
Spin transport and resistance due to a Bloch wall

E. Šimánek
6255 Charing Lane, Cambria, California 93428, USA

A. Rebei
Seagate Research Center, Pittsburg, Pennsylvania 15222, USA

sReceived 22 November 2004; revised manuscript received 4 January 2005; published 25 May 2005d

We study spin transport in a ferromagnet containing Bloch wall. Starting from the kinetic equations in
Wigner space, we derive matrix diffusion equation for the accumulation of transverse magnetization driven by
the spin polarized electrical current. The resistance produced by this accumulation exhibits damped oscillations
as a function of wall thickness with a periodpukF

↑ −kF
↓ u−1, wherekF

↑ andkF
↓ are the spin up and spin down Fermi

wave numbers. Geometrically constrained walls are suggested for observing the resistance oscillations.
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Recent technological advances in material fabrication led
to resurgence of interest in spin-polarized transport in a fer-
romagnet containing domain wallssDWd. In view of poten-
tial applications to devices where information is written elec-
trically, there has been strong activity surrounding the
problem of a current driven motion of the DW.1–4

Moreover, the excess resistance due to DW has been the
subject of a number of studies. Experiments have shown ei-
ther an increase5–7 or decrease8 of the resistance due to DW.
First, we briefly mention previous theoretical works that are
most relevant to our aim. Levy and Zhang9 obtain a positive
DW resistance from a Boltzmann equation by taking into
account the mixing of spin states due to the magnetization
twist in the DW. Tatara and Fukuyama10 consider the de-
struction of the electron weak localization by the dephasing
caused by the DW. In principle, this mechanism yields a
negative DW resistance. However, since the excess resis-
tance remains experimentally negative up to relatively high
temperatures8 swhere localization does not play a roled an-
other mechanism must be at work. Van Gorkomet al.11 con-
sider the modification of the electron band structure of a
two-band ferromagnet due to magnetization twist in the DW.
They predict an excess resistance that can be either positive
or negative dependent upon the sign of the difference be-
tween the up and down spin relaxation times.

The suggestion made by Ebelset al.,6 that spin accumu-
lation sSAd around the DW should be the dominant mecha-
nism, motivated the theory of Ref. 12. This theory shows that
the DW resistance is determined by transverse SA of the
conduction electrons. Equipped with an approach which cor-
rectly incorporates the precessional dynamics into the kinetic
equations, we revisit in this paper the problem of DW resis-
tance.

The precessional dynamics plays also an essential role in
the problem of current-driven DW.1–4 Thus, we need to take
a deeper look into the general problem of transverse spin
currents in a ferromagnet. In 1966, Hirst13 and Kaplan14

studied the effects of spin precession on diffusive transport
of the transverse magnetization density of itinerant electrons.
Treating the circularly polarized electron gas within the
single band itinerant model, Hirst13 derives a Fick’s law with
a complex diffusion coefficient. When combined with the

equation of motion for the ferromagnetic magnetization, the
real part of this coefficient is found to act as an ordinary
diffusion constant while the imaginary part yields a contri-
bution to the exchange stiffness. This implies that the circu-
larly polarized magnetization decays exponentially within a
distance that is very short owing to the fast precession about
the exchange field.

Subsequently, Berger15 investigated the injection of a spin
polarized electron beam into a ferromagnet whose magneti-
zation is not collinear with the beam polarization. Then the
transverse polarization of the electron is found to oscillate in
the ferromagnet with a wavelengthpukF

↑ −kF
↓ u−1. This is be-

cause an electron with transverse spin polarization is in a
quantum state that is a superposion of spin eigenstates asso-
ciated with Fermi wave vectorskF

↑ andkF
↓ . The same wave-

length appears in the oscillation of transverse spin current
calculated by Stiles and Zangwill16 near the interface of a
ferromagnet and nonmagnet.

Recently, Hitchonet al.17 and Rebeiet al.18 addressed the
problem of spin diffusion in nonhomogeneous ferromagnet
using an effective action functional. Using the relaxation
time approximation, they derive a Fick’s law in which the
diffusion constant becomes a matrix. This result is consistent
with the complex Fick’s law of Hirst.13 However, in contrast
to Ref. 13, the transverse magnetization of the conduction
electrons is found to exhibit, as a function of position,
damped oscillations with a periodpukF

↑ −kF
↓ u−1.

Motivated by Refs. 17 and 18, we revisit in this work the
previously studied problem of SA around the DW. In Ref. 12,
the transverse SA is found to satisfy an ordinary diffusion
equation with a diffusion length drastically reduced com-
pared with the longitudinal diffusion length as a result of the
fast precession about the exchange field. However, a simple
argument shows that the dependence of the transverse mag-
netization on distance should contain a strong oscillatory
component: As the spin polarized conduction current passes
through the wall, its polarization is noncollinear with the
local magnetization in the wall. Thus, we have a situation
similar to that considered in Refs. 15 and 16 and oscillations
with periodpukF

↑ −kF
↓ u−1 are expected.

In what follows, we verify this conclusion using kinetic
equations for the Wigner function in a way that allows to
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include the physics of precession missing in Ref. 12. The
transverse component of the magnetization is found to sat-
isfy a matrix diffusion equation yielding a damped oscilla-
tion of the SA with a periodpukF

↑ −kF
↓ u−1. We also derive an

expression for the resistance due to the wall which exhibits
damped oscillations as a function of the wall thickness. This
is not surprising since, in the rotated frame of reference, the
electron sees a potential well of the same thickness produced
by the magnetization twist.

We adopt thesd model of a ferromagnet. The conduction
electrons interact with the locald-electron magnetization via

the termJsdsW ·MW srdW , whereMW srdW is a unit vector in the direc-
tion of the magnetization,Jsd is the s-d exchange integral,
andsW is the Pauli matrix. In addition, there is an interaction

with an electric field EW o, and scattering by impurities,
phonons and magnons.

We consider transport in the presence of a pinned 180°
wall. In the laboratory coordinate systemsX,Y,Zd,
MW s−` ,Y,Zd is parallel andMW s` ,Y,Zd is antiparallel to the

axis OZ. The X-dependent angle betweenMW andOZ-axis is

asXd. The termJsdsW ·MW sXd is diagonalized by going to a new
coordinate systemsx=X,y,zd, where theOz axis is parallel

to MW sxd and theOX axis is not changed. In the rotated sys-
tem, the transport is conveniently formulated using the

Wigner functionF̂sx,pWd= 1/2ff1sx,pWdÎ + fWsx,pWd ·sŴ g. For the

steady state andEW 0iOx, its components satisfy the following
system of equations:12
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wherea8=dasxd /dx andve=2Jsd/". Equationss1d–s4d rep-
resent a generalization of the multilayer theory of Valet and
Fert19 to a ferromagnet containing the Bloch wall. They were
derived under the assumption of a slowly varying angleasxd
such thatkFd@1, whered is the thickness of the wall.

The electrical resistance due to spin accumulation is de-
termined by the magnetization componentmysxd given by
momentum average of the componentfy.

12 From Eqs.s1d
ands2d we see thatfy couples tofx which in turn is coupled
to the “charge” componentf1. In distinction from Ref. 12,
we decouple Eq.s1d from Eq. s2d. This is possible since the
coupling terms in Eqs.s1d ands2d are second order ina8 and
can be neglected as long as we calculate the quantitymysxd
to first order ina8sxd.

Let us focus our attention on Eqs.s2d and s3d. In Eq. s3d
we retain the coupling tofz since it provides the driving

torque for the componentmy. This torque comes from the
longitudinal magnetization current densityjz related to the
density of spin polarized electric currentjz

sed as follows:

jz =
mB

e
jz
sed =

mBEob

es1 − b2drF
* , s5d

where b is the spin asymmetry coefficient, andrF
* is the

bulk resistivity of the ferromagnet.19 The right-hand side
follows by writing jz

sed= j↑
sed− j↓

sed=eE0ss+−s−d where
ss=s0/2s1−sbd−1 with s0

−1=rF
* . Since we calculatemy to

first order ina8, and the coupling term in Eq.s3d is vxa8fz,
the quantityfz should be obtained from Eq.s4d with a8=0
yielding mzsxd=mz

s0d. This implies, in conjunction with the
continuity equation, anx-independentjz consistent with Eq.
s5d. Note that in rotated coordinates, the exchange field along
the z axis is also independent ofx.

In view of Eq. s5d, the second term on the left-hand side
of Eq. s3d is of ordera8E0. Since we needmy to orderE0, we
can setE0=0 in the Eqs.s2d ands3d. Performing the momen-
tum averaging of these equations, we obtain the continuity
equations for the transverse magnetization

] jx
]x

= − vemy −
2

t
mx, s6d

] j y

]x
= vemx −

2

t
my + a8 jz, s7d

wherej x and j y are the densities of the magnetization current
flowing along thex axis and polarized in thex andy direc-
tion, respectively, andt is the transverse spin relaxation
time. The relaxation terms in these equations originate by

writing, for i =sx,yd, s]f i /]tdcoll=−s2/tdf i
s1dsxd−s1/2T̃df i

s1d

3sx,pWd, whereT̃ is the momentum relaxation time, and not-
ing that the momentum average off i

s1dsx,pWd vanishes.12

Next we multiply byvx Eqs.s2d ands3d, taken in the same
approximate form as used to derive Eqs.s6d ands7d. Subse-
quent momentum average yields the following system of lin-
ear equations in the variablesjxsxd and j ysxd:

1

2T̃
jx + vejy = −

1

3
vF

2 ]mx

]x
s8d

− vejx +
1

2T̃
j y = −

1

3
vF

2 ]my

]x
+

1

3
vF

2a8mz. s9d

Using Cramer’s rule, we solve this system forjx and j y and
obtain Fick’s law in a matrix form

S jx
j y
D = − D̃S 1 − 2T̃ve

2T̃ve 1
D1

]mx

]x

]my

]x
2 − D̃a8mzS2T̃ve

− 1
D ,

s10d

whereD̃=2Ds1+4ve
2T̃2d−1 andD= 1/3vF

2T̃.
The diffusion matrix seen in the first term of Eq.s10d first
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appeared in the work by Hirst.13 Using an adaptation of the
kinetic formulation of transport by Chambers,20 Hirst derives
an equation for the divergence of complex spin current den-
sity jx+ i j y. Inserting this divergence into the Landau-
Lifshitz-Gilbert sLLGd equation,21 he obtains a diffusion
term with a diffusion constant givensin the present notationd
by D̃, and an additional exchange stiffness given by 2veT̃D̃.
This gives an impression that the transverse components of
the magnetization satisfy an ordinary diffusion with expo-
nentially decaying spatial solutions. This is clearly in dis-
agreement with the conclusion of Refs. 15–18. The problem
is that on going from the LLG equation to his Eq.s3d, Hirst13

does not include the torque −gsmW 3HW exchd. In our approach
this corresponds to neglecting in Eqs.s6d and s7d the terms
−vemy and vemx, respectively. It turns out that these terms
are essential to yield correct differential equations for the
transverse magnetization.

We now show that, in the present model, the transverse
magnetization exhibits damped fast oscillations. Differentiat-
ing Eq. s10d with respect tox, and eliminating] jx/]x and
] j y/]x via Eqs.s6d and s7d, we obtain

D̃
]2

]x2smx − 2T̃vemyd −
2

t
mx − vemy = 0, s11d

D̃
]2

]x2smy + 2T̃vemxd −
2

t
my + vemx = − jza8sxd. s12d

The driving terms on the right-hand side of these equa-
tions are obtained, to first order ina8, by using]mz/]x=0 as
implied by the absence of the longitudinal spin accumulation
for a8=0. The key step, that distinguishes the present ap-
proach from Ref. 13 is that the exchange torque is included
not only in the Fick’s law but also in the continuity equations
fsee Eqs.s6d and s7dg.

Fourier transforming Eqs.s11d and s12d, we obtain
coupled algebraic equations formxsqd andmysqd yielding

E
−`

`

mysxdeiqxdx= mysqd

=
jzsq2 − a + 2bveT̃da8sqd

2Dsq − q1dsq − q2dsq − q3dsq − q4d
,

s13d

wherea=3ve
2/vF

2 −1/Dt andb=sve/2Dds1+4T̃/td. The os-
cillatory nature ofmysxd is revealed by examining the poles
of expression s13d. They are q1=sa2+b2d1/4 expsif /2d,
q2=−q1, q3=q1

* , and q4=q2
* , where f=−tan−1sb/ad. For

veT̃@1 andt@ T̃, we haveq1<x− ig with x=Î3ve/vF and

g=Î3/4l where l =vFT̃ is the mean free path. Since

x /g=4veT̃@1, the poles of Eq.s13d are dominated by the
real part, implying slightly damped fast oscillations ofmysxd.

Evaluation of the inverse transform of Eq.s13d is facili-
tated by adopting a simple “square well” model fora8sxd.
Thus, we leta8sxd=p /d for −1/2døxø1/2d and zero oth-
erwise. Then the solution formysxd is given by

mysxd <
Î3p jz
2dvFx

fIsxd + Is− xdg, s14d

where

Isxd = expF− gSx +
d

2
DGsinxSx +

d

2
D . s15d

Thusmysxd exhibits damped oscillations with wavelength
of orderpvF /ve. Interestingly, this quantity can be written as
pukF

↑ −kF
↓ u−1 corresponding to the wavelength of the trans-

verse spin oscillations associated with the injection of a po-
larized electron beam into the ferromagnet.15,16

Now we consider the excess resistance per unit area due
to Bloch wall

rv =
DVI

j sed =
DVIrF

* s1 − b2d
Eo

, s16d

where j sed is the net electrical current andDVI is the voltage
drop due to spin accumulation12

DVI =
2eFb

3nmBe
E

−`

`

mysxda8sxddx. s17d

The integral on the right-hand side of this equation is
evaluated with use of Eqs.s14d and s15d where Eq.s5d is
substituted forjz. Using the resultingDVI in Eq. s16d, we
obtain

rw <
2Î3p2b2rF

* vFT̃

3d2x3 fx − exps− gddsx cosxd + g sinxddg.

s18d

We see thatrw exhibits damped fast oscillations as a func-
tion of the wall thicknessd with the same period asmysxd of
Eqs.s14d and s15d. The amplitude of the oscillations decays
exponentially with a characteristic length given by the mean

free pathl =vFT̃.
In the diffusive limit, gd@1, the first term on the right-

hand side of Eq.s18d dominates yielding

rw < 2b2rF
* lef f, s19d

where lef f=s4Î3/9dj2l and j=pvF /2dve is the mistracking
parameter.5 This result contrasts with the effective length

lef f=8/3j2dsT̃/td obtained in Ref. 12. The suppression
of the spin accumulation contribution torv is characterized
by the ratio lef f/ lsf where lsf=sDtsfd1/2, and tsf is the
spin-flip relaxation time.19 For a domain wall in cobalt, we
have d<1.5310−6 cm, ve<1.531015 s−1, and vF<1.4
3108 cm/s yieldingj<0.1. With these values, the effective

length in Eq.s19d is lef f<7.7310−3 l. Assumingtsf.10T̃

and veT̃=3, we have lsf<5310−7 cm and lef f<2.2
310−9 cm yielding lef f/ lsf<4.4310−3. Hence, for cobalt,
the spin accumulation contribution torv is suppressed in the
diffusive limit.

Let us compare the expressions19d with the theory of
Levy and Zhang.9 Expressing the quantitiesr0

↑ and r0
↓ in

terms of the parameterb, their equations20d yields an excess
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resistancerw
LZ=s12j2rF

* b2d/5ds1+5/3Î1−b2d. For a wide
range of the parameterb, the ratio rw

LZ/ rw<2d/ l. Thus, in
the diffusive limit the DW resistance is dominated by the
mechanism of Ref. 9.

In the ballistic limit, gd!1, the wall resistance of Eq.
s18d reduces to

rv
sbd < 2b2rF

* lef f
sbd sin2xd

2
, s20d

wherelef f
sbd <s8Î3/9dj2l. Oscillations of the excess resistance,

due to the Bloch wall, may be observable in extremely clean
samples with a relatively large value of the parameterj.
Also, low temperatures may be required to minimize the
electron-phonon and electron-magnon relaxation rates. A
promising candidate for observing the resistance oscillations
is DW in a constriction between two wider sections. In this
case, the thicknessd can be varied by changing the length of
the constriction.22

In summary, we have studied the accumulation of the
transverse spin density of conduction electrons around the
Bloch wall in the presence of a spin-polarized electric cur-
rent. We solve perturbatively the coupled kinetic equations in
Wigner space and find that the transverse spin accumulation
exhibits damped spatial oscillations with wavelength
pukF

↑ −kF
↓ u−1. The electrical resistance due to the spin accumu-

lation is found to contain damped oscillations as a function
of the wall thickness. In the diffusive limit, the resistance is
suppressed as a result of adiabatic tracking of the wall by fast
precessing electron spin. The oscillatory part of the DW re-
sistance becomes pronounced in the ballistic limit owing to
the off-diagonal terms in the diffusion equations. Experi-
ments on geometrically constrained DW are suggested for a
possible observation of the resistance oscillations. The
present theory is also relevant to the problem of current
driven motion of the DW4 and magnetization switching in
magnetic multilayers.23
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