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Second-order reversible ferroelastic phase transitions in a recently discovered class of hydrogen-bonded
phenol-amine adducts has already been analyzed by Landau theory. The analysis is however phenomenological
and does not directly indicate the microscopic origin of this phase transition. In this paper, a microscopic
theory is presented. It is proposed that the main mechanism responsible for the phase transition is the interac-
tion of hydrogen bonds with the lattice vibrations or phonons of the crystal. These interactions with the
phonons induce long range cooperative interactions between the hydrogen bonds, which causes the phase
transition behavior at the critical temperature. Critical exponents for unit cell parameters and heat capacity are
derived with a variational meanfield approach, and shown to be consistent with the prediction of Landau’s
theory.
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I. INTRODUCTION

Crystalline solids containing phenol-amine adducts are
widely used to study hydrogen bonds. Phenol-amine adducts
are produced by the interaction of phenols, compounds hav-
ing at least one hydroxyl group, and amines, compounds
having at least one amino group. The phenols and amines in
the solid state are generally linked by intermolecular
O–H¯O, O–H¯N or N–H¯O types of hydrogen bonds
which are among the most robust and versatile synthons in
crystal engineering. Studies on the hydrogen bondings in
these phenol-amine adducts can be used as a model for the
more complicated hydrogen bonding in biological systems in
which hydrogen bondings play a crucial and an important
role. Owing to our interests in hydrogen bondings in such
systems, we have investigated systematically in single crys-
tal forms a class of phenol-amine adducts and their crystal
structures were reported.1–8 Some of these single crystals of
phenol amine adducts undergo a reversible phase transition
with variation in temperature. For these samples, a hydrogen
atom is transferred from the phenolswhich then becomes an
aniond to the amineswhich then becomes a cationd. Hydro-
gen bonds are then established between the donor/amine/
cation and the acceptor/phenol/anion. As a result, these crys-
tals undergo a temperature-dependent structural phase
transition, which is second-order ferroelastic in its nature.
These are the first reported cases of structural phase transi-
tion induced by hydrogen bonding interactions.

The phase transition that has been observed are classified
into two categoriess1d orthorhombic-to-monoclinic transi-
tion, ands2d monoclinic-to-triclinic transition. In both these
categories, the phase transitions are a result of the breaking
of a mirror-plane symmetry when the temperature is lowered
through the critical temperature,Tc; the lower symmetric
phase being the low-temperature phase.

In this paper, a microscopic theory for the reversible
ferroelastic-type structural phase transitions observed in a re-
cently discovered class of hydrogen-bonded organic cystals
is presented. It is proposed that the main mechanism respon-
sible for the phase transition is the interaction of hydrogen
bonds with the lattice vibrations or phonons of the crystal.

The hydrogen bonds are modelled as two-level systems, and
described by pseudo spin variables.sFor a comprehensive
overview of hydrogen bonding, see the book by Jeffrey9 and
references therein.d The spin-phonon coupling then induces
long range cooperative interactions between pseudo spins,
and results in a second-order phase transition at the critical
temperature.

The steps involved in the calculation can be summarized
as follows:

1 The hydrogen bonding interaction is modelled as a two-
level system, and cast into the form of a spin-phonon Hamil-
tonian.

2 A variational principle involving a trial Hamiltonian is
employed. The trial Hamiltonian is chosen such that spin and
phonon are decoupled in a mean-field sense. The resulting
variational free energy is thus a mean-field approximation.

3 Thermodynamics of the model is obtained from the
mean-field free energy. A critical point is found, and various
critical exponents calculated.

We believe this microscopic analysis of phase transitions
caused by hydrogen bonds could have wide implications
since hydrogen bonds occur in a large class of materials and
the hydrogen bond plays an important and pivotal role in
molecular biology and chemistry.

This is also the latest addition to the class of indirect
cooperative phase transitions, which though being highly im-
portant, currently consist of relatively few cases. Well known
examples of phonon mediated indirect cooperative transi-
tions include superconductivity and Jahn-Teller transitions.

II. MODEL HAMILTONIAN

We assume that, if the additional hydrogen bond interac-
tions can be “switched off,” all the remaining inter- and in-
tramolecular interactions can be approximated by a harmonic
potential. This leads to harmonic phonon modes. The Hamil-
tonian of the crystal is then split into the sum of two parts:
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H = o
k j

"vk jsak j
† ak jd + Hi , s1d

where the first term on the RHS is the harmonic phonon
Hamiltonian,10 andHi is the interaction energy of the “addi-
tional” hydrogen bonds.

A. Hydrogen bond interaction

A hydrogen bond is formed by the sharing of a hydrogen
atom H between a donors and an acceptork. H is initially
bonded tos. As k drawing nearer, it perturbs thes-H sys-
tem, and causes the hydrogenic energy level to split. In the
simplest picture, the perturbed energy levels will be split into
two: one has an energy lower than the original unperturbed
orbital, and corresponds to the “bonding” configuration; the
other is higher in energy than the original orbital, and corre-
sponds to the “antibonding” configuration.20

The departure from the original energy level depends on
the degree of overlapping of the hydrogenic orbitals. The
more the overlap, the stronger the perturbation, and the en-
ergy level splitting grows larger. Other effects, such as
electron-electron repulsion and nucleus-nucleus repulsion, at
shorter distances play the role of maintaining equilibrium of
the crystal.

Assume that as-k pair is in the beginning held at a dis-
tance that is larger than their equilibrium separation, yet
close enough for the hydrogen bond interaction to be signifi-
cant. If the pair of molecules do not depart too far away from
their initial positions, the energy levels of the bonding and
antibonding orbitals may be approximated to the lowest or-
der of their displacements as

Ebonding= − E0 − 2mDks; s2d

Eantibonding= E0 + 2mDks, s3d

where, for the initial configuration, the energy levels are split
by 2E0. Dsk is the change in degree of overlapping due to the
small displacements.m is a suitable scalar coupling constant,
with the factor of two purely for mathematical convenience.
An order of magnitude estimation ofm is

m =
typical bond energy

typical bond length
.

A pseudo spin variables= ±1 may be introduced to ex-
presss2d and s3d in a single equation. Ifs= +1 corresponds
to the antibonding configuration, ands=−1 corresponds the
bonding configuration, the hydrogen bond energyHh is then
given by

Hh = sE0 + 2mDksds. s4d

As a simple argument, we now consider a system with
two donorss1, s2 and one acceptork. A system with two
acceptors and one donor can be described in a similar fash-
ion.

We assume that there is a mirror plane in the crystal, that
leavesk invariant under its action, but mapss1 ands2 into
each other. Since the two donors are related by the mirror
symmetry, their interactions appear exactly identical tok.

We further assume that, if bonded or antibonded to one of
the donors, the acceptork is screened by the excess in hy-
drogen density, and unable to interact with the other donor.
Therefore we can span the state space ofs1-k-s2 by the
following four basis vectors: bonding tos1, antibonding to
s1, bonding tos2, and antibonding tos2.

Another pseudo spint= ±1 may be introduced alongsides
to describe this four-state system completely. We assign
t= +1 to the two states wherek is interacting withs1, and
t=−1 to the two states wherek is interacting with s2.
Tables I and II summarize how the four states are described
by s and t.

Usings andt spins defined above, the bond energy of the
s1-k-s2 group can be written as,

Hb = ss1 + tdSE0

2
+ mDks1

D + ss1 − tdSE0

2
+ mDks2

D . s5d

Notice that spint does not appear by itself. It is therefore
more convenient to treat the productst as an independent
spin variable instead. Letw=st be a pseudo spin taking value
of ±1, Hb can be rewritten as

Hb = sfE0 + msDks1
+ Dks2

dg + wsDks1
− Dks2

d. s6d

The states represented by each value of spinw are given
in Table II.

B. The prototype model

Now we set up a prototype model in which these donor–
acceptor–donor groups are basedssee Fig. 1d.

Let a, b, andc be the primitive translational lattice vec-
tors which make up the Bravais lattice of the crystal. We
assume thatc·a=c·b=0. That is, the lattice has monoclinic
or higher symmetry, withc as the unique axis. Each unit cell
of the lattice is labeled by a position vectorr , the lattice
vector enclosed in the unit cell.

An adduct consists of an acid part and a base part, held
together by various interactions between them. For simplic-
ity, we assume that in the crystal each unit cell contains
exactly one acid unit and one base unit. We choose our unit

TABLE I. Summary of the states represented by four different
s-t combinations.

s
t

+1 −1

+1 antibonding tos1 bonding tos1

−1 antibonding tos2 bonding tos2

TABLE II. The states represented by each value ofw.

w +1 −1

antibonding tos1 ss=1,t=1d bonding tos1 ss=−1,t=1d
or or

bonding tos2 ss=−1,t=−1d antibonding tos2 ss=1,t=−1d
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cell in such a way that the acid unit sits in the middle, and
two half base units are on the two sides.

We further assume that there is a set of mirror planes that
leave the crystal invariant. The acid parts sit right on the
mirror planes. The symmetry of the lattice requires that these
mirror planes be perpendicular toc.

For our argument, there is one acceptor atom belonging to
the acid part, and we shall label itk. Without loss of gener-
ality k can be placed at each lattice point. We assume thatk
is invariant under the action of the mirror plane cutting
through it.

sIn the case where the acceptor unit consist of more than
one atom, the whole group is considered approximately
rigid, and therefore described by its center of mass position.
The same applies to the donor group.d

Each unit cells contains two donors, labeleds1 and s2,
respectively. We may takes1 to be within the upper half base
unit, ands2 to be from the lower half base unit. They are
mirror images of each other under the action of the mirror
planessee Fig. 1d.

Let us write the degree of overlapping betweenk and
eachsi as

Dksi
= fusk,r d − ussi,r dg · l . s7d

Hereusa ,r d is the displacement vector from the equilibrium
position of atoma belonging to unit cellr . The vectorl is a
unit vector signifying the directionality of the interaction.l is
chosen to beâ=a/ uau for simplicity, but it may point in any
other directions, including those with ac component. The
general critical behaviors shall not be affected by this sim-
plification.

Note that this choice ofl implies that the hydrogen bond
interaction tends to rotate the donor-acceptor pair from their
equilibrium position, without changing the separation. In fact
s7d, being linear in atomic displacements, should only be a
valid approximation when the displacements are small.

The real space displacement vector can be written in
terms of phonon operators using

usa,r d =
2

ÎN
o
k j

sak j + a−k j
† deik·rÎ "

2vk j

esauk jd
Îma

, s8d

all symbols have their usual meanings, as defined in
Maradudin.10 N is the total number of unit cells in the crys-
tal.

There is one set of donor-acceptor-donor group per unit
cell, so one set ofs-w spins is needed per unit cell to fully
describe the interaction. We denotesr as thes spin in unit
cell r , and similarlywr as thew spin in the same unit cell.
The full interaction Hamiltonian is the sum of bond energy
over the entire crystal.

Using s6d, s7d, and s8d, the full interaction Hamiltonian
may be written as

Hi = m
2

ÎN
o
r

o
k j

sak j + a-k j
† deik·rÎ "

2vk j
sAk jsr + Bk jwrd

+ E0o
r

sr , s9d

where

Ak j = S2
eskuk jd
Îmk

−
ess1uk jd

Îms

−
ess2uk jd

Îms

D · l; s10d

Bk j = Sess2uk jd
Îms

−
ess1uk jd

Îms

D · l . s11d

Finally, the full Hamiltonian is

H = o
k j

"vk jsak j
† ak jd + o

r
sE0sr + hwrd

+ m
2

ÎN
o
r

o
k j

sak j + a-k j
† deik·rÎ "

2vk j
sAk jsr + Bk jwrd.

s12d

Here h is a fictitious “magnetic” field, coupled tow spin
directly. In all physical situations it shall be set to zero.

C. Connection to real crystals

The model we propose above is in fact a simplification of
the real situation in several ways and we summarize these
simplifications here.

sad In all experimental situations,1 the crystal contains
not only a set of mirror planes, but inversion centers as well.
Since the proposed model interaction of a donor-acceptor-
donor group contains a vector quantityl, it cannot be invari-
ant under space inversion. We justify neglecting this inver-
sion symmetry in the following way. Since the two adduct
molecules present in a unit cell are related to each other by
inversion, they “see” effectively the same environment and
can be treated as independent in a mean field theory. From
the fact that this inversion symmetry remains unbroken
across the phase transition, we know it should not play a
vital role in the phase transition.

sbd We also treat the entire acid part as a rigid acceptor
unit, and the entire base part as a rigid donor unit. This is

FIG. 1. The prototype phase of the crystal described in Sec. II B.
The rectangular dashbox represents a unit cell, and the dashed line
in the middle denotes the mirror plane. Acceptork interacts with
donorss1 ands2 as shown in the figure.
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justified by noting that atoms are bonded within each acid or
base part by intramolecular bonds much stronger than hydro-
gen bonds, while the acid and base parts are linked to each
other by interactions similar in nature and strength to the
hydrogen bond interaction. It is also observed in the experi-
ments that the internal structure within each part show very
little distortion over the critical region, supporting our claim.

Note thats1 ands2 both refer to the whole base molecule
and the 1 and 2 are used merely to distinguish between the
two donors interacting with the acceptor in a unit cell. When
there are more than one donor-acceptor-donor groups in a
unit cell, more than one set ofs-w spins must be used, mak-
ing the self-consistent calculations intractable. See remarks
preceding Eq.s64d for an estimate of the correction to the
critical temperature when two molecules related by space
inversion are taken into account.

III. CALCULATION OF FREE ENERGY

A. Variational calculation

We now proceed to calculate an upper bound to the free
energy of the system using the Gibbs-Bogolyubov inequality.
If F=−kBT ln Tr e−bH is the exact free energy of the system,
and Ht is a trial Hamiltonian depending on a set of varia-
tional parameters, then the inequality states that

F ø Fv = Ft + kH − Htlt, s13d

where we defineFt and kOlt, the a priori average of any
operatorO with respect toHt, to be

Ft = − kBT ln Tr e−bHt, s14d

kOlt =
Tr Oe−bHt

Tr e−bHt
. s15d

The equality ofss13dd is attained whenHt and H differs
only by a c-number. Therefore the quality of this upper
bound depends on how closelyHt resemblesH.

The method of selecting the trial Hamiltonian and the
formal calculation steps follow closely similar methods used
by Lee11–13 for other spin-phonon problems. We summarize
the main results here.

The Ht introduced here is split into the phonon partHtp
and the spin partHts. Let us look atHtp first.

In the original HamiltonianH, the phonon operatorsak j
and ak j

† appear not only in a quadratic term, but are also
coupled linearly with the spinss andw in Hi. This coupling
term can be treated as ifak j and ak j

† are coupled to some
mean fields ofs and w, which are of course just scalar pa-
rameters. ThereforeHtp is chosen to be

Htp = o
k j

gk jsak j
† ak j + 1

2d + o
k j

fk jsak j + a−k j
† d, s16d

where gk j and fk j are variational parameters. A few con-
straints may be imposed on these two parameters. First,gk j,
in the place of a phonon frequency, should be real and has
the property thatgk j =g−k j. It is also required thatf−k j = fk j

* .
Hts is chosen in the same way.s and w are thought to

couple with some mean phonon field, to give an effective
Hamiltonian

Hts = o
r

snrsr + hrwrd, s17d

wherenr and hr are variational parameters. After diagonal-
izing Htp in s16d with the substitutionsbk j =ak j +fsf−k jd /gk jg,
bk j

† =ak j
† +sfk j /gk jd, we can finally write downHt as

Ht = o
k j

gk jSbk j
† bk j +

1

2
D − o

k j

ufk ju2

gk j
+ o

r
snrsr + hrwrd.

s18d

Finally, we obtain an upper bound of the free energy

Fv = − kBT ln Tr e−bok jgk jsbk j
† bk j+s1/2dd

− kBT ln Tr e−bor snrsr+hrwr d + o
k j

s"vk j − gk jd

3Skbk j
† bk jl +

1

2
D + o

k j

"vk j

gk j
2 ufk ju2

− o
r
Fnr +

4m

ÎN
So

k j

f−k j

gk j
eik·rÎ "

2vk j
Ak jD − E0Gksrl

− o
r
Fhr +

4m

ÎN
So

k j

f−k j

gk j
eik·rÎ "

2vk j
Bk jD − hGkwrl.

s19d

Here,

kbk j
† bk jl =

Tr bk j
† bk je

−bok jgk jsbk j
† bk j+s1/2dd

Tr e−bok jgk jsbk j
† bk j+s1/2dd

, s20d

where

ksrl =
Tr sre

−bnrsr

Tr e−bnrsr
; s21d

kwrl =
Tr wre

−bhrwr

Tr e−borhrwr
. s22d

The free energys19d must be minimized with respect to
all four variational parameters,fk j, gk j, nr and hr . The four
minimization conditions are

]Fv

]fk j
= 0; s23d

]Fv

]gk j
= 0; s24d

]Fv

]nr
= 0; s25d

]Fv

]hr
= 0. s26d

Note that froms20d, s21d, ands22d, kbk j
† bk jl, ksrl, andkwrl

depend on these parameters, too. These dependences must,
of course, be taken into account when differentiatingFv.
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The solutions forfk j andgk j are

f−k j =
2m

ÎN
o
r

gk j

"vk j
eik·rÎ "

2vk j
sA−k jksrl + B−k jkwrld;

s27d

gk j = "vk j . s28d

The solutions fornr andhr are

nr = −
4m

ÎN
So

k j

f−k j

gk j
eik·rÎ "

2vk j
Ak jD + E0; s29d

hr = −
4m

ÎN
So

k j

f−k j

gk j
eik·rÎ "

2vk j
Bk jD + h. s30d

Using s19d, s27d, s28d, s29d, and s30d, we arrive at an
upper bound of the free energy,

Fv = − kBT ln Tr e−bok j"vk jsbk j
† bk j+s1/2dd + o

k j

ufk ju2

"vk j

− kBT ln Tr e−bor snrsr+hrwr d, s31d

where

nr = −
8m2

N
o
q

o
k j

eik·sr−qd

2vk j
2 Ak jsA−k jksrl + B−k jkwrld + E0,

s32d

hr = −
8m2

N
o
q

o
k j

eik·sr−qd

2vk j
2 Bk jsA−k jksrl + B−k jkwrld + h,

s33d

o
k j

ufk ju2

"vk j
=

4m2

N
o
rq

o
k j
Fe−ik·sr−qd

2vk j
2 sA−k jksrlg s34d

f+ B−k jkwrldsAk jksql + Bk jkwqld. s35d

The free energy is composed of a free phonon part and
some nontrivial contribution from the spins.

If we assume the solution is uniform, i.e.ksrl=ksl and
kwrl=kwl are quantities independent of position, we obtain

nr = − 4m2o
k j
Fdk,0

eik·r

2vk j
2 Ak jsA−k jksl + B−k jkwldG + E0;

s36d

hr = − 4m2o
k j

dk,0
eik·r

2vk j
2 Bk jsA−k jksl + B−k jkwld + h; s37d

o
k j

ufk ju2

"vk j
= 4m2No

k j
Fdk,0

e−ik·r

2vk j
2 sA−k jksl + B−k jkwld

3sAk jksl + Bk jkwldG . s38d

Heredk,0 is the usual Kroneckerd. It takes value of unity
if k =0, and zero otherwise.

B. Thermodynamic limit

By introducing phonon modes into the Hamiltonian, the
periodic boundary condition is implicitly assumed. Com-
pared with a real crystal, where the boundaries are free, the
periodic boundary condition is a mathematically convenient
but unphysical device. This is especially so in the analysis of
our present problem, since the periodic boundary condition
forces the volume and shape of the crystal to stay unchanged,
thereby forbids any macroscopic strain, and also possible
structural phase transition.

Mathematically, the consequence of the periodic boundary
condition is that thek =0 mode corresponds to a translation
of the whole system, and should not give any contribution to
the free energy. Howevers36d, s37d, ands38d can only pick
up contribution from thek =0 mode because of thedk factor.
Therefore, for any crystal with a finite size, there is no non-
trivial contribution to the free energy from the spins.

To remedy this situation, we must take the thermody-
namic limit, in which the size of the crystal tends toward
infinity. In this limit, we may expect the boundary effect to
become irrelevant and drop off from the physicssLedder-
man’s theory, see for example, Chapt. 2 of Maradudind.10

If we consider our goal of describing a structural phase
transition, it also makes sense that a uniform tilt in one of the
principle axes should be related to a shear wave of infinite
wavelength, which is only allowed when the size of crystal
tends toward infinity.

This idea of usingk →0 modes to describe macroscopic
deformation was first due to Born and Huang,14 and has been
employed in similar problems.11,15

Yet we are not dealing with an isotropic solid; the direc-
tion in which k tends towards zero does affect the result. In
the physical picture, even when the shear pattern has an in-
finite period and zero frequency, it still retains a directional-
ity, as demonstrated in Fig. 2.

At the thermodynamic limit, terms of orderk or higher all
tend to zero, and terms of order unity remain unaffected by
the limit. We discuss the details of the limits in Appendix B.
Finally we obtain

nr = − m2Kksl + E0, s39d

hr = − m2Lkwl + h, s40d

o
k j

ufk ju2

"vk j
=

Nm2

2
sKksl2 + Lkwl2d, s41d

whereK andL are both constants independent ofr . They do
not depend on the value ofm, either.

The value ofK cannot be calculated without a full solu-
tion to the lattice dynamical equation. But for our present
purpose it is enough to note these few properties.

First,K is finite since it is a sum over the finite number of
branches. It is positive, because the only contribution to it
comes fromuAk ju2/vk j

2 , which is always positive. Also note
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that the acoustick =s0,0,k3d branches do not contribute.
Similarly, L is also finite and positive. It gets contribution

from the acoustick =s0,0,k3d branches only. It may be
evaluated with a few further assumptions, and we shall come
back to it later. For future reference,

L = Uo
j=1

3

lim
k3→0

U
k1=k2=0

eik·r

vk j
2 Bk jB−k j . s42d

Using s31d and s39d–s41d, we finally arrive at the mean-
field free energy

Fv = − kBT ln Tr e−bok j"vk jsbk j
† bk j+s1/2dd +

Nm2

2
sKksl2 + Lkwl2d

− kBT ln Tr e−bs−m2Kksl+E0dorsr

− kBT ln Tr e−bs−m2Lkwl+hdorwr . s43d

The phonons and spins are completely decoupled from
each other. The spinss andw, however, now see an effective
coupling to their respective meanfields. This effective cou-
pling is induced by the interaction with phonons, and can be
thought of as the spins are interacting via exchanging virtual
phonons.

The traces of spins may be performed to simplify the
expression even further. Our final expression for the mean-
field free energy is

Fv = − kBT ln Tr e−bok j"vk jsbk j
† bk j+s1/2dd +

Nm2

2
sKksl2 + Lkwl2d

− NkBT ln coshfbsm2Kksl − E0dg

− NkBT ln coshfbsm2Lkwl − hdg. s44d

The fictitious magnetic fieldh is to be set to zero for all
physical situations.

IV. CRITICAL BEHAVIOR

A. Two phases of hydrogen bonding

The spin part of meanfield free energys44d is formally
like the meanfield free energy of the Ising model of ferro-
magnet. Therefore we expect to see similar behavior, includ-

ing a ferromagnetic transition at zero magnetic field.
The self-consistent meanfield equations for spinksl and

kwl are derived from thermodynamic relations

]f

]E0
= ksl; s45d

]f

]h
= kwl. s46d

The free energy per unit cellf is approximated by the
meanfieldFv /N. Let us look atksl first,

ksl = tanhfbsm2Kksl − E0dg. s47d

This coincides with the mean-field self-consistent equa-
tion for an Ising spin under a nonzero magnetic field. Here
E0 plays the role of the magnetic field equivalent, and is
fixed at a positive value. The solution under this imposed
condition ofE0 is well-known:ksl as a function of tempera-
ture T is continuous and increasing, with asymptotic values

ksl = H− 1 T = 0

0 T → `.
J s48d

This result means the bonding states are always more
favourable and predominate at a lower temperature. There
are no multiple distinct phases for spinksl, though.

The spinkwl has a self-consistent equation

kwl = tanhsbm2Lkwld. s49d

The fieldh is set to zero, since physically there is no such
field coupled directly tow. The solutions to this equation is
well-known:

kwl5=0 whenT . Tc

= ±Î 3

Tc

ÎTc − T when 1@
sTc − Td

Tc
. 0.6

s50d

The spinw shows two phases: a high temperature disor-
dered phase withkwl=0, and a low temperature ordered
phase withkwlÞ0. Both signs ofkwl are symmetrical and

FIG. 2. A uniform shear of zero frequency
and infinite wavelength is still directional. In both
cases above the modulus of wave vectorukiu=0.
But sad k1ic; sbd k2ia.
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equally likely for the low temperature phase, but the crystal
can only exhibit one sign. The critical temperature is given
by

Tc =
m2L
kB

. s51d

Recall the states represented by each value ofw summa-
rized in Table II. Since the crystal always tends to be in a
bonding state, the sign ofkwl may be considered to indicate
the predominant configuration of the hydrogen bonding.
When kwl.0, all acceptorsk tend to form hydrogen bonds
with donorss1, while they tend to bond withs2 when kwl
,0.

There is a breaking of symmetry: the crystal is forced to
settle on either one of two hydrogen bond configurations,
which are originally symmetrical.

B. Structural phase transition

We now show that two phases inw spin correspond to
two different crystal structures.

The phonon operatorsbk j and bk j
† are displaced by the

interactions with mean-field spins. Consequently the equilib-
rium position of atoms within the crystal can be expected to
vary with ksl and kwl.

In particular, the quantityD=kusk ,r d−usk ,r −cdl is of
our interest. Herer is an arbitrary lattice point.

The displacement vectors are measured from the equilib-
rium positions in the high temperature phase, and the aver-
age should normally be zero. A nonzero average would im-
ply a shift in equilibrium position. For instance, ifD is a
constant independent of position, it is obvious that from each
atom one needs to translate byc+D to hit the next equivalent
atom. One of the primitive lattice vector is therefore changed
from c to c+D.

First we write downD in terms of phonon modes, and
using the fact thatkbk jl=kbk j

† l=0 to get

D =
2

ÎN
o
k j

skak jl + ka−k j
† ldeik·rÎ "

2vk j
s1 − e−ik·cd

eskuk jd
Îmk

=
4

ÎN
o
k j

f−k j

"vk j
eik·rÎ "

2vk j
s1 − e−ik·cd

eskuk jd
Îmk

=
8m

N
o
k j

So
q

eik·qD eik·r

2vk j
2 s1 − e−ik·cdsA−k jksl

+ B−k jkwld
eskuk jd
Îmk

. s52d

The quantityfk j is given bys27d. Clearly, due to the factor
of oqeik·q, thermodynamic limit must be taken to produce a
nontrivial result. Note that 1−eik·c=0 if k3=0, we can write

lim
therm.

D = 8mUo
j

lim
k3→0

U
k1=k2=0

eik·r

2vk j
2 s1 − e−ik·cdsA−k jksl

+ B−k jkwld
eskuk jd
Îmk

. s53d

Using s11d, s12d, ands13d and noting that 1−eik·c=Osk3d,
it is obvious that the above limit is convergent, and we may
write

lim
therm.

D = o
j=1

3

cjkwlUs jd. s54d

We denote the three acoustic branches byj =1–3. All op-
tical branches contributions, and the term involvingAk j and
ksl converge to zero. Coefficientscj are constants indepen-
dent of spins.

Sincek is invariant under the mirror reflection, the direc-
tion of its eigenvectors must be also invariant under the re-
flection. Therefore one of its three acoustic eigenvector must
be parallel toc, and the other two normal toc. We may
denote the branch with eigenvector parallel toc by j =3, and
the other two byj =1,2.

Consequently,Us1d andUs2d are normal toc while Us3d
is parallel to c, since esk uk jd=ÎmkUs jd. And we have
Us3d ·l =0.

However, using the definition ofBk j from s11d, and the
acoustic eigenvector expansions from Table III, it is obvious
that to the leading orderBk j ~Us jd ·l for j =1,2,3.This im-
plies thatc3=0.

D is then a linear combination ofUs1d andUs2d, and is
normal to c. When uDu is small, this correspond to a pure
rotation, and the angleDu is directly proportional touDu.
Therefore

Du ~ kwl5=0 if T . Tc

~ ± ÎTc − T if 1 @
Tc − T

Tc
. 0.6 s55d

TABLE III. Expansion properties used in this section. HereUs jd is a constant vector that does not depend
on the atom type.u1, u2, andu3 are constant coefficients of expansion.

Expansion Valid for

fess2uk jd−ess1uk jdg ·l ,Oskd All phonon branches

ese uk jd /Îme=Us jd Acoustic branches only;e any atom type

esk uk jd /Îmk ·l =Us jd ·l +Osk2d Acoustic branches only

ess1uk jd /Îmk ·l =f1+isk1u1+k2u2+k3u3dgUs jd ·l
+Osk2d

Acoustic branches only

ess2uk jd/Îmk ·l =f1+isk1u1+k2u2−k3u3dgUs jd ·l
+Osk2d

Acoustic branches only
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The hydrogen bond interaction induces a second order
structural phase transition in our simplified model. The angle
of deviation of the unique axis from its high temperature
orientation is identified as the main order parameter. The
critical exponent for the transition is 1/2, in agreement with
the prediction made by a phenomenological Landau free en-
ergy expansion.16 A broken symmetry is associated with this
transition–as the axis tilted away, the mirror symmetry is
necessarily broken.

We remark that the phonon modes contributing to the ef-
fective coupling of pseudo spins are the modes displaced by
the hydrogen bond interaction. Thew spin is responsible for
the phase transition, which can be described by a shear wave
of infinite wavelength alongf001g direction. In fact this is
the only mode contributing to the effective coupling ofw.
Noting that some optical phonon modes contributes to the
effective coupling ofs, we suggest that other internal twist-
ing and tilting of the structure are related to spins only.

C. Estimation of Tc

We shall invoke the approximation discussed in Sec. II in
order to estimate the critical temperature.

Now the acceptork is identified as the whole acid part of
the adduct, and is a single rigid unit. The donorss1 ands2
are both contained in the base part, so they will be identified
as the same units. If we identify ess1uk jd=ess uk jd, then it
is necessary to identifyess2uk jd=e−ik·cess uk jd.

In this caseBk j =s1−e−ik·cdess uk jd. Making use ofs43d,
we can now writeL, the effective coupling for spinw, as

L = 8o
j=1

3

lim
k3→0

k3
2ucu2 + Osk3

2d
2vk j

ufUs jd + Osk3dg · l u2. s56d

Also, since the mirror symmetry now mapss into itself, it
is required that the directions of its eigenvectors to be invari-
ant under the mirror reflection. Consequently for the three
acoustic branches we have

essuk3d i c; s57d

essuk1d ·c = essuk2d ·c = 0. s58d

In other words, we now haveUs3d ·l =0. We make a fur-
ther assumption thatUs2d ·l =0, too, whileUs1d i l. Then the
only contribution towardL comes fromk =s0,0,k3d, j =1
branch:

L = 8 lim
k3→0

k3
2ucu2 + Osk3

2d
2vk1

ufUs1d + Osk3dg · l u2. s59d

For such an acoustic branch, the dispersion relation is of
the form:

vk1 = v2k3
2 + Osk3

4d, s60d

wherev is the speed of wave propagation at the very long
wavelength limit. This speed of sound wave may be written
in terms the densityr and shear modulusEs of the macro-
scopic crystal:

v2 =
1

Esr
. s61d

As discussed previously, this speed of sound is what it
would be if the hydrogen bond interaction could be switched
off, and is not physically observable. We should therefore
use the shear modulus measured at a temperature signifi-
cantly higher than the critical temperature as an approxi-
mated substitute ofEs.

Noting that Us1d ·l = uUs1du. By using the normalisation
condition for eigenvectors10 oe,aease uk jdease uk j8d=d j j 8, it
can be deduced thatMuUs jdu2=1 for all j , whereM is the
molecular mass, in this case equal to the mass per unit cell.

We may now carry out the limit ins59d:

L = 4
ucu2rEs

M
. s62d

Using s51d, we arrive at an expression of critical tempera-
ture for our model,

Tc =
4m2ucu2rEs

kBM
. s63d

Care must be taken when applying this formula to a real
crystal, however. As mentioned before, in all observed situ-
ations there are at least two molecules per unit cell, related
by space inversion. Becauseucu entered the above formula as
the separation of two donors, to approximate the real situa-
tion, we should substitute it with the separationl between the
centers of mass of the two neighboring base units. Also,
since there are at least two molecules per unit cell now,M in
the formula should be substituted bynM, wheren the total
number of molecules per unit cell.

For a real crystal withn molecules per unit cell related by
space inversion, the modified expression for critical tempera-
ture is

Tc8 =
4m2l2rEs

nkBM
. s64d

D. Heat capacity at zero pressure

Starting from the definitionF=−kBT ln Tr e−bH, the inter-
nal energy can be recovered as

]F

]T
=

F

T
−

kHl
T

. s65d

Therefore the heat capacity per molecule is21

C =
1

N

]kHl
]T

= − T
]2f

]T2 . s66d

Using the mean-field free energys31d, the heat capacity of
our model may be calculated. Like all the previous results,
this calculation is valid for zero external pressure, where
there is no work associated with a reversible volume change.

The mean-field free energyF has two independent parts:
the phonon parts involving onlybk j andbk j

† , and the spin part
involving only ksl and kwl.

We concentrate our attention on the spin part.
The spin free energy per molecule is:
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fs = − kBT ln coshfbsm2Kksl − E0dg − kBT ln coshsbm2Lkwld

+
m2

2
sKksl2 + Lkwl2d. s67d

The spin part of the heat capacity can be deduced by
using s66d:

Cs = − Kksl
]ksl
]T

− Lkwl
]kwl
]T

+ 2E0
]ksl
]T

. s68d

Both ksl and its derivative are analytic atT=Tc, while kwl
is nondifferentiable, and its derivative discontinuous. We
therefore look at the term involvingw only. Usings50d and
s51d, we deduce that

− Lkwl
]kwl
]T 5=0 T . Tc;

=
3

2
kB 1 @

sTc − Td
Tc

. 0.6 s69d

Since both thes part and the phonon part are analytic in
temperature, the total heat capacity of the system has a dis-
continuity atT=Tc due to the hydrogen bond interaction. The
magnitude of the jump is32kB. This discontinuity in mean-
field heat capacity is a common feature of all second order
phase transitions, and is in agreement with the earlier Landau
theory prediction.16

The specific heat jump in the bulk crystal is then given by

DCv =
3

2

kB

M
, s70d

whereM is the molecular mass.

E. Change in lattice parameters

In the harmonic phonon approximation, lattice thermal
expansion is excluded as it involves aharmonic terms of third
or higher orders in the potential. Nevertheless, through a mi-
nor modification of the free energy, and a few sensible as-
sumptions, we may assess the effect of this structural phase
transition on other lattice parameters. Note that the macro-
scopic shear strain is already handled by the microscopic
theory in thek→0 limit.

To the right-hand side of free energys44d, an elastic en-
ergy term representing diagonal strain is added:

Fe = 1
2sa1u1

2 + a2u2
2 + a3u3

2d, s71d

whereui is the ith component of elastic strain, andai is the
corresponding modulus. For small strain,ui is directly pro-
portional to the change in the length of theith primitive
lattice vector. We denote this change byDei.

We also assume that the coupling constantm, and conse-
quently Tc and the shear strain factorkwl too, depend on
eachui analytically.Tc and kwl can then be expanded as

Tc = Tc
s0d + Osuid; s72d

kwl = KÎTc − Tf1 + Osuidg if T , Tc. s73d

HereK is a constant. AlthoughÎTc−T in fact depends on
eachui, we would like to keep this factor in the expansion of
kwl nevertheless.

The phonon frequencyvk j, however, is assumed not to be
affected significantly by this change of lattice parameter.
Consequently the phonon part of the free energy is decou-
pled from the spin and lattice expansion parts. The relevant
part of the free energy to the macroscopic strain is then the
following:

Fr = − NkBT ln coshSTc

T
kwlD − NkBTckwl2

+
1

2
sa1u1

2 + a2u2
2 + a3u3

2d. s74d

This expression is expanded as a power series in eachui
and sTc−Td /Tc. Note that wheneverT is involved, it is ex-
panded around the actual critical temperatureTc, disregard-
ing any dependence ofTc on ui. This approximated free en-
ergy around the critical point is:

Fr = − g1kwl2sg2u1 + g3u2 + g4u3d + 1
2sa1u1

2 + a2u2
2 + a3u3

2d

+ C + higher order terms. s75d

Note that the structure of the terms agree with the phe-
nomenological Landau theory.16

Here eachgi andC are constants independent fromui and
sT−Tcd. Minimizing this approximated free energy with re-
spect to eachui near the critical point, to leading order we
get:

ui ~ kwl2. s76d

SinceDei is proportional toui for small strain, near the
critical point it behaves like

Dei5=0 if T . Tc;

~ ± sTc − Td if 1 @
Tc − T

Tc
. 0.6 s77d

This variation of lattice parameters induced by the hydro-
gen bond interaction should be considered as imposed on top
of the “background” thermal expansion, induced by the an-
harmonic terms in the interatomic potential. This “back-
ground” variation should be analytic in temperature even at
the critical point itself, and therefore can be described to the
lowest order as linear in temperature.

We may then conclude that, around the critical point the
lengths of the primitive lattice vectors vary continuously
with temperature, although the first derivatives do not exist
at the critical point. This is also consistent with the analysis
of phenomenological Landau theory.16

V. VALIDITY OF THE THEORY

We have so far constructed a model of an adduct crystal
with symmetrical hydrogen bond interactions, and derived its
thermodynamics by invoking the meanfield approximation.
In this section, we shall present arguments that the oversim-
plification made in the proposed model Hamiltonian and the
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meanfield nature of the derivation do not affect the accurate
description of critical behaviors.

A. Model Hamiltonian

The crystal structure adopted in our model is a simplifi-
cation to the real life situation. In particular, while all ob-
served examples1 have two or more adduct units per unit
cell, ours has only one. The direct consequence of this is that
the real crystals possess inversion centers, while our model
does not.

In our proposed way of modeling hydrogen bonding, or in
fact in the real life situations, a donor-acceptor-donor group
involves a preferred direction, and consequently cannot be
invariant under space inversion. The inversion symmetry
therefore demands at least two such donor-acceptor-donor
groups per unit cell, i.e., two molecules per unit cell, being
the image of each other under space inversion.

But since the phase transition only involves the breaking
of a reflection symmetry, we believe that the exclusion of the
inversion symmetry should not cause any significant devia-
tion from the real crystal.

It is possible to introduce a more sophisticated model re-
specting all symmetries observed, where in each unit cell
there are two adduct molecules, being inversion images of
each other. But due to the mean field nature of our deriva-
tion, the two symmetrically related parts shall behave iden-
tically, because they see the same environment. Therefore we
believe that the meanfield behavior of this complete model
should be identical to the simple model proposed in this
paper.

Also it is difficult to relate the coupling constantm to any
physical observable quantities. In this paper only a order of
magnitude estimation is given from the typical bond energy
and bond length. Also, the two-state description of hydrogen
bonding is a highly simplified and very crude model. As a
consequence, the estimation of critical temperature is un-
likely to be of great accuracy. However, the meanfield criti-
cal exponents should not be sensitive to these minor details.

In summary, although the model is overly simplified in
many aspects, we believe that it gives a qualitatively correct
picture.

B. Mean-field theory

Ising model has an upper-critical dimension of four. In
three space dimension, we generally expect the meanfield
critical exponents for an Ising-type model to be renormalized
by the fluctuations.

However, it is also well-known that the mean-field results
are indeed exact for an Ising model with an interactions of
infinite range.17 We claim that the effective spin-spin cou-
pling induced by exchange of virtual phonons falls into this
category. Since acoustic phonons are massless, the effective
interaction is long-ranged, analogous to the electromagnetic
interaction mediated by massless photons.

Comparison can be drawn with the Dicke model of
atomic maser, which describes a system of two-level atoms
coupled with photon field, a scenario very similar to our
proposed model. The exact thermodynamics of the Dicke

model was obtained by Hepp and Lieb.18 For instance, the
super-radiant phase transition exhibited by the Dicke model
was shown to be identical to the behavior of a mean-field
Ising model. Furthermore, Lee19 has shown that the exact
thermodynamics of this phase transition can be obtained
from a mean-field theory. The variational scheme employed
by Lee is essentially the same as the method we have used in
this paper.

As a result, we feel confident that the predictions on criti-
cal behaviors made in this paper are qualitatively accurate,
despite their mean-field nature.

VI. CONCLUSION

In this paper we have modelled the hydrogen bond inter-
actions in certain amino-phenol adducts as pseudo spins
coupled to lattice vibrations of the crystal.

A variational principle is deployed in finding a self-
consistent mean field approximation of the free energy. The
pseudo spins, though not explicitly coupled to each other,
possess long-ranged interactions by exchanging phonons.
When thermodynamic limit was taken, the spin part of the
model possesses two phases separated by a critical point.
This two-phase system is in the same universality class as
the Ising model of ferromagnets. The two degenerate ground
states below the critical temperature correspond to two sym-
metrical hydrogen bond configurations.

It is shown further that this phase transition corresponds
to a structural phase transition in the crystal. The mirror sym-
metry of the high temperature phase was broken below the
critical temperature, when the unique axis of the lattice tilts
away from its original orientation. We identify the main or-
der parameter of this phase transition as this angle of tilting
Du. The behavior is given ins55d:

Du5=0 whenT . Tc

~ ± ÎTc − T when 1@
Tc − T

Tc
. 0.6

An estimation of the critical temperature under zero pres-
sure is also given ins64d:

Tc8 =
4m2lrEs

nkBM
.

The specific heatC is predicted to have a discontinuity at
T=Tc of magnitudeDCv=s3/2kB/Md.

Also, through the assumption that the coupling constantm
depends on macroscopic elastic strain, we are able to show
that the lengths of primitive lattice vectors,Dei, in the region
near the critical point behaves as ins77d:

Dei5=0 if T . Tc;

~ ± sTc − Td if 1 @
Tc − T

Tc
. 0.6

The predicted critical exponents are all in agreement with
previous predictions using a phenomenological Landau free
energy expansion.16

The validity of the theory is discussed. Although the over-
simplification in the model Hamiltonian would likely under-
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mine the accuracy of the estimated critical temperature, we
believe that the mean-field critical exponents should not be
sensitive to minor details of our model. Also, due to the
long-range nature of effective coupling via phonons, we be-
lieve that the meanfield results should be qualitatively accu-
rate.
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APPENDIX A

In this appendix we derive some expansion properties of
the eigenvectors.

First we expandfess2uk jd−ess1uk jdg ·l for small uk u and
any j .

Let Sdenote the mirror reflection which leaves the crystal
structure invariant.S shall therefore brings1 ands2 to each
other.S acts on a vectorv=sv1,v2,v3d through a matrixS,
defined bySv=sv1,v2,−v3d. It is also obvious thatsSvd ·u
=v ·sSud.

The eigenvectors ofs1 and s2 are related byssee, for
example, Chap. 3 of Maradudin10d:

ess2uSk jd = Sess1uk jd. sA1d

Since we have chosenl =s1,0,0d, it is obvious thatv ·l
=sSvd ·l for any vectorv. So

ess2uSk jd · l = ess1uk jd · l . sA2d

Note that when k =0, the eigenvectorsess2u0jd ·l
=ess1u0jd ·l. We may conclude that

fess2uk jd − ess1uk jdg · l = fess2u0jd + Oskdg · l − fess1u0jd

+ Oskdg · l , Oskd. sA3d

Next we derive some other properties concerning only the
acoustic phonon branches.

An eigenvectorese uk jd may always be written as a prod-
uct of a real vector and a complex phase factor with unit
modulus:

eseuk jd = eiuseuk jdvseuk jd = f1 + ius1dse jd ·k + Osk2dgfvs0dse jd

+ Oskdg. sA4d

We use the fact thatese u0jd=ÎmeU j , where Us jd is a
real constant vector independent of atom typee ssee
Chap. 2 of Maradudin10d. Consequently we must have
vs0dse jd=ÎmeU j .

Also e*se uk jd=ese u−k jd. This implies that the real
part of ese uk jd must be even ink →−k. There cannot be
any odd order term in the expansion ofvse uk jd. We then
have

eseuk jd = f1 + iuse jd ·kgeseu0jd + Osk3
2d. sA5d

For an infinitesimalk, we may identifyuse jd ·k as a phase
shift. An eigenvector does not change its length or direction,
but merely acquires a phase whenuk u is increased infinitesi-
mally from zero.

The phase of a moleculee in unit cell r can be separated
into two parts. There shall be a phase factor ofeik·r , which is
the exponential factor in the Fourier transform, correspond-
ing to the phase variation from one unit cell to another. Also
there will be a phase variation within each unit cell; this is
attributed to phase of the eigenvectorese uk jd.

Note that if we choose to measure all phases relative
to the lattice points,k should not have a phase and its
eigenvector must be always real. This leads us to the
expansions

eskuk jd
Îmk

· l = Us jd · l + Osk2d; sA6ad

ess1uk jd
Îms

· l = s1 + ik · us1ddUs jd · l + Osk2d; sA6bd

ess2uk jd
Îms

· l = s1 + ik · us2ddUs jd · l + Osk2d. sA6cd

SubstitutingsA6bd and sA6cd into sA2d, which is always
valid, it can be deduced thatus1d=Sus2d. Or, in component
form,

u1
s1d = u1

s2d = u1; sA7ad

u2
s1d = u2

s2d = u2; sA7bd

u3
s1d = − u3

s2d = u3. sA7cd

These results are summarized in Table III.

APPENDIX B

In this appendix, we consider the details of the limits
contained ins36d, s37d, ands38d.

We propose not to consider the thermodynamic limit of
an expressionokdkGskd, where Gskd is a function of k,
as a single term limk→0 Gskd. Not only is this interpretation
physically not satisfying, but also mathematically
ambiguous.

Instead, we writeGskd as Gsk, k̂d, a functionk= uk u and

k̂ =k /k, and interpret the above thermodynamic limit as:

lim
therm.

o
k

dkGskd = o
allowed k̂

lim
k→0

Gsk,k̂d. sB1d

Next we want to clarify what we mean by “allowedk̂.”
Let us first return thed back to a sum of exponentials. We

are dealing with expressions of the form

lim
therm.

1

N
o
r

o
k

eik·rGsk,k̂d → o
k̂

lim
k→0

Gsk,k̂d. sB2d
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Let eachr i run from −Q to Q, thenN=s2Q+1d3. Also the
quantityk ·r may be written ask1r1+k2r2+k3r3.

A term with k̂ =sa ,b ,gd in the summation on the RHS of
sB2d is effectively

lim
therm.

1

N
o
r

o
k

eik·rGskd = o
i
S lim

therm.

1

2Q + 1o
ri,ki

eikiriD
3S o

kj,jÞi

dfk=ki,k̂=sa,b,gdgGsk,k̂dD
= o

i

lim
ki→0

Gski,sa,b,gdd. sB3d

By writing dfk=ki,k̂=sa,b,gdg, it is meant to be a product of
two d’s which, upon the summation over allkj’s with j Þ i,
shall forcek =kisa ,b ,gd.

We interpret the quantity

lim
therm.

1

2Q + 1o
ri,ki

eikiri = lim
therm.

dk3
, lim

k3→0
. sB4d

First let us consider the case wherei =3. The factor
dfk=k3,k̂=sa,b,gdg could be one of the following:

dfk=k3,k̂=sa,b,gdg =Hdsak2−bk1d,0dsgk2−bk3d,0, or

dsgk1−ak3d,0dsbk1−ak2d,0;
J sB5d

or other combinations withk1 andk2 interchanged.
Yet it is obvious that dfk=k3,k̂=sa,b,gdg=1/s2Q

+1d2or1,r2
eisr1k1+r2k2d. Therefore we have a constraint:

1

s2Q + 1d2 o
r1,r2

eisr1k1+r2k2d

=5
1

s2Q + 1d2o
r1

eisak2−bk1dr1o
r2

eisgk2−bk3dr2, or

1

s2Q + 1d2o
r1

eisgk1−ak3dr1o
r2

eisbk1−ak2dr2, 6
sB6d

or other cases with 1 or 2 interchanged.
The first case cannot be satisfied consistently. The second

case is possible only whena=b=0 andg=1.

Therefore, if i =3, the only possible direction fork̂ is
s0,0,1d.

Similarly, when i =1, the possible direction isk̂
=s1,0,0d, while j =2 givesk̂ =s0,1,0d.

Therefore we identify22

lim
therm.

o
r ,k

eik·rGskd = Uo
i

lim
uk u→0

GskdU
kj=0,jÞi

. sB7d

Effective coupling: We now calculate nr , hr , and
ok jufk ju2/"vk j in s36d–s38d. Taking the thermodynamic limit
as described previously, we have

nr = − o
i
Fulimki=0ukj=0,jÞi

8m2o
j

eik·r

2vk j
2 Ak jsA−k jksl + B−k jkwldG

+ E0; sB8d

hr = − o
i
Fulimki=0ukj=0,jÞi

8m2o
j

eik·r

2vk j
2 Bk jsA−k jksl + B−k jkwldG

+ h; sB9d

o
k j

ufk ju2

"vk j
= − o

i
Fulimki=0ukj=0,jÞi

4m2o
j

eik·r

2vk j
2 sAk jksl + Bk jkwld

3sA−k jksl + B−k jkwldG . sB10d

In order to calculate these, the small-k expansion of
each quantity appearing in the above expressions must
be known. We shall quote some of the expansion properties
of the eigenvectors in Table III here. See appendix for
derivations.

With these, the expansion ofAk j and Bk j may be calcu-
lated. Their exact formulas are given ins10d and s11d,

Ak j , 5Os1d optical branches,

Oskd acoustic branches,k3 = 0,

Osk2d acoustic branches,k3 Þ 0;
6 sB11d

Bk j = 5Oskd optical branches,

Osk2d acoustic branches,k3 = 0,

ik3u3Us jd · l + Osk2d acoustic branches,k3 Þ 0.
6

sB12d

The frequencyvk j behaves like

vk j
2 , HOs1d optical branches,

Osk2d acoustic branches.
J sB13d

To the leading order ink, the Fourier factoreik·r ,1.
Using all the above results, we get

eik·r

vk j
2 Ak jA−k j , HOsk2d acoustic branches,k3 Þ 0,

Os1d otherwise;
J
sB14d

eik·r

vk j
2 Ak jB−k j , Oskd; sB15d

eik·r

vk j
2 Bk jA−k j , Oskd; sB16d

eik·r

vk j
2 Bk jB−k j , HOs1d acoustic branches,k3 Þ 0,

Osk2d otherwise.
J
sB17d
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