of the interatomic interactions present in rare-gas
sLennard-Jonesd solids.

A qualitative understanding of the sizeable increase in ki-
netic energy of the rare-gas atoms with respect to the value
expected in a QHA can be obtained by analyzing the changes
of kinetic and potential energy by standard time-independent
perturbation methods. With this purpose, we consider a one-
coordinate perturbed harmonic oscillator with Hamiltonian
H=p2/2m+ 1

2mv2x2+Ax3+Bx4. The x3 term does not intro-
duce corrections to the zero-point energy in first order,37 and
the second-order correction is only due to a change in kinetic
energy. Thex4 term gives a first-order correction37 that again
is only caused by a kinetic-energy change. Thus, the leading
corrections to the zero-point energy due to both perturbing
terms originate from changes in the kinetic energy. This is in
line with the results presented in Fig. 1, which show that the
potential energy derived from PIMC is close to that yielded
by the QHA, and the kinetic energy is far from the QHA
result. This one-coordinate approach can give us only a very
qualitative interpretation of the changes in kinetic and poten-
tial energy of the considered crystals with respect to a quasi-
harmonic approximation. In fact, the whole problem is a
many-particle one, in which the lattice vibrations cannot be
considered as non-interacting entities when anharmonicities
are present. The coupling between vibrational modes ob-
tained in a harmonic or quasiharmonic approximation is ex-
pected to increase as the crystal density increasesspressure
risesd, thus making such approximations less reliable in the
description of the vibrational problem.

For what concerns structural and thermodynamic proper-
ties of rare-gas solids, the QHA becomes more precise as
pressure increases. This is related to the pressure dependence

FIG. 6. The isothermal bulk modulus as a function of pressure
for rare-gas solids. Symbols: results of PIMC simulations atT
=5 K, with error bars on the order of the symbol size. Dashed lines:
quasiharmonic approximation at 5 K. Solid lines: experimental data
by Andersonet al. sRef. 46d for Ne, and Anderson and Swenson
sRef. 47d for Ar and Xe, atT=4.2 K.
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of the vibrational and elastic energies and is due to two rea-
sons. First, for high pressures the vibrational energy becomes
a small part of the internal energy, and hence the influence of
lattice vibrationssand of their anharmonicityd on thermody-
namic properties will comparatively decrease. The same hap-
pens for the free energyF at finite temperatures, since its
vibrational partFvib becomes small as compared with the
whole F. Thus, forFvib!F−E0, a QHA describes well the
pressure dependence of the crystal volume, since it is basi-
cally given by the elastic energy of the solid. Second, the
intrinsic anharmonicity of the lattice vibrationssas measured
by the anharmonicity parameterjd decreases as pressure
rises ssee Fig. 2d, and eventually becomes negligible for
largeP sj→0d. Both arguments go in the same direction of
making more accurate the QHA.

Nevertheless, the improved accuracy of the QHA as pres-
sure rises is not a particular merit of this approach, since the
internal energy becomes dominated by the elastic energy and
the actual description of the vibrational modes is not very
relevant for thermodynamic properties. It has been also
argued33 that structural properties of solids under pressure
can be described rather accurately by a classical model for
the lattice vibrations. The origin of this is similar to that
described above for the decreasing effect of anharmonicity as
P rises, since in this respect the actual description of the
lattice vibrations by a classical or a quantum model becomes
unimportant for solids under large pressures. This is not nec-
essarily the case for spectroscopic properties of the solids
under consideration, because vibrational frequencies pre-
dicted by a QHA or by a classical model are not guaranteed
to describe correctly the actual ones for highP.

In summary, we have analyzed the influence of a hydro-
static pressure on anharmonic effects of rare-gas solids. Our
results indicate that the validity of the QHA to describe
structural and thermodynamic properties of these solids in-
creases as pressure is raised. This is mainly a consequence of
the relative importance of elastic and vibrational energy,
since the latter becomes increasingly irrelevant as pressure
rises. Therefore, the precision requirements for a description
of the sanharmonicd vibrational modes is reduced with in-
creasing pressure. In the limit of large pressures, even a clas-
sical description of these modes can be sufficiently precise to
predict several properties of these solids at low temperatures.
This is, of course, not the case of vibrational properties,
which may require the full quantum treatment with the con-
sideration of zero-point anharmonic effects at high pressures.

We finally note that the extension of the method employed
here to study solids under larger pressures, such as those
presently reached in experimental studiessP,100 GPad, is
hampered by the requirement of enlarging enormously the
Trotter numbersand consequently the CPU timed in PIMC
simulations, which has to be increased as the vibrational en-
ergy rises. This problem is particularly important to study
vibrational properties, since, for very high pressures, thermo-
dynamic properties can be well described by neglecting the
quantum nature of the atomic nuclei, as is usually done in
electronic-structure calculations.
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