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Rare-gas solids under pressure: A path-integral Monte Carlo simulation
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Rare-gas solid$Ne, Ar, Kr, and Xe under hydrostatic pressure up to 30 kbar have been studied by path-
integral Monte Carlo(PIMC) simulations in the isothermal-isobaric ensemble. Results of these simulations
have been compared with available experimental data and with those obtained from a quasiharmonic approxi-
mation(QHA). This comparison allows us to quantify the overall anharmonicity of the lattice vibrations and its
influence on several structural and thermodynamic properties of rare-gas solids. The vibrational energy in-
creases with pressure, but this increase is slower than that of the elastic energy, which dominates at high
pressures. In the PIMC simulations, the vibrational kinetic energy is found to be larger than the corresponding
potential energy, and the relative difference between both energies decreases as the applied pressure is raised.
The accuracy of the QHA increases for rising pressure.
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[. INTRODUCTION effective-potential Monte Carlo thed®?3 has also been ap-
plied to study thermal and elastic properties of solid neon.

The importance of anharmonic effects in solids has been Anharmonic effects increase appreciably with tempera-
recognized long ago, as they are responsible for well-knowiture. This is now well known and has been explained quan-
phenomena such as thermal expansion, pressure dependetitatively for rare-gas solid$?? In recent years, the effect of
of the compressibility, phonon couplings, as well as isotoperessure on these solids has attracted much attention from
dependence of structural properties and meltingooth experimentalisté=2” and theorist§:14282° The influ-
temperaturé:? These kinds of effects have been studied bothence of pressure on the anharmonicity of lattice vibrations is,
theoretically and experimentally for rare-gas solids for manyhowever, not well understood. It has been recently suggested
year$* because these are simple systems allowing fruitfuthat pressure causes a decrease in this anharmotfiéiti
comparisons between theory and experiment. The intetine with earlier observations that the accuracy of the QHA
atomic forces are weak, short range, and rather well undeincreases as pressure is rai$étt.has also been argued that
stood, so critical tests of appropriate theories by their abilityat high pressures, thermodynamic properties of solids can be
to predict properties of actual rare-gas crystals are relativelyell described by classical calculations, i.e., dealing with the
simple. In particular, their thermodynamic properties are in-atoms as classical oscillators in a given poterffialhis
teresting due to the large anharmonic contributions to theiseems to be, at first sight, contradictory with the fact that
lattice dynamics. pressure induces a larger zero-point vibrational energy of the

From a theoretical point of view, anharmonic effects insolid. These questions are indeed related to the ratio of the
solids have been traditionally studied by using approachesibrational energy to the whole internal energy on one side,
such as the so-called quasiharmonic approximatiorand to the size of the “intrinsic” anharmonicitfurther than
(QHA).2?1n this approach, frequencies of vibrational modesthe QHA) of the lattice vibrations on the other side.
are assumed to change with crystal volume, and for given In this paper, we study structural and thermodynamic
volume and temperature, the solid is supposed to beroperties of rare-gas solids under pressure. This allows us to
harmonic>® However, the QHA does not deal with phonon study properties of these solids along well-defined isotherms,
interaction effects, which can be treated by perturbatiorand to analyze changes in anharmonic effects due to the re-
theory when anharmonicity is not large, or by different self- pulsive (for compression and attractive(for dilation, i.e.,
consistent phonon theories for larger anharmonicfti€'sA negative pressuygarts of the interatomic potential. The in-
different theoretical procedure is the Feynman path integraleratomic interaction is described by a Lennard-Jones poten-
method!? which is well suited to study thermodynamic prop- tial. Results of the PIMC simulations are compared with
erties of solids at temperatures lower than the Debye tenthose yielded by a quasiharmonic approximation with the
perature®p, where the quantum nature of the atomic nucleisame interatomic potential. This approach will help us to
is relevant. The combination of path integrals with Monte quantify the influence of the “intrinsic” anharmonicity on the
Carlo(MC) sampling enables us to carry out quantitative andconsidered properties.
nonperturbative studies of anharmonic effects in solids. The The paper is organized as follows. In Sec. Il, the compu-
path-integral Monte CarlgPIMC) technique has been ap- tational method is described. In Sec. Ill, we present results
plied earlier to study several properties of rare-gador energy, heat capacity, lattice parameter, and bulk modu-
solids!®-°In particular, it has predicted kinetic-energy val- lus. Finally, Sec. IV includes a discussion of the results and
ues in good agreement with experimental d4#. An  the conclusions.
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TABLE |. Parametersr ande of the Lennard-Jones potential employed in this work and average isotopic
mass(M) for rare gases. Calculated zero-temperature properties of rare-gas solids at zero pressure are also
given: lattice parametex, zero-point vibrational enerdy, i, and elastic energl per atom, as derived from
PIMC simulations.

Element o A) € (meV) (M) (amu) aA) Eip (MeV) Eq (MeV)

Ne 2.782 3.084 20.18 4.4631 6.33 1.20

Ar 3.404 10.32 39.95 5.3115 7.99 0.43

Kr 3.638 14.17 83.80 5.6458 6.27 0.18

Xe 3.961 19.91 131.30 6.1316 5.54 0.10
Il. METHOD number that scales as the inverse temperature. At a diven

the actual valueNy, required to obtain convergence of the
) _results depends on the Debye temperat@g (higher Op
Rare-gas atoms were treated as quantum particles intefpeds largeNr,). For the simulations at zero pressure, we
acting through a Lennard-Jones potentlr)=4e[(a/1)*>  haye takerN,,T=250 K for solid Ar andNy,T=200 K for
—=(o/r)®], with parameters and o given in Table I, which  the other rare-gas solid®,~ 90 K for Ar versus~70 K
were employed in earlier simulations of these kinds offor Ne, Kr, and X@. Since vibrational frequenciggnd the
crystals'®!9 In this table we also give the average atomicassociated Debye temperatuiecrease as the applied pres-
mass of rare gases used in the calculations, as well as lowyre is raised, the Trotter number has to be correspondingly
temperature properties of the studied crystals at zero presncreased. Thus, for a given solid and an applied pressure we
sure, as derived from PIMC simulationsee below.  have takerNy, values roughly proportional to the zero-point
Lennard-Jones-type potentials have been employed in recevibrational energy at the considered pressure. This means
years to model the atomic interaction in rare-gasthatNr, is increased by a factor of about 2 for Ar, Kr, and Xe
solids!®172223Although more sophisticated interaction po- (about three for Newhen pressure rises from zero to
tentials have been developed, they do not seem to be signif8o kbar. Thus, the computational time required to carry out
cantly superior to Lennard-Jones potentials in accounting foPIMC simulations rises(a) as temperature is lowere
the experimental dat&:** This is not the case when one «1/T) and (b) as pressure is raisddE,;,(0), zero-point vi-
considers rare-gas solids under high pressure, where thregrational energy For example, a PIMC simulation for solid
body potentials are necessaisee below. For this reason, ar at 5 K and zero pressut@;, =50, N=500) is equivalent
our calculations are restricted to pressures not higher thay computational time to a classical MC simulation for
30 kbar. _ _ N1,N=25 000 atoms. This number increases by a factor of 2
Equilibrium properties of rare-gas solids have been calcuyt the same temperature aRe 30 kbar.
lated by PIMC simulations in the isothermal-isobaric en-  sampling of the configuration space has been carried out
semble(NPT). Simulations have been performed o5 by the Metropolis method at temperatures between 5 K and
x5 cubic supercells of the face-centered-cubic unit cell, intne triple-point temperatur®,, of the different solids, as well
cluding 500 rare-gas atoms, and assuming periodic boundagys at pressures up to 30 kbar. For given temperature and
conditions. To check the convergence of our results with Syspressure, a typical run consisted of the generation of 2
tem size, some MC simulations were carried out for othery 10¢ quantum paths per atom for system equilibration, fol-
supercell sizes, includingX7x 7 supercells. We found that |owed by 3x 10° paths per atom for the calculation of en-
finite-size effects for X 5X5 supercells are negligible for semple average properties. Other technical details are the
the quantities studied hefehey are smaller than the statisti- sgme as those used in Refs. 18 and 109.
cal noise. The isothermal bulk moduluB can be obtained in the
In the path-integral formulation of statistical mechanics,NpT ensemble from the mean-square fluctuations in the lat-
the partition function is evaluated through a discretization of;jqe parameterg?. In this ensemble, fluctuations in the vol-
the density matrix along cyclic paths, composed of a finiteymey of the simulation cell are given BYo2=VksT/B, and
numberNy, (Trotter number of “imaginary-time” steps? In therefore
the numerical simulations, this discretization gives rise to the
appearance dfly, replicas for each quantum patrticle. In this _ kgT
way, the implementation of this method is based on an iso- B 9L%g?’ @)
morphism between the quantum system and a classical one,
obtained by replacing each quantum partithere, atomic WhereL is the side length of the simulation cell in units of
nucleu$ by a cyclic chain ofNy, classical particles, con- the lattice parameteiere,L=5).
nected by harmonic springs with a temperature-dependent
constant. Details on this computational method can be found
elsewhereg4-36
To have a nearly constant precision for the simulation In the following section, results of PIMC simulations are
results at different temperatures, we considered a Trottetompared with those derived from a QHA. This approxima-

A. Path-integral Monte Carlo

B. Quasiharmonic approximation
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tion is based on a renormalization of the phonon frequencies
with volume, and for a given volume the solid is assumed to
be harmonid:? This volume dependence of phonon frequen-
cies is usually described by a mode-dependent Griineisen
parametér? y,(q)=-dIn w,(q)/dInV, wherew,(q) are the
frequencies of thenth mode in the crystal, and for small
volume changesy,(q) is assumed to be constant for each
mode. However, for the QHA calculations presented here, we
have not employed this description based on Griuneisen pa-
rameters. Instead of this, we calculate directly the actual
(harmonig vibrational frequencies for each crystal volume
by diagonalizing the corresponding dynamical matrix.

For direct comparison with results of PIMC simulations,
we have employed for the QHA the same supercell as for the

Slmu!qtlons, 1€, a & 5x5 supercell with per'Od'_C bOU”d‘?‘W FIG. 1. The temperature dependence of the vibrational energy of
coqd|t|0ns. This means that onlylthezo mo.des in the B”I'_ solid neon. Circles and triangles correspond to kinetic and potential
louin zone of the supercell are included in the calculationgnergy respectively, as derived from PIMC simulations. Error bars
since modes withy # 0 violate the periodic boundary condi-  of the simulation results are less than the symbol size. Dashed lines
tions. Then, the total number of vibrational modes in theare guides to the eye. The solid line is the result of the QHA.
QHA is 1497, i.e., three times the number of rare-gas atompjamonds are kinetic-energy data for solid Ne, obtained by Timms
in the supercell minus three translational degrees of freedongt al. (Ref. 20 from neutron Compton scatteringhe point atT

The point group symmetry of the simulation cell imposes=0 is an extrapolation given by these authors

that many of these normal frequencies are degenerated. The ] ) ) )
number of normal modes that are not symmetry equivalent is Path-integral Monte Carlo simulations allow us to obtain
72 for the supercell employed here. For each temperature, wieParately the kinetic energl, and potential energy,,
calculated the free energy as a function of volume, with thé’;\ssqmated to th_e lattice wbrauo?_fsBoth energies are shown
corresponding phonon frequencies. The lattice paramet Fig. 1 for solid Ne as a function of temperatureRat 0.

was changed in steps of TOA, and from the volume deriva- ircles and triangles correspond to the vibrational kinetic

tive of the free energy we de’rived the equilibrium volume asand potential energy, respchyer. Our results for the I§|net|c
function of pressure energy are close to those derived ear_ller _from PIMC simula-

atu P : tions with Lennard-Joné$?138 and AziZ® interatomic po-

tentials. For comparison, we present also in Fig. 1 values of

Vibrational energy (meV / atom)

Temperature (K)

Il RESULTS the kinetic energy of Ne atoms, derived by Timmisal2°
' from neutron Compton scattering in solid ne@islack dia-
A. Energy monds. According to the results of our PIMC simulations,

« is larger thark, by about 20%. The QHA predicts poten-
ial (and kineti¢ energy valuegsolid line) that are close to
the vibrational potential energy derived from our PIMC
simulations. Something similar happens for the other rare-
E(V,T) =Eo+ Eo(V) + Eyip(V, T), (2)  9as solids, withE,>E, for all temperatures and pressures
. o . . studied here. The differendg§ —E, decreases for increasing
whereE, is the minimum potential energy for tHelassical) atomic mass, and a=5 K and zero pressure, we firfg,
crystal atT=0, E¢(V) is the elastic energy, ar,i,(V,T)is  -E;=0.67 and 0.059 meV/atom for Ne and Xe, respectively.
the vibrational energy. Since we are working in theThese energy differences increase slowly as pressure rises,
isothermal-isobaric ensemble, it is understood that the voland take values of 0.75 and 0.060 meV/atom for Ne and Xe
ume is implicitly given by the applied pressure, i.&, at 30 kbar.
=V(P). For a given volumeV, the classical energy at=0 A quantitative estimation of the overall anharmonicity of
increases by an amouBt (V) with respect to the minimum the atom vibrations is given by the paraméteé=2(E,
energyE,. This elastic energ¥, depends only on volume, -E;)/(Ec+E), which should be zero for a harmonic solid at
but at finite temperatures and for the regliantum solids, it any temperature, as follows from the virial theorem. For
depends implicitly onT due to the temperature dependencerare-gas solids, it was shown earliethat ¢ increases as
of V (thermal expansion The elastic energ¥. (V) repre-  temperature rises, as expected for larger anharmonicity. In
sents a nonnegligible part of the internal energy, even at zerBig. 2 we show the pressure dependence of the parareter
pressure. For example, in Ne it is found to be 1.2 andor different rare-gas solids &=5 K, as derived from PIMC
2.1 meV per atom at 5 and 24 K, respectively. These valuesimulations. One observes thétdecreases as pressure is
are smaller for the other rare gases, as shown in Table I. raised. The relative change in this parameter is largest for
The vibrational energyk,i,(V,T), depends explicitly on Ne, for which it decreases by a factor of about 3.5. For Xe, it
both,V andT, and can be obtained by subtracting the elasticchanges by a factor2.
energy from the internal energy. Values®f, derived from The elastic energ¥,, increases fast as pressure rises. In
our PIMC simulations fof — 0 andP=0 are given in Table Fig. 3 we display the pressure dependenc&gfor (a) Ne

Once defined an interatomic potential, the internal energ
of a solid,E(V,T), at given volume and temperature can be
written as
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FIG. 2. The anharmonicity paramet&for rare-gas crystals as a Ar, T=35K
function of applied hydrostatic pressure. Symbols indicate results of 501 (0)

PIMC simulations aff=5 K. From top to bottom: Ne, Ar, and Xe.

Error bars are less than the symbol size. Lines are guides to the eye. E 401 QHAEel)
Results for Kr lie between those for Ar and Xe and are not shown § I

for clarity of the figure. 2 301 .
and (b) Ar, obtained from PIMC(open squargsand QHA 5‘320_ PIMC (Eyip) i
(solid lineg. For comparison we also present results for the gL

vibrational energy(kinetic plus potential obtained by both 0k A (Bt
procedures. As shown abovi, for Ne at zero pressure is e QHA (Evib) ]
about 20% larger thak,, and thus the whol&,;, derived ob%o”, | PIMC(Een
from PIMC is 10% larger than that found in the QI-({Ep is 0 5 10 15 20 25 30
nearly the same for both methgdJhis relative difference Pressure (kbar)

decreases as pressure increases, and is almost inobservable
on the scale of Fig. 3. Note that closeRe0, E, decreases FIG. 3. The vibrational and elastic energy of solid (ggand Ar
as P rises, reaches a minimum, and then increases contind? at T=5 K, as a function of pressure. Symbols show resuits of
ously for larger applied pressures. This is due to the fact thdf'MC simulationsTI: vibrational energy©: elastic energy. Solid
at P=0 the crystal is expanded with respect to the volumel'nes are resu[ts of the quasiharmonic approxmatlon_. The error bars
giving the minimum potential energy. With an applied pres_of the simulation results are less than the symbol size.
sure of about 2 kbar, solid neon reaches the volume corre-
sponding to the classical minimufgiving E,=0), and for by PIMC simulations also in this region of negative pres-
larger pressures the volume is further reduced, with an inSUres.
crease irkg. Something similar happens for Ar and the other
rare-gas solids, although it is less appreciable on the scale of
Fig. 3(b). For solid Ne we find that the vibrational energy is
larger thanEg, at pressure$ <23 kbar. Howeverk,, rises We have calculated the heat capa@yof rare-gas solids
faster with pressure, and becomes the dominant part of thier several pressures as a numerical derivative of the en-
internal energy for larger pressures. This behavior is qualitathalpy, H=E+ PV, with respect to the temperature. In Fig. 4
tively similar for the other rare-gas solids, as shown in Fig.we present results derived from PIMC simulatigegmbolg
3(b) for Ar. The main difference is that the elastic energy forfor solid argon afP=0 and 15 kbar. Results of the quasihar-
Ar increases with pressure faster than for Ne, and becomeasonic approximation are shown as dashed lines. For com-
larger thanE,;, for P>12 kbar. In this context, the main parison, we also present experimental results obtained by
point concerning large pressures is th&;,/dP>dE,,/dP. Flubacheret al#° for argon at atmospheric pressure. Results
This means that the ratig,/E,;, grows for increasing pres- of PIMC simulations atP=0 agree well with experimental
sure, and eventually the vibrational energy becomes a smatlata for both Ne and Adata for Ne were given elsewhé?e
correction to the internal energy. and are not shown hereexcept close tdy, where the simu-
Note that in Fig. 3 we have included some points at negalation results are lower than the experimental ones in both
tive pressurdthat is, solids under tensianThis region with  cases. However, fof < T, there can be a systematic error in
P<0 was studied earlier for rare-gas solids by PIMCthe experimental resul(s~-10% atT,), due to partial vapor-
simulations® It was found, in particular, that &t=5 K solid  izing of the solid** Our simulations were carried out for
Ne and Ar are metastable until reaching the correspondingerfect crystalgwithout vacancies and thus we cannot con-
spinodal pressures of —-0.9 and -2.5 kbar, where they bezlude at this point if the observed difference is caused by a
come mechanically unstable. Here we only comment thatailure of the Lennard-Jones potential employed here, or by
energy results obtained from the QHA follow those yieldedthe experimental uncertainty negg,

B. Heat capacity
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FIG. 5. The pressure dependence of the increment in lattice
FIG. 4. The heat capacity,, of solid argon as a function of parameterpa=a-a,(0), with respect to the idedtlassical crystal
temperature atP=0 and 15 kbar. Symbols: PIMC simulations; with minimum potential energy. Symbols and lines indicate results
dashed lines: quasiharmonic approximation; solid line: experimenof PIMC simulations and QHA along a given isotherm for each
tal data obtained by Flubachet al. (Ref. 40 at atmospheric pres- gglid: Ne at 20 K(OJ, solid line), Ar at 80 K (O, dotted ling, Kr at

sure. The error bars of the simulation results RorO are on the 110 K (A, dashed ling and Xe at 160 K¢, dashed-dotted line
order of the symbol size.

] range, the QHA predicts lattice parameters that follow
For zero pressure, the QHA gives results close to those Qfjpsely those given by the simulatioteee below the discus-
PIMC at low temperature€T <5 K for Ne andT<20 K for  gion on the bulk modulys
Ar), but clearly overestimates the heat capacity at higher For jarge pressures, it is known that the description of
temperatures. The relative error of the Qdmpared with  rare-gas solids with effective interatomic potentials requires
PIMC) increases as temperature is raised, as expected for §he consideration of three-body terth&* 4to reproduce the
increase in(intrinsic) anharmonicity due to thermal effects. zctyal equation of stat®-V. We have checked that the
In the case of Ne, this approximation breaks downTat | ennard-Jones potential considered here prediet iso-
=226 K, .due to a mechanical instabilithe solid becomes therms for solid Ar close to the experimental offesp to
unstable in the QHA at a temperature lower than the actugressures on the order of 50 kbar. For larger pressures, this
Typ). For Ar this approach predicts a breakdown of the solidpajr potential yields volumes larger than the real ones.
at 86.2 K. These results are in line with earlier observations gyen though thermal effects on the crystal volume change
on the validity temperature range of the QHA for thesejny magnitude for different rare-gas solids at low temperatures
30“d§’?'42 _ (T=5 K), these differences are less important at higher tem-
For increasing pressure, the error of the QHA decreasegeratures. If one takes as a reference the classical lattice
This is in part due to the renormalization of vibrational fre- parametera(0), the differenceAa=a—a,(0) at tempera-
quencies, which increase under an applied pressure, afgres close toT,, of each solid amounts te:0.25 A, as de-
therefore shift the increase i@, to higher temperatures. i ed from our ,g,MC simulations. This difference is plot-
Moreover, the relative contribution of the vibrational energyqq iy Fig. 5 for the different solids as a function of pressure.
to the interal energy is reduced as pressure rises, and [, each solid we present PIMC results along an isotherm:
consequence the intrinsic anharmonicity of the vibrationaINe, T=20 K: Ar, 80 K: Kr, 110 K: and Xe, 160 K. These
modes(not captured by the QHpbecomes less relevant for g its for the different rare-gas solids follow roughly the
the heat capacity. same pressure dependence. Note th&=0, Aa is positive,
as a consequence of zero-point and thermal lattice expansion.
C. Lattice parameter Under applied pressur&a decreases, reachinga=0 for a
) pressureP=2 kbar, and is negative for largdt. Lines in
At T=0, the differenceda(0) =a(0) —aq(0) between the this figure show results of the QHA, which follow closely
actual lattice parametea(0) and that corresponding to the those of PIMC. The main difference between both sets of
minimum potential energy of théclassical crystal, aq(0),  results appears for Xe at pressures higher than 10 (ctar
decreases as the atomic mass rises and quantum effects agonds and dashed-dotted lineg/e conclude that the differ-
come less relevant:*®* From our PIMC simulations we enceAa at temperatures ned, follows a pressure depen-
found atP=0 that Aa(0) ranges from 0.174 A for Ne to dence similar for all rare-gas solids considered here.
0.025 A for Xe. Calculated values fa(0) at zero pressure
are given in Table I. The temperature dependence of the lat-
tice parameter derived from this kind of PIMC simulation
agrees with experimental data for rare-gas sdffd8.Such The isothermal bulk modulu8 of rare-gas solids has
an agreement is also found at low temperatures in the pre®een calculated from our PIMC simulations by using &g.
sure range considered hefB<30 kbay. In this pressure The temperature dependenceBoét zero pressure was stud-

D. Bulk modulus
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250

Thus, the Lennard-Jones potential employed here gives a
good description of structural and thermodynamic properties
of rare-gas solids at zero pressure betwderD and the
triple-point temperature. The equation of sté&te/ is well
described by this potential in the pressure range considered
here (P<30 kbay. The bulk modulus of Ne is well repro-
duced, and for heavier rare gases PIMC simulations Bive
values larger than experiment R 10 kbar.

In all solids considered here, and for different pressures
and temperatures, we have foulig> E,,. The overall anhar-
monicity has been measured by the paramétevhich for

given T and P decreases as the atomic mass is raised. Al-

O 0 s 50 though this parameter is by no means a unique and absolute
Pressure (kbar) measure of the whole anharmonicity, for a family of similar
materials it is useful to give us a quantitative estimation of

FIG. 6. The isothermal bulk modulus as a function of pressureanharmonic effects as a function of atomic mass, tempera-
for rare-gas solids. Symbols: results of PIMC simulationsTat ture, and pressure. In the limR=0 andT—0, & changes
=5 K, with error bars on the order of the symbol size. Dashed linesfrom 0.21 for Ne to 0.02 for Xe. This indicates a large an-
quasiharmonic approximation at 5 K. Solid lines: experimental datdharmonicity of the lattice vibrations in Ne, evenTat0. For
by Andersonet al. (Ref. 46 for Ne, and Anderson and Swenson comparison, we note that covalent solids at low temperatures
(Ref. 47 for Ar and Xe, atT=4.2 K. show much lower values of. Thus, for diamond, silicon,
and germanium one finds, far ®p <1, differences between

ied earliet®1and will not be presented here. We only note E, andE, smaller than 1%, and &t~ @p they are less than
that results obtained from this kind of simulations for Ar, Kr, 3%:*>#®4°Another point of interest is that for such covalent
and Xe showed good agreement with experimental data up t#aterials the vibrationat, was found to be larger thaif,
temperatures close mrtp_l&lg Results found for the bulk Just the opposite to the trend found for rare-gas solids. Then,
modulus of neon are lower than the experimental dafa at the fact thate, <E,, obtained for the rare-gas solids studied
<18 K, and at highefl the experimentaB decreases faster here, is not general in solids, and can be due to the particular
than that derived from the simulations. This seems to be #ature of the interatomic interactions present in rare-gas
general problem of this kind of calculation with Lennard- (Lennard-Jongssolids. . _ _ o
Jones- and Tang-Toennis-type interatomic potent?3. A qualitative understanding of the sizeable increase in ki-
We now turn to the pressure dependence of the bulletic energy of the rare-gas atoms with respect to the value
modulus for these solids. Results of our PIMC simulationsexpected in a QHA can be obtained by analyzing the changes
for Ne, Ar, and Xe aff=5 K are plotted in Fig. §symbols. of kinetic and potential energy by standard time-independent
The bulk modulus of Kinot shown for clarity lies between ~Perturbation methods. With this purpose, we consider a one-
those of Ar and Xe. Dashed lines are results of the QHA, angoordinate perturbed harmonic oscillator with Hamiltonian
solid lines represent experimental data obtained by AndersoH =p?/2m+3;mw??+Ax3+Bx%. The x* term does not intro-
et al#® for Ne and Anderson and Swendéior Ar and Xe. duce corrections to the zero-point energy in first ofdemd
The QHA predicts bulk moduli in good agreement with thosethe second-order correction is only due to a change in kinetic
derived from PIMC simulations, indicating that this approxi- €nergy. Thed* term gives a first-order correctidhthat again .
mation is rather accurate for predicting tReV equation of is only caused by a kinetic-energy change. Thus, the leading
state, as well as the derivativ®/dV, which gives the bulk corrections to the zero-point energy due to both perturbing
modulus. terms originate from changes in the kinetic energy. This is in
Our calculated results for Ne agree well with experimen-line with the results presented in Fig. 1, which show that the
tal data in the pressure region under consideration. For theotential energy derived from PIMC is close to that yielded
other rare-gas solidéncluding Kr, not shown in Fig. pour by the QHA, and the kinetic energy is far from the QHA
results are larger than the experimental dataPfar10 kbar. ~ result. This one-coordinate approach can give us only a very
At 20 kbar, our method overestimates the bulk modulus ofjualitative interpretation of the changes in kinetic and poten-
Ar and Xe by about 5%. This is a consequence of the intertial energy of the considered crystals with respect to a quasi-
atomic pair potential employed in our calculations. As indi- harmonic approximation. In fact, the whole problem is a
cated above, the limitation of pair potentials for describingmany-particle one, in which the lattice vibrations cannot be
this kind of solid shows up as pressure rises, and eventuallgonsidered as non-interacting entities when anharmonicities

200

150

100

Bulk modulus (kbar)

50

three-body terms are necessary at high presséifés. are present. The coupling between vibrational modes ob-
tained in a harmonic or quasiharmonic approximation is ex-
IV. DISCUSSION pected to increase as the crystal density incregsessure

riseg, thus making such approximations less reliable in the
Path-integral Monte Carlo simulations give in principle description of the vibrational problem.
the “exact” solution to the considered quantum problem, For what concerns structural and thermodynamic proper-
with an accuracy depending on the considered Trotter numties of rare-gas solids, the QHA becomes more precise as
ber and the statistical error associated to the MC samplingpressure increases. This is related to the pressure dependence
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of the vibrational and elastic energies and is due to two rea- In summary, we have analyzed the influence of a hydro-
sons. First, for high pressures the vibrational energy becomesatic pressure on anharmonic effects of rare-gas solids. Our
a small part of the internal energy, and hence the influence aksults indicate that the validity of the QHA to describe
lattice vibrations(and of their anharmonici}yon thermody-  structural and thermodynamic properties of these solids in-
namic properties will comparatively decrease. The same hagreases as pressure is raised. This is mainly a consequence of
pens for the free energly at finite temperatures, since its the relative importance of elastic and vibrational energy,
vibrational partF,;, becomes small as compared with the since the latter becomes increasingly irrelevant as pressure
whole F. Thus, forF,;,<F-E,, a QHA describes well the rises. Therefore, the precision requirements for a description
pressure dependence of the crystal volume, since it is baspf the (anharmonig vibrational modes is reduced with in-
cally given by the elastic energy of the solid. Second, thecreasing pressure. In the limit of large pressures, even a clas-
intrinsic anharmonicity of the lattice vibratiortas measured sical description of these modes can be sufficiently precise to
by the anharmonicity paramete) decreases as pressure predict several properties of these solids at low temperatures.
rises (see Fig. 2, and eventually becomes negligible for This is, of course, not the case of vibrational properties,
large P (¢— 0). Both arguments go in the same direction of which may require the full quantum treatment with the con-
making more accurate the QHA. sideration of zero-point anharmonic effects at high pressures.
Nevertheless, the improved accuracy of the QHA as pres- We finally note that the extension of the method employed
sure rises is not a particular merit of this approach, since thBere to study solids under larger pressures, such as those
internal energy becomes dominated by the elastic energy artfesently reached in experimental studis-100 GPg, is
the actual description of the vibrational modes is not veryhampered by the requirement of enlarging enormously the
relevant for thermodynamic properties. It has been alsdrotter number(and consequently the CPU tipna PIMC
argued® that structural properties of solids under pressuresimulations, which has to be increased as the vibrational en-
can be described rather accurately by a classical model f®rgy rises. This problem is particularly important to study
the lattice vibrations. The origin of this is similar to that vibrational properties, since, for very high pressures, thermo-
described above for the decreasing effect of anharmonicity adynamic properties can be well described by neglecting the
P rises, since in this respect the actual description of theuantum nature of the atomic nuclei, as is usually done in
lattice vibrations by a classical or a quantum model becomeslectronic-structure calculations.
unimportant for solids under large pressures. This is not nec-
essarily the case for spectroscopic properties of the solids
under consideration, because vibrational frequencies pre- The authors benefitted from discussions with L. M. Sesé.
dicted by a QHA or by a classical model are not guaranteedhis work was supported by CICYTSpain through Grant
to describe correctly the actual ones for high No. BFM2003-03372-C03-03.
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