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Coherent bremsstrahlung of high energy electrons moving in a three-dimensional imperfect periodic lattice
consisting of a complicated system of atoms is considered. On the basis of the normalized probability density
function of the distribution of atomic centers in the fundamental cell the relations describing coherent and
incoherent contributions into cross sections are obtained. In particular, the cross section of coherent brems-
strahlung in complex polyatomic single crystals is found. The peculiarities of formation and possibilities of
utilization of coherent processes are discussed.
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I. INTRODUCTION

For the first time, the theory of the coherent bremsstrah-
lung and electron-positron pair production in single crystals
was published in Refs. 1–3. Up to now, these processes
have been much studied both theoretically4–6 and
experimentally.7–9 The specific peculiarities of the coherent
processes were widely used for obtaining linearly polarized
g beams in polarization measurements10–12 and for increas-
ing the e±-beam intensity.13 These experimental investiga-
tions were carried out in a wide energy range of electron,
positron andg beams from a few hundreds of MeV to 100–
200 GeV. As a rule, simple crystallographic structures were
used in experiments. Both experiments and theory show that,
with the increasing of the particle energy, the requirements
on the beam divergence become more strict. Besides, at high
enough energies the process of coherent bremsstrahlung is
violated, due to the magneto-bremsstrahlung mechanism.6

This mechanism provides the linear polarization of the emit-
tedg quanta. However, a sufficiently small angle divergence
of the electron beam is needed for utilizing this phenomenon.
One of the main requirements, which restricts the use of
coherent processes, is the small size of the fundamental cell
of the single crystals, which has to be of the order of some
angstroms. It is our opinion that, finding atomic periodic
structures with a minimal period of tens or hundreds ang-
stroms, may yield a good solution to the above-mentioned
problem.

In recent years, considerable advances have been made in
the creation of various nanostructures,14–16 such as regular
two-dimensional arrays, fullerite crystals, nanofilms, nano-
tube superlattices and so on. In a number of papers17–19

nanotube lattices were considered as a source of channeling
radiation. Other applications of nanotubes for purposes of
high energy physics are also described in Refs. 20–22.

According to Ref. 14 single-wall nanotubes are uniform
in diameter and self-organized into ropes, which consist of
100 to 500 nanotubes in a two-dimensional triangular lattice
with a lattice constant of 17 angstroms. In our talk20 we
discussed the processes of coherent bremsstrahlung and
e±-pair production in the nanotube superlattice. In consider-
ing this task we met problems, the solution of which has a
common meaning for the above-mentioned coherent pro-

cesses in various nanostructures and complex single crystals.
Below we give an introduction to these problems, using the
example of the nanotube superlattice.

Figure 1 illustrates the three-dimensional superlattice of
s10,10d armchair single wall nanotubes. In this case we can
write for the vector-radiusr jsxj ,yj ,zjd of the j th atom in the
nanotube,

x1,j = RcosS4p j

N
+ w1D, x2,j = RcosS4p j

N
+ w2D , s1d

y1,j = RsinS4p j

N
+ w1D, y2,j = RsinS4p j

N
+ w2D , s2d

z1,j = 0, z2,j = b/2, s3d

wherej =1,2,… ,N/2 are the indices corresponding to atoms
placed in two parallel planes,R is the radius of the ring,b is
the periodsi.e., the size of the fundamental celld in the z
direction, andw1,w2 are the angle shiftssw1−w2=constd.

In Fig. 1 we describe an ideal nanostructure where the
angle shifts of all nanotubes are the same. The experiments14

show that these angle shifts are distributed randomly or, in
other words, every nanotube is turned at some different
angle. This means that the content of every cell will be dif-
ferent, relative to the coordinate system. Thus, the nanotube
lattice is not a periodic structure in a strict sense, in spite of
the constancy of the distance between neighboring nano-
tubes. However, the existing theory of coherent bremsstrah-
lung holds its validity for atomic structuresssingle crystalsd,
which are periodic in a strict sense.

Based on this example, we formulate the common prob-
lem for the calculation of the coherent bremsstrahlung in
artificial and natural nanostructures. The problem is the vio-
lation of the periodicity in a strict sense in these structures.

This situation is well known in the diffraction physics of x
rays23 in imperfect structures. However, the process of co-
herent bremsstrahlung was investigated and utilized mainly
in simple single crystals. Such crystals as silicon and dia-
mond have a negligibly small degree of mosaicity and ad-
mixture. Because of this fact, the problem of calculation of
the bremsstrahlung in imperfect structures did not practically

PHYSICAL REVIEW B 71, 174105s2005d

1098-0121/2005/71s17d/174105s13d/$23.00 ©2005 The American Physical Society174105-1



appear sexcept for the problem of the thermal atomic
motion2d. In the x-ray diffraction theory the above-
mentioned problem was solved with the help of the introduc-
tion of the averaged electron density.23 In our talk,20 using
the analogy in the description of the diffraction and coherent
processes, we could solve this problem on the basis of a
physical sense. Besides, we suggest another approach which
is based on computer simulations. We think that this ap-
proach may be extended to a wide class of analogous prob-
lems, in particular, for a nanotube lattice with a more com-
plicated dependence on the angle shifts, than a random one.

It turns out that our computer approach has an analytical
solution in the general case. Furthermore, on the basis of our
method we are able to consider the process of coherent
bremsstrahlung in imperfect atomic structures, taking into
account all fluctuation factors.

The paper is organized as follows. In sect. II we give a
mathematical introduction to the problem. In Sect. III, for the
description of fluctuations in atomic structures, we introduce
the normalized probability density function and formulate
some rules for averaging the structure factors. In sect. IV we
consider the three-dimensional model of the real atomic
structure with fluctuations. The results obtained here allow
us to derivesin Sect. Vd the coherent and incoherent cross
sections of the bremsstrahlung process in imperfect struc-
tures. In sec. VI we discuss the influence of thermal fluctua-
tions in atomic structures on the coherent bremsstrahlung.
Here we reproduce well known results and also obtain new
ones. In sec. VII we consider the possibility of generalizing
our theory to consider multiatomic structures and, in particu-
lar, multiatomic single crystals. Samples of calculations of
the bremsstrahlung process in real atomic structures are pre-
sented in Sec. VIII. In conclusionsin sec. IXd we give shortly
the main results of our investigations.

II. CROSS SECTION OF COHERENT BREMSSTRAHLUNG
IN IDEAL PERIODIC STRUCTURES

The differential cross section of the coherent bremsstrah-
lung for an ideal periodic structure, consisting of atoms, can
be written in the following form:2

dsCB = dsBGUo
i

eiqr i0/"U2
, s4d

wheresBG is the bremsstrahlung cross section for an isolated
atom,q is the three-dimensional transfer momentum, andr i0
are the vector radii of the atoms in the periodic structure.

From this expression, the following relation for the cross
section per atom2 is derived:

dsCBsE,Eg,qd =
s2pd3

NV
o
g

dsBGsE,Eg,qduSsgdu2dsq/" − gd,

s5d

whereN is the number of atoms in the fundamental cell of
the structure,V is the volume of the fundamental cell,Ssgd is
the structure factor,2,4 g is the vector of the reciprocal lattice,
d is the delta function,E,Eg are the energies of the initial
electron and bremsstrahlungg quantum and" is the Planck
constant. The structure factors are calculated from the rela-
tion

Ssgd = o
j=1

N

eigr j , s6d

wherer j is the radius of thej th atom in the fundamental cell.
From Eq. s5d one can see that the specific character of

every atomic structure is defined by its structure factors. It is
obvious that for ideal structuressat a fixed localization of the
atomsd the structure factors take well defined values. Be-
cause of various fluctuations, the coordinates of atoms in the
fundamental cell are changed with space andsord time and
this fact does not allow us to use Eq.s5d for calculations. For
this reason, it is necessary to understand the behavior of the
structure factors for these fluctuations.

The plan of our further actions for solving the above-
mentioned problem is the following: we will try to reduce
the problem to one, for which the solution is knownssuch as
the process in the ideal periodic latticed. In the first stage of
the study, we will formulate the definition and some rules for
the averaged structure factors. Then, we will consider the
simulations of fluctuations on the model of real periodic
structures, and thereafter we will use the obtained results for
the calculation of the coherent bremsstrahlung cross section
in imperfect atomic structures.

It should be noted that in the theory of coherent brems-
strahlung the potential of the crystal is considered as the sum
of isolated atomic potentials. It is obvious that this assump-
tion is only approximately true. However, the current experi-
mental experiencessee, for example, Ref. 4d shows the cor-
rectness of this statement with a high enough accuracy. In
this paper we will also hold this statement true and because
of this, our results will be easy to compare with the standard
theory. In the following, we will make use of the expression

FIG. 1. The three-dimensional superlattice ofs10,10d armchair
single-wall nanotubes and Cartesian coordinate systemsxyzd. The
fundamental cell of the structure is presented with the help of the
thick lines. The black points are atoms of the nanotubes. OA=AB
=BC=CO=17 Å,b=2.4 Å, radius of circlesR=6.8 Å.

S. BELLUCCI AND V. A. MAISHEEV PHYSICAL REVIEW B 71, 174105s2005d

174105-2



“coordinates of the atomic center” which has an exact physi-
cal meaning denoting the coordinates of the atomic nucleus.

III. AVERAGING OF THE STRUCTURE FACTORS

As previously noted, the specific character of every struc-
ture is defined by its structure factors. It is useful to appre-
ciate the physical meaning of these quantities. For this pur-
pose, we write the atomic density for a periodic structure in
the point given by the vector radiusr ,

nasr d = o
k

o
j=1

N

dsr − r k − r jd =
N

V
+

1

V
o
g

Ssgde−igr . s7d

From here, it follows thatSsgd /V is the Fourier component
of the atomic density or, in other words, the structure factors
are the atomic images in the reciprocal space. Note that Eq.
s7d does not take into account thermal atomic fluctuations.
They are easy to calculate with the help of the following
multiplier: exps−Ag2/2d ssee belowd. We stress that the
structure factors depend on the choice of a coordinate system
and therefore the values of structure factors have a physical
meaning only in a defined coordinate system.

The space distribution of the atomic centers in the funda-
mental cell of the structure can be described with the help of
the normalized probability density functionPsx1,x2,… ,xNd,
wherex1,… ,xN are the space displacements of the atomic
centers from the pointsr j in the cell. The integral of this
function over the wholes33N-dimensionald V volume of the
cell is equal to 1. Then the structure factor, averaged with the
help of theP function, is given by

kSsgdl =E Ssg,r 1 − x1, . . ,r N − xNdPsx1,x2,…,xNddV

= o
j=1

N

eir jgE
V

e−ix jgF jsx jddx j , s8d

where theF j function reads as

F jsx jd =E P dVs− jd, s9d

with dVs−jd=dx1 dx2¯dx j−1 dx j+1¯dxN. Now we can find
the following coordinate-independent value:

kSsgdlkS*sgdl = o
j=1

N E
V

e−ix jgF jsx jddx jE
V

eix jgF jsx jddx j

+ o
i,j=1,iÞ j

N

eisr i−r jdgE
V

eisx j−xidgFisxidF jsx jddxi dx j .

s10d

In a similar manner, one can define the average square
module of the structure factor,

kSsgdS*sgdl =E Ssg,r 1 − x1, . . ,r N − xNd

3S*sg,r 1 − x1,…,r N − xNdPsx1,x2,…,xNddV

= N + o
i,j=1,iÞ j

N

eisr i−r jdg

3E
V

e−isxi−x jdgFi jsxi,x jddxi dx j , s11d

where

Fi jsxi,x jd =E P dVs− i,− jd. s12d

Here the termdVs−i ,−jd indicates that the integration takes
place over all space variables, except the ones belonging to
the i , j atoms. Taking into account the relations obtained
here, we can write for the dispersion

kkSsgdS*sgdll = N − o
j=1

N E
V

e−ix jgF jsx jddx jE
V

eix jgF jsx jddx j

+ o
i,j=1,iÞ j

N

eisr i−r jdgE
V

e−isxi−x jdgfFi jsxi,x jd

− FisxidF jsx jdgdxi dx j , s13d

where we introduced the following notation:kkSsgdS*sgdll
=kSsgdS*sgdl−kSsgdlkS*sgdl.

In the case when thexi and xj variables are statistically
independent, the following relation takes place:Fi jsxi ,x jd
=FisxidF jsx jd. If all N atoms are statistically independent,
the normalized probability density function may be repre-
sented asP=P j=1

N F jsx jd and Eq.s13d can be rewritten in the
following form:

kkSsgdS*sgdll = N − o
j=1

N E
V

e−ix jgF jsx jddx jE
V

eix jgF jsx jddx j .

s14d

In the case when all the atoms in the fundamental cell are
equivalent, this equation has the following simple form:

kkSsgdS*sgdll = Ns1 − kssgdlks*sgdld, s15d

whereksl is the averaged function,

kssgdl = eirgE
V

e−ixgFsxddx. s16d

It should be noted that, for an ideal atomic structure,
F jsx jd=dsx jd for every j and thenkkSsgdS*sgdll=0.

It is significant that the equations in this section are valid
for any vectorg of the reciprocal space, in particular for any
vector of the reciprocal lattice. Besides, there are no indica-
tions of the atomic sorts in the equations. Below, it will be
shown that the cross section of the coherent bremsstrahlung
depends on the averaged structure factors for monoatomic
structures and on some combinations of similar factors for
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multiatomic structures. Thus, Eqs.s8d–s16d are also useful in
the case of structures consisting of different atoms.

IV. SIMULATION OF FLUCTUATIONS

Let us build the three-dimensionalsN3N3Nd cubic lat-
tice consisting of identical cubic cells with side size equal to
a. Then we can put into every cell an identical number of
atoms, which we denote byN. Doing this, it would mean
knowing the coordinates of every atoms in every cell. Let us
select a local Cartesian coordinate system in every cell. Be-
sides, the probability function of localization of atoms in the
cell will be considered as knownPsx1,x2,… ,xNd. Let us
suppose that the atomic coordinates in every cell are distrib-
uted according to this function.

To be specific, we select the basic Cartesian coordinate
system in the left and bottom corner of the lattice. With this
lattice sof Na3Na3Na sized as the basic element, we can
build sby using parallel translations inx,y,z directions with
a period ofNad the three-dimensional infinite periodicsin
the strict sensed structure. The main idea in our consideration
stems from the fact that the above described superlatticesat
large enoughNd contains practically all combinations of at-
oms in the small cellssaccording to the normalized probabil-
ity density functionPd and, on the other hand, this superlat-
tice is periodic in a strict sense. Thus, we can use the
coherent bremsstrahlung theory for describing the radiation
processes. For this purpose, the structure factors of the large
lattice should be found for every reciprocal vectorg̃. Further
we will introduce an overtilde above the values relative to
the large cube lattice with the side ofNa. Thus, these struc-

ture factorsS̃ can be calculated from the following relation:

S̃sg̃d = o
i=1

N

o
j=1

N

o
k=1

N
eig̃r ijk Sijksg̃d, s17d

where the reciprocal vectorg̃ is

g̃ = G0lex + G0mey + G0nez, l,m,n = 0, ± 1, ± 2,… .

s18d

HereG0=2p / sNad ,ex,ey andez are the unit vectors inx,y,z
directions and the translation vector reads asr i jk =si −1daex

+s j −1daey+sk−1daez in the basic coordinate system. In Eq.
s17d, Sijksg̃d denotes the following structure factor:
oa=1

N expig̃r i jka, wherer i jka is the vector radius of theath
atom in the local coordinate system of thei jk cell. The mul-
tiplication g̃r ijk reads as

g̃r ijk = 2pS lsi − 1d
N +

ms j − 1d
N +

nsk − 1d
N D . s19d

For large enough numbersN one can find

S̃sg̃d = o
i=1

N

o
j=1

N

o
k=1

N
Sijksg̃d < N3kSsg̃dl, s20d

where kSsg̃dl is the structure factorSijk averaged over the
coordinates and the quantitiesl /N ,m/N ,n/N are integer
numbers. In the other cases, one can write

S̃sg̃d → 0, at N → `. s21d

Equation s20d is obvious, so at the pointed condition the
valueg̃r ijk is multiplied by 2p and the exponents in Eq.s20d
are equal to 1. For obtaining Eq.s21d we should take into
account that there is only a finite number of the various ex-
ponents in Eq.s17d sthis numberNexpøN, the equality hold-
ing whenN is a prime numberd. Grouping the terms near the
same exponents, we get

S̃sg̃d = o
p=1

Nexp

se2pp/Nexpo Sipd < o Sipo
p=1

Nexp

e2pp/Nexp= 0.

s22d

Here we can removeoSip
terms, due to their approximated

equality at large enoughN.

We can consider the structure factorS̃sg̃d as a statistical
variable. Taking into account Eqs.s20d ands21d, we find that

kS̃sg̃dl=N3kSsg̃dl when l /N ,m/N ,n/N are simultaneously

integer numbers andkS̃sg̃dl=0 in the other cases.
Similar calculations allow us to obtain the averaged dis-

persion of the structure factorS̃sg̃d for the case of largeN
numbers

kkS̃sg̃dS̃*sg̃dll = N3kkSsg̃dS*sg̃dll. s23d

This equation is valid for arbitraryl ,m,n numbers. However,

the valueS̃ is defined by the limit of Eq.s20d in the case

when l /N ,m/N ,n/N are integer numbers, andkS̃l=0 in the
other casesssee Eq.s21dd.

It should be noted that our previous consideration is based
on the specific kind of the crystallographic structure. It is
easy to verify that our analysis is valid in the general case.
Indeed, the important relation for the correctness of the
theory ssee Eq.s19dd is valid for any real crystallographic
structure.24,25Of course, in the general case, the vector of the
reciprocal lattice and the translation vector must be written in
the correspondingsgenerally nonorthogonald coordinate sys-
tem.

V. CROSS SECTION

In principle, now we can calculate the coherent brems-
strahlung cross section for the structure described in the pre-
vious section. However, we call to the attention of the reader

the fact that the structure factorsS̃, in the case when the
l /N ,m/N ,n/N numbers are nonintegral ones, tend to zero
at largeN. Nevertheless, the contribution from these factors
to the calculated values may be noticeable, due to their large
amount.

In this case, the differential cross section of coherent
bremsstrahlung has the following form:

dsCB =
s2pd3

N3NṼ
o
g̃

dsBGS̃sg̃dS̃*sg̃ddsq/" − g̃d. s24d

Here Ṽ=N3V is the volume of the fundamental cell of the
structure.
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When the numberN is large enough, we can writessee
Eqs.s20d–s23dd

S̃sg̃dS̃*sg̃d < kS̃sg̃dS̃*sg̃dl = kS̃sg̃dlkS̃*sg̃dl + N3kkSsg̃dS*sg̃dll

s25d

for the case of the simultaneously integer numbers
l /N ,m/N ,n/N and

S̃sg̃dS̃*sg̃d < kS̃sg̃dS̃*sg̃dl = N3kkSsg̃dS*sg̃dll s26d

for the other cases. Taking into account these relations and
Eq. s20d, we get

dsCB =
s2pd3

NV
o
g

dsBGkSsgdlkS*sgdldsq/" − gd

+
s2pd3

NṼ
o
g̃

dsBGkkSsg̃dS*sg̃dlldsq/" − g̃d. s27d

We see that the total cross section represents the sum of two
terms. We interpret the first term as the averaged coherent
contribution. Indeed, the value of this cross section calcu-
lated per atom is proportional toN and inversely proportional
to V. In addition, this cross section is independent ofN,
which defines the size of the large lattice.

It is obvious that the second term describes the common
effect due to the incoherent bremsstrahlung in theN3N
3N lattice at largeN values and the coherent one in the
infinite superlattice. Now we can find the energetic cross
section by integration overq,

dsCB = dEgHE
qm

` s2pd3

NV o
g

dsBGkSsgdlkS*sgdldsq/" − gddq

+
s2p"d3

NṼ
o
g̃

dsBGsE,Eg,"g̃dkkSsg̃dS*sg̃dllJ , s28d

where qm is the vector directed along the velocity of the
electron beam andqm="d+q'

2 c/E, q' is the transversal pro-
jection ofq on the primary electron direction of motion,m is
the electron mass,c is the speed of light, and for the minimal
value of the transfer momentum"d we use the traditional
notation.

We see that the second term in Eq.s28d is proportional to
a sum over reciprocal vectorsg̃ ssee Eq.s18dd. At large N,
this sum is most conveniently expressed by an integral rep-
resentation. For this purpose, we use the relationdl dm dn
=dg̃/G0

3=dq / s"G0
3d. As a result, we get

dsCB = dEgHE
qm

` s2pd3

NV o
g

dsBGkSsgdlkS*sgdldsq/" − gddq

+
1

N
E

qm

`

dsBGkkSsqdS*sqdlldqJ . s29d

We stress that the structure factors in the first termssee
Eq. s29dd are discrete values, which depend on the reciprocal
lattice vectorsg, and that the structure factorSsqd in the
second term is a continuous function of theq/" variable.
Note that passing from a discrete to a continuous description,

one removes the action of the large periodic lattice.
Thus, in principle, we have solved the problem of the

coherent bremsstrahlung in imperfect periodic atomic struc-
tures. In fact, Eq.s29d represents the sum of the coherent and
incoherent contributions in the cross section:dsBC=dsc
+dsi. Now both cross sections should be reduced to a form
which is convenient for specific calculations.

First of all, we find the coherent contribution. For this
purpose, it is necessary to simplify the cross sectiondsBG as
it was described in Ref. 2. This simplification is based on the
fact that the effective range ofq!mc, due to thermal fluc-
tuations.

Using this condition, and with the help of calculations
similar to those in Refs. 2,4, we can obtain for the coherent
cross section

x
dsc

dx
= s0Fs1 + s1 − xd2dc1 −

2

3
s1 − xdc2G , s30d

where s0=aQEDZ2re
2, aQED=1/137.04, re is the classical

electron radius,x=Eg /E is the ratio of the emitted photon
energyEg to the initial energyE of the electron, andc1,c2
functions are

c1 = 4
s2pd2

NV
o
g

uUsgdu2
dg'

2

gi
2 , s31d

c2 = 24
s2pd2

NV
o
g

uUsgdu2
d2g'

2 sgi − dd
gi

4 . s32d

Hereg is the vector of the reciprocal lattice,gi is the projec-
tion of the g vector on the direction of the particle motion,
g'

2 =g2−gi
2, and the"d value is given by

"d =
m2c3

2E

x

1 − x
. s33d

The summation in Eqs.s31d ands32d is carried out under the
following condition:

gi ù d. s34d

The uUsgdu2 values are

uUsgdu2 = kSsgdlkS*sgdl
s1 − Fsgdd2

g4 , s35d

whereFsgd is the atomic form factor. These equations differ
from the standard theory by the averaged structure factor in
Eq. s35d.

Next, we simplify the second integral in Eq.s29d describ-
ing the incoherent contribution. From Eq.s14d we see that
the incoherent cross section may be represented as the dif-
ferencesdsBG−dsdd, wheredsBG is the cross section for the
process of bremsstrahlung in the corresponding amorphous
media anddsd is the cross section depending on the aver-
aged structure factors. This allows us to simplify Eq.s29d,

x
dsi

dx
= s0Fs1 + s1 − xd2dc1s

a −
2

3
s1 − xdc2s

a G , s36d

where the functionsc1s
a ,c2s

a have the following form:
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c1s
a = c1BG

a − c1d
a ,c2s

a = c2BG
a − c2d

a . s37d

c1d
a =

2"d

N
E

0

`

dq'
2 E

"d

,mc

fkkSsqdS*sqdll − Ng

3
f1 − Fsqdg2

q4

q'
2

qi
2 dqi, s38d

c2d
a =

12s"dd2

N
E

0

`

dq'
2 E

"d

,mc

fkkSsqdS*sqdll − Ng

3
f1 − Fsqdg2

q4

q'
2 sqi − "dd

qi
4 dqi, s39d

and the well-known2,4 functionsc1BG
a andc2BG

a are

c1BG
a sdd = 4 + 4E

"d

,mc

sq − "dd2f1 − Fsqdg2

q3 dq, s40d

c2BG
a sdd = 10/3 + 4E

"d

,mcSq3 − 6"2d2q lnS q

"d
D

+ 3"2d2q − 4"3d3D f1 − Fsqdg2

q4 dq. s41d

Equationss38d ands39d were obtained under the assumption
thatq!mc, which is always valid for real atomic structures.
In the case when theS factors are functions only of theq
variable, Eqs.s38d and s39d are simplified,

c1d
a = 4E

"d

,mc

sq − "dd2fkkSsqdS*sqdll/N − 1g
f1 − Fsqdg2

q3 dq,

s42d

c2d
a = 4E

"d

,mcSq3 − 6"2d2q lnS q

"d
D + 3"2d2q − 4"3d3D

3fkkSsqdS*sqdll/N − 1g
f1 − Fsqdg2

q4 dq. s43d

When the condition of complete screening is fulfilled, Eqs.
s40d and s41d take the following simple form:

c1BG
a = 4 ln 183Z−1/3, c2BG

a = 4 ln 183Z−1/3 − 2/3.

s44d

Note that the cross sectiondsBC can be found in another
way with the help of the Fourier transformssee Ref. 2d.
However, this method is longer and requires straightforward
but cumbersome calculations.

VI. AVERAGING OVER THERMAL FLUCTUATIONS

The relations obtained in this paper describe the process
of coherent bremsstrahlung in imperfect periodic structures.
One can see that, in the general case, the cross section is the
sum of coherent and incoherent contributions. Thermal
atomic fluctuations always take place in atomic structures.

Let us apply our theory for the study of their influence on the
coherent bremsstrahlung spectrum. Here we take into ac-
count the simplest case, when the thermal fluctuations are
isotropic in space and independent of the location of other
atoms. Then, in accordance with Refs. 2,6,

F jsx jd =
exps− xj

2/s2Add
s2pAd3/2 , s45d

and Fi jsxi ,x jd=FisxidF jsx jd. The normalized probability
density function is equal to the product of allF j functions.
From Eqs.s8d–s16d we find

kSsgdl = o
j=1

N

eir jge−Ag2/2 = Ssgde−Ag2/2, s46d

kSsgdlkS*sgdl = SsgdS*sgde−Ag2
, s47d

kkSsgdS*sgdll = Ns1 − e−Ag2
d. s48d

In order to take into account these fluctuations, we need to
substitutekSl andkSS*l values in Eqs.s35d, s42d, ands43d. In
this case the relations for the incoherent part of the cross
section are in agreement with similar ones in Refs. 2–4 and
6.

One can assume that in most cases the mechanism violat-
ing the ideal structure acts independently of the thermal fluc-
tuations. Then the normalized probability density functionP
of the structure may be written in the following form:
Psr 1,… ,r N,r 1

T,… ,r N
Td=PCsr 1,… ,r NdPTsr 1

T,… ,r N
Td, where

PT is the normalized probability density function for thermal
fluctuations ssee Eq.s46dd, and PC is some other similar
function. Let us consider the case when the atomic system is
described by Eq.s46d, or, in other words, we assume that all
atoms in the fundamental cell are equivalent, with respect to
thermal fluctuations. Then, we get

kSlTC = e−Ag2/2kSlC, s49d

kkSS*llTC = N − sN − kkSS*llCde−Ag2
, s50d

where the symbolsT andC denote the corresponding aver-
aging. Under a similar assumption, that all atoms in the cell
are equivalent, we get, instead of Eq.s50d,

kkSS*llTC = Ns1 − e−Ag2
kslks*ld. s51d

The equations obtained here may be substituted into Eqs.
s35d, s42d, and s43d and the problem of calculating the co-
herent bremsstrahlung for atomic systems, with the condi-
tions pointed out above, is solved.

VII. COHERENT BREMSSTRAHLUNG
IN DIATOMIC SINGLE CRYSTALS

It is well known that the process of coherent bremsstrah-
lung may be considered as a result of the electron motion in
a continuous periodic potential.6 In the case of imperfect
periodic structures, we can also write the effective averaged
potential,
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wsr d =
4peZ

V
o
g

kSsgdl
s1 − Fsgdd

g2 e−igr , s52d

wherekSsgdl is the averaged structure factor. From Eq.s52d
one can also get one- and two-dimensional potentialsssee
Refs. 6,26d.

As it can be seen from Eq.s52d, our consideration is valid
for monoatomic single crystals. However, the case of the

polyatomic periodic structure may be studied in a similar
manner. Let us consider the diatomic perfect periodic struc-
ture. We can represent this structure as the sum of two inde-
pendent structures, one of them consisting of atoms withZ1

number, and the other consisting of atoms withZ2 number.
Both structures have the same periods and the crystallo-
graphic type of the three-dimensional lattice. We can write
the three-dimensional potential for this structure as

wsr d =
4pe

V
o
g

fZ1SsZ1,gds1 − FsZ1,gdd + Z2SsZ2,gds1 − FsZ2,gddg
g2 e−igr , s53d

whereFsZ1,gd ,FsZ2,gd are the corresponding atomic form
factors andSsZ1,gd ,SsZ2,gd are the structure factors for ev-
ery sublattice. They have a form as in Eq.s6d: SsZ1,gd
=o j=1

N1 expir jg, SsZ2,gd=o j=1
N2 expir jg, but the sum should be

taken separately over atoms of each sort, these numbers be-
ing denoted asN1,N2. The total number of atoms in the
fundamental cell is equal toN=N1+N2.

Then, we should take into account that the bremsstrahlung
scattering amplitude is proportional to the Fourier transform
of the potentialssee Eq.s53dd and the cross section is pro-
portional to the squared amplitude. Thus, we can get the
cross section of the process in the perfect periodic structure,
which is defined by the following factor:

YsZ1,Z2,gd = fZ1SsZ1,gds1 − FsZ1,gdd

+ Z2SsZ2,gds1 − FsZ2,gddg. s54d

The coherent bremsstrahlung cross section is proportional to
the YY* value.

With the help of the above-considered method one can get
the corresponding cross section for the imperfect periodic
diatomic structures. In the general case, the functionP con-
tains the space variables for every atom in the fundamental
cell, and different correlations between various atoms are
possible, in principle. Below, we will write the final result for
coherent bremsstrahlung in the diatomic structures, taking
into account thermal fluctuations. We carry out our calcula-
tions, under the assumption that fluctuations of all atoms are
isotropic and independent, but the squared radius of the vi-
brations depends on the sort of atoms. The final result for the
cross section, calculated per fundamental cell, has the fol-
lowing form:

x
ds

dx
= aQEDre

2Fs1 + s1 − xd2dsc1 + c1
ad −

2

3
s1 − xdsc2 + c2

adG ,

s55d

where

c1 = 4
s2pd2

V
o
g

kYsgdlkY*sgdl
dg'

2

g4gi
2 , s56d

c2 = 24
s2pd2

V
o
g

kYsgdlkY*sgdl
d2g'

2 sgi − dd
g4gi

4 . s57d

The summation in Eqs.s56d and s57d is carried out with the
conditiongi ùd. The functionsc1

a,c2
a are calculated accord-

ing to

c1
a = N1Z1

2c1BGsZ1da + N2Z2
2c1BGsZ2d − c1d

a , s58d

c2
a = N1Z1

2c2BGsZ1da + N2Z2
2c2BGsZ2d − c2d

a , s59d

where

c1d
a = 4E

"d

,mc

sq − "dd2fkkYsqdY*sqdll

− N1Z1
2s1 − FsZ1dd2 − N2Z2

2s1 − FsZ2dd2g
dq

q3 , s60d

c2d
a = 4E

"d

,mcSq3 − 6"2d2q lnS q

"d
D + 3"2d2q − 4"3d3D

3fkkYsqdY*sqdll − N1Z1
2s1 − FsZ1dd2

− N2Z2
2s1 − FsZ2dd2gdq

q4 , s61d

with kkYsqdY*sqdll=kYsqdY*sqdl−kYsqdlkY*sqdl.
In the case of thermal fluctuations, one can find

kYsgdl = Z1SsZ1 . gds1 − FsZ1,gdde−A1g2/2

+ Z2SsZ2,gds1 − FsZ2,gdde−A2g2/2, s62d

kkYsgdY*sgdll = N1Z1
2s1 − FsZ1,gdd2s1 − e−A1g2

d

+ N2Z2
2s1 − FsZ2,gdd2s1 − e−A2g2

d, s63d

whereA1 andA2 are the squared radii of the thermal vibra-
tions, for the first and second sorts of atoms, respectively. We
recall that, in Eqs.s62d ands63d, the variableg is discrete in
the calculation of the coherent contribution and continuous
for the incoherent one.
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In a similar manner one can calculate the cross section for
periodic structures consisting of three and more atoms. Note
that the total intensity radiation per unit of length in multi-
atomic structures may be calculated asNcEe0

1xsds /dxddx,
whereds /dx is defined by Eq.s55d andNc=1/V is the num-
ber of fundamental cells per unit volume.

VIII. EXAMPLES OF CALCULATIONS

A. Limiting cases of atomic structures

Let us consider an ideal atomic structure. Obviously, the
P function for this structure is given by the following mul-
tiplication:

Psx1,x2,…,xNd = p
j=1

N

dsx jd. s64d

Taking this fact into account, we getkSsgdS*sgdl
−kSsgdlkS*sgdl=0. This means that, for an ideal atomic struc-
ture, the incoherent contribution in the cross section is equal
to zero.

Now we consider a monoatomic homogeneous amor-
phous medium. We can find the mean volumeV=a3 per atom
and build the cubic fundamental cell, which containsN at-
oms. This means that the cube side of this cell is equal to
N1/3a. We take theP function as a product of the following
functions defined on the whole volume of the fundamental
cell:

P = p
j=1

N

F jsxjd, F jsx jd =
1

8b3, − b ø xji ø b,

i = 1,2,3, b = N1/3a/2. s65d

The averaged structure factorssee Eq.s16dd for an atom in
the cell is

kssqdl = 8
sinsN1/3aq1/2dsinsN1/3aq2/2dsinsN1/3aq3/2d

Na3q1q2q3
.

s66d

In general, we consider the variableq in the latter equation
as a continuous one. However, for the calculation of the co-
herent contribution, we should take a discrete set of quanti-
ties of the variable, which is described by a relation similar
to Eq. s18d. Substituting in Eq.s66d qj =

4p
b l jsl j =1,2,3,…d

we get kssqdl=0, and according to Eq.s8d every discrete
structure factorS is also equal to 0. This means that there is
no coherent contribution in the cross section.

Taking into account the calculations of the incoherent
contribution, we should consider thekssqdl value as a func-
tion of the continuous variableq. It is easy to see that the
kssqdlks*sqdl value at smallq is approximately equal to 1
and at large enoughq this value is significantly less than 1.
The larger are the numbersN, and then the smaller are the
q values at which this rule holds. Taking into account that
there exists a minimum transfer momentum in the brems-
strahlung process, we can select the value ofN such that

kssqdlks*sqdl<0, and thereforekkSsqdS*sqdll<N. In this
case the incoherent contribution is the same as in the corre-
sponding amorphous medium. With the help of a similar
function ssee Eq.s65dd one can describe the transition from a
three-dimensional structure to two-dimensional or one-
dimensional ones.

B. Nanotube superlattice

Let us calculate the bremsstrahlung cross section in the
nanotube superlatticessee Fig. 1 and Eqs.s1d–s3dd, under the
assumption of a random distribution of the angle shifts. In
this case we rewrite Eqs.s1d–s3d in cylindrical coordinates
r ,w ,z,

r1,j = R, r2,j = R, s67d

w1,j = w1,1+ 4ps j − 1d/N, w2,j = w2,1+ 4ps j − 1d/N,

s68d

z1,j = 0, z2,j = b/2, s69d

where j =1,… ,N/2 and w1,1−w2,1=const. These equations
describe the various nanotubes. In particular, for as10, 10d
armchair single nanotube, we haveN=40, w1,1−w2,1
=4p / s3Nd and the other geometric parameters are shown in
Fig. 1.

It is easy to see that the problem of averaging has only
one independent coordinate,w1,1, for instance. In principle,
for its solution one can get the necessary averaging values
with the simple density function 1/2p. However, for the
sake of illustration, we begin with giving theP function,

P =
1

2p
dsz1,1d

dsr1,1− Rd
R

p
j=2

N/2

dSw1,j − w1,1−
4p

N
s j − 1dD

3
dsz1,jddsr1,j − Rd

R
p
j=1

N/2

dSw2,j − w2,1−
4p

N
s j − 1dD

3
dsz2,j − b/2ddsr2,j − Rd

R
, s70d

with the unit of volume

dV = p
j=1

N/2

r1,j dr1,j dw1,j dz1,jp
j=1

N/2

r2,j dr2,j dw2,j dz2,j .

s71d

From this we find theFi j functions,

Ffm,ig,fn,jg =
1

2p
dSwn,j − wm,i +

4p

N
si − jd + Dn,mD

3
dszn,j − bn,mddsrn,j − Rd

R

dszm,i − bn,mddsrm,i − Rd
R

.

s72d

Here every atom is labeled by a pair of numbersm, i, where
m=1 or 2 is the number of the ringssee Fig. 1d and i
=1,2,… ,N/2 is the atomic number in the selected ring. The
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value Dn,m is equal tow1,1−w2,1=D2,1=−D1,2 when nÞm,
and it vanishes whenn=m, and the value is equal to 0 or
b/2, in accordance with Eq.s70d.

From here, we can obtain by integration

Ffm,ig =
1

2p

dszm,i − bn,mddsrm,i − Rd
R

. s73d

Now we can calculate the averaged structure factors

kSsg',gzdl =
N

2
J0sRg'ds1 + eibgz/2d. s74d

Here J0sxd is the Bessel function of the zeroth order and
g' ,gz are the values of the reciprocal vector projection on
thexy plane and its projection on thez axis, respectivelyssee
Fig. 1d. Equations74d describes the continuous structure fac-
tors. For the determination of the discrete set of the structure
factors, needed for calculating the coherent contributionssee
Eqs. s30d–s35dd, it is necessary to substitute in Eq.s74d the
projections of the reciprocal vectorsg'=s2p /adssl −mdex

+sl +mdey/Î3d, gz=s2p /bdnez for the triangular crystallo-
graphic lattice. As a result, we getSsl ,m,nd=NJ0sRg'd for
evenn numbers and 0 for odd ones.

Then we find

kkSsgdS*sgdll = 2o
n=1

N/2

o
h=1

N/2 FJ0S2g'RsinS4p

N
sn − hdDD

+ J0S2g'RsinS4p

N
sn − hd + sw2

− w1dDDcossgzb/2dG
− N2J0

2sg'Rds1 + cossgzb/2dd/2. s75d

From these equations one can see that the obtained aver-
aged structure factors are functions of theq' and qz vari-
ables. This means that it is necessary to use Eqs.s38d and
s39d in the calculations. We compute first the internal inte-
gral, which is given by

Isq,"dd =E
0

q2−s"dd2 skkSsqdS*sqdll/N − 1dq'
2 dq'

2

sq2 − q'
2 d3/2 . s76d

One can see that the regionq2−q'
2 ,s"dd2 gives the main

contributionsfor bd!1d. Thus, we can replace the valueq'

by q in Eqs. s38d and s39d, and then we can also use Eqs.
s42d and s43d.

Figure 2 illustrates the structure factors for an ideals10,
10d single wall nanotube superlattice, and for this lattice with
the random distribution of angle shifts. One can see that the
values of the structure factors are smaller, in the latter case,
at large enoughq quantities. However, the first few factors
are the same, in between.

Figure 3 illustrates the behavior of thekkSsqdS*sqdll value
as a function of the transferred momentum. The thin curve
describes this function, according to Eq.s75d, and the thick
one describes this, as a result of averaging over thermal
fluctuations ssee also Eq.s49dd. The smooth curve of
middle thickness represents the behavior of the function

Ns1−exps−Ag2dd. One can see that all the above pointed
functions tend toN, at large enoughq values.

Now we can calculate the incoherent cross section of the
investigated process. For this purpose, we find the functions
c1s

a andc2s
a ssee Fig. 4d. One can see that these functions are

slightly smaller than for an amorphous medium. It should be
noted that the calculations were carried out for a three-
dimensional structure of nanotubes. Our estimate shows that,
for a two-dimensional nanotube lattice, the incoherent con-
tribution is practically the same as in an amorphous medium.

The differential intensity of the coherent bremsstrahlung
is shown in Fig. 5.

C. Scheelite structures

In this section we consider the coherent bremsstrahlung in
three-atomic single crystals of the scheelite type. For specific
calculations, we select PbWO4 and CaWO4 single crystals. It
is interesting to notice that PbWO4 single crystals are widely
used for the realization of electromagnetic calorimeters.27 In
Ref. 28 it was shown that the coherent radiation in such
structures influences some characteristics of the calorimeters.

A crystallographic structure of the scheelite type is shown
in Fig. 6. The fundamental cell is represented by a tetragonal
prism with the side of the squared basis and the height which
are equal to 5.44s5.22d and 12.01s11.45d angstroms for the
PbWO4sCaWO4d single crystal, respectively. The fundamen-
tal cell contains 4 leadscalciumd, 4 tungsten and 16 oxygen
atoms. The oxygen atoms are located at the corners of the
tetragons around the tungsten atoms.

Using relations similar to Eqs.s55d–s61d we have calcu-
lated the differential intensitysx dsCB/dxd and the linear po-
larization of coherent bremsstrahlung in PbWO4 and CaWO4
single crystals. In these calculations we use three different

FIG. 2. Structure factors for the superlattice ofs10,10d armchair
single-wall nanotubes as a function of the transferred momentumq
sin mc unitsd. The circles present the ideal structure and the black
points present the structure with the random distribution of the
angle shifts. The curve is the functionNa

2J0
2sqRd.
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amplitudes of thermal fluctuations. One can expect that the
energy of the fluctuations is the same for every sort of
atom.24 This means that the amplitude of fluctuations is in-
versely proportional to the atomic mass. For tungsten atoms
we select an amplitude equal to 0.04 angstromssas in the
tungsten single crystal at room temperatured. Note that the
intensity of the coherent radiation depends weakly enough
on the amplitude of fluctuations, and hence our approach is
justified.

The calculations were carried out for the case when the
electron momentum lies in theyz planessee Figs. 7 and 8d
and the angle between thez axis and the direction of motion
is equal to 5 mrad. One can see that the behavior of the
curves is different for both single crystals. Note that the dif-
ference in the lattice constants of both single crystals is small

and, because of this, it cannot yield the explanation of the
effect. For an understanding of the effect, we should take
into account that in monoatomic structures the values of the
structure factors determine the set of allowed points of the
reciprocal lattice. In our case, thekYlkY*l values play an
analogous role. The different behavior of these values for the
two different single crystals is the main issue in the descrip-
tion of coherent processes. So, the coherent bremsstrahlung
in a PbWO4 single crystal is similar to this process in a
monoatomic single crystal. Indeed, the contribution in the
intensity of oxygen atoms is small, due to the lowZ value.
For the tungsten and lead atoms, the form factors and

FIG. 3. The behavior of
kkSsqdS*sqdll as a function of the
transferred momentum inmcunits
ssee explanations in the textd.

FIG. 4. Dependence of the functionsc1BG
a ,c2BG

a s1,2d and
c1s

a ,c2s
a on the minimal transfer momentumsin mc unitsd. The

curves 18 ,28 represent the result of averaging over thermal fluctua-
tions, and the curves 19 ,29 represent the total result of averaging
over both thermal fluctuations and angle shifts.

FIG. 5. Differential photon spectra in thes10,10d armchair
single wall nanotube superlattice for the structure at fixed angle
w1,1=0 s1d and for one with random angle shift distributions2d. The
electron energy is equal to 10 GeV. The electron beam moves in the
sxzd planessee Fig. 1d under 0.018 rad with respect to thez axis.
Curves 3, 4, 5 illustrate the incoherent contribution for conditions
corresponding to the casess1,2d, s18 ,28d ,s19 ,29d ssee Fig. 4d,
respectively.
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charges are approximately equal in between, and the allowed
points are approximately defined with the help of the factor
s j=1

8 exps−grd jd.
The degree of linear polarization can be defined from the

relations

Psxd =
2s1 − xdaQEDre

2c3sdd
x dssxd/dx

, s77d

c3sdd =
4s2pd2d3

V
o
g

kYl

3kY*l
sgx

2 − gy
2dcoss2bd + 2gxgy sins2bd

g4gi
4 , s78d

wheregx,gy are the components of theg vector on thex and
y axes andb is the angle between theyz plane and the
arbitrary plane where thez axis is located.4 Figures 7 and 8
illustrate also the degree of linear polarization. The maximal
polarization takes place when in Eq.s77d the incoherent con-
tribution is significantly less than the coherent one. This situ-
ation may be realized for high energy values of the electron
beam.

D. Some remarks

It is necessary to point out the specific peculiarities of
coherent bremsstrahlung, which apply to our examples. The
intensities of coherent radiation obtained in this paper were
calculated for special orientations of the atomic structures,
and they represent so-called ideal spectra.4 Due to the spe-
cific motion of electrons in the atomic structures, for the
description of the real spectra we need to take into account
the additional intensity of radiation arising from the nearby
directions of motion. This additional intensity takes place
mainly for small x values. However, the above mentioned
orientations are convenient for comparison, in various con-
ditions of the radiation sourcesssuch as different orientations
or atomic structuresd, and they are widely covered in the

literature. It should be noted that this remark does not indi-
cate a violation of the coherent mechanism. The reason is
that very small deviations of the direction of the electron
motion from theyz plane sat the orientations pointed out
aboved give a sizable contribution in the radiation intensity
sat low xd.

The intensity spectra are presented for one electron en-
ergy. It is easy to understand their behavior at different en-
ergies: the incoherent contribution is practically independent
of the electron energy; the coherent intensity is proportional
to this energy, at the condition that the orientation angle is
changed in a way inversely proportional to the energy.

The theory of coherent bremsstrahlung is violated at some
orientations of atomic structuressat high enough electron
energiesd. This problem may be investigated according to
Ref. 6.

It should be noted that the calculated spectra of coherent
bremsstrahlung may be interesting for applications of this
effect. Despite the large volume of the fundamental cell, the
radiation intensity is large enough, for rather large values of
the orientation angle.

FIG. 7. sad Differential photon spectra in a PbWO4 single crystal
s1d, in equivalent amorphous mediums2d and incoherent contribu-
tion s3d in the intensity as functions of the relative photon energy.
sbd Degree of the linear polarizations1d and its maximum values2d.
The electron energy is equal to 10 GeV. The electron beam moves
in the syzd planessee Fig. 6d under 0.005 rad with respect to thez
axis.

FIG. 6. Three projections of atoms in the fundamental cell of the
scheelite crystallographic structure.
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Calculations show that the incoherent contribution in pe-
riodic atomic structures is insignificantly smaller than for the
corresponding amorphous ones. However, a precise determi-
nation of the incoherent cross section may be useful, for
electron energies smaller than some GeV. In this case, the
emission angle of theg quantum is detectable, and the in-

vestigation of the incoherent contribution may give addi-
tional information.

Our examples illustrate different types of probability den-
sity functions. For a nanotube lattice this function depends
only on one coordinate, and the other coordinates are func-
tions of the latter. The remaining examples illustrate the case
when all atoms are independent.

IX. CONCLUSION

In this paper we have shown that, in imperfect periodic
atomic structures, the coherent part of the cross section is
defined by the averaged potential of the structure, and the
incoherentsdiffusiond one is defined by the pair correlation
functions. The method considered here allows one to solve
the problem, on the basis of the normalized probability den-
sity function. In particular, we have calculated the cross sec-
tion of coherent bremsstrahlung in polyatomic single crystals
with different thermal fluctuations amplitudes. We also con-
sidered further developments of our method for atomic struc-
tures with a variable number of atoms in the cell, fluctuating
periods, etc.

In this paper we did not investigate the process of coher-
ent e±-pair production in periodic structures. However, in
this case there is no problem in writing similar equations as
for coherent bremsstrahlung, using well known equations for
the process and the relations obtained here.

On the basis of our considerations, we think that coherent
bremsstrahlung ande±-pair production, at particle energies
between a few hundreds of MeV and some GeV, may be
utilized for the investigation and characterization of the
atomic structures, in parallel with other methods, such as
x-ray diffraction. At these energies, the collimation of the
electron beamsor the measurement of the photon angle emis-
siond is possible, and therefore the possibility of a detailed
study of pair correlations appears.

In whole, our investigations may be useful for the search
of new sources of coherent radiation. The examples consid-
ered in the paper are illustrative of such a possibility.

1B. Feretti, Nuovo Cimento7, 118 s1950d.
2M. L. Ter-Mikaelian,High Energy Electromagnetic Processes in

Condensed MediasWiley, New York, 1972d; here see references
on the early author’s papers.

3H. Uberall, Phys. Rev.103, 1055s1956d; 107, 223 s1957d.
4U. Timm, Fortschr. Phys.17, 765 s1969d.
5H. Bilokon, G. Bologna, F. Celaniet al., Nucl. Instrum. Methods

Phys. Res.204, 299 s1983d.
6V. N. Baier, V. M. Katkov, and V. M. Strakhovenko,Electromag-

netic Processes at High Energies in Oriented Single Crystals
sWorld Scientific, Singapore, 1998d.

7G. Barbiellini, G. Bologna, G. Diambrini, and G. P. Murtas, Phys.
Rev. Lett. 8, 454 s1962d.

8L. Criegee, G. Lutz, H. D. Schulz, U. Timm, and W. Zimmer-
mann, Phys. Rev. Lett.16, 1031s1966d.

9C. Berger, G. McClellan, N. Mistryet al., Phys. Rev. Lett.25,

1366 s1970d.
10V. A. Maisheev, A. M. Frolov, R. Avakianet al., Sov. Phys. JETP

50, 856 s1979d; Nucl. Instrum. Methods178, 319 s1980d.
11P. J. Bassyet al., Nucl. Instrum. Methods Phys. Res.211, 301

s1983d.
12A. Apyan, et al., hep-ex/0306028.
13A. M. Frolov et al., Nucl. Instrum. Methods Phys. Res.216, 93

s1983d.
14A. Thess, R. Lee, P. Nikolaevet al., Science,273, 484 s1996d.
15M. S. Dresselhaus, G. Dresselhaus, and P. C. Ecklund,Science of

Fullerenes and Carbon NanotubessAcademic, San Diego, CA,
1996d.

16K. Kempaet al., Nano Lett. 3, 13 s2003d.
17V. V. Klimov and V. S. Letokhov, Phys. Lett. A222, 424s1996d.
18L. A. Gevorgian, K. A. Ispirian, and R. K. Ispirian, Nucl. Instrum.

Methods Phys. Res. B145, 155 s1998d.

FIG. 8. The same as in Fig. 7 but for a CaWO4 single crystal.

S. BELLUCCI AND V. A. MAISHEEV PHYSICAL REVIEW B 71, 174105s2005d

174105-12



19N. K. Zhevago and V. I. Glebov, Phys. Lett. A250, 360 s1998d.
20S. Bellucci and V. M. Maisheev, Talk presented at the Workshop

on “Relativistic channeling and related coherent phenomena,”
23–26 March 2004 INFN-LNF, Frascati, ItalyfNucl. Instrum.
Methods Phys. Res. Bsto be publisheddg.

21V. M. Biryukov and S. Bellucci, Phys. Lett. B542, 111s2002d; S.
Bellucci, V. M. Biryukov, and A. Cordelli, Phys. Lett. B608
111 s2002d; S. Bellucci and S. B. Dabagov, J. Phys.: Condens.
Matter 15, 3171s2003d; S. Bellucci, Talk presented at the Work-
shop on “Relativistic channeling and related coherent phenom-
ena,” 23–26 March 2004 INFN-LNF, Frascati, ItalyfNucl. In-
strum. Methods Phys. Res. Bsto be publisheddg.

22S. Bellucciet al., Phys. Rev. ST Accel. Beams6, 033502s2003d;
S. Bellucciet al., Nucl. Instrum. Methods Phys. Res. B202, 236
s2003d; S. Bellucci and V. Biryukov, CERN Cour. 44N6, 2004,
p. 19; S. Bellucci, Phys. Status Solidi C2, 34 s2005d; V.

Biryukov and S. Bellucci, Talk presented at the Workshop on
“Relativistic channeling and related coherent phenomena,”
23–26 March 2004 INFN-LNF, Frascati, ItalyfNucl. Instrum.
Methods Phys. Res. Bsto be publisheddg.

23J. M. Cowly, Diffraction Physics sNorth-Holland Publishing
Company, Amsterdam, Oxford, 1973d.

24C. Kittel, Introduction to Solid State PhysicssWiley, New York,
1975d.

25L. D. Landau and E. M. Lifshitz,Statistical Physics, 3rd ed.sPer-
gamon, New York, 1980d.

26V. A. Maisheev, Nucl. Instrum. Methods Phys. Res. B119, 42
s1996d.

27T. Brennanet al., Nucl. Instrum. Methods Phys. Res. A494, 313
s2002d.

28V. A. Baskovet al., Phys. Lett. B456, 86 s1999d.

COHERENT BREMSSTRAHLUNG IN IMPERFECT… PHYSICAL REVIEW B 71, 174105s2005d

174105-13


