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Microscopic theory of phase transitions in hydrogen-bonded phenol-amine adducts
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Second-order reversible ferroelastic phase transitions in a recently discovered class of hydrogen-bonded
phenol-amine adducts has already been analyzed by Landau theory. The analysis is however phenomenological
and does not directly indicate the microscopic origin of this phase transition. In this paper, a microscopic
theory is presented. It is proposed that the main mechanism responsible for the phase transition is the interac-
tion of hydrogen bonds with the lattice vibrations or phonons of the crystal. These interactions with the
phonons induce long range cooperative interactions between the hydrogen bonds, which causes the phase
transition behavior at the critical temperature. Critical exponents for unit cell parameters and heat capacity are
derived with a variational meanfield approach, and shown to be consistent with the prediction of Landau’s
theory.
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I. INTRODUCTION The hydrogen bonds are modelled as two-level systems, and

Crystalline solids containing phenol-amine adducts arglescribed by pseudo spin variablgbor a comprehensive
widely used to study hydrogen bonds. Phenol-amine adduc@verview of hydrogen bonding, see the book by Jeffrayd
are produced by the interaction of phenols, compounds haveferences thereinThe spin-phonon coupling then induces
ing at least one hydroxyl group, and amines, compoundfong range cooperative interactions between pseudo spins,
having at least one amino group. The phenols and amines ind results in a second-order phase transition at the critical
the solid state are generally linked by intermoleculartemperature.

O—H---0, O—H N or N-H---O types of hydrogen bonds  The steps involved in the calculation can be summarized
which are among the most robust and versatile synthons iggs follows:

crystal engineering. Studies on the hydrogen bondings in 1 The hydrogen bonding interaction is modelled as a two-

these phenol-amine adducts can be used as a model for thg,e system, and cast into the form of a spin-phonon Hamil-
more complicated hydrogen bonding in biological systems Nonian.

which hydrogen bondings play a crucial and an important 2 A variational principle involving a trial Hamiltonian is

role. Owing to our interests in hydrogen_ bondmg; n SUChemployed. The trial Hamiltonian is chosen such that spin and
systems, we have investigated systematically in single crys:

tal forms a class of phenol-amine adducts and their crystzﬂhqm.)n are decoupled_m a mean-fleld_sense. Th? res_ultlng
structures were reportéd® Some of these single crystals of variational free energy 1s thus a mean- field approxmatlon.
phenol amine adducts undergo a reversible phase transition 3 1hermodynamics of the model is obtained from the
with variation in temperature. For these samples, a hydrogeffi€an-field free energy. A critical point is found, and various
atom is transferred from the pherfethich then becomes an Cfitical exponents calculated. . -
anion to the amine(which then becomes a catjorHydro- We believe this microscopic analysis of phase transitions
gen bonds are then established between the donor/amingdused by hydrogen bonds could have wide implications
cation and the acceptor/phenol/anion. As a result, these cry§ince hydrogen bonds occur in a large class of materials and
tals undergo a temperature-dependent structural pha$ge hydrogen bond plays an important and pivotal role in
transition, which is second-order ferroelastic in its naturemolecular biology and chemistry.

These are the first reported cases of structural phase transi- This is also the latest addition to the class of indirect
tion induced by hydrogen bonding interactions. cooperative phase transitions, which though being highly im-

The phase transition that has been observed are classifiggértant, currently consist of relatively few cases. Well known
into two categorieg1) orthorhombic-to-monoclinic transi- examples of phonon mediated indirect cooperative transi-
tion, and(2) monoclinic-to-triclinic transition. In both these tions include superconductivity and Jahn-Teller transitions.
categories, the phase transitions are a result of the breaking
of a mirror-plane symmetry when the temperature is lowered
through the critical temperaturd,.; the lower symmetric
phase being the low-temperature phase.

In this paper, a microscopic theory for the reversible
ferroelastic-type structural phase transitions observed in a re- We assume that, if the additional hydrogen bond interac-
cently discovered class of hydrogen-bonded organic cystalsons can be “switched off,” all the remaining inter- and in-
is presented. It is proposed that the main mechanism respotramolecular interactions can be approximated by a harmonic
sible for the phase transition is the interaction of hydrogerpotential. This leads to harmonic phonon modes. The Hamil-
bonds with the lattice vibrations or phonons of the crystal.tonian of the crystal is then split into the sum of two parts:

Il. MODEL HAMILTONIAN
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TABLE I. Summary of the states represented by four different
H=> fiwy(a).aq) + Hj, 1 =1 y P y
%: Okj(3;3q) *+ H @) st combinations.
where the first term on the RHS is the harmonic phonon s +1 -1
Hamiltoniani® andH; is the interaction energy of the “addi- t
tional” hydrogen bonds.
+1 antibonding tooy bonding too,
A. Hydrogen bond interaction -1 antibonding tas, bonding too>

A hydrogen bond is formed by the sharing of a hydrogen
atom H between a donaer and an acceptok. H is initially
bonded too. As k drawing nearer, it perturbs the-H sys-
tem, and causes the hydrogenic energy level to split. In th
simplest picture, the perturbed energy levels will be split int

tWO_: one has an energy lower than th_e origina}I unp_erturbe llowing four basis vectors: bonding t@,, antibonding to
orbital, and corresponds to the “bonding” configuration; the(rl’ bonding tor,, and antibonding te.

other is higher in energy than the original orbital, and corre- Another pseudo spite +1 may be introduced alongside

sponds to the “antibonding qonf|gurat|6?1, to describe this four-state system completely. We assign
The departure from the original energy level depends OR_ , 1 (4 the two states where is interacting withe;, and

the degree of overlapping of the hydrogenic orbitals. The __4 to the two states where is interacting with o.

more the overlap, the stronger the perturbation, and the €Hables | and Il summarize how the four states are described

ergy level splitting grows larger. Other effects, such asb{ysandt.

electron-electron repulsion and nucleus-nucleus repulsion, a Usings andt spins defined above, the bond energy of the
shorter distances play the role of maintaining equilibrium ofUl_K_U2 group can be written as,

the crystal.

Assume that ar-« pair is in the beginning held at a dis- E E
tance that is larger than their equilibrium separation, yet Hp=s(1 +t)(?0 +“AK01> +s(1 _t)<30 +/"Amfz)' (5)
close enough for the hydrogen bond interaction to be signifi-
cant. If the pair of molecules do not depart too far away from Notice that spirt does not appear by itself. It is therefore
their initial positions, the energy levels of the bonding andmore convenient to treat the produsttas an independent
antibonding orbitals may be approximated to the lowest orSpin variable instead. Let=stbe a pseudo spin taking value
der of their displacements as of £1, Hy, can be rewritten as

Ebonding: = ZMAKU; (2) Hp = s[EO + IU‘(AKrrl + A:«rz)] + W(AK(Tl - Amrz)- (6)

We further assume that, if bonded or antibonded to one of
the donors, the acceptaris screened by the excess in hy-
arogen density, and unable to interact with the other donor.

herefore we can span the state spacerpic-o, by the

The states represented by each value of spare given
Eantibonding: Eo+ 2uA,,, (3 in Table I1.
where, for the initial configuration, the energy levels are split
by 2E,. A, is the change in degree of overlapping due to the
small displacementsu is a suitable scalar coupling constant, _ _
with the factor of two purely for mathematical convenience. Now we set up a prototype model in which these donor—

B. The prototype model

An order of magnitude estimation ¢f is acceptor—donor groups are bagede Fig. 1
Let a, b, andc be the primitive translational lattice vec-
_ typical bond energy tors which make up the Bravais lattice of the crystal. We
a typical bond length assume that-a=c-b=0. That is, the lattice has monoclinic

or higher symmetry, witlt as the unique axis. Each unit cell
of the lattice is labeled by a position vectoy the lattice
vector enclosed in the unit cell.

An adduct consists of an acid part and a base part, held
together by various interactions between them. For simplic-
ity, we assume that in the crystal each unit cell contains
Hy, = (Eo+ 214 ). (4)  exactly one acid unit and one base unit. We choose our unit

A pseudo spin variable=+1 may be introduced to ex-
press(2) and(3) in a single equation. I6=+1 corresponds
to the antibonding configuration, arsg—1 corresponds the
bonding configuration, the hydrogen bond enelrlyyis then
given by

As a simple argument, we now consider a system with

i TABLE Il. The states represented by each valuevof
two donorso, o, and one acceptok. A system with two

acceptors and one donor can be described in a similar fast); +1 1
ion.

We assume that there is a mirror plane in the crystal, that antibonding too; (s=1,t=1)  bonding too; (s=-1,t=1)
leavesk invariant under its action, but magps and o, into or or

each other. Since the two donors are related by the mirror bonding too, (s=-1,t=-1) antibonding tor, (s=1,t=-1)
symmetry, their interactions appear exactly identicakto
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2 o i e(alkj)
............................. u(a,r):?E(akj+aikj)ékf\/—J—|_, ®
VN j 20 \m,

all symbols have their usual meanings, as defined in
Maradudint® N is the total number of unit cells in the crys-
tal.

There is one set of donor-acceptor-donor group per unit
cell, so one set o§-w spins is needed per unit cell to fully
describe the interaction. We dendateas thes spin in unit
""""""""""""""" cell r, and similarlyw, as thew spin in the same unit cell.

The full interaction Hamiltonian is the sum of bond energy
over the entire crystal.

FIG. 1. The prototype phase of the crystal described in Sec. 11 B.  Using (6), (7), and (8), the full interaction Hamiltonian
The rectangular dashbox represents a unit cell, and the dashed liggay e written as

in the middle denotes the mirror plane. Acceptointeracts with
donorsoy and o, as shown in the figure. 2 0 h
Hi= p—=2 2 (ay; +al ))& S Axis * Bigwi)
VN ki W

[
'
1
-

cell in such a way that the acid unit sits in the middle, and
two half base units are on the two sides.

We further assume that there is a set of mirror planes that
leave the crystal invariant. The acid parts sit right on thewhere
mirror planes. The symmetry of the lattice requires that these

A=

+EX s, (9)

r

Lolrlki) _ elaalki) _ eloglki)

mirror planes be perpendicular o ,
vm, vm, vm,

For our argument, there is one acceptor atom belonging to
the acid part, and we shall label 4t Without loss of gener-
ality x can be placed at each lattice point. We assumesthat (e(a'z“(j) e(0'1|kj)> |

) 1 (10

is invariant under the action of the mirror plane cutting kj ~
through it.

(In the case where the acceptor unit consist of more than Finally, the full Hamiltonian is
one atom, the whole group is considered approximately
rigid, and therefore described by its center of mass position. H= >, fiwy(aj;ag) + > (Egs +hw)
The same applies to the donor group. kj r

Each unit cells contains two donors, labeled and o, 2 ' A
respectively. We may take; to be within the upper half base + =2 2 (A + al )R\ o (Ags + Bwy).
unit, and o, to be from the lower half base unit. They are MANIY 2
mirror images of each other under the action of the mirror (12)
plane(see Fig. 1

Let us write the degree of overlapping betweerand
eacho; as

— — (11
vm,, vm,

Here h is a fictitious “magnetic” field, coupled tov spin
directly. In all physical situations it shall be set to zero.

C. Connection to real crystals

Ao =[ulx,r) —ulog,r)] -1 ) The model we propose above is in fact a simplification of

the real situation in several ways and we summarize these

simplifications here.
Hereu(e,r) is the displacement vector from the equilibrium (@) In all experimental situationsthe crystal contains
position of atoma belonging to unit celk. The vectorl isa  not only a set of mirror planes, but inversion centers as well.
unit vector signifying the directionality of the interactidris ~ Since the proposed model interaction of a donor-acceptor-
chosen to bé=al/|al for simplicity, but it may point in any donor group contains a vector quantityt cannot be invari-
other directions, including those with @component. The ant under space inversion. We justify neglecting this inver-
general critical behaviors shall not be affected by this simsion symmetry in the following way. Since the two adduct
plification. molecules present in a unit cell are related to each other by

Note that this choice of implies that the hydrogen bond inversion, they “see” effectively the same environment and

interaction tends to rotate the donor-acceptor pair from theican be treated as independent in a mean field theory. From
equilibrium position, without changing the separation. In factthe fact that this inversion symmetry remains unbroken
(7), being linear in atomic displacements, should only be ecross the phase transition, we know it should not play a

valid approximation when the displacements are small. vital role in the phase transition.
The real space displacement vector can be written in (b) We also treat the entire acid part as a rigid acceptor
terms of phonon operators using unit, and the entire base part as a rigid donor unit. This is
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justified by noting that atoms are bonded within each acid or
base part by intramolecular bonds much stronger than hydro-
gen bonds, while the acid and base parts are linked to each

PHYSICAL REVIEW B 71, 174109(2005

His= E (vs + 7]rWr)v (17)

r

other by interactions similar in nature and strength to théVhereév. and 7, are variational parameters. After diagonal-
hydrogen bond interaction. It is also observed in the experilZing Hip in (16) with the substitutiondy; =a; +[(fj)/ gy,

. - —at
ments that the internal structure within each part show Ver)bkj_akj+(fki/gki

little distortion over the critical region, supporting our claim.

Note thatoy, ando, both refer to the whole base molecule
and the 1 and 2 are used merely to distinguish between the
two donors interacting with the acceptor in a unit cell. When
there are more than one donor-acceptor-donor groups in a
unit cell, more than one set sfw spins must be used, mak-
ing the self-consistent calculations intractable. See remarks
preceding Eq(64) for an estimate of the correction to the
critical temperature when two molecules related by space
inversion are taken into account.

Ill. CALCULATION OF FREE ENERGY

A. Variational calculation

), we can finally write dowrH, as

2
H = 2 gkj<bljbkj + %) - E M + 2 (1S + 7 Wy).
Kj Kj Kj r
(18)
Finally, we obtain an upper bound of the free energy
F, = —kgT In Tr e#29 (b +(1/2)

- kBT InTr e_‘BEr<V"S'+77fWF) + E (ﬁwki - gk])
kj
ﬁwk- 2
+ 2 5 fyl

1
(o) 2
I ki

We now proceed to calculate an upper bound to the free du foi f
X . ; . - g ZKjgikr o [Tt -
energy of the system using the Gibbs-Bogolyubov inequality. 2wt N 2 9 e Zwk_Akj Eo |(s1)
If F=—kgT In Tre A" is the exact free energy of the system, ' ki S !
and H; is a trial Hamiltonian depending on a set of varia- 4u foi oo A
tional parameters, then the inequality states that =2 = 2 e S B | ~h [(we).
r VN Kj Ok; W
F=< Fv = Ft + <H - Ht)tv (13) (19)
where we defing~ and (O),, the a priori average of any ..o
operatorO with respect tcH,, to be ’ .
T B0k (bl by i+(1/2)
I:t — kBT |n Tr e_BHt, (14) <bTbk> - Tr bkjbkje kj9kj\Pkjrk| (20)
KiTd Tr e Bkioiblbi+(112)
Tr Oe Pt
(O)= Tre A (15)  where
. . . . Trse?'s

The equality of((13)) is attained wherH; andH differs (s)= W; (21
only by a c-number. Therefore the quality of this upper re
bound depends on how closdHf resembledd. -

The method of selecting the trial Hamiltonian and the <W>:Tr we (22)
formal calculation steps follow closely similar methods used Y Tre PR

by Leé!13for other spin-phonon problems. We summarize
the main results here.

The H; introduced here is split into the phonon péi,
and the spin parts. Let us look atHy, first.

In the original HamiltoniarH, the phonon operatorg;
and alj appear not only in a quadratic term, but are also
coupled linearly with the spinsandw in H;. This coupling
term can be treated as &; and a{ij are coupled to some
mean fields ofs andw, which are of course just scalar pa-
rameters. Thereforkl,, is chosen to be

Htpzzgkj(aljakj"'%)"'z fkj(akj"'aikj)a (16)
Kj Kj

where gy; and fy; are variational parameters. A few con-
straints may be imposed on these two parameters. Bjsst,
in the place of a phonon frequency, should be real and has
the property thag,;=g.;. It is also required that_kj:f;j.

Hs is chosen in the same wag.and w are thought to

The free energy19) must be minimized with respect to

all four variational parametersy;, gy;, ». and »,. The four
minimization conditions are

oF

L =0; 23
i (23
oF
—£=0; (29
%
oF
—=0; 25
o (25
JoF

£=0. (26)
any

Note that from(20), (21), and(22), (b} by;), (s;), and(w;)

couple with some mean phonon field, to give an effectivedepend on these parameters, too. These dependences must,

Hamiltonian

of course, be taken into account when differentiating
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The solutions forf; andgy; are

2 P h
fyj= £y g \/ KK(AMS{) + By (wp));
i

IN'T froy
(27)
Okj = hay. (28)
The solutions fory, and 7, are
41“( Foi i h )
y=——=( > ek /| —A | +Eg; (29)
' YN\ kj Yj 20 N 0
4'““( fog gir [T
7=— =2 =4k /| —B,; | +h. (30)
' VN k) Gkj 20 “

Using (19), (27), (28), (29), and (30), we arrive at an
upper bound of the free energy,

12
F, = - kgT In Tr e F2kifiong b +(1/2) 1 > I
Kj e
—kgT In Tr e P estmwy) (32)
where
8M2 gk(r-a)
=== 2 T A(A(s) + BogWp) + Eq,
N L 205
q Kj Kj
(32
8,U«2 gk-(r-a)
= =2 2 Big(Ai(s) + Boyg(wy)) +h,
N T 2wy
a Kj Kj
(33
|fk'|2 4/.L2 e—ik-(r—Q)
S P L=y 7 (Aj(s) (34)
ki o N g L 20
+ B (W) (Ay () + By (We)). (35

PHYSICAL REVIEW B 71, 174109(2005

Here & o is the usual Kronecked. It takes value of unity
if k=0, and zero otherwise.

B. Thermodynamic limit

By introducing phonon modes into the Hamiltonian, the
periodic boundary condition is implicitly assumed. Com-
pared with a real crystal, where the boundaries are free, the
periodic boundary condition is a mathematically convenient
but unphysical device. This is especially so in the analysis of
our present problem, since the periodic boundary condition
forces the volume and shape of the crystal to stay unchanged,
thereby forbids any macroscopic strain, and also possible
structural phase transition.

Mathematically, the consequence of the periodic boundary
condition is that th&k=0 mode corresponds to a translation
of the whole system, and should not give any contribution to
the free energy. HowevdB6), (37), and(38) can only pick
up contribution from thé=0 mode because of th& factor.
Therefore, for any crystal with a finite size, there is no non-
trivial contribution to the free energy from the spins.

To remedy this situation, we must take the thermody-
namic limit, in which the size of the crystal tends toward
infinity. In this limit, we may expect the boundary effect to
become irrelevant and drop off from the physitedder-
man’s theory, see for example, Chapt. 2 of Maradutfin

If we consider our goal of describing a structural phase
transition, it also makes sense that a uniform tilt in one of the
principle axes should be related to a shear wave of infinite
wavelength, which is only allowed when the size of crystal
tends toward infinity.

This idea of usingk —0 modes to describe macroscopic
deformation was first due to Born and Hudfi@nd has been
employed in similar problems:®

Yet we are not dealing with an isotropic solid; the direc-
tion in whichk tends towards zero does affect the result. In
the physical picture, even when the shear pattern has an in-
finite period and zero frequency, it still retains a directional-
ity, as demonstrated in Fig. 2.

At the thermodynamic limit, terms of ord&ror higher all
tend to zero, and terms of order unity remain unaffected by

The free energy is composed of a free phonon part anghe limit. We discuss the details of the limits in Appendix B.

some nontrivial contribution from the spins.
If we assume the solution is uniform, i.€s;)=(s) and

(w;)=(w) are quantities independent of position, we obtain

e|k-r

v == 4u?Y |:5k,0_2Akj(A—kj<5> +B_;(w)) | + Eo;
Kj 2wy

(36)
eik-r

7 == 4u> @,O?Bkj(kkj<5> +B_(w)) +h; (37)
i ki

—iker

|fk'|2 €
> P = 4uNY o055 (Ayi(s) + B j(w))
ki 7o ki 20}

X (Aj(s) + Bkj<W>):| : (38)

Finally we obtain

v == u?K(s) + Ey, (39)
7 = — u2L(W) + h, (40)
12 2

> el N2 ) ), (41)

where/C and £ are both constants independent ofrhey do
not depend on the value @f, either.

The value of/C cannot be calculated without a full solu-
tion to the lattice dynamical equation. But for our present
purpose it is enough to note these few properties.

First, KC is finite since it is a sum over the finite number of
branches. It is positive, because the only contribution to it
comes from|Ay;|?/ wﬁj, which is always positive. Also note
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ky
é
o @ o @~ o @ o o C]
s * FIG. 2. A uniform shear of zero frequency
ko and infinite wavelength is still directional. In both
¢ ¢ ¢ ° ¢ ° cases above the modulus of wave vedtgf=0.
A ? But (a) kylic; (b) kolla.
-9 o -9 © -9 ° < ° ° o
L. '
a
(a) (b)
that the acousti&=(0,0 k) branches do not contribute. ing a ferromagnetic transition at zero magnetic field.

Similarly, £ is also finite and positive. It gets contribution ~ The self-consistent meanfield equations for s{gnand
from the acoustick=(0,0,ks) branches only. It may be (w) are derived from thermodynamic relations
evaluated with a few further assumptions, and we shall come

back to it later. For future reference, ot =(s): (45)
A JEq ’
3 elk-r
L= E kIITo FBij_kj. (42 pe
J= 5 Thymhg=0 K 5= (W (46)
Using (31) and(39)—(41), we finally arrive at the mean-
field free energy The free energy per unit cefl is approximated by the
Nu2 meanfieldF,/N. Let us look at(s) first,
__ Byt (b by +(1/2) 4 N 2 2
Fo = ~kgTiIn Tr e PRt R =5 (KA LOw)) (9) = tanH B(u2K(S) - Eo)]. (47)
—kgTInTr e—B(—,uzK<s>+Eo)Ers, This coincides with the mean-field self-consistent equa-
) tion for an Ising spin under a nonzero magnetic field. Here
—kgT In Tr @ Ar LW+ w, (43)  E, plays the role of the magnetic field equivalent, and is

fixed at a positive value. The solution under this imposed

The phonons a.”d spins are completely deCOUpled.frorﬁondition of Ey is well-known:(s) as a function of tempera-
each other. The spirsandw, however, now see an effective . A . . . )
ture T is continuous and increasing, with asymptotic values

coupling to their respective meanfields. This effective cou-

pling is induced by the interaction with phonons, and can be -1 T=0
thought of as the spins are interacting via exchanging virtual (8= 0 Tow (48)
phonons. '

The traces of spins may be performed to simplify the This result means the bonding states are always more
expression even further. Our final expression for the meanfavourable and predominate at a lower temperature. There

field free energy is are no multiple distinct phases for sgig), though.
. N2 The spin{w) has a self-consistent equation
F, = —kgTIn Tr e A=ifoxiBiP172) 4 == (K(s)2 + L(w)?)
° 2 ) (w) = tanH(Bu2L(w)). (49)
— NkgT In costi B(u?K(s) — Eo)] The fieldh is set to zero, since physically there is no such
_ 2 _ field coupled directly ton. The solutions to this equation is
NkgT In cosh B(uL{w) = h)]. (44) well-known:
The fictitious magnetic fieldh is to be set to zero for all _
physical situations. =0 whenT > T,
w — T—-T
) =+ \IEVTC—T when 1> u>0.
IV. CRITICAL BEHAVIOR T, T,
A. Two phases of hydrogen bonding (50)
The spin part of meanfield free ener¢§4) is formally The spinw shows two phases: a high temperature disor-

like the meanfield free energy of the Ising model of ferro-dered phase witiw)=0, and a low temperature ordered
magnet. Therefore we expect to see similar behavior, includphase with{w)# 0. Both signs ofw) are symmetrical and
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TABLE lIl. Expansion properties used in this section. Helg) is a constant vector that does not depend
on the atom type#,, 6,, and 63 are constant coefficients of expansion.

Expansion Valid for
[e(oy|kj)—e(oy|kj)]-1~O(k) All phonon branches
e(elkj)/ \s‘“ﬁ:U(j) Acoustic branches only any atom type
e(k|kj)/\Vm.-1=U(j) -1 +O(k?) Acoustic branches only
e(al|kj)/\fﬁ-lz[1+i(k101+ Koy +Ks605)JU(j) - Acoustic branches only
+0O(K?)
e(az|kj)/\s’ﬁ A=[1+i(ky 0, +ko0,—Kk3605) U(j) -1 Acoustic branches only
+0O(K?)
equally likely for the low temperature phase, but the crystal e(klkj)
can only exhibit one sign. The critical temperature is given + B (w)) o (52
by o
W2L The quantityf,; is given by(27). Clearly, due to the factor
Te=—. (51)  of 4%, thermodynamic limit must be taken to produce a
Ks nontrivial result. Note that 1eX°=0 if k3=0, we can write
Recall the states represented by each value siimma- ok
rized_in Table II. Since the crystal always tends to b.e in a lim D=8u >, lim 5 (1_e—ik-C)(kaj<S>
bonding state, the sign @fv) may be considered to indicate therm. i ka0 =k,=04@ki
the predominant configuration of the hydrogen bonding. )
When{w) >0, all acceptorsc tend to form hydrogen bonds + B_kj(w>)e(',<|—kj). (53)
with donorso, while they tend to bond witlr, when (w) ym,

<0. ; ; jk-c—
There is a breaking of symmetry: the crystal is forced to Using (1), (12), and(13) and noting that 1€%“=0(ky),

. . .~ “"it is obvious that the above limit is convergent, and we ma
settle on either one of two hydrogen bond configurations 9 y

. . . Wwrite
which are originally symmetrical.
3
B. Structural phase trar.15|t|orT lim D = 2 Cj<W>U(j). (54)
We now show that two phases i spin correspond to therm. j=1

two different crystal structures. . .
Y We denote the three acoustic brancheg$—3. All op-

The phonon operator,; and b; are displaced by the . L : )
. ! . : K i g
interactions with mean-field spins. Consequently the eqU|I|b-t'C"j1| branches contrlbutlons_, ‘fi”d the term involv ; and
s) converge to zero. Coefficients are constants indepen-

rium position of atoms within the crystal can be expected to<

vary with (s) and{w). derét_ of spi_ns_. iant under the mi flection. the di
In particular, the quantiyD=(u(x,r)~u(k,r—c)) is of incex is invariant under the mirror reflection, the direc-

. . ] . . tion of its eigenvectors must be also invariant under the re-
our interest. Here is an arbitrary lattice point.

The displacement vectors are measured from the equili flection. Therefore one of its three acoustic eigenvector must
P q e parallel toc, and the other two normal to. We may

rium positions in the high temperature phase, and the a{enote the branch with eigenvector parallettoy j=3, and
age should normally be zero. A nonzero average would im;

I hift | ilibri ii For inst B i the other two byj=1,2.
ply a shilt in equilibrium position. =or Instance, B 1S a ConsequentiiJ(1) andU(2) are normal tac while U(3)
constant independent of position, it is obvious that from eacrils arallel toc, since e(x|kj)= mU(j). And we have
atom one needs to translate ©yD to hit the next equivalent P ' KIKPD=vmE)-

atom. One of the primitive lattice vector is therefore changeou(s) '1=0. . —
from ¢ to c+D. However, using the definition dB,; from (11), and the

First we write downD in terms of phonon modes, and acoustic eigenv_ector expansions from_TabIe I, it i_s c_)bvious
using the fact thatb,)=(b]}=0 to get that to the leading ordeB,;>U(j) I for j=1,2,3.This im-
! ] plies thatc;=0.

2 s or f ike e(x|kj) D is then a linear combination df(1) andU(2), and is
D_\_NKE (@) + (@i )e™ 2wkj(1 —e) Jm normal toc. When |D| is small, this correspond to a pure
J “ rotation, and the anglé ¢ is directly proportional to|D].

:iz ki ke f (1_e_ik_c)e(:<|_kj) Therefore

VNG Frag 2 Vm, -0 if T>T,

8u wq) €7 ik AB — T.-T 55
=T (Ee'kq> 7 (1) (Ai(o) e +\T,-T if1>-——>0. (59

NG g 2wy T
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The hydrogen bond interaction induces a second order As discussed previously, this speed of sound is what it
structural phase transition in our simplified model. The anglevould be if the hydrogen bond interaction could be switched
of deviation of the unique axis from its high temperatureoff, and is not physically observable. We should therefore
orientation is identified as the main order parameter. Theise the shear modulus measured at a temperature signifi-
critical exponent for the transition is 1/2, in agreement withcantly higher than the critical temperature as an approxi-
the prediction made by a phenomenological Landau free ermated substitute of.
ergy expansiof® A broken symmetry is associated with this ~ Noting that U(1)-1=|U(1)|. By using the normalisation
transition-as the axis tilted away, the mirror symmetry iscondition for eigenvectot8 X ,e,(e|kj)e,(e|kj)=5;, it
necessarily broken. can be deduced thatl|U(j)[>=1 for all j, whereM is the

We remark that the phonon modes contributing to the efmolecular mass, in this case equal to the mass per unit cell.
fective coupling of pseudo spins are the modes displaced by we may now carry out the limit if59):
the hydrogen bond interaction. Tkaespin is responsible for
the phase transition, which can be described by a shear wave _ |C|2pES
of infinite wavelength along001] direction. In fact this is £=4 M
the only mode contributing to the effective coupling wf . _ ) -
Noting that some optical phonon modes contributes to the Using(51), we arrive at an expression of critical tempera-
effective coupling ofs, we suggest that other internal twist- ture for our model,
ing and tilting of the structure are related to sgionnly.

(62)

T = AIcPpEs

C. Estimation of T, c keM (63

We shall invoke the approximation discussed in Sec. Il in
order to estimate the critical temperature.

Now the acceptok is identified as the whole acid part of
the adduct, and is a single rigid unit. The donetsand o,
are both contained in the base part, so they will be identifie

as the same un't_tr. I we ideﬂt.if{e(_ff}!kj):k?(ﬂkj)’ then it tion, we should substitute it with the separatldmetween the
Is necessary to 'd_em'fg(fi’fL j)=e"%e(o]kj). centers of mass of the two neighboring base units. Also,
In this caseBy;=(1-e"“)e(o|kj). Making use of(43),  gjnce there are at least two molecules per unit cell idvin

Care must be taken when applying this formula to a real
crystal, however. As mentioned before, in all observed situ-
ations there are at least two molecules per unit cell, related

y space inversion. Becaulz entered the above formula as
he separation of two donors, to approximate the real situa-

we can now write£, the effective coupling for spiw, as the formula should be substituted by, wheren the total
3 2|2 2 number of molecules per unit cell.
. k3|C| +O(k3) . ! .
£=82, lim [U(j) +Oky)]-12. (56) For a real crystal wittn molecules per unit cell related by
j=1 ks—0 @kj space inversion, the modified expression for critical tempera-
Also, since the mirror symmetry now magpsnto itself, it ture is
is required that the directions of its eigenvectors to be invari- 4212 E
ant under the mirror reflection. Consequently for the three T.= = (64)
acoustic branches we have nkM
e(alk3) lic; (57
D. Heat capacity at zero pressure
e(alkl) -c=e(o]k2) - c=0. (58

Starting from the definitiodr=-kgT In Tr e#1, the inter-
In other words, we now have(3)-1=0. We make a fur- nal energy can be recovered as
ther assumption that(2)-1=0, too, whileU(1)Ill. Then the

only contribution towardZ comes fromk=(0,0k;), j=1 F_F _@_ (65)
branch: a T T
g im k§|c|2+ O(k§)|[u(1) +0(ky)]. ||2' (59 Therefore the heat capacity per molecufé is
kg0 @k1 1 &H) P2
For such an acoustic branch, the dispersion relation is of - N? - _Ta_'r?' (66)
the form:

o2 4 Using the mean-field free ener@¥1), the heat capacity of
wy1 = vk +O(Kg), (60)  our model may be calculated. Like all the previous results,
whereu is the speed of wave propagation at the very Iongthis cglculation is vali_d for zero externgl pressure, where
wavelength limit. This speed of sound wave may be Writtenthere is no Wor_k associated with a rever_5|ble volume change.
in terms the density and shear modulug; of the macro- The mean-field free enerdy has two independent parts:
scopic crystal: Fhe phpnon parts involving only; andb,;, and the spin part
involving only (s) and(w).
v2= i. (61) We concentrate our attention on thg spin part.
Ep The spin free energy per molecule is:

174109-8



MICROSCOPIC THEORY OF PHASE TRANSITIONS LN PHYSICAL REVIEW B 71, 174109(2005

fs=—KkgT In cosh B(u?K(s) — Eg)] — kgT In cosiBu2L{w)) HereK is a constant. AlthoughT,—T in fact depends on
5 eachu;, we would like to keep this factor in the expansion of
+ %(/C(S)Z + LW)D). 67) (W) nevertheless.

The phonon frequencyy;, however, is assumed not to be
ffected significantly by this change of lattice parameter.

Th i t of the heat it be deduced b X
© Spin part of the heal capacily can be deduce onsequently the phonon part of the free energy is decou-

sing (66): ) : :
using (66) pled from the spin and lattice expansion parts. The relevant
8(5) a(w) As) part of the free energy to the macroscopic strain is then the
=-KL > - L > + 2Ry (68  following:
Both(s) and its derivative are analytic &&= T, while (w) F,=-NkgTIn cosk(L<w>) — NkgTo(W)?

is nondifferentiable, and its derivative discontinuous. We T

therefore look at the term involving only. Using(50) and 1

(51), we deduce that + E(aluf +a,U3 + agu3). (74)

Hw) =0 T>Tg This expression is expanded as a power series in gach

-Lw)——) 3 (Te=T) (690 and(T.-T)/T.. Note that whenever is involved, it is ex-

T |=2ky 1> —-2>0.
2B T

. panded around the actual critical temperatUgedisregard-

ing any dependence df. on u;. This approximated free en-
Since both thes part and the phonon part are analytic in ergy around the critical point is:

temperature, the total heat capacity of the system has a dis-
continuity atT=T, due to the hydrogen bond interaction. The Fr = = y:(W)%(y,Uy + ¥3Uz + YUs) + 3(ayu3 + a,U3 + asu3)
magnitude of the jump |§kB. This discontinuity in mean- +C + higher order terms. (75)
field heat capacity is a common feature of all second order
phase transitions, and is in agreement with the earlier Landau Note that the structure of the terms agree with the phe-
theory predictiort® nomenological Landau theot.

The specific heat jump in the bulk crystal is then given by Here eachy; andC are constants independent frasmand

(T-Tg). Minimizing this approximated free energy with re-

AC. = 3ks (70) spect to eachy, near the critical point, to leading order we
v2m’ get:
whereM is the molecular mass. U % (W)2. (76)

_ _ Since Ag is proportional toy; for small strain, near the
E. Change in lattice parameters critical point it behaves like

In the harmonic phonon approximation, lattice thermal =0 it T> T,
expansion is excluded as it involves aharmonic terms of third
or higher orders in the potential. Nevertheless, through a mi- Ae x +(T.-T) if1> Te-T >0. (77)
nor modification of the free energy, and a few sensible as- ¢ c

sumptions, we may assess the effect of this structural phase
transition on other lattice parameters. Note that the macro-
scopic shear strain is already handled by the microscopi
theory in thek— 0 limit.

To the right-hand side of free ener@§4), an elastic en-
ergy term representing diagonal strain is added:

This variation of lattice parameters induced by the hydro-
en bond interaction should be considered as imposed on top
f the “background” thermal expansion, induced by the an-
harmonic terms in the interatomic potential. This “back-
ground” variation should be analytic in temperature even at
the critical point itself, and therefore can be described to the
lowest order as linear in temperature.

We may then conclude that, around the critical point the
whereu; is theith component of elastic strain, amgis the Iengths of the primitive lattice yectors' vary continuously
corresponding modulus. For small strain,is directly pro- with tem_p_eraturt_a, althqugh the first c_jerlvatlv_es do not eX|_st
portional to the change in the length of thi primitive at the critical point. This is also consistent with the analysis

Fe= %(alui +a,U5 + agus), (71)

lattice vector. We denote this change bg. of phenomenological Landau thedfy.
We also assume that the coupling constanand conse-
quently T, and the shear strain factgw) too, depend on V. VALIDITY OF THE THEORY

eachu; analytically. T; and{w) can then be expanded as We have so far constructed a model of an adduct crystal

T.=TO9+0(u): (72) with symmetrical hydrogen bond interactions, and derived its
¢ e v thermodynamics by invoking the meanfield approximation.
In this section, we shall present arguments that the oversim-
Wy =KNT.-T[1+0O(y)] if T<T,. (73 plification made in the proposed model Hamiltonian and the
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meanfield nature of the derivation do not affect the accuratenodel was obtained by Hepp and LibFor instance, the

description of critical behaviors. super-radiant phase transition exhibited by the Dicke model
was shown to be identical to the behavior of a mean-field
A. Model Hamiltonian Ising model. Furthermore, Lé&&has shown that the exact

Th | d di del i imolif thermodynamics of this phase transition can be obtained
e crystal structure adopted In our model is & simplifi-¢5 3 3 mean-field theory. The variational scheme employed

cation to the real life situation. In particular, W.h'le all Ob_' by Lee is essentially the same as the method we have used in
served exampléshave two or more adduct units per unit this paper

cell, ours has only one. Thg dire(;t consequence_of this is that As a result, we feel confident that the predictions on criti-
the real crystals possess inversion centers, while our mOd%E\I behaviors made in this paper are qualitatively accurate,

does not. . . ._despite their mean-field nature.
In our proposed way of modeling hydrogen bonding, or in
fact in the real life situations, a donor-acceptor-donor group VI. CONCLUSION

involves a preferred direction, and consequently cannot be ) )
invariant under space inversion. The inversion symmetry N this paper we have modelled the hydrogen bond inter-

therefore demands at least two such donor-acceptor-don@ctions in certain amino-phenol adducts as pseudo spins

groups per unit cell, i.e., two molecules per unit cell, beingCOUple‘j to .Iattice v@brgtiong of the crysta}l. .
the image of each other under space inversion. A variational principle is deployed in finding a self-

But since the phase transition only involves the breaking°nSistent mean field approximation of the free energy. The
of a reflection symmetry, we believe that the exclusion of the?S€Udo spins, though not explicitly coupled to each other,
inversion symmetry should not cause any significant deviaP9SSess long-ranged interactions by exchanging phonons.
tion from the real crystal. When thermodynamic limit was taken, the spin part of the

It is possible to introduce a more sophisticated model reM0del possesses two phases separated by a critical point.
specting all symmetries observed, where in each unit celf NS two-phase system is in the same universality class as
there are two adduct molecules, being inversion images df'€ !Sing model of ferromagnets. The two degenerate ground
each other. But due to the mean field nature of our derivaStates below the critical temperature correspond to two sym-

tion, the two symmetrically related parts shall behave idenMetrical hydrogen bond configurations.
It is shown further that this phase transition corresponds

tically, because they see the same environment. Therefore we o :
believe that the meanfield behavior of this complete model© @ Structural phase transition in the crystal. The mirror sym-

should be identical to the simple model proposed in thig"€lry of the high temperature phase was broken below the
paper. critical temperature, when the unique axis of the lattice tilts

Also it is difficult to relate the coupling constantto any ~ @Way from its original orientation. We identify the main or-

physical observable quantities. In this paper only a order offer parameter pf t.his .phas.e transition as this angle of tilting
magnitude estimation is given from the typical bond energy¢- The behavior is given it55):

and bond length. Also, the two-state description of hydrogen =0 whenT > T,
bonding is a highly simplified and very crude model. As a

consequence, the estimation of critical temperature is un- o« + \f’n—_-|- when 1> Te=T >0.
likely to be of great accuracy. However, the meanfield criti- c

call exponents Sh?tl#d n?]t tk;]e 59“3'“}’? to thelse F“'”‘I?;_ dgzt_alls. An estimation of the critical temperature under zero pres-
n summary, although the model is overly simplified in sure is also given ii64):

many aspects, we believe that it gives a qualitatively correc
picture. 7= 4ulpEg
T nkgM

_ N _ ) The specific heaC is predicted to have a discontinuity at
Ising model has an upper-critical dimension of four. In T=T_ of magnitudeAC,=(3/2kg/M).

three space dimension, we generally expect the meanfield 5o, through the assumption that the coupling constant

critical exponents for an Ising-type model to be renormal|zeddependS on macroscopic elastic strain, we are able to show

by the fluctuations. , that the lengths of primitive lattice vectorse, in the region
However, it is also well-known that the mean-field resultSpeay the critical point behaves as(ifi):

are indeed exact for an Ising model with an interactions of

B. Mean-field theory

infinite range'” We claim that the effective spin-spin cou- =0 if T>Tg;

pling induced by exchange of virtual phonons falls into this Ae _ T.-T

category. Since acoustic phonons are massless, the effective x+(T—T) ifl> >0.

interaction is long-ranged, analogous to the electromagnetic ¢

interaction mediated by massless photons. The predicted critical exponents are all in agreement with

Comparison can be drawn with the Dicke model of previous predictions using a phenomenological Landau free
atomic maser, which describes a system of two-level atomenergy expansiotf.
coupled with photon field, a scenario very similar to our The validity of the theory is discussed. Although the over-
proposed model. The exact thermodynamics of the Dickeimplification in the model Hamiltonian would likely under-
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miqe the accuracy of th_e estimated critical temperature, we e(ekj) =[1+i6(ej) - kle(€|0j) +O(k§). (A5)
believe that the mean-field critical exponents should not be S . ) )

sensitive to minor details of our model. Also, due to the Foraninfinitesimak, we may identifyé(¢j) -k as a phase
long-range nature of effective coupling via phonons, we beshift. An eigenvector does not change its length or direction,
lieve that the meanfield results should be qualitatively accubut merely acquires a phase whigis increased infinitesi-

rate.
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APPENDIX A

0.

mally from zero.

The phase of a moleculein unit cellr can be separated
into two parts. There shall be a phase factoebf, which is
the exponential factor in the Fourier transform, correspond-
ing to the phase variation from one unit cell to another. Also
there will be a phase variation within each unit cell; this is
attributed to phase of the eigenvecae|kj).

Note that if we choose to measure all phases relative
to the lattice points,x should not have a phase and its
eigenvector must be always real. This leads us to the
expansions

In this appendix we derive some expansion properties of

the eigenvectors.
First we expande(o,|kj)—e(o|kj)]-1 for small k| and
anyj.

Let Sdenote the mirror reflection which leaves the crystal

structure invariantS shall therefore bringr; and o, to each
other. S acts on a vectov=(vq,v,,v3) through a matrixs,
defined bySv=(v,,v5,-v3). It is also obvious thatSv)-u
=v-(Su).
The eigenvectors ofr; and o, are related by(see, for
example, Chap. 3 of Maradudf:
e(aySkj) = Se(ay[kj). (A1)

Since we have choser=(1,0,0, it is obvious thatv-I
=(Sv) -l for any vectorv. So

e(05|Skj) - = e(oylKj) - 1. (A2)

Note that when k=0, the -eigenvectorse(o,|0j)-I
=e(04|0j) 1. We may conclude that

[e(a2lkj) —e(o1|kj)] -1 =[e(05]0j) + O(K)] - | - [e(4|0))
+0(K)] -1~ O(K). (A3)

Next we derive some other properties concerning only th%

acoustic phonon branches.

An eigenvectoe(e|kj) may always be written as a prod-
uct of a real vector and a complex phase factor with uni

modulus:
e(elkj) = €%kDv(elkj) =[1+i 0V (€j) -k + O(KA IV O(e))
+0O(K)]. (A4)

We use the fact thae(e|0j):v‘EUj, where U(j) is a
real constant vector independent of atom type(see

Chap. 2 of Maradudit¥). Consequently we must have

vO(ej)=Vm.Uj.

tphysically not satisfying, but

ww =U(j) -1 + O(KA); (A6a)
vm,
E(LM =1 +ik - 6Y)U(j) -1 +O(K?);  (ABb)
m,
e(LM 1=(1+ik - 62)U(j) -1+ O(k?. (A6C)
vm,

Substituting(A6b) and (A6c) into (A2), which is always
valid, it can be deduced th&?=S6?. Or, in component
form,

&Y =62 = o;; (A7a)
0 = 6 = o,; (A7)
& =-62 =0, (A7c)

These results are summarized in Table Ill.
APPENDIX B

In this appendix, we consider the details of the limits

contained in(36), (37), and(398).
We propose not to consider the thermodynamic limit of

n expressiony, 5,G(k), where G(k) is a function ofk,
as a single term lig. oy G(k). Not only is this interpretation
also mathematically
ambiguous.

Instead, we writeG(k) as G(k,k), a functionk=|k| and

k=k/k and interpret the above thermodynamic limit as:

lim X 56K = >,

therm.

lim G(k,k).

allowed k k=

(B1)

Next we want to clarify what we mean by “allowéd”
Let us first return theS back to a sum of exponentials. We

Also € (e|kj)=e(e|-kj). This implies that the real are dealing with expressions of the form

part of e(e|kj) must be even irk——k. There cannot be

any odd order term in the expansion ofe|kj). We then
have

1 . ~ “
lim =2 > é¥"G(k,k) — > lim G(kk). (B2)
therm. N r ok " k—0
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Let eachr; run from -Q to Q, thenN=(2Q+1)3. Also the
quantityk -r may be written a&rq+kor,+Kar .

A term with Izz(a,,B,y) in the summation on the RHS of

(B2) is effectively

1
lim ZEekaG kK)=>, { lim —2 alkiri
therm. N i \therm. 2Q 1r K
X( > 5[k=ki,12=(a,ﬁ,y)]G(kil2))
ki j#i

=2 lim Gl (@B7). (B3

By writing kek, k=(a,8,9)]: it is meant to be a product of

two &'s which, upon the summation over &f's with j #i,
shall forcek =k(a, B, ).
We interpret the quantity

lim gkii= lim &_~ lim . B4
therm. 2Q + 1ri2k therm. 5k3 k3—0 B4
First let us consider the case wheire3. The factor
Sikeky k=(a,8,9)] COUID be one of the following:

5[ . _ 5(ak2—ﬁk1),05( YKy—=BKs3),0 or (85)
kekgk=(a,8,7)] = _
? Ok, ake), 00 By -aky). O

or other combinations witk; andk, interchanged

Yet it is obvious that - kyk=(a,8,7)]= =1/(2Q
+1)23, €122, Therefore we have a constraint:
1 5 E ei(r1k1+r2k2)
(2Q+1)%/7,
1
—2 gl (k- Bkl)f12 g (k- ﬁka)rz or
) (2Q+ 1% r
- 1 . .
—2 e'('}’kl_ak3)r12 el(ﬁ’kl‘akz)fz,
(2Q+ 1) r

(B6)

or other cases with 1 or 2 interchanged.

The first case cannot be satisfied consistently. The second Wi

case is possible only wheawn=8=0 andy=1.
Therefore, ifi=3, the only possible direction fok is

(0,0,2.

Similarly, when i=1, the possible direction isk
=(1,0,0, while j=2 givesk=(0,1,0.
Therefore we identif{?
lim > e"G(k)= X lim G(k) (B7)
therm. i i |kl—0 k=0, i
Effective coupling We now calculate »,, 7, and

Syjlfkj[?/ fiwy; in (36)~(38). Taking the thermodynamic limit
as described previously, we have

PHYSICAL REVIEW B 71, 174109(2005

y=->1 lim 8#22 Ak,(AkJ<s> +B_y(w))
i | k70lk=0,#i j i
+ Eo; (B8)
7 =->] lim 8#22 BkJ(Ak,<s> +B_ji(W))
i | k¥0lig=0,#i j
+h; (B9)

f |kr
E'“' —E{Iim 4#22_ 2(Ak,<s>+Bk,<w>

R i | k=0lkg=0,+#i

X (Aj(s) + B—kj<W>):| : (B10)

In order to calculate these, the smiallexpansion of
each quantity appearing in the above expressions must
be known. We shall quote some of the expansion properties
of the eigenvectors in Table Il here. See appendix for
derivations.

With these, the expansion & ; and B,; may be calcu-
lated. Their exact formulas are given (h0) and (11),

O(1) optical branches,
Agj ~ 1 O(k) acoustic branchelg =0,
O(k? acoustic branchels, # 0;

(B11)

O(k) optical branches,
By; =10(k?) acoustic branchels;=0,
iks85U(j) -1+ O(Kk?) acoustic branchel, # 0.
(B12)
The frequencyw,; behaves like
O(1) optical branches,
2
o~ B13
ki {O(kz) acoustic branches. (B13)
To the leading order itk, the Fourier factoek™ ~
Using all the above results, we get
ek O(k? acoustic branchels; # 0,
o2 Pt~ O(1) otherwise;
kj '
(B14)
ik-r
—5AjB-yj ~ O(Kk); (B15)
ik-r
—5 ByjAj ~ O(K); (B16)
kj
gkr O(1) acoustic branchels; # 0,
o2 BraBag ~ O(k? otherwise
Kj :
(B17)
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