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Coherent bremsstrahlung in imperfect periodic atomic structures
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Coherent bremsstrahlung of high energy electrons moving in a three-dimensional imperfect periodic lattice
consisting of a complicated system of atoms is considered. On the basis of the normalized probability density
function of the distribution of atomic centers in the fundamental cell the relations describing coherent and
incoherent contributions into cross sections are obtained. In particular, the cross section of coherent brems-
strahlung in complex polyatomic single crystals is found. The peculiarities of formation and possibilities of
utilization of coherent processes are discussed.
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[. INTRODUCTION cesses in various nanostructures and complex single crystals.
For the first time, the theory of the coherent bremsstrahB€low we give an introduction to these problems, using the
lung and electron-positron pair production in single crystalsex@mple of the nanotube superlattice. .
was published in Refs. 1-3. Up to now, these processes Figure 1 illustrates the three-dimensional superlattice of
have been much studied both theoretidafly and (10,10 armchair single wall nanotubes. In this case we can
experimentally~® The specific peculiarities of the coherent Write for the vector-radius;(x;,y;,z) of the jth atom in the
processes were widely used for obtaining linearly polarizedhanotube,
v beams in polarization measureméft¥® and for increas- . .
ing the e*-beam intensity® These experimental investiga- X -—Rcos<4—m+ ) = {ﬂ )
. ; ) : 1= 1], X ;=Rco +@2], (D)
tions were carried out in a wide energy range of electron, N N
positron andy beams from a few hundreds of MeV to 100—
200 GeV. As a rule, simple crystallographic structures were . [ 4] . [ A
used in experiments. Both experiments and theory show that, ~ Y1i =R S'”(W + ‘Pl)' Y2 = RS'”(W + ‘PZ>’ (2)
with the increasing of the particle energy, the requirements
on the beam divergence become more strict. Besides, at high 2 =0 7 =b/2 &)
. . 1) — Y 2.0 ’
enough energies the process of coherent bremsstrahlung is d !
violated, due to the magneto-bremsstrahlung mechahismwherej=1,2,...,N/2 are the indices corresponding to atoms
This mechanism provides the linear polarization of the emitplaced in two parallel planeR is the radius of the ringy is
ted y quanta. However, a sufficiently small angle divergencethe period(i.e., the size of the fundamental gelh the z
of the electron beam is needed for utilizing this phenomenondirection, ande,, ¢, are the angle shiftép, — ¢,=consj.
One of the main requirements, which restricts the use of In Fig. 1 we describe an ideal nanostructure where the
coherent processes, is the small size of the fundamental cedhgle shifts of all nanotubes are the same. The experiffents
of the single crystals, which has to be of the order of someshow that these angle shifts are distributed randomly or, in
angstroms. It is our opinion that, finding atomic periodic other words, every nanotube is turned at some different
structures with a minimal period of tens or hundreds angangle. This means that the content of every cell will be dif-
stroms, may yield a good solution to the above-mentionederent, relative to the coordinate system. Thus, the nanotube
problem. lattice is not a periodic structure in a strict sense, in spite of
In recent years, considerable advances have been madethre constancy of the distance between neighboring nano-
the creation of various nanostructufést® such as regular tubes. However, the existing theory of coherent bremsstrah-
two-dimensional arrays, fullerite crystals, nanofilms, nanodung holds its validity for atomic structurdsingle crystalgs
tube superlattices and so on. In a number of pdpeis which are periodic in a strict sense.
nanotube lattices were considered as a source of channeling Based on this example, we formulate the common prob-
radiation. Other applications of nanotubes for purposes ofem for the calculation of the coherent bremsstrahlung in
high energy physics are also described in Refs. 20-22.  artificial and natural nanostructures. The problem is the vio-
According to Ref. 14 single-wall nanotubes are uniformlation of the periodicity in a strict sense in these structures.
in diameter and self-organized into ropes, which consist of This situation is well known in the diffraction physics of x
100 to 500 nanotubes in a two-dimensional triangular latticaays in imperfect structures. However, the process of co-
with a lattice constant of 17 angstroms. In our #lkve  herent bremsstrahlung was investigated and utilized mainly
discussed the processes of coherent bremsstrahlung aimdsimple single crystals. Such crystals as silicon and dia-
e*-pair production in the nanotube superlattice. In considermond have a negligibly small degree of mosaicity and ad-
ing this task we met problems, the solution of which has amixture. Because of this fact, the problem of calculation of
common meaning for the above-mentioned coherent prothe bremsstrahlung in imperfect structures did not practically
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II. CROSS SECTION OF COHERENT BREMSSTRAHLUNG
IN IDEAL PERIODIC STRUCTURES

The differential cross section of the coherent bremsstrah-
lung for an ideal periodic structure, consisting of atoms, can
be written in the following fornt:

E gario/h
i

2

(4)

dO'CB = dO'BG

whereopg is the bremsstrahlung cross section for an isolated
atom,q is the three-dimensional transfer momentum, ggd
are the vector radii of the atoms in the periodic structure.

z From this expression, the following relation for the cross
section per atofis derived:

(2

3
oce BB, = 2003, doaolE.E,,a)|SQalh - 9),
g

dl

FIG. 1. The three-dimensional superlattice(d6,10 armchair (5)

single-wall nanotubes and Cartesian coordinate system. The  \yhereN is the number of atoms in the fundamental cell of
fundamental cell of the structure is presented with the help of thgpe structurey is the volume of the fundamental ce(g) is
t_hglé _Ilgeos._lge'&bllaa_c; Ec”&'\ms 3.re at?ms Iofséh_eeréag\otubes. OA=ABihe structure factdk? g is the vector of the reciprocal lattice,
—PL=E0=LMAD=L4 A, Tadius Of CITCIes<=0.6 A. 8 is the delta functionE, E, are the energies of the initial
electron and bremsstrahlungquantum and: is the Planck

. constant. The structure factors are calculated from the rela-
appear (except for the problem of the thermal atomic

motior?). In the x-ray diffraction theory the above- tion

mentioned problem was solved with the help of the introduc- N

tion of the averaged electron densiyin our talk2° using S(g) = > €9, (6)
the analogy in the description of the diffraction and coherent =1

processes, we could solve this problem on the basis of #herer; is the radius of thgth atom in the fundamental cell.
physical sense. Besides, we suggest another approach whichFrom Eq. (5) one can see that the specific character of
is based on computer simulations. We think that this apevery atomic structure is defined by its structure factors. It is
proach may be extended to a wide class of analogous prolphvious that for ideal structurdat a fixed localization of the
lems, in particular, for a nanotube lattice with a more com-atomg the structure factors take well defined values. Be-
plicated dependence on the angle shifts, than a random oneause of various fluctuations, the coordinates of atoms in the
It turns out that our computer approach has an analyticalundamental cell are changed with space &md time and
solution in the general case. Furthermore, on the basis of ouhis fact does not allow us to use E§) for calculations. For
method we are able to consider the process of cohereithis reason, it is necessary to understand the behavior of the
bremsstrahlung in imperfect atomic structures, taking intcstructure factors for these fluctuations.
account all fluctuation factors. The plan of our further actions for solving the above-
The paper is organized as follows. In sect. Il we give amentioned problem is the following: we will try to reduce
mathematical introduction to the problem. In Sect. lll, for thethe problem to one, for which the solution is knovguch as
description of fluctuations in atomic structures, we introducethe process in the ideal periodic latticén the first stage of
the normalized probability density function and formulatethe study, we will formulate the definition and some rules for
some rules for averaging the structure factors. In sect. IV weéhe averaged structure factors. Then, we will consider the
consider the three-dimensional model of the real atomisimulations of fluctuations on the model of real periodic
structure with fluctuations. The results obtained here allowstructures, and thereafter we will use the obtained results for
us to derive(in Sect. ) the coherent and incoherent crossthe calculation of the coherent bremsstrahlung cross section
sections of the bremsstrahlung process in imperfect struagn imperfect atomic structures.
tures. In sec. VI we discuss the influence of thermal fluctua- It should be noted that in the theory of coherent brems-
tions in atomic structures on the coherent bremsstrahlungstrahlung the potential of the crystal is considered as the sum
Here we reproduce well known results and also obtain nevef isolated atomic potentials. It is obvious that this assump-
ones. In sec. VII we consider the possibility of generalizingtion is only approximately true. However, the current experi-
our theory to consider multiatomic structures and, in particumental experiencésee, for example, Ref.)&hows the cor-
lar, multiatomic single crystals. Samples of calculations ofrectness of this statement with a high enough accuracy. In
the bremsstrahlung process in real atomic structures are preiis paper we will also hold this statement true and because
sented in Sec. VIII. In conclusiofin sec. IX) we give shortly  of this, our results will be easy to compare with the standard
the main results of our investigations. theory. In the following, we will make use of the expression

174105-2



COHERENT BREMSSTRAHLUNG IN IMPERFECT. PHYSICAL REVIEW B 71, 174105(2005

“coordinates of the atomic center” which has an exact physi-
cal meaning denoting the coordinates of the atomic nucleus{S@S (@) = | S(@.r1 =Xy, - - Iy~ Xn)

XS*(g,rl_Xl,...,rN_XN)P(Xl,Xz,...,XN)dV
N

Ill. AVERAGING OF THE STRUCTURE FACTORS

As previously noted, the specific character of every struc- =N+ », driTe
ture is defined by its structure factors. It is useful to appre- Lj=Lli#]
ciate the physical meaning of these quantities. For this pur- '
pose, we write the atomic density for a periodic structure in xf e"(xi‘xi)gj-‘ij (i, xj)dx; dx;, (1)
\%

the point given by the vector radius
where

. N 1 i
= —r.—-r.)=—+ — —1gr
Na(r) %zé(r re=rj) V+V§ S(g)er.  (7) Jij(xi,xj)=f7’dV(—i,—j)- (12)
From here, it follows thaS(g)/V is the Fourier component Here the ternd)(~i, -j) indicates that the integration takes
of the atomic density or, in other words, the structure factorglace over all space variables, except the ones belonging to
are the atomic images in the reciprocal space. Note that E¢he i,j atoms. Taking into account the relations obtained
(7) does not take into account thermal atomic fluctuationshere, we can write for the dispersion
They are easy to calculate with the help of the following N
multiplier: exp—Ag?/2) (see below. We stress that the {S(@S (@) =N-> e—ixjgjrj(xj)dxjf eixjgyrj(xj)dxj
structure factors depend on the choice of a coordinate system j=1Jv v
and therefore the values of structure factors have a physical N
meaning only ir_l a_def_ined coordinate_ system. + > ei(ri—rj)gf e—i(xi—xj)g[ﬁj(xi’xj)

The space distribution of the atomic centers in the funda- j=Li% v
mental cell of the structure can be described with the help of
the normalized probability density functidP(x,,X,, ..., Xy), = Fi() F(x) Jdx; dx;, (13
wherex, ..., xy are the space displacements of the atomiGyhere we introduced the following notatiof(S(g)S (g)))
centers from the points; in the cell. The integral of this =(S(g)S (9)) - (S(Q))S (g)).
function over the wholé3 < N-dimensional V volume of the
cell is equal to 1. Then the structure factor, averaged with th?nd
help of the’P function, is given by

In the case when thg and x; variables are statistically

ependent, the following relation takes placg;(x;,X;)

=Fi(x)Fj(xj). If all N atoms are statistically independent,

the normalized probability density function may be repre-

(S(g)) :f S(GT 1= Xqs -« oF = Xp)P(Xg, Xgs -, Xp)dV sented a§>=HJ=1}‘j(xj) and Eq.(13) can be rewritten in the
following form:

N N
:J.Elé”gfve“x"gﬂ(Xj)dxi- ®  (S@S©@)=N-3 | e™9F(x)dx, j &9 (x,)dx;.
= j=1Jv v
(14

In the case when all the atoms in the fundamental cell are
equivalent, this equation has the following simple form:

(S(@)S (99 =N(1L ~(s(g)X(s (9))), (15

where(s) is the averaged function,

where theF; function reads as
F,—(X,—)=f7>dv(—j), (9

with dV(=j) =dx dX,- - -dXj_y dXj.1° - -dXy. Now we can find

the following coordinate-independent value: (s(g))ze”gf EIF(x)dX. (16)
\%
N
(S(QNS(g)=2, e_ixjg]-'j(xl.)dxjf eixjg]-'j(xl.)dxj It should be noted that, for an ideal atomic structure,
i=1Jv v Fi(x)=8(x;) for everyj and then(S(g)S (g)))=0.

N It is significant that the equations in this section are valid
_ ei(ri-rj)gf ei(xi‘xi)gj-'i(xi)fj(xj)dxi dx;. for any vectorg of the recipr_ocal space, in particular fo_r any
Li=Li#] v vector of the reciprocal lattice. Besides, there are no indica-
(10) tions of the atomic sorts ip the equations. Below, it will be
shown that the cross section of the coherent bremsstrahlung
In a similar manner, one can define the average squargepends on the averaged structure factors for monoatomic
module of the structure factor, structures and on some combinations of similar factors for
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multiatomic structures. Thus, Eq8)—(16) are also useful in =
the case of structures consisting of different atoms. S@ 0, atN—e (2Y)
Equation (20) is obvious, so at the pointed condition the
IV. SIMULATION OF FLUCTUATIONS valuegrjy is multiplied by 27 and the exponents in EQO)
. ) ) , are equal to 1. For obtaining E¢R1) we should take into
~ Letus build the three-dimensional/ X A"X ) cubic lat-  5c00unt that there is only a finite number of the various ex-
tice consisting of identical cubic cells with side size equal toygnents in Eq(17) (this numbe,,,< N, the equality hold-

a. Then we can put into every cell an identical number ofihg \whenAis a prime number Grouping the terms near the
atoms, which we denote bM. Doing this, it would mean game exponents, we get

knowing the coordinates of every atoms in every cell. Let us

select a local Cartesian coordinate system in every cell. Be- . Nexp Nexp

sides, the probability function of localization of atoms in the ~ S(@) = > (GZWP/N‘*XPE Sp) ~, SDE e?™MNexp= (.
cell will be considered as know®(xy,X,,...,Xy). Let us p=t p=1

suppose that the atomic coordinates in every cell are distrib- (22

uted according to this function. : .
To be specific, we select the basic Cartesian coordinatgere we can removas, terms, due to their approximated

system in the left and bottom corner of the lattice. With thisequality at Iarge_ enougﬁ/. ~ o
lattice (of Nax Nax Va size) as the basic element, we can ~ We can consider the structure factsig) as a statistical
build (by using parallel translations iy, z directions with  Vvariable. Taking into account Eq20) and(21), we find that
a period of NVa) the three-dimensional infinite periodin  (S[@))=N*S@)) when I/, m/N,n/N are simultaneously
the strict sensestructure. The main idea in our consideration NG

. . integer numbers an¢5(@))=0 in the other cases.
stems from the fact that the a_bove descrlbed sqperle(mt:e Similar calculations allow us to obtain the averaged dis-
large enoughN) contains practically all combinations of at- ) ~
oms in the small celléccording to the normalized probabil- Persion of the structure fact&(g) for the case of largeV’
ity density function) and, on the other hand, this superlat- Numbers
tice is periodic in a strict sense. Thus, we can use the ~ o~ .
coherent bremsstrahlung theory for describing the radiation (S@S @) =N(SDS @). (23

processes. For this purpose, the strycture factors of the largg,s equation is valid for arbitrary;m, n numbers. However,
lattice should be found for every reciprocal vecipiFurther the valueS is defined by the limit of Eq(20) in th
we will introduce an overtilde above the values relative to" ' VaU€= 1S delined by he o Eq e case

the large cube lattice with the side Nfa. Thus, these struc- Whenl/A,m/N,n/\ are integer numbers, a8 =0 in the

ture factorsS can be calculated from the following relation; Other casessee Eq(21)). _ _ o
It should be noted that our previous consideration is based

~ NN on the specific kind of the crystallographic structure. It is
SO = 2 > > €Yk (@), (17)  easy to verify that our analysis is valid in the general case.
=1 j=1k=1 Indeed, the important relation for the correctness of the
where the reciprocal vectd is theory (see EQq.(19)) is valid for any real crystallographic
structureZ*25Of course, in the general case, the vector of the
9=Ggle,+ Gome, + Gpne,,  I,mn=0,+1,+2,.. . reciprocal lattice and the translation vector must be written in
(18) the correspondinggenerally nonorthogongtoordinate sys-
tem.

HereGy=2w/(Na), ey, €, ande, are the unit vectors ir,y, z
directions and the translation vector readsr gs=(i—1)ae, V. CROSS SECTION

*(j-1)ae,+ (k-1)ae, in the basic coordinate system. In Eq. In principle, now we can calculate the coherent brems-

(1N7)v Si(@ denotes the following structure factor: gy apiung cross section for the structure described in the pre-
Eta:l ?Xpt'r?rijlkm ‘;Vherec;_ijkat's thet vect?r 'Ilzdlulls _?:1 the‘”: vious section. However, we call to the attention of the reader
atom in the local coordinate system of fijle cell. The mul- the fact that the structure facto& in the case when the

tiplication griy reads as I/ N,m/N,n/N numbers are nonintegral ones, tend to zero

- I(i-1) m(j-1) nk-1) at large/. Nevertheless, the contribution from these factors
Orij = 27 N N TN ) (19 to the calculated values may be noticeable, due to their large

amount.
For large enough numbeys one can find In this case, the differential cross section of coherent
NN N bremsstrahlung has the following form:
509 =23 3 3 Siu@ = N(S©), (20) (2m)°
i=1 j=1 k=1 do—CB:

2 docSOS @/t -T). (24
where (S(@)) is the structure factoBy averaged over the B ’

coordinates and the quantiti¢é\V,m/N,n/N are integer Here V=A%V is the volume of the fundamental cell of the
numbers. In the other cases, one can write structure.
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When the numbeW is large enough, we can writsee one removes the action of the large periodic lattice.
Egs.(20—(23)) Thus, in principle, we have solved the problem of the
-~ — -~ . coherent bremsstrahlung in imperfect periodic atomic struc-
S@S @) = (S@S @) = (S@XS @) + N*(S@S @) tures. In fact, Eq(29) represents the sum of the coherent and
(25) incoherent contributions in the cross sectiatugs=do,
+do;. Now both cross sections should be reduced to a form
for the case of the simultaneously integer numbersyhich is convenient for specific calculations.
l/N,m/N,n/N and First of all, we find the coherent contribution. For this

e B . purpose, it is necessary to simplify the cross sedtiegs as
S@S @ ~ (3OS @) =N*(S@S @) (26) it was described in Ref. 2. This simplification is based on the

for the other cases. Taking into account these relations anf@ct that the effective range af<mc, due to thermal fluc-

Eq. (20), we get tuations. . N . .
(2m) Using this condition, and with the help of calculations
_\em _ similar to those in Refs. 2,4, we can obtain for the coherent
doce ="y 2 oac(SONS (0920 ~0) ose Soction
2m)3 do, 2
+ 228 dnc(SHS GG D). (27 = @+ Zam], 30
v

— 2,2 — H H
We see that the total cross section represents the sum of tvr\\/?ﬁhere 0= 2Qepl Mo, AQep=1/137.04,1, is the classical

terms. We interpret the first term as the averaged cohere ectron radiusx=E,/E is the ratio of the emitted photon
contribution. Indeed, the value of this cross section calcuenergyE o the |n|t|al energyE of the electron, and)y, i
lated per atom is proportional & and inversely proportional functions are
to V. In addition, this cross section is independent \6f (21m)2 259L
which defines the size of the large lattice. = 4—2 U(9)| , (31

It is obvious that the second term describes the common I
effect due to the incoherent bremsstrahlung in e N
X N lattice at largeN values and the coherent one in the _24(277)22 U(g )|2529L(9u 2]
infinite superlattice. Now we can find the energetic cross Vo= '
section by integration ove,

(32
I

Hereg is the vector of the reciprocal latticg, is the projec-

doce = dE, ©2n )32 doas(SG))(S () 8(a/ - g)dg tizon o; th(2-1~g vector on the direction of the particle motion,
am g% =0g°—¢;, and the s value is given by
27rh)3 _méc® x
> doga(E,E,.i9)(S@)S @>>} (28) hé= oFE 1-x' (33
NV g

The summation in Eq$31) and(32) is carried out under the

wher is the v r dir long the velocity of th . "
ere gy, is the vector directed along the velocity o tefollowmg condition:

electron beam anqm:h5+qic/ E, q, is the transversal pro-
jection ofg on the primary electron direction of motiom,is g = 6. (34)
the electron mass,is the speed of light, and for the minimal ,
value of the transfer momentuis we use the traditional The|U(g)|* values are
notation. (1- (g))2

We see that the second term in EB8) is proportional to |U(g)]2=(S(@)XS (g9))——F— (35
a sum over reciprocal vectots (see Eq.(18)). At large N,

this sum is most conveniently expressed by an integral repyhereF(g) is the atomic form factor. These equations differ
resentation. For this purpose, we use the relatlbdm dn  from the standard theory by the averaged structure factor in

=dg/G3=dq/(hG}). As a result, we get Eq. (35).
“ (2m)3 Next, we simplify the second integral in E@9) describ-
docg=dE, > doea(S(9)XS (g)) &g/t — g)dg ing the incoherent contribution. From E(lL4) we see that
9 the incoherent cross section may be represented as the dif-

1 (> ference(dogg—doy), wheredogg is the cross section for the
+ Nf dogc((S(q)S (q)))dq ¢ (29 process of bremsstrahlung in the corresponding amorphous
Um media anddoy is the cross section depending on the aver-

We stress that the structure factors in the first tége ~ 29€d structure factors. This allows us to simplify E29),

Eq. (29)) are discrete values, which depend on the reciprocal do
lattice vectorsg, and that the structure fact@®(q) in the X&
second term is a continuous function of thés variable.

Note that passing from a discrete to a continuous descriptiorwhere the functiong, ¥4, have the following form:

2
=0p (1+(1_X)2)¢is_§(1_x)¢gs ' (36)
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Y= Wiag— Vg Uhs = Yhsc — Uhy. (37) Let us apply our theory for the study of their influence on the
coherent bremsstrahlung spectrum. Here we take into ac-
oS [ ~mc count the simplest case, when the thermal fluctuations are
Plg=—— dqﬁf [((S(q)S (q))) — N] isotropic in space and independent of the location of other
N Jo hé atoms. Then, in accordance with Refs. 2,6,
1-FOQPq —2
X %q—édq“, (39 Fi(x) = E'X[X—XJ@ (45)
q q I (2mA)?¥2
12082 (* ~mc and Fij(x;,xj)=Fi(x) Fj(xj). The normalized probability
o= f dqﬁf [((S(q)S(q))) — N] density function is equal to the product of &} functions.
N Jo ho From Egs.(8)—(16) we find
[1-F(@)Pd’ (g~ %) N
S %9 (s19) =3 dsetTR=sget,  (4g)
j=1
and the well-know#h* functions 4z and ¢35 are
* _AN2
~me [1-F(g)]2 (S(9)X(S(9)) =S(9)S (ge ™7, (47)
Yac(d) =4+ 4J (@-h8)*>—3——dqg, (40)
hé * _
(39S (@) = N1 -7, (48)

~me In order to take into account these fluctuations, we need to

q
<q3 - 615 |”(%> substitute(S) and(SS) values in Eqs(35), (42), and(43). In
this case the relations for the incoherent part of the cross

(41) section are in agreement with similar ones in Refs. 2—4 and
6.

Yisa(6) = 10/3 + 4f
hé

1-F(@7?
+3h28%q - 4ﬁ383) #dq.
) ) ) One can assume that in most cases the mechanism violat-
Equations(38) and(39) were obtained under the assumption ing the ideal structure acts independently of the thermal fluc-
thatq<mg, which is always valid for real atomic structures. yations. Then the normalized probability density functn
In the case when th& factors are functions only of the  of the structure may be written in the following form:

variable, Eqs(38) and(39) are simplified, Py, T X =P 4, o ) PR(r], . T ), Where
~mc [1-F(q) ‘P is the normalized probability density function for thermal
Yy = 4J (q-7&)TUS@)S (a)))/N - 1]=——=——dq, fluctuations (see Eq.(46)), and P is some other similar
he a function. Let us consider the case when the atomic system is

(42)  described by Eq46), or, in other words, we assume that all
atoms in the fundamental cell are equivalent, with respect to
~mc thermal fluctuations. Then, we get
oy = 4[ (q3 - 6h%6%q In( d ) +3h26%q - 4ﬁ3é‘3>

" 1o (Src=erFYS)., (49)

_ 2
X[(S(a)S (@)))/N = 1]%@'@ (43) (SSHre=N- (N-(SS))e ™, (50)

where the symbol3 and C denote the corresponding aver-

aging. Under a similar assumption, that all atoms in the cell
are equivalent, we get, instead of E§0),

(SS)re=N(1 -e9(s)(S)). (51)

) i The equations obtained here may be substituted into Egs.
Note that the cross sectialozc can be found in another (35), (42), and (43) and the problem of calculating the co-

way with the help of the Fourier transforitsee Ref. 2 herent bremsstrahlung for atomic systems, with the condi-
However, this method is longer and requires straightforwardjons pointed out above, is solved.

but cumbersome calculations.

When the condition of complete screening is fulfilled, Egs.
(40) and (41) take the following simple form:

Pac=4IN18FZ 13 yBoc=41n 18T 13-2/3.
(44)

VIl. COHERENT BREMSSTRAHLUNG
VI. AVERAGING OVER THERMAL FLUCTUATIONS IN DIATOMIC SINGLE CRYSTALS

The relations obtained in this paper describe the process It is well known that the process of coherent bremsstrah-
of coherent bremsstrahlung in imperfect periodic structuredung may be considered as a result of the electron motion in
One can see that, in the general case, the cross section is thecontinuous periodic potentiélin the case of imperfect
sum of coherent and incoherent contributions. Thermaperiodic structures, we can also write the effective averaged
atomic fluctuations always take place in atomic structurespotential,
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olr) = 4”—622 ()

(1 F (1-F() eior polyatomic periodic structure may be studied in a similar

(52 manner. Let us consider the diatomic perfect periodic struc-

ture. We can represent this structure as the sum of two inde-
where(S(g)) is the averaged structure factor. From E8R)  pendent structures, one of them consisting of atoms &jth
one can also get one- and two-dimensional potentisd® number, and the other consisting of atoms withnumber.
Refs. 6,26. Both structures have the same periods and the crystallo-
As it can be seen from E52), our consideration is valid graphic type of the three-dimensional lattice. We can write

for monoatomic single crystals. However, the case of thehe three-dimensional potential for this structure as

4_77'92 [Z2,8(Z1,9)(1 - F(Z4,9)) + Z,8(Z5,9)(1 - F(Z,,9))] —igr

o(r)= e, (53
A g°
[
where F(Z,,9),F(Z,,9) are the corresponding atomic form (21m)2 . &g (g- o)
factors andS(Z;,9),S(Z,,9) are the structure factors for ev- 2= E Y(@XY (g)}#. (57)
Il

ery sublattice. They have a form as in E®): S(Z;,9)
—2’\'_11 expir;g, S(Z,,0)= 2 1 €Xpir;g, but the sum should be The summation in Eqs{56 and(57) is carried out with the
taken separately over atoms of each sort, these numbers besnditiong,= 8. The functionsy4, 45 are calculated accord-
ing denoted aN;,N,. The total number of atoms in the ing to

fundamental cell is equal tN=N;+N,.

a_ 2 a 2 _ A
Then, we should take into account that the bremsstrahlung ¢h = N1Z1gnpa(Z)% + NoZoiipa(Z) =~ Y. (58)
scattering amplitude is proportional to the Fourier transform a a a
of the potential(see Eq.(53)) and the cross section is pro- ¥h=N1Ziipe(Z)? + NoZoioee(Zo) = g, (59)

portional to the squared amplitude. Thus, we can get thgpere
cross section of the process in the perfect periodic structure,
which is defined by the following factor:

Y(211221g) = [Zlgzlvg)(l - F(Zlig))

+2,82,0(1-FZ9)] (54 - NZ(L - F(Z9)2 - N2 - FZ)%D, (60)

Yhq=4 f ) Q- (@Y (@)
)

The coherent bremsstrahlung cross section is proportional to
theYY value. —me
With the help of the above-considered method one can get 2 = 4J <q3 - 625%q |n(ﬂ> +3725%q - 4ﬁ333>
the corresponding cross section for the imperfect periodic e hé
diatomic structures. In the general case, the functoron-

* _ 2 _ 2
tains the space variables for every atom in the fundamental x[((Y(q Y (@)~ NiZy(1 -F(Zy))
cell, and different correlations between various atoms are 5
possible, in principle. Below, we will write the final result for - NZZ (1-F(Z) ] q’ (61)

coherent bremsstrahlung in the diatomic structures, taking

into account thermal fluctuations. We carry out our calculawith ((Y(@)Y (@) =(Y(a)Y (@) =(Y(@))XY ().

tions, under the assumption that fluctuations of all atoms are In the case of thermal fluctuations, one can find
isotropic and independent, but the squared radius of the vi-

_ 2
brations depends on the sort of atoms. The final result for the (Y(9)) = Z,:8Z; . 9)(1 ~F(Zy,9))e 97
cross section, calculated per fundamental cell, has the fol- +7.97 1-F(Z ~Ag2I2 2
lowing form: 2S(Z,,0)(1 -F(Z,,9))e . (62

(Y(@Y (@) = NZ2(1 - F(Z,,9)%(1 - e A1)

2
X = ageord] (1+(1 =Xy + ) = L1 =20z + ) |,
+NZY1 - F(Z @)L -7, (63

dx

®9) whereA,; and A, are the squared radii of the thermal vibra-
where tions, for the first and second sorts of atoms, respectively. We
2 recall that, in Eqs(62) and(63), the variableg is discrete in
T 77) 2 Y(gXY (g)) 4 2, (56) the calculation of the coherent contribution and continuous
g9 for the incoherent one.
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In a similar manner one can calculate the cross section fofs(q))(s'(q))=~0, and therefore({S(q)S(q)))=N. In this
periodic structures consisting of three and more atoms. Notease the incoherent contribution is the same as in the corre-
that the total intensity radiation per unit of length in multi- sponding amorphous medium. With the help of a similar
atomic structures may be calculated MgE[ix(do/dx)dx,  function (see Eq(65)) one can describe the transition from a
wheredo/dx is defined by Eq(55) andN,=1/V is the num-  three-dimensional structure to two-dimensional or one-
ber of fundamental cells per unit volume. dimensional ones.

B. Nanotube superlattice

VIIl. EXAMPLES OF CALCULATIONS . .
Let us calculate the bremsstrahlung cross section in the

A. Limiting cases of atomic structures nanotube superlattiosee Fig. 1 and Eq$1)—3)), under the

Let us consider an ideal atomic structure. Obviously, the2ssumption of a random distribution of the angle shifts. In
P function for this structure is given by the following mul- this case we rewrite Eq$1)~(3) in cylindrical coordinates

tiplication: p.®,Z

N pl,j = Rv p2,j = Rv (67)

P(Xq, X, x0) = [T 8(x)). (64)

i=1 erj= @1+ 4m(j—DIN, ¢p;= @y 1+ 4m(j - DIN,
Taking this fact into account, we getS(g)S(g)) (68)
—(S(g)){S'(g))=0. This means that, for an ideal atomic struc-
ture, the incoherent contribution in the cross section is equal 2,;=0, 2;=Db/2, (69)
to zero.

wherej=1,...,N/2 and ¢, ;- ¢, ;=const. These equations
describe the various nanotubes. In particular, f¢i@, 10
armchair single nanotube, we havi=40, ¢;;-¢;;
=47/(3N) and the other geometric parameters are shown in

Now we consider a monoatomic homogeneous amor
phous medium. We can find the mean voluwea® per atom
and build the cubic fundamental cell, which contahst-
oms. This means that the cube side of this cell is equal t
NY3a, We take theP function as a product of the following F19- 1.

functions defined on the whole volume of the fundamental !t 1S €asy to see that the problem of averaging has only
one independent coordinate, ;, for instance. In principle,

cell:
for its solution one can get the necessary averaging values
N 1 with the simple density function 142 However, for the
P=I1F(x), Fx)= s b<Xx; <b, sake of illustration, we begin with giving the function,
j=1
N/2
1 8p11—-R 47
i=1,2,3, b=N"a2. 65  Pep0md g 5(401,; “era - 1))
j=2
The averaged structure factgee Eq.(16)) for an atom in N/2
the cell is ’ e Eallo) 82, 3p1; =R am .
X R H O\ 2= 21~ W(J -1
(@) = _sin(N"2aqy/2)sin(N*?aq,/2)sin(N*3aqg/2) =
q))=o Na3q1q2q3 ' % 6(22,j - b/2)6(p2'J - R) (70)
(66) R |
In general, we consider the variakdein the latter equation with the unit of volume
as a continuous one. However, for the calculation of the co- N/2 N/2
herent contribution, we should take a discrete set of quanti-  dv=[] p;; dpy; deyjdzy;[1 po;j dpyj ey dzy).
ties of the variable, which is described by a relation similar j=1 j=1
to Eq. (18). Substituting in Eq(66) g;="1;(1,=1,2,3,..) (71)
we get(s(q))=0, and according to Eq@8) every discrete , ] ]
structure factoS is also equal to 0. This means that there isF70M this we find thef;; functions,
no coherent contribution in the cross section. 1 4
Taking into account the calculations of the incoherentf[m,i],[n,jf2—5 Pnj _(Pm,i+W(| =)+ A

contribution, we should consider ths(q)) value as a func- ™
tion of the continuous variablg. It is easy to see that the o 20 = bow) 8lpn = R) (zm, = Bnm) Apmi = R)
(s(q))(s'(q)) value at smallq is approximately equal to 1 R R '
and at large enougt this value is significantly less than 1. (72

The larger are the numbel§ and then the smaller are the

g values at which this rule holds. Taking into account thatHere every atom is labeled by a pair of numbers, where
there exists a minimum transfer momentum in the bremsm=1 or 2 is the number of the ringsee Fig. 1 and i
strahlung process, we can select the valueNo$uch that =1,2,...,N/2 is the atomic number in the selected ring. The

174105-8



COHERENT BREMSSTRAHLUNG IN IMPERFECT. PHYSICAL REVIEW B 71, 174105(2005

value A, is equal t0@; 1= ¢, 1=A5 1=—A; , whenn#m, 150

and it vanishes when=m, and the value is equal to 0 or &>
b/2, in accordance with Ed70).

From here, we can obtain by integration

1 5(Zm| - bn,m) 5(Pm,i - R)

ot _ 73
Fmil = 5~ R (73)

Now we can calculate the averaged structure factors

N .
(S(0,.0)= 5 H(Ra)L+e. (74

Here Jy(x) is the Bessel function of the zeroth order and
g, .9, are the values of the reciprocal vector projection on
thexy plane and its projection on ttmaxis, respectivelysee
Fig. 1). Equation(74) describes the continuous structure fac-
tors. For the determination of the discrete set of the structure .
factors, needed for calculating the coherent contributsae
Egs. (30—35)), it is necessary to substitute in EF4) the
projections of the reciprocal vectorg, =(27/a)((I-m)e,
+(I+m)ey/\s‘“3), g,=(27/b)ne, for the triangular crystallo-
graphic lattice. As a result, we g&l,m,n)=NJy(Rg,) for
evenn numbers and O for odd ones.

FIG. 2. Structure factors for the superlattice(b®,10 armchair
single-wall nanotubes as a function of the transferred momentum
(in mc unit9. The circles present the ideal structure and the black
points present the structure with the random distribution of the

Then we find angle shifts. The curve is the functidfJ3(qR).
N/2 N/2
R (4
(S@S(@)=2> 2 |:J0<29LRSIn(W(V_ 7/))) N(1-exd-Ag?). One can see that all the above pointed
=Ll functions tend ta\, at large enougly values.
(A Now we can calculate the incoherent cross section of the
+JO<29LRS'n<W(V_ )+ (g2 investigated process. For this purpose, we find the functions
i and ¥i, (see Fig. 4 One can see that these functions are
_ goﬁ))cos(g bIZ)] slightly smaller than for an amorphous medium. It should be
z noted that the calculations were carried out for a three-

dimensional structure of nanotubes. Our estimate shows that,

- NZJ%(QLR)(l + CosQ;0/2))/2. (75) for a two-dimensional nanotube lattice, the incoherent con-
From these equations one can see that the obtained avéfibution is practically the same as in an amorphous medium.

aged structure factors are functions of th and q, vari- The differential intensity of the coherent bremsstrahlung

ables. This means that it is necessary to use Bf.and is shown in Fig. 5.

(39) in the calculations. We compute first the internal inte-

gral, which is given by C. Scheelite structures
~ a*=(19” ((S(q)S (q)))/N - 1) dof. In this section we consider the coherent bremsstrahlung in
1(q,726) = o (P - qi)3/2 - (76) three-atomic single crystals of the scheelite type. For specific

calculations, we select PbW@nd CaWQ single crystals. It
One can see that the regimﬁ—qi~(ﬁ5)2 gives the main is interesting to notice that PbW@ingle crystals are widely
contribution(for bs<1). Thus, we can replace the valge  used for the realization of electromagnetic calorimetéis.
by g in Egs. (38) and (39), and then we can also use Eqgs. Ref. 28 it was shown that the coherent radiation in such
(42) and (43). structures influences some characteristics of the calorimeters.
Figure 2 illustrates the structure factors for an idgd, A crystallographic structure of the scheelite type is shown
10) single wall nanotube superlattice, and for this lattice within Fig. 6. The fundamental cell is represented by a tetragonal
the random distribution of angle shifts. One can see that thprism with the side of the squared basis and the height which
values of the structure factors are smaller, in the latter cas@re equal to 5.445.22 and 12.01(11.45 angstroms for the
at large enougly quantities. However, the first few factors PbWQ,(CaWQ,) single crystal, respectively. The fundamen-
are the same, in between. tal cell contains 4 leadcalcium), 4 tungsten and 16 oxygen
Figure 3 illustrates the behavior of theS(q)S'(g))) value  atoms. The oxygen atoms are located at the corners of the
as a function of the transferred momentum. The thin curvdetragons around the tungsten atoms.
describes this function, according to HE@5), and the thick Using relations similar to Eq$55—61) we have calcu-
one describes this, as a result of averaging over thermaated the differential intensityx docg/dx) and the linear po-
fluctuations (see also Eq.(49)). The smooth curve of larization of coherent bremsstrahlung in Pb\\id CaWwQ
middle thickness represents the behavior of the functiorsingle crystals. In these calculations we use three different
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A 100 -
L]
Y
&
v FIG. 3. The behavior of
o {(S(q)S'(q))) as a function of the
¢ transferred momentum imc units
50 (see explanations in the text
0

amplitudes of thermal fluctuations. One can expect that thand, because of this, it cannot yield the explanation of the
energy of the fluctuations is the same for every sort ofeffect. For an understanding of the effect, we should take
atom?* This means that the amplitude of fluctuations is in-into account that in monoatomic structures the values of the
versely proportional to the atomic mass. For tungsten atomstructure factors determine the set of allowed points of the
we select an amplitude equal to 0.04 angstrdass in the  reciprocal lattice. In our case, thgY)(Y") values play an
tungsten single crystal at room temperajufdote that the analogous role. The different behavior of these values for the
intensity of the coherent radiation depends weakly enouglwo different single crystals is the main issue in the descrip-
on the amplitude of fluctuations, and hence our approach igon of coherent processes. So, the coherent bremsstrahlung
justified. in a PbWQ single crystal is similar to this process in a
The calculations were carried out for the case when thenonoatomic single crystal. Indeed, the contribution in the
electron momentum lies in thez plane(see Figs. 7 and)8 intensity of oxygen atoms is small, due to the I@walue.
and the angle between tkzeaxis and the direction of motion For the tungsten and lead atoms, the form factors and
is equal to 5 mrad. One can see that the behavior of the

curves is different for both single crystals. Note that the dif- 2162
ference in the lattice constants of both single crystals is smal
xd_o(cmz)
dx |
20
Vi g :
1:,¢23 18 4 2
=
w?BG,'p;nc - S
16 4 ' 1102}
14 1
2!
12 -
10 -
] 0 05 1
X
8
27 -6 a5 -4 -3 22 10’ . . . .
10 10 10 10 10 10 FIG. 5. Differential photon spectra in thel0,10 armchair
% single wall nanotube superlattice for the structure at fixed angle

¢1,1=0 (1) and for one with random angle shift distributi¢?). The
FIG. 4. Dependence of the functionffzg,¥5sc (1,2 and  electron energy is equal to 10 GeV. The electron beam moves in the
s 55 on the minimal transfer momenturfin mc units). The (x2) plane(see Fig. 1 under 0.018 rad with respect to tkeaxis.
curves 1,2’ represent the result of averaging over thermal fluctua-Curves 3, 4, 5 illustrate the incoherent contribution for conditions
tions, and the curves”]12” represent the total result of averaging corresponding to the casd4,2), (1',2'),(1",2") (see Fig. 4,
over both thermal fluctuations and angle shifts. respectively.
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d 2
o w xd—x"(cm ) (a)
@ Ph (Ca)
167"
1
0516
3
0 . 08 1
P (%)
) (b)
FIG. 6. Three projections of atoms in the fundamental cell of the 30 4
scheelite crystallographic structure.
2
charges are approximately equal in between, and the allowe 2]
points are approximately defined with the help of the factor
0'?:1 exp(-=gr);). 10 1 1
The degree of linear polarization can be defined from the
relations
0
2(1 = X)aoepf 2¢a(S
P(x) = ( ) agent etfa( ), 77)
X do(x)/dx
0 05 1
X
4(2m)% 88
Ps(0) = —V E Y) FIG. 7. (a) Differential photon spectra in a PbW®@ingle crystal
9 (1), in equivalent amorphous mediu(® and incoherent contribu-
. (92— g2)cod2p) + 2g,g, SiN(2B) tion (3) in the intensity as functions of the relative photon energy.
XY y—=— 2 =~ , (78) () Degree of the linear polarizatidii) and its maximum valu€).
g9 The electron energy is equal to 10 GeV. The electron beam moves

whereg,,g, are the components of tiievector on thex and in _the (y2) plane(see Fig.  under 0.005 rad with respect to tke
y axes andg is the angle between thgz plane and the aXis.
arbitrary plane where the axis is located. Figures 7 and 8
illustrate also the degree of linear polarization. The maximaliterature. It should be noted that this remark does not indi-
polarization takes place when in E@7) the incoherent con- cate a violation of the coherent mechanism. The reason is
tribution is significantly less than the coherent one. This situthat very small deviations of the direction of the electron
ation may be realized for high energy values of the electromotion from theyz plane (at the orientations pointed out
beam. above give a sizable contribution in the radiation intensity
(at low x).
D. Some remarks The i_ntensity spectra are pres_ented fo_r one e_zlectron en-
: ergy. It is easy to understand their behavior at different en-
It is necessary to point out the specific peculiarities ofergies: the incoherent contribution is practically independent
coherent bremsstrahlung, which apply to our examples. Thef the electron energy; the coherent intensity is proportional
intensities of coherent radiation obtained in this paper weréo this energy, at the condition that the orientation angle is
calculated for special orientations of the atomic structuresgchanged in a way inversely proportional to the energy.
and they represent so-called ideal spettiue to the spe- The theory of coherent bremsstrahlung is violated at some
cific motion of electrons in the atomic structures, for theorientations of atomic structurg@t high enough electron
description of the real spectra we need to take into accourgnergieg This problem may be investigated according to
the additional intensity of radiation arising from the nearbyRef. 6.
directions of motion. This additional intensity takes place It should be noted that the calculated spectra of coherent
mainly for smallx values. However, the above mentioned bremsstrahlung may be interesting for applications of this
orientations are convenient for comparison, in various coneffect. Despite the large volume of the fundamental cell, the
ditions of the radiation sourcésuch as different orientations radiation intensity is large enough, for rather large values of
or atomic structures and they are widely covered in the the orientation angle.
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vestigation of the incoherent contribution may give addi-
tional information.

Our examples illustrate different types of probability den-
sity functions. For a nanotube lattice this function depends
only on one coordinate, and the other coordinates are func-
tions of the latter. The remaining examples illustrate the case
when all atoms are independent.

IX. CONCLUSION

In this paper we have shown that, in imperfect periodic
atomic structures, the coherent part of the cross section is
defined by the averaged potential of the structure, and the
incoherent(diffusion) one is defined by the pair correlation
functions. The method considered here allows one to solve
the problem, on the basis of the normalized probability den-
sity function. In particular, we have calculated the cross sec-
tion of coherent bremsstrahlung in polyatomic single crystals
with different thermal fluctuations amplitudes. We also con-
sidered further developments of our method for atomic struc-
tures with a variable number of atoms in the cell, fluctuating
periods, etc.

In this paper we did not investigate the process of coher-
ent e*-pair production in periodic structures. However, in
this case there is no problem in writing similar equations as
for coherent bremsstrahlung, using well known equations for
the process and the relations obtained here.

On the basis of our considerations, we think that coherent
bremsstrahlung and*-pair production, at particle energies
between a few hundreds of MeV and some GeV, may be
utilized for the investigation and characterization of the
atomic structures, in parallel with other methods, such as
x-ray diffraction. At these energies, the collimation of the

Calculations show that the incoherent contribution in pe-electron beanfor the measurement of the photon angle emis-
riodic atomic structures is insignificantly smaller than for thesion) is possible, and therefore the possibility of a detailed
corresponding amorphous ones. However, a precise deternstudy of pair correlations appears.
nation of the incoherent cross section may be useful, for In whole, our investigations may be useful for the search
electron energies smaller than some GeV. In this case, thef new sources of coherent radiation. The examples consid-
emission angle of they quantum is detectable, and the in- ered in the paper are illustrative of such a possibility.
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