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Spin transport and resistance due to a Bloch wall
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We study spin transport in a ferromagnet containing Bloch wall. Starting from the kinetic equations in
Wigner space, we derive matrix diffusion equation for the accumulation of transverse magnetization driven by
the spin polarized electrical current. The resistance produced by this accumulation exhibits damped oscillations
as a function of wall thickness with a periagk]. — k|2, wherek. andk; are the spin up and spin down Fermi
wave numbers. Geometrically constrained walls are suggested for observing the resistance oscillations.
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Recent technological advances in material fabrication leegkquation of motion for the ferromagnetic magnetization, the
to resurgence of interest in spin-polarized transport in a ferreal part of this coefficient is found to act as an ordinary
romagnet containing domain walf®W). In view of poten-  diffusion constant while the imaginary part yields a contri-
tial applications to devices where information is written elec-bution to the exchange stiffness. This implies that the circu-
trically, there has been strong activity surrounding thelarly polarized magnetization decays exponentially within a
problem of a current driven motion of the DWW/ distance that is very short owing to the fast precession about

Moreover, the excess resistance due to DW has been thhe exchange field.
subject of a number of studies. Experiments have shown ei- Subsequently, Berg€rinvestigated the injection of a spin
ther an increase’ or decreastof the resistance due to DW. polarized electron beam into a ferromagnet whose magneti-
First, we briefly mention previous theoretical works that arezation is not collinear with the beam polarization. Then the
most relevant to our aim. Levy and Zh&naptain a positive transverse polarization of the electron is found to oscillate in
DW resistance from a Boltzmann equation by taking intothe ferromagnet with a wavelenngk,l—kM‘l. This is be-
account the mixing of spin states due to the magnetizatiogause an electron with transverse spin polarization is in a
twist in the DW. Tatara and Fukuyadfaconsider the de- quantum state that is a superposion of spin eigenstates asso-
struction of the electron weak localization by the dephasingsiated with Fermi wave vectoig: andk:. The same wave-
caused by the DW. In principle, this mechanism yields alength appears in the oscillation of transverse spin current
negative DW resistance. However, since the excess resisalculated by Stiles and Zangwflinear the interface of a
tance remains experimentally negative up to relatively highferromagnet and nonmagnet.
temperaturés(where localization does not play a rplan- Recently, Hitchoret al!” and Rebekt al!® addressed the
other mechanism must be at work. Van Gorketral!! con-  problem of spin diffusion in nonhomogeneous ferromagnet
sider the modification of the electron band structure of ausing an effective action functional. Using the relaxation
two-band ferromagnet due to magnetization twist in the DWtime approximation, they derive a Fick's law in which the
They predict an excess resistance that can be either positiviffusion constant becomes a matrix. This result is consistent
or negative dependent upon the sign of the difference bewith the complex Fick's law of Hirst® However, in contrast
tween the up and down spin relaxation times. to Ref. 13, the transverse magnetization of the conduction

The suggestion made by Ebals al.® that spin accumu- electrons is found to exhibit, as a function of position,
lation (SA) around the DW should be the dominant mecha-damped oscillations with a periorrl|k,l—k£|‘1.
nism, motivated the theory of Ref. 12. This theory shows that Motivated by Refs. 17 and 18, we revisit in this work the
the DW resistance is determined by transverse SA of thereviously studied problem of SA around the DW. In Ref. 12,
conduction electrons. Equipped with an approach which corthe transverse SA is found to satisfy an ordinary diffusion
rectly incorporates the precessional dynamics into the kinetiequation with a diffusion length drastically reduced com-
equations, we revisit in this paper the problem of DW resispared with the longitudinal diffusion length as a result of the
tance. fast precession about the exchange field. However, a simple

The precessional dynamics plays also an essential role iargument shows that the dependence of the transverse mag-
the problem of current-driven DW:? Thus, we need to take netization on distance should contain a strong oscillatory
a deeper look into the general problem of transverse spinomponent: As the spin polarized conduction current passes
currents in a ferromagnet. In 1966, Histand Kaplad*  through the wall, its polarization is noncollinear with the
studied the effects of spin precession on diffusive transporiocal magnetization in the wall. Thus, we have a situation
of the transverse magnetization density of itinerant electronssimilar to that considered in Refs. 15 and 16 and oscillations
Treating the circularly polarized electron gas within thewith period 7T|k;:—k,l:|_l are expected.
single band itinerant model, HifStderives a Fick’s law with In what follows, we verify this conclusion using kinetic
a complex diffusion coefficient. When combined with the equations for the Wigner function in a way that allows to
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include the physics of precession missing in Ref. 12. Theorque for the component,. This torque comes from the
transverse component of the magnetization is found to satengitudinal magnetization current density related to the
isfy a matrix diffusion equation yielding a damped oscilla- density of spin polarized electric curre‘;ﬁ') as follows:
tion of the SA with a periodr|kl—kkL|™.. We also derive an
expression for the resistance due to the wall which exhibits j,= 8@ = L@BM (5)
damped oscillations as a function of the wall thickness. This € e(1-B)pe
is not surprising since, in the rotated frame of reference, the . . - .
! . Where B is the spin asymmetry coefficient, arpél is the
electron sees a potential well of the same thickness producebd o : .
b o . ulk resistivity of the ferromagné®. The right-hand side
y the magnetization twist. ol b " (&) _:(e) (e = h

We adopt thesd model of a ferromagnet. The conduction '0'OWS By ~writing J,"=]; =], =eEy(0.—0.) where

electrons interact with the locakelectron magnetization via 9s~

0o/ 2(1-sB)™* with Ualzp,:. Since we calculaten, to
the terszd&-l\7l(F), Wherel\7I(F) is a unit vector in the direc-

first order ina’, and the coupling term in Eq3) is v,a’'f,,
. o ] . h ntityf, shoul ined from E@4) with o'=
tion of the magnetization)sqy is the s-d exchange integral, the quantityf, should be obtained fro @4) with o’ =0
and ¢ is the Pauli matrix. In addition, there is an interaction

yielding mz(x):m(zo). This implies, in conjunction with the

. = . ) N continuity equation, ax-independenf, consistent with Eq.
with an electric field B, and scattering by impurities, (5 Note that in rotated coordinates, the exchange field along
phonons and magnons. , the z axis is also independent af

We consider transport in the presence of a pinned 180° |y yiew of Eq. (5), the second term on the left-hand side

wall. In the laboratory coordinate systeniX,Y,Z),  of Eq.(3)is of ordera’E,. Since we needy, to orderE,, we
M(-,Y,Z) is parallel andM(e,Y,Z) is antiparallel to the can seEy=0 in the Eqs(2) and(3). Performing the momen-

axis OZ. The X-dependent angle betwedh and OZ-axis is  tUm averaging of these equations, we obtain the continuity
a(X). The term,6-M(X) is diagonalized by going to a new equations for the transverse magnetization

coordinate systenix=X,y,z), where theOz axis is parallel Iy _ 2 ©)
to M(x) and theOX axis is not changed. In the rotated sys- ox el Trnx,

tem, the transport is conveniently formulated using the

Wigner functionﬁF(x, ﬁ).: 1/2[f(x, 5)T+f(x,'|6) .a]. For th.e dly _ gy~ Zmy+ i, 7)
steady state anB,||Ox, its components satisfy the following 28 T

system of equations: wherej, andj, are the densities of the magnetization current

gty ko of, of, [ of, f!owing along_ thex axis qnd polarized in thg andy direc—_
U T om® ax - = ) (1)  tion, respectively, andr is the transverse spin relaxation
X coll time. The relaxation terms in these equations originate by

A n ot i y writing, for i=(x,y), (3fi/dt)e=-(2/nF Y0 -(1/2T)FY
. = evXan—ex + wefy (—X) . (2 X(x,p), whereT is the momentum relaxation time, and not-
coll

ing that the momentum average t{)’f)(x,f)) vanishes?
of Next we multiply byv, Egs.(2) and(3), taken in the same
) . a
coll

°de

X

% a — +
ox  2m ox

approximate form as used to derive E¢®. and (7). Subse-
guent momentum average yields the following system of lin-
ear equations in the variablggx) andjy(x):

_y ’ Zy
v -va' f,+ev,E - wefy =
X ox x>z xor?e e

of, 't v enE of, (afz) @ 1 14
Uy — Uy« — =\ — , . .
X IX X y X=0 Je (9t coll — lX+ wejy: - évlzza—rzx (8)
wherea’ =da(x)/dx and w=2Js4/ . Equations(1)—(4) rep- 2T
resent a generalization of the multilayer theory of Valet and 1 1.9 1
Ferf® to a ferromagnet containing the Bloch wall. They were ~ Wejy+ = jy=- —UE—mY + —U,Z:a’mz_ (9)
derived under the assumption of a slowly varying angle) 2T 3 dx 3

such thatked> 1, whered is the thickness of the wall. Usina Cramer's rule. we solve this svstem forand i.. and
The electrical resistance due to spin accumulation is de- 9 ’ Y i ly

termined by the magnetization componenf(x) given by obtain Fick's law in a matrix form
momentum average of the componeh;,u12 From Egs.(1) am
and(2) we see thaf, couples tof, which in turn is coupled i 1 -7Tw X _ Mo

to the “charge” component;. In distinction from Ref. 12, (X) =-D ¢ - Da’mz( e),

we decouple Eq(1) from Eq.(2). This is possible since the ~ ‘ly Tw, 1 oy -1
coupling terms in Eq9.l) and(2) are second order ia’ and X
can be neglected as long as we calculate the quamtity) (10)

to first order ina’(x). _ _ _
Let us focus our attention on Eq) and(3). In Eq.(3)  whereD=2D(1+4w’T?)* andD=1/30v2T.
we retain the coupling td, since it provides the driving The diffusion matrix seen in the first term of E4.0) first

172405-2



BRIEF REPORTS PHYSICAL REVIEW B1, 172405(2009

appeared in the work by Hird8. Using an adaptation of the \3j,
kinetic formulation of transport by ChambeisHirst derives my(x) =~ doey
an equation for the divergence of complex spin current den- UrX
sity jy+ijy. Inserting this divergence into the Landau- where

Lifshitz-Gilbert (LLG) equatior?! he obtains a diffusion

terrlw with a diffusion constant give(in the present notgti()n 1(x) = ex;{— y(x + 9) ]sinx<x+ 9) _ (15)

by D, and an additional exchange stiffness given lyTD. 2 2

This gives an impression that the transverse components of Thysm,(x) exhibits damped oscillations with wavelength
the magnetization satisfy an ordinary diffusion with €xpo- ot order s,/ w,. Interestingly, this quantity can be written as
nentially decaylng spatial s'olutlons. This is clearly in dis- ’7T|k|T:_k|l:|_1 corresponding to the wavelength of the trans-
agreement with the conclusion of Refs. 15-18. The problenyg se spin oscillations associated with the injection of a po-
is that on going from the LLG equation to his EG), Hirst® |, /i;ed electron beam into the ferromaghets

does not include the torqueytmX He,en. In our approach Now we consider the excess resistance per unit area due
this corresponds to neglecting in Ed6) and (7) the terms  to Bloch wall

—wgm, and wgm,, respectively. It turns out that these terms . )

are essential to yield correct differential equations for the _AV, _AVipe(1-5) (16)
transverse magnetization. @ E, ’

We now show that, in the present model, the transverse Q) - . .
magnetization exhibits damped fast oscillations. Differentiat-Where](e) IS the_ net e'ec"'ca!' current aniv, is the voltage
ing Eq. (10) with respect tox, and eliminatingdj,/dx and drop due to spin accumulatih
djyl ox via Egs.(6) and(7), we obtain AV 26

=

[1() +1(=x)], (14)

3nuge J B m,(x)a’ (x)dx. (17)

~ P ~ 2

D—— (M~ 2Twem,) = —m, — wem, =0, (11) _ _ _ _ o
IX T The integral on the right-hand side of this equation is

evaluated with use of Eq$14) and (15) where Eq.(5) is

5 T 2 i substituted forj,. Using the resultingAV, in Eg. (16), we
Dﬁ(r‘ny‘i' 2Twemx) - ;r‘ny+ wemX: — ]za/(X). (12) obtan iz g w | q

The driving terms on the right-hand side of these equa- 2\s’§ﬂ232p*FUF'~r .
tions are obtained, to first order irf, by usinggm,/ox=0as  "w™ szg[x— exp(— yd)(x cosyd + ysin xd)].
implied by the absence of the longitudinal spin accumulation
for a’=0. The key step, that distinguishes the present ap- (18

proach from Ref. 13 is that the exchange torque is included \\e see that,, exhibits damped fast oscillations as a func-
not only in the Fick's law but also in the continuity equations i of the wall thicknessl with the same period as,(x) of
[see Egs(6) and(7)]. Egs.(14) and (15). The amplitude of the oscillations decays

Fourier transforming Egs(11) and (12), we obtain  gynonentially with a characteristic length given by the mean
coupled algebraic equations fox(q) andmy(q) yielding free pathl=v 7
=veT.

o ) In the diffusive limit, yd> 1, the first term on the right-
J my(x)e¥dx=my(q) hand side of Eq(18) dominates yielding
M= 2B%pelert (19)

j (0 - a+ 2bw,T)a’ ()

= ~ ~ ~ > whereleff:(4v‘§/9)§zl and é=mvg/2dw, is the mistracking
2D(q~4)(d~ 424~ s)(q = ) paramete?. This result contrasts with the effective length
(13 lerr=8/3¢°d(T/7) obtained in Ref. 12. The suppression

Wherea=3w§/v§—1/Dr andb=(we/2D)(1+4'~I'/r). The os- of the spin accumulation contribution tg, is characterized

H — 1/2 H
cillatory nature ofm(x) is revealed by examining the poles by' ﬂ;l.e ra'?o Ietf.f”Sft. ngrg ISf_gDTSf). : aﬂd. Tst ||Js Itthe
of expression (13, They are q,=(a2+b) Y explig/2),  SPin-flip relaxation timé? For a domain wall in cobalt, we

_ . = o have d=1.5X10°cm, w,~1.5x10%s?, and vp=1.4
G2=~C1 Gs=Ch,_and 4=, whe_re d’_“ ~tan ’_(b/a). For S 18 cmis yieldingé~=0.1. With these values, the effective
“’eTil and7>T, we rlav_eqlzX_WW'th X=\3welvg aer length in Eq.(19) is lo=~7.7X 1072 |. Assuming ro;= 10T
y=v\3/4 ~where [=veT is the mean free_ path. Since and w.7=3, we have I 4~5%x107cm and |y ~2.2
x! y=4weT>1, the poles of Eq(13) are dominated by the x 1079 cm yielding los/15=4.4X 1073, Hence, for cobalt,
real part, implying slightly damped fast oscillationsmf(x).  the spin accumulation contribution tg is suppressed in the

Evaluation of the inverse transform of EQ.3) is facili- diffusive limit.
tated by adopting a simple “square well” model f@f(x). Let us compare the expressi¢h9) with the theory of
Thus, we lete’ (x)=7/d for -1/2d<x=<1/2d and zero oth- Levy and Zhand. Expressing the quantities) and p}, in
erwise. Then the solution fan,(x) is given by terms of the parameteg, their equatior(20) yields an excess
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resistancer’-#=(12¢%p. 82d/5)(1+5/3/1-8?). For a wide In summary, we have studied the accumulation of the
range of the parametgs, the ratior-?/r,~2d/I. Thus, in  transverse spin density of conduction electrons around the
the diffusive limit the DW resistance is dominated by theBloch wall in the presence of a spin-polarized electric cur-

mechanism of Ref. 9. rent. We solve perturbatively the coupled kinetic equations in
In the ballistic limit, yd<1, the wall resistance of Eq. Wigner space and find that the transverse spin accumulation
(18) reduces to exhibits damped spatial oscillations with wavelength
d m|kL—k&[ L. The electrical resistance due to the spin accumu-
b < 252,50 &jpXE o . o .
o = 2B°peletssi 5 (20) lation is found to contain damped oscillations as a function

of the wall thickness. In the diffusive limit, the resistance is
wherel "~ (8/3/9)£2. Oscillations of the excess resistance, suppressed as a result of adiabatic tracking of the wall by fast
due to the Bloch wall, may be observable in extremely clearprecessing electron spin. The oscillatory part of the DW re-
samples with a relatively large value of the paramefer sistance becomes pronounced in the ballistic limit owing to
Also, low temperatures may be required to minimize thethe off-diagonal terms in the diffusion equations. Experi-
electron-phonon and electron-magnon relaxation rates. Anents on geometrically constrained DW are suggested for a
promising candidate for observing the resistance oscillationpossible observation of the resistance oscillations. The
is DW in a constriction between two wider sections. In thispresent theory is also relevant to the problem of current
case, the thicknes$can be varied by changing the length of driven motion of the DW and magnetization switching in

the constrictiorf? magnetic multilayerg?
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