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The morphological relaxation of axisymmetric crystal surfaces with a single facet below the roughening
transition temperature is studied analytically for diffusion-limit€al.) and attachment-detachment-limited
(ADL) kinetics with inclusion of the Ehrlich-Schwoebel barrier. The slope préfilet), wherer is the polar
distance and is time, is described via a nonlinear, fourth-order partial differential equaffidE) that
accounts for step line-tension energy and step-step repulsive interaction eneggy for ADL kinetics, an
effective surface diffusivity that depends on the step density is included. The PDE is derived directly from the
step-flow equations and, alternatively, via a continuum surface free energy. The facet evolution is treated as a
free-boundary problem where the interplay betwgeandgs gives rise to a region of rapid variations lef a
boundary layer, near the expanding facet. For long timesahd; <O(1) singular perturbation theory is
applied for self-similar shapes close to the facet. For DL kinetics and a class of axisymmetric $hafbes,
boundary-layer width varies dgs/g;)*3, (b) a universal ordinary differential equati¢®DE) is derived forF,
and(c) a one-parameter family of solutions of the ODE are found; furthermore, for a conical initial sdape,
distinct solutions of the ODE are identified for differeq/g, via effective boundary conditions at the facet
edge,(e) the profile peak scales dg;/g;)"Y/6, and(f) the change of the facet radius from its limit @g'g;

—0 scales a$gs/g;)Y/3. For ADL kinetics a boundary layer can still be defined, with thickness that varies as
(g3/91)%8. Our scaling results are in excellent agreement with kinetic simulations.
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I. INTRODUCTION Theoretical studies of morphological evolution aim to de-

Advances in the fabrication of small structures and de-SCTiPe the surface morphology at mesoscopic or macroscopic
vices have stimulated interest in low-temperature kinetic prol€ngth scalestypically of the order of microns or largeby

cesses on crystal surfaces. In most experimental situation@ccounting for the motion of adatoms or individual steps at

nanoscale solid structures are not in thermodynamic equilibSMler length scaleypically of the order of nanometers or

. . . . . . . 6,10,11 H

rium and decay in time with a lifetime that typically scales SMa/l€). There are two different approaches for such
with an Arrhenius function of the temperatuFeand a large theoretical efforts. One approach treats directly the coarse-
power of the feature size. Strategies for skirting the Iifetimegrf"“n.etlj surfa(;]e height .and slorp])e profiles by. using continuum
limitations involve processing at ever-lower temperatures foPTiNciples such as continuum thermodynamics and mass con-

ever-smaller feature sizes. The theoretical description of th&€"vation,  expressed t|)3f/ palf“f%' éjoiff?]rent(ijal equati?ns
thermodynamics, kinetics, and macroscopic evolution of surtPDES™*"or variational formulations. The advantage o

faces at low temperatures is an area of active resédrch. 'this appr_oach lies in its relative simplicit_y because models
Every crystal surface at thermodynamic equilibrium expe-Nvoked in this category are often analytically tractable and
fiences a roughening transition at a temperaftige(Refs hence amenable to simple quantitative predictions. However,

. T such models have been criticiZ8d'-3for not correctly tak-
3-7) that depends on the surface orientation: for any gien ing into account the discrete effects of the facet boundaries,

. . Svhich may be sensitive to the interaction between extremal
roughening transition temperatufgz<T whereas macro- steps of opposite sign

scopic, flat regions of the surface known as fatbte Tg The second approach primarily treats surface evolution by
>T. Below Tg, the surface morphology can be described bygijther mimicking the motion of many atoms via microscopic
a collection of atomically smooth terraces separated by stepg;odels34-37 or the motion of individual steps via step-flow
as T increases abov&g the step free energy vanishes andmodels and kinetic simulatiof&?21:32:33.38-42in \which the
terraces can no longer be identified, as steps cover the entiggep motion results from the transfer of adatoms across the
surface, which appears rou§fthe physical processes driv- terraces separating stefisThe step-flow models provide de-
ing surface evolution are thus distinctly different in the two tailed information about the surface evolution at the nanos-
temperature regimes. In particular, beldw surface relax- cale, and can offer valuable input data for the improvement
ation occurs via the lateral motion of steps, which is causedf the continuum modef29-324INevertheless, the numeri-
by three major processes: diffusion of point defe¢tda-  cal simulations of this approach are limited in their ability to
toms”) across terraces, attachment and detachment of adeecognize universal features of surface evolution such as the
toms at the step edges, and diffusion of atoms along the stegzaling with the physical parameters.

edges. The latter process is not important in a broad class of We choose the former, continuum approach in this paper
problems such as the one considered here. and focus on scaling aspects of nanostructure decay. Moti-
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vated by results of kinetic simulatioff$! and the corre- do not believe that such criticisms are conclusive about the
sponding efforts to combine discrete and continuum aplimitations of continuum approaches for the following rea-
proaches for self-similar shapes at long tinfesparticular, sons:(a) From the physical and experimental standpoints, it
Fig. 6 of Ref. 32, we sought to apply boundary-layer ideas is of interest at the meso or macroscales to find universal,
to the decay problem. Our treatment transcends the prevscaling laws that involve physical, nondimensional param-
ously stateéf-3133 imitations of continuum models in the eters such as the ratio of the step interaction energy to the
ability to predict the scaling behavior near the facet edge. energy(“line tension”) of an isolated step; it is unclear to
The morphological equilibration by surface diffusion of what extent the details of the individual step motion matter
corrugated surfaces abovg was described via a classical for this purpose(b) In many physical situations the effect of
continuum approach over 40 years dgé° This analysis is  attractive step-antistep interactions can be neglected com-
based on the assumption that the surface free energy ispared to other energies such as line tension that can dominate
smooth function of the surface orientation, which enables théhe morphological evolution, for instance, in the case with
derivation of a fourth-order PDE with smooth solutions for single-faceted structures such as those originating from large
the coarse-grained height profile. Essential in this formulainitial cones3? which consist of circular stepgc) Spohn’s
tion is a mass conservation equation for surface atoms, analysis identifies and provides insight into the problem of
chemical potential proportional to the curvatdfend a sur-  using suitable “effective” continuum boundary conditions at
face current proportional to the chemical potential gradientthe facet edge. We believe that issu@s and (c), though
The resulting PDE is not applicable below, where facets directly amenable to a treatment by a continuum theory, have
are present, because the surface free energy is not analyticraat been adequately addressed in the literature. In this paper,
the facet orientationd*1516 we report progress towards both of these issues.
Systematic efforts to treat morphological evolution below Other continuum approaché$>?’ deal with facets via
Tr via continuum principles began in the mid-1980s andregularization of the surface free energy and application of
continue to the preseht’-2729.3qn these treatments the mo- continuum equations everywhere along the surface. A small
tion of steps below thdy of the high-symmetry, “basal” Parameter, or regulator, is introduced to smooth out the sur-
plane of the crystal is taken into account by introduction off@ce free energy as a function of the slope. As a result, the
the step density as a continuous variaBlewhich is propor- solutions for the slope profile are also smooth, with nearly

tional to the surface slope on a scale large compared to tHt extrimla %ué notacftuatlj facetst, zlinywh%re. gg:%sme}]hod has
step separatioftypically of the order of 1—10 njn Nonlin- een criticized due o fundamental considera uch as

. : . the lack of physical meaning of the regulator; furthermore, it
ear PDE.S _have_ been de“"?d_ fér(_)r the helg_hth_ IN CaseS has not been shown that the results converge with those of
with unidirectional or bidirectional periodic surface

. - . "~= step kinetic simulation§
9-21
modulatloni An essential ingredient of these equations Shenoy and Freurticircumvent the difficulty associated
is an analytical expression for the chemical potential of ats

, , e . “~with the presence of facets by using a variational formulation
oms at interacting step edges, which is termed the “steRnqg Fourier series expansions that replace local relations,
chemical potential**i.e., the change in the free energy of gch as that between the adatom current and the chemical
the SyStem of interacting StepS by the removal or addition Of)otentiaL by Coup|ed ODEs for the time_dependent expan-
an atom at a step edge. Fourth-order nonlinear PDES$ for sjon coefficients, which they solve numerically. This method
can then be derived in the case where surface diffusion is thgppears to be consistent with SpoR#seatment of facets
rate-limiting process$??123 Considerable progress has beenbut does not deal directly with the scaling of the solutions
made in solving the PDEs by invoking separation ofwith the physical parameters.
variables?! power series expansiof$?* and shape- In this paper we study universal, scaling aspects of mor-
preserving(similarity) solutiong>?332that satisfy ordinary phological evolution belowlr by using a PDE, and treat
differential equations(ODES, but further progress has facet evolution as a free-boundary problétd*We consider
been hindered by the presence of macroscopicrystalline structures having a single facet and closed curved
facets?3:27.28.30-83.4148 this case the solutions to the PDEs steps. Because of the inclusion of the line tension and the
develop singularities at the facet edge, which are intimatelystep curvature in this case, our analysis is different from
related to the nonanalyticity of the surface free endégys a  Spohn’s treatmeft of surface diffusion, which focuses on
function of the surface slope in the vicinity of the facet ori- unidirectional surface modulations. We are motivated by ki-
entation. netic simulation® for initial conical shapes: the authors nu-
In order to address mathematically the first difficulty of merically solved a large number of coupled ODEs to show
the singular behavior associated with the presence of facethat the slope profild- has a self-similar behavior at long
Spohri® allowed for time-dependent facet formation by treat-times, with similarity variablert™/4, wherer is the polar
ing the relevant PDE problem as a free-boundary problem. ldistance and is time. Furthermore, in Ref. 32 the authors
the analysis the chemical potential associated with steps &tarted with the coupled, step-flow equations and derived an
extended continuously onto facets of unidirectional surfacédDE for the similarity function, but were unable to solve it
modulations; the PDE was sol&d* subject to a set of uniquely. A particular feature of the simulation results that
boundary conditions at the moving facet edge. This apwas not quantified or even noticed is the rapid chande iof
proach, though natural and not uncommon in continuum mea region near the facet. As we show, this region can be
chanics, has been criticiz&ef® for excluding the effects of treated as a “boundary layer” and its width depends nontrivi-
step-antistep attractive interactions when steps of oppositally on the ratio of the step interaction energy to the line
sign bounding a facet come close to each other. However, wiension for both DL and ADL kinetics.
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We apply boundary-layer theory to quantify the scaling of
the surface slop& with the ratio of step interaction energy
to line tension for both DL and ADL kinetics, and also re-
solve the uniqueness problem for DL kinetics by giving a
sufficient set of boundary conditions at the facet edge. The
main ideas for pure DL kinetics were outlined recently in a
letter?® This paper is organized as follows. In Sec. Il we
derive a PDE for the heigh(r ,t) and height gradienF
=-Vh for mixed ADL and DL kinetics, with inclusion also
of the Ehrlich-Schwoebel barri&*> Specifically, in Sec.

Il A we start with the kinetic equations for circular steps FIG. 1. View of an axisymmetric surface profile, on both the
bounding terraces below the basal plarigsand take the macroscale and the nanoscale where the circular steps of atomic
continuum limit; the resulting slope profile is axisymmetric, height and the terraces separating the steps are evident. The decay
respects mass conservation, and satisfies a fourth-order noff-this structure is caused by the motion of steps, as the top layer
linear PDE, where the current is related to the step chemicderiodically shrinks and collapses.

potential gradient via an effective diffusivity which, when

ADL kinetics is included, is slope-dependent. In Sec. || B wemetric structures, this assumption implies tligt= oh/or

apply a continuum surface-free energy approach, relax thez0 everywhere outside the facet.

condition of axisymmetry and thereby derive a more general
PDE for F that includes non-axisymmetric, single-faceted
structures. In Sec. Il C we formulate a boundary-value prob-
lem for pure DL kinetics and axisymmetric structures. In 1. First-order kinetics
Sec. Il we treat DL kinetics: We develop free-boundary and
boundary-layer theories to describe a self-similar step denﬁ)r

sity F close to the facet, find scaling with the ratio of step g ien s chwoebel barriéf;*>which refers to an increased

g‘te{aiit'o?hznsgiﬁézrl'ni(;gg;;ggé a:)r;dsdei”vlf é‘ ;{"g%%acetbarrier for adatom attachment and detachment to a descend-
pplyIng y N -ing step. In addition, we indicate a subtlety in the derivation
edge. In Sec. IV we address the more intricate case of scali

ges . X ;

; ) ) . ; the step chemical potential, which has apparently been

ggg ;2? rj::ao /féﬁhﬁnitteifsm\f\?ﬁ;ﬁ?@?eﬂ;ﬁ tr?z ls'?nemtaerrj'overlooked. We consider axisymmetric crystal surfaces char-
p : ’ 9 acterized byN (N>1) interacting, concentric circular steps

ity solution for the step density is then not defined in the f the same step heiglat separated by flat terraces parallel
same sense as for DL kinetics, the boundary-layer ideas stiﬁ

apply. In Sec. V we compare our scaling results for DL and-0 the b?lsa' planéseg Fig. 1 th_elth terrace lies betw_een the
I . NS : ' ith and(i + 1)th step, in the region,<r <r;,4, wherer is the

ADL kinetics with the kinetic simulation data and find excel- lar dist 20 1 ~1 andi=0 ds to th

lent agreement for four distinct scaling predictions. FinaIIy,po ar distancei=0,1, ... N-1, andi=0 corresponds to the

. . . . =0<r<r.. lti -
in Sec. VI we conclude our work with a general dlscussmnfacet’ro O<r<r,. Itis further assumed that surface evolu

including the possible relevance of our results to experi—tlon is limited by the diffusion of adatoms across terrates,
ments. as well as by thg attachment_ anq detachment of atoms at the
step edges, while no material is deposited on the surface
from above. Other transport processes such as volbuik)
Il. CONTINUUM THEORY diffusion, evaporation-condensation, and diffusion along the
step edges are neglected.

In a coarse-grained continuum theory surface evolution is The adatom concentratiaz)(r,t) on theith terrace satis-
described by using as a continuous variable the surfaces the diffusion equationic;/ st=D.V2c(r,t), whereDy is
heighth(r ,t) or the positive surface gradiefh|, which is  the surface diffusivity which is assumed to be a scalar con-
proportional to the step density, where(x,y)=r& is the  stant. In the quasistatic approximation the time derivative in
position vector in the high-symmetry, basal plane of the crysihe diffusion equation is neglectédc;/gt=~0, andc(r,t)
tal andt is time; see Fig. 1 for an axisymmetric shape profilethus satisfies the Laplace equatiifc;=0, where the time
h=h(r,t). The heighth and the surface currept(atoms per dependence af; enters only implicitly through the boundary
length per time are related by the mass conservation equaconditions at the step edges. Hencgr,t)=A, Inr+B; for
tion for atoms?® r;<r<r.1, whereA; andB; depend only on time. By intro-
ducing the adatom curredf(r,t) on theith terrace,

A. Kinetic equations and continuum limit for circular steps

We start with the kinetic formulation of Ref. 32, largely
completeness, though we modify it slightly to include the

dh .

E-'-QV 'J—O, (l) aCi A|(t)
Ji(r,t) = - DS_ == Ds_, M <r <rjs1, (2)
where () is the atomic volume; for axisymmetric structures o r
j=i(r,H)&. We consider surfaces with a single facet, a flatthe balance of adatoms at the steps boundingttherrace is
part with zero slope, and with a concave downward and sufexpressed

ficiently smooth shape outside the facet. We further assume

that no other facets are formed during evolution; for axisym- - Ji(ri,t) =k [ci(r;,t) - C7], (3a)
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Ji(risp,t) =kglci(rieg, ) = CEA1, (3b)

where C9 is the equilibrium concentration of atoms in the

vicinity of the ith step, k, is the rate coefficient for where throughout this paper the dot on top of a symbol de-
attachment-detachment from a terrace to an up-step edgeotes the time derivative. The system of discrete differential
andky is the rate coefficient for attachment-detachment fromequations(10) with Egs. (6)—9) and the initial condition of

a terrace to a down-step edge; note that k, for a positive ~ givenr;(0) can be solved numericalfy.Oncer;(t) are deter-
Ehrlich-Schwoebel barrie; andB; can thus be determined mined, the step densitfy;(t) corresponding to thih terrace

in terms ofr; andr;,4, €.0., is calculated by

) QO
ri(t) = E[Ji—l(riat) = Ji(ri,n], (10

11

Cieq_ Cie+ql it =
' (4) Fi(t) = —.
In (ri/ri+l) - Ds(llkuri + 1/kdri+1) Fier =T
A few words are in order about the distinction of pure DL
from pure ADL kinetics on the basis of the kinetic equations.
By inspection of Eq(6), the behavior of the adatom current,
Ji(r,t), ini andr depends on the interplay between the two
. terms in the denominator, e.g., the(lp.4/r;) term and the
CHi=cerilkeT ~ cs<1 + k_ll') (5) D (k) +(Kgris) Y] term. If the first term dominates, the
B adatom current is sensitive &pacevariations of the step
whereks is Boltzmann’s constant is the absolute tempera- chemical potential, (s~ i)/ (risy—ry); this case corre-
ture, ¢ is the atom equilibrium concentration at an isolatedSPONds to pure DL kinetics as diffusion across terraces is the
straight step, andkgT>|w| for most experimental rate-limiting process, and the continuum counterpart of

Ai:

while the B; are not needed for our purposes. The equilib-
rium concentratiorCSis related to the step chemical poten-
tial ; of theith step by?4°

situationss® Ji(r,t) equals a constant times the gradient of the step chemi-
The current);(r,t) is thus expressed in terms of the stepCal potential; see Eq(21) below. In contrast, for ADL-
chemical potentiajy; via Egs.(2), (4), and(5) as dominated kinetics the term [mn;,/r;) is negligible and the
adatom current is sensitive tstep variations of the step
D1 iy = M chemical potential, (wj;1— i) /[(i+1)—i]; thus, the con-

Ji(r,t)=- - (6) tinuum adatom current is related to the gradient of the ste
kaT rIn (rigq/r) + DL/, ri + 1/Kyri g p
® (Fisa/ti) + DMk + Lhafie) chemical potential via an effective surface diffusivity in-

for r;<r <r,,,. For pairwise, short-ranged, repulsive step in-Vversely proportional to the step density; see &2) below.

teractionsV(r;, ri,;) between theth and(i+1)th stepsy; is A relation that is useful in the next section where the
given by? continuum limit is considered follows by differentiation of
the step density(t), Eq. (11), with respect to time using
Qg . Q IV rieg) +V(rieg )] Eq. (10
= N ¥ 27rar; ar; ; @ - ;
! ! ! dFi _ s =hi _ G+ — P (12)
the step “stiffnessy,a (energy/lengthis the energy per unit dt (risa = 1) lisr =i
length of an isolated stefiine tension plus its second de- \\here
rivative with respect to surface orientation, aamds the step
height. By adopting the formula for the interactions of con- _Ji(ri,t) = Ji_a(rt) _ 3, t) = Jiq(rit)
centric circular steps of the same sign, i r—r R Fioa—T - (13
i i-1 i+1 i
Filisy We note that, by virtue of the quasistatic assumpfieq.

V(ri,risp) = 27(332%) ; (8 (2)], the values of the adatom current at the step edges

bounding the ith terrace are related by 1Ji(ri1,t)

where g5 (energy/lengthis the interaction energy per unit =r;J(r;,t). Hence,
length of theith step, the step chemical potentl is cal-
g P P P . _ 1ndi(r,) —riogdina(rig )

(ri+ris)(risg —1p)?

culated to b&? i (149
r i —=li-1
Qg1 - 241 1 2rig 1
= ——=+ 0O0-a —
Hi I Gs { lipp T (I‘i+1 - ri)3 ri+ri—q (ri - ri_1)3 o l ri‘]i(rilt) B ri—l‘]i—l(ri—llt)

(14b

1
+l[< Mi+1 ) 1 ( M- ) 1 } fi fist =i
rl\risa+r/) (rieg—r)? \ri+ri.y/ (ri-ri_)?|] For separation distances that vary slowlyiinri,,—r;=r;
9 i which yields p,= ;.52 Equations(14) are used in the
next section; we recognize that for,,—r;— 0 their right-
The time dependence of each step positigrri(t), is  hand sides become the divergence of the continuous surface
dictated by the mass-balance equation currentj(r,t)=¢&j(r,t).
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2. Continuum limit surface diffusivity that depends on the step density wimen
We next take the continuum limit of EGLO) with empha- #0. Note that the effect of the Ehrlich—-Schwoebel barrier

sis on the structure of the equations involved, and not on th&Nters here implicitly via the effective attachment-
conditions of our approximations. In the continuum limit detachment rate coefficiekt which is the harmonic average

outside the facet;,; andr; are presumed to approach any ﬁwatiel raEte flogifggfgrﬁgsa”d ky. For DL kinetics, where
distancer;=Ar;;1+(1-M)r;, where 6=\ <1;T; becomes the =4

polar distancdindependent variable, and the step number . __CDsdu
i (i=0,1,...N-1) may thus vary for fixedr. The con- jry=- ke T or

tinuum step density(r,t), surface currenf(r,t), and step o _ o
chemical potentialu(r,t) are considered as the limits for whereas for ADL kineticsmF> 1, the respective equation is

ri.1—ri—0 of the piecewise continuous functior?s(r,t) i(rt) = _ckaldu
=F;(t), J(r,t)=J(f;,t), and u(r,t)=pu;(t) which are defined \nh= kgT F ar

in each intervalr<r<ri,y; in the limit rj,,=r;—0 these We obtain an additional relation betweeu(r,t) and

functions are presumed to reduce _to continuous f.unction'?:(r 1) by using Eq{9). In order to simplify this equation we
that are also smooth inalong the sloping surface outside the ' e °1 )
use the formulasri,;=r;+aF -~ and r;_;=r;—aF,_;, along

facet. Necessary conditions for the validity of these assump-* e . R
tions are(i) r, -, <r,5i.e., with condition (15), and thus establish the approximations

2 1.2
Mgl (ri+ri)?~ 3 ~riy/ (ri+ri_p? and

a
— <1, 15 2rir; a a a
09 Em ()8 g
F; 2riF; 2F;
and(ii) ri;1—r;<<L, whereL is the length over which the step

riF;
density varies. If these conditions are violated, terms thaffence, Eq(9) reduces to

(DL kinetics), (21)

(ADL Kinetics). (22

i+ T

account for the “discreteness” of the step motion must be Qg F2+F.F. . +F2
retained in the continuum equations. Ui~ —+ QQSa{%l'"l(Fi -Fi_)
It follows that the difference terms in Eq&l2)—(14) are T
replaced by suitable derivatives. For example, from(E4a 31 |:i2 + |:i2_1
the continuum limit ofg; is the divergence of=j(r,t)&,, +Zr_iT (24)

V:j=(@/r)(alor)(rj); Eq. (12) thus becomes
In the formal limitr,—r,_;— 0, F;_; is replaced byF; in all

9 - Qi V- (16) terms on the right-hand side of this equation, with the excep-
ot or ' tion of the differenceF;,—F,_;. For this last term we use
BecauseF=|Vh|=-¢h is the step density, wheréh<0, _ Fi-Fi1 adF
this equation is readily integrated to give Fi-i=Fi—(or) o, ~F- Eor’ (25
oh i
E:_QV K@), 17) to obtain
Qg 19 _,
Equation(1), the usual continuum mass-conservation state- pir. 1) = T +Qg3FE(rF ), (26)

ment without deposition of material, is recovered () s 5
=0. where G3=5(ds/a), with dimensions energylength? Gs
The surface currerj{r,t) can be expressed as the gradienthefe is defineq such that it is proportional to the interaction
of the step chemical potentigi(r,t) from Eq. (6). By defin-  €Nnergy per unit area of a step projected on the vertical plane.
ing or,=r,,,—r;, and making the approximations The combination of Eqs(16), (19), and (26) yields an
evolution equation foF=-4,h,

I &i 1 1 2 ~
In—~-—, —+—~- (18) 1F 91a1( 1 Gs 010
M1 Fi i Tigr T —_ | —— | - =———
Bot odrrarr\1+mF/ gqarror
and (uis1— i)/ 6y~ dul or, we readily obtain 514
"
—=—(FY) |, 27
i y=_Cs_Ds op 19 [1+mF&rr&r( )] 27
j(r,t) (19)
kgT 1 +mF or

where the single material parameter in the development
in the continuum limit, where the parameteris defined by 2
_ csD12%g;

_ 2D, 1_1(1 1) B T (28)

ka ki ka has dimensionglength*/time. A PDE of the same structure
and Fj=a/or;~F by Eq. (11). Equation(19) has the form as Eq.(27) here is also given in Ref. 32 in terms of the step
j=—(cDs/kgT)V u, whereDs=Dy(1+mF)! is an effective chemical potentia[see their Eq(31)]. Consistent with our

kK 2
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derivation and conditioi15), Eq. (27) ceases to be valid in a concave upward, nonanalytic function ‘ffi,1:2:16.55:56
regions where thédiscrete step densityF; becomes of the
order of a/r;. This situation arises very close to the facet
because the continuous slopevanishes identically on the
facet, and~; becomes vanishingly small in the vicinity of the
top step(see Sec. Il C beloyw A PDE for the height profile, The g, term accounts for the surface free energy per unit
h=h(r,t), is derived by combining foK(t)=0 Egs.(17),  projected area of the basal plane. Theterm is the energy
(19), and(26): for creating an isolated stefine tension. The g term rep-

1 h 191 1 a1 resents pairwise step interactions, including entropic repul-

__=____(—> + B2 sions due to step edge fluctuations, such as elastic dipole-

Baot  roarr\1+mghl/ gyror dipole interactiond. Here we consider only repulsive step

{ 1 [ P9 1] (&_h)z} 29 interactionsg;>0, and defingy; as multiplied by a factoé

1
G(|Vh|):go+91|Vh|+§gs| Vhp. (32

m r? + E - F e in Eq. (32) for later algebraic convenience._The coefficients

r Jo» 91 andgs; are temperature dependent. Higher-order terms
Note that the effect of step permeabiffyin which atoms O(/Vh[") for G (n=4), which may originate from
traverse the steps without attaching and detaching to anguadrupole-dipole or other multipole interactiofisare ne-
from the step edges, has been claifie be taken into glected in Eq.(32). As discussed in Refs. 22 and 55, the
account effectively via a redefinition of the parametar existence of facets is analogous to a thermodynamic phase
=2D//(ka) at long times; specifically, the paramekewhich ~ separation, and is in principle described by nonconvex sur-
is associated to the attachment and detachment rate coefface free energies per projected area, such as those with a
cients, is replaced blg+2p wherep is the permeability rate double-well form. Here we limit ourselves to single-faceted
coefficient. structures with a concave downward, smooth shape outside
the facet; Eq(32) then suffices for our purposes because the
crystal shape near equilibrium is related to the surface free
, , ) ) ) energy via a Legendre transfoRmé->°

In this section we derive an evolution equation for the  The step chemical potential is obtained by considering the

height profile,h=h(r,t), and the gradient profileyh, di- yariations of the surface free energy with respect to the
rectly from continuum surface-free energy considerations fopejght gradientVh=(h,h,),}416.21

crystal shapes with a single facet by relaxing the assumption

of axisymmetry of Sec. Il B. Throughout this analysis, the QO

position vector =(x,y) and the gradien¥ =(a/dx,d/ dy) are uw=—V_-N, (33
defined on the basal plane. The starting point is the mass

conservation equation for atoms, Edj). The surface current n :

j(r,t) is the product of the areal densitgurface concentra- where the vector quantityl is defined b
tion) ¢ and the drift velocity, which is the product of the G G
effective mobility of atoms,D./kgT, and the driving force, N= —a(—éx+ —éy>
namely, the negative gradient of the step chemical potential Iy dhy
wu(r,t). In the case with combined DL and ADL kinetics the

eﬁec:vt|r\]/e_lsilj_rg§ce Id|_ffu3|V|ty| 'Sf taken to I_b_@S:DS(gl tion of N facilitates the expression of the boundary condi-
+m|Vh|)™%. This relation results from generalizing EQ9)  jons at the facet edge, as described in the next section. The
from the step-flow model to include non-axisymmetric Pro-physical meaning ofN stems from the observation that

files consisting of closed steps with spacing small comparegldD;,_N expresses the energy of a step of lendthwhere

to (j) their local radius of curvature, ar(d) the length over #=-Vh/|Vh| is the unit vector normal to the step and par-
which the step density varies:

allel to the basal plane that points outwards the closed curve
D of the step shape; for axisymmetric shapgsg,. It follows
CS S

B. A general continuum surface-free energy approach

(34)

denotingh,=¢h/dv for v=x,y. Mathematically, the introduc-

j=——————Vu; 30

C, is a constant an@ is taken to be a scalar constant. We B Vh o8
have made the approximation thais parallel toVu which, N=-ag |V h| * 91(| Vh[Vh) (35
we note, is valid for a restricted set of geometries and
m|V h|.>* Equation(1) becomes and

oh _cDLO ( 1 )

—= : Vul 31 Vh

ot kgT 1+m| Vh| K (31 ,u=—le{V-<|Vh|>+%V-(Vh|Vh)] (36)

1

A relation between the variablgs and h is obtained by
invoking the surface free energy per unit projected af&za, Equations(33)—(36) are valid outside the facet.
which we take as azimuthally isotropic. A common expres- The evolution equation for the heightr ,t) follows from
sion for theG of vicinal surfaces belowg assumes thas is Egs.(31) and(36):
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oh Vh)
| Vh

1
L R X
9s (|Vh|Vh)]},

+=V V.
01
whereB is defined by Eq(28); see also Ref. 61. Because of
the approximation underlying Eq30), Eq. (37) does not

(37)

fully account for terrace adatom currents parallel to steps. A

nonlinear PDE for the gradient profile=—Vh is derived by
applying the gradient operatd¥, on both sides of E(.37):

oF 1 { (F)

T = BYVV.{——|VV.[—

at {1+m|F| |F|
+&yy -(|F|F)H. (39)
01

A comparison of Eqs(37) and(38) with Egs.(29) and (27)
for axisymmetric shapes with=h(r,t) andF=-&,,h shows
that

38

2a’

03=03= (39

wheregs is introduced in Eq(8).
Equation(37) or (38) must be supplemented with suitable

initial and boundary conditions. As an illustration of the con-

PHYSICAL REVIEW B 71, 165432(2005

w(t), and (c) the facet heighth(t). Hence, we seek six
boundary conditions for these quantities.

Initially (t=0) the surface has a single facet fox W and
is concave downward and smooth with negative slope for
>W, where W=w(0) is the initial facet radius. It follows
from Eq. (40) that no other facets are formed during evolu-
tion. At timest>0,

F(r,t)=0,

The requisite initial condition is expressed in terms of a
given functionH(r) as

h(r,t=0) =H(r),
where the facet is flat,
F(r,0)0=—H'(r)=0, 0sr<Ww,

r<wt). (41)

(42)

(433

and outside the facet the shape is smoothly and monotoni-
cally varying,

F(r,00=—H'(r)>0, r>W. (43b)

We next describe a set of boundary conditions=atv and
r=o; to obtain some of these conditionsratw we exploit
the structure of Eqq1), (30), and(33) for m=0. The result-
ing conditions suffice to provide a unique solution to Eq.
(40).

A condition at the facet edge is that of slope continuiy:

tinuum principles involved in setting up a possible set ofyanishes on the facet, by definition of the facet, and varies
such conditions, we formulate an axisymmetric boundarytontinuously to the surface slope outside the facet,

value problem for DL kinetics below.

C. Boundary-value problem for DL kinetics with axisymmetry

We consider DL kinetics and axisymmetric crystalline

surfaces with height profil&(r,t) and slope profile=(r,t)

(see Fig. 1 In this case the diffusion of adatoms across

terraces is the rate-limiting process; the harmonic avelgge,
of the attachment-detachment rate coefficidgtandky and
the surface diffusivityDg thus satisfy the conditioDs<<ka,
so that we can taken=0 in Eq. (27). The slope profileF
therefore satisfies the nonlinear PDE

10F 3 Jd 10
__=_4_%_V2|:__(I’F2):|
Bat r* gqor ror
3 gy *F? 28PF? 3PF? 39 3,
= -= - S— t— — L F2.
4 g\t rad rZa? o ot
1

(40)

We treat facet evolution as a free-boundary probféme
recognize that there is an expanding facetrferw(t), where

F(w,t) =0. (44)

This condition is consistent with the results of kinetic
simulationg?2 for an initial conical shape, and also agrees
with the requirement of local equilibriuff?

A second boundary condition imposes continuity of the
surface current at the facet edge, which is dictated by mass
conservation. By Eqg19) and(26) of Sec. Il A or Eqs(30)
and(36) of Sec. Il B form=0, the surface current outside the

facet is
F? 10F* #F?
— - . (45

. Cstﬂgl[ 1 93(
= =+ — —_—
1y r2 ro o

keT [r? g
The current on the facef;=j¢(r,t)&., follows by integrating
the mass conservation equatibet QV -j;=0, whereh(t) is

the facet height. Because axisymmetry requires jlatt)
=0, we find

h
ji(r,t)y=- i, r<<w.

20 (46)

F=0, and this facet connects smoothly with the rest of theBy equating the right-hand sides of Edé5) and (46) at r

profile forr >wi(t); here,w=w(t;gs/g;) is the facet radius, a

monotonically increasing function of time. We need to

supplement Eq.(40) with an initial condition and with
boundary conditions at=«, where the slope profile ap-
proaches its initial values, and at the moving boundary
=w of the facet. The unknown functions a@ the slopeF,

=w, and using Eq(44), we obtain the condition

_ 93 1(p2 2 - _hw?
1 a." [FD)e + WE) eIl = =

where(F?), = dF?/ dr.

(47)

which in principle requires four boundary conditions because The surface heighh=h(r,t) is also continuous at the

it satisfies a fourth-order PDE, E0), (b) the facet radius,

facet edge,
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h(t) = h(r =w",t). 48 H'(r)?
(0 =hr=w0 @O B b Hn) + H 0+ Y OH ()] — 0
Differentiation with respect td of both sides of Eq(48)
gives (56)
- dh(w(t),t) _ oh . asr—o. Hence, Eq(55) does not add any new boundary
MO="—"0 = & r:W+_WF(W't)' (49 condition.

Equations(44), (47), (51), and (52) form a set of five
The value of(dh/dt) asr —w" is related to the slopE and  conditions within our continuum approach. As noted above,
its spatial derivatives by Eq29) for m=0, where again we we need six conditions. In order to provide the missing con-

useF=0 atr=w": dition for F(r,t), w(t) andh;(t) we extend continuously onto
h 1 1 5 the facet® the step chemical potential defined by Eg6)
z =Bl = + 93 {_ =(F?), + =(F?),, outside the facet as
[ P~ w? O1 w? w 2 2
1 F< oF
m(r,t) :le[— + %<— + —)} r>w. (57
+ (Fz)rrr - (50) rog\r oar
r=w

) . . N Our setting, where line tension matters, is different from the
Equation(49) therefore yields a third boundary condition,  griginal analysis given by Spoia.We implement the con-

o tinuous extension onto the facet of the variabley exploit-
1 +9_3W[_ (F?), + 2W(F?)y + WA(F?) 2w = ekl ing the relation between the surface currjerar!d My e _
01 B =—(cDs/kgT) V. The extended step chemical potential,

(51) wui(r,t), is thus defined by

Before we give the rest of the conditionsratw, we turn . .
our attention to the behavior & atr =, where by Eq(43b) Je=&le(r,t) =~ “0%g, o (58)
we have the possible asymptotic formulas

We emphasize that, being a mathematical construgtis

F~-H), (529 neither the adatom chemical potential on the facet nor the
layer chemical potentid!33 of the topmost atomic layer. We
JF i i i :
- H'(r), T — oo, (52b) solve for u by using Eq.(46) and integrating58):
_09;
for some class of initial profilesi(r) andgs/g, <O(1). For p(r,p) = E[hfr +b®], r<w, (59

instance, Eqs(52) are expected to be satisfied for an initial ) _ ) _
conical shape, H'(r)=const. By virtue of Eq(40), the cor- whereb_(t) is an as yet undetermined function of time. The
rection to the leading term given in E¢529 satisfies a continuity relation
fourf[h-order PDE which, Whe_n Ilne_anzed about the sl_ope (W, 1) = w(Wht), (60)
profile asr—o0, can only admit two independent, decaying

exponentials as solutions for—; hence, formula$s2) are  after enforcing Eq(44), is therefore equivalent to
interpreted as describing two independent conditions,at

while further differentiations with respect tado not add any hfl’s -4 {1 n %W(FZ) } _ W_b (61)
new conditions. In the special case with a conical initial B 1 "NNew B’
igizﬁi,(ljrf;)— r, these asymptotic formulas amount to the Equationsi44), (47), (51), (52), and(61) form a set of six
conditions for the unknownB(r,t), w(t), hi(t) andb(t), the
JF last of which was introduced by extending onto the facet the
F—1, o 0, r—e. (53 variable 1. Recalling that four boundary conditions and one

_ _initial condition are needed fdf owing to the fourth-order
We now check whether total mass conservation can yielgppg (40), we still need one more condition in order to have
any additional conditions ar=«. Integration inr of 3 reasonably posed free-boundary problem.

(ohlat)=-QV -] gives We lastly apply continuity of the variabld, the quantity
d (” = 4 whose divergence vyieldg, introduced in Eq(34). For this
—J drrh(r,t) :—Qf dr—(rj). (54) purpose we extendll from the sloping surface outside the
dtJo o o facet, r >w, where u=(2/a)V -N, onto the facetr<w.

Becausg(0,1) is finite, the right-hand side of this equation " 'St from Eq.(35) andN=&N(r,t) for r>w we have

vanishes if s
. N=ag/|1+=F?|, r>w. (62)
rj(r,t) =0 asr — oo, (55) o1
From Egs.(45) and(52), the last condition imposes a con- Second, we extend\ to the facet region, whereN

straint on the initial profile: =& N(r,t), by
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Q19 file, Eq. (40) for DL kinetics and axisymmetric structures,
e = EFEUNO' (63) must be supplemented with boundary conditions at the mov-
ing boundary of the facet=w(t). The formulation of Sec. I
This equation is readily integrated o by using Eq.(59), s valid for arbitrary positive energieg (line tension andgs

where axisymmetry implies tha4(0,t)=0, (step-step interaction In particular, we note that only the
B g .3 dimensionless ratigs/g; enters the PDE, Eq40), while the
N; = 2gy(168) " [hr=+ 2rb(t)]. (64 material parameteB simply scales time. Motivated by ki-
The continuity of N acrossr=w, N(w*,t)=N(w,t), thus Netic simulationgfor example, Figs. #) and 6 of Ref. 32
gives the last conditiofrecall thatF(w*,t)=0], we recognize that fogs/g; < Q(l) there eX|_st two distinct
_ regions where the slope profile(r,t) has different behav-
hw®  wb iors: an “outer” region, where the slope profile varies rela-
Tem Tan - L (65 tively slowly in distance and the line-tension energy term
16B 8B y Y 9y

proportional tog, is important, and an “inner” region adja-
Equations(44), (47), (51), (52), (61), and (65 give the  cent to the edge of the facet, or a boundary layer, where the
requisite set of seven boundary conditions at the facet edgelope profile varies rapidly from the valle=0 atr =w to the
r=w, and ate. Sinceb(t) is an as yet unknown function, we values near the boundary with the outer region. In the sense
eliminate it from Egs.(61) and (65); with b(t)=8B/w  described below, inside the inner region the step-step inter-

—hfWZIZB, the reduced set of conditions mtw is action energy term proportional ti is also significant. Be-
cause the simulation results of Ref. 32 correspond to differ-
F=0, ent, small values of a parameter, which is proportional to
) the ratiogs/g; as explained further in Sec. V, we use the
g hew? parameter
1- _3W (Fz)r|r:w: - f_,
01 8B O3
€= g_ (68)
N 1
92 2 __hw?
1 g W [(F?); + W(F?) ]li=w = B and further assume that< O(1); note thatF=F(r,t; ¢). Be-
1

cause thise multiplies the spatial derivatives in E@40),
. including the highest derivative, we can treat the shape evo-
9s 2 2 2 _ lution described by the boundary-value problem of Sec. Il C
1-=w[(F?, - 2w(F?),, - wA(F w=———. (66
glw[( ) (P (F e = B (66) analytically using boundary-layer thed.

By eliminating hf from these equations we obtain the condi- A. Outer solution

tions
We start with the solution of Eq40) for e=0 where the

F=0, (678  corresponding facet radius(t; ) is denotedw(t;0)=w(t).
In this limit only the line tension(g; term) determines the

[ 2 2 _ shape evolution. From Ed40), the resulting zeroth-order

ng [3(F2)r = WA (F)rr Jlr=w = 3, (67b) solution F(r,t;0)=F(r,t) satisfies the PDEF,/dt=3B/r?,
which is trivially integrated subject to the initial condition

Os ) ) (43b) to give

g_lW [3(F )r _W(F )rr]|r:w: 3. (67C)

3Bt
. : . . i Fo(r,) =—7 —H'(r), r>w(t), (69
Equation(40) is thus solved by imposing the initial con- r

dition (43b), along with conditiong52) atr=c and(67) at
r=w. Although we now seem to have a reasonably pos
free-boundary problem in the mathematical sense, the iss
of the boundary conditions remains a topic of discussion. Bt
In particular, our conditions that stem from the continuous ho(r,t) = a7t H(r), r>w(t), (70)
extension of the variableg andN onto the facet appear to
be consistent with the global variational approach describednd hy(r,t)=h(t) on the facet, for <wjy(t). At the facet
in Ref. 30; because these authors expand the chemical potegdge,Fq(wy,t)=3Bt/wg—H’ (W) # 0 becaused’ (wg) <0 by
tial in Fourier series and finally retain a finite number of definition of the initial slope; so, the slope profile is discon-
terms in the expansions, they effectively trgaas a variable  tinuous and conditiont674 is thus not satisfied. This failure
continuous everywhere. of the zeroth-order solution to satisfy a boundary condition at
Il BOUNDARY-LAYER THEORY FOR DL KINETICS the facet edge motivates the singular perturbation analysis of
: Sec. Il B. In addition, condition$67b) and (67¢) are vio-
WITH AXISYMMETRY lated for e=0.

As emphasized in Sec. Il C, we treat shape evolution as a Before we proceed to examine how the inclusion of a

free-boundary problem where the PDE for the gradient prononzeroe modifies the slope profil€, we derive a formula

eémd Fo=0 for r <wy(t). The zeroth-order height profile out-
L%de the facet is
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for wy(t) starting with Eq.(69) and imposing only current
and height continuity at the facet edge,w(t). AlthoughF

PHYSICAL REVIEW B71, 165432(2005

<w, in the neighborhood of the facet edge, where the slope
profile varies rapidly, and descritiein this region in terms

is not acceptable as a solution of the full boundary-valueof the local variable

problem, the zeroth-order facet radiug determined this
way is the limit of w(t;e) as e—0 within our continuum

approach, as shown in Sec. Il B below. The current and

height continuity fore=0 give a scaling with time for wy(t)

_r—w(t;e
C e

Also, we retain the highest spatial derivative on the right-

(76)

that is in agreement with the kinetic simulations for an initial hand side of Eq(40) and balance this derivative with the rest
conical profilé? as we demonstrate below; furthermore, weof terms in this equation to leading order én

derive the scaling with time for other initial shapese Ap-

The slope profile in the variables andt is denotedF

pendix A). The scaling results are expected to remain valid= 7(,t:€); =0(1) inside the boundary layer, or the inner

to leading order ire.

region, and»>1 in the outer region. By direct substitution

From Eq.(45 with €=0, the surface current outside the into Eq. (40), the PDE forF is

facet isjo=jo(r,t)& wherejq(r,t)=(B/Q)(1/r?). The current
on the facet is given by Eq46) with hi(t)=h;(t). So, cur-
rent continuity implies

. 2B
- th = —3- (71)
0
By virtue of Eq.(70), the height continuity yields
t
hro = W +H(wp). (72

Combining Eqs(71) and(72), the facet radiusyy(t), is thus
given implicitly by (see Appendix A for detai)s

Wo(t)
Wo(t) f drrf-H'(r)]=3Bt, wy(0)=W. (73)
W

An explicit relation betweenv, andw, is obtained via dif-
ferentiation int of both sides of Eq(73), or the use of Eq.

(A3) of Appendix A:
}—1
Wo = > 0.
W

Analytical formulas forwg(t) for various initial profiles
are derived in Appendix A. In particular, EGZ3) is solved
explicitly for an initial conical shape, with slope profile
H’(r)=-«=consk 0; for sufficiently long times we finfisee
Eqg. (A10) of Appendix A

OBt 1/4
—> ast — .
K

The t" scaling ofwy(t) agrees with that observed for in
kinetic simulations? In general, the scaling behavior of the
facet width,w(t; e), with time is determined by the initial
slope profile outside the facet. We next address the scaling
the slope profileé=(r,t; €) with the dimensionless energy pa-
rametere=gs/g;.

3Bt

E

3B
= —| — —H'(wp)
0

(74)

Wo(t) ~ ( (75)

B. Inner solution

vv_]:n +( éf _F) + SB
8 Tsln™ It (pd+w)*
B 26
zﬁ[(}—z)vmﬁ? 775+W(]:2)7’”"_W(f2)””
358 35
(pd+ w)3(f2)”_ (7]5+W)4]:2]’ 77

where F,=(dF1dn) and F=(dF/dt), for s<w and 7
=0(1), it is advantageous to write E¢77) in the form

WL o _O(g i 53_5) -
Be 7 7 wew' eB'eB/’

The PDE(78) is solved inside the boundary layer, where
7=0(1), via imposing the three conditiori67) at »=0. One
more boundary condition is given by the common limit
(“overlap”) of the inner and the outer solutions when
— o andr —w" simultaneously. SpecificallyF(#,t) should
approach the outer solution, E@9):

3Bt
w(t)*

We further seek a long-time similarity solutiéwhich
depends separately on the local variakleand the timet

inside the inner region. To leading orderdnwe thus antici-
pate that

Fln,t) ~ - H'(w(t)"), (79

7— .

F(n,t) ~ ag(Ofo( 7€), (80)

where, as shown below, depends implicitly one via the
boundary condition$67) anday=0(1).

1. Scaling of the boundary-layer width
We next derive a scaling af with e. Substitution of Eq.
%0) into (78) gives
wé®

f/ _ .|:2 ////=O(
Beay o~ (o

5 & Sy 8

w ew* B’ B

where the terms on the right-hand side are shown below to

>, (81)

We consider the region adjacent to the edge of the facehe negligible; see Appendix B for other technical details. By
r=w, to examine analytically how the inclusion of a nonzerodefinition of the boundary layer and the variahjef, should

e in the PDE(40) renders the slopE continuous via enforc-
ing the boundary condition&7). In the spirit of boundary-
layer theonf* we consider a region of widtld=4(t;e), &

satisfy a differential equation iry with coefficients indepen-
dent of time. From Eq(81), wé®/Beay must be independent
of time ande,
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W use the relation$fg)!_,=c and (f})’_,=4c,c;, and rewrite
Beag =ko=0(1), (82) conditions(88b) and (88¢) in terms ofc; andc; as
wherek, is a constant; we takky=1 without affecting ob- adW[3e2%c3 + WP = 3, (908
servable quantities such &andw. Thus, to leading order
in e, ~
a3t AW 3% - 4ic,c5] = 3, (90b)
5=0("), (83

whereWw was defined following Eq(84). o

We note that the square-ro@ingulay behaviorO(yr —w)
of F described by the leading term in EQ9) is consistent
with the local equilibriun? where the surface shape is the

independently of théaxisymmetri¢ initial conditions. The
neglected terms in E¢81) areO(e/3) < 1. Then, integrating
Eq. (82) for ky=1 yields a formula for(t) to be used below,

t 5 14 Legendre transform of the surface free energy, E39).
w(t) =| 4B f dt’ag(t)W(t')*+w(ty)? | ., (84  However, the prefactor here is time dependent as it involves
fo the moving boundary positior,=w(t). The same(square-

where =w/A, A(t)=e135(t;€)=0(1), andt, is a fixed rooY behavior occurs in the one-dimensional césih one-

yet sufficiently long arbitrary time. The scaling result of Eq. rectilinear coordinate® this result is expected because in-

(83) agrees well with kinetic simulations as shown in Sec.Side the boundary layer, sufficiently close to the facet edge,
V A below. the facet boundary appears locally straigfht.

The behavior of y(#) for > 1 is derived in Appendix D.
2. Complete solution for the slope profile We find that Eq(87) may admit a growing mode i, which

An ODE for () follows from Eq.(81) with (82). This must be suppressed in order tligsatisfies the far-field con-

) . : 8 ditions (86). The elimination of this modg¢e.g., takingC
ODE can be integrated once via applying conditi@®) to  _g i, Eq.(D3) of Appendix D] amounts to imposing a rela-
the similarity form(80). The choice

tion between the, andc; of Eq. (89).
3Bt We solve the ODHE87) numerically applying conditions
a(t) = W H'(w") (85  (86) and(88a. For this purpose, we fig, and integrate the
ODE starting from#,<1, where values offy(n) and its
determines the explicit time dependence of the slope profilejerivatives are evaluated by using expangiot) of Appen-
and yields the conditions dix C, towardsn* >1 to satisfy the conditiorfo(7*)~1.
So, we find a family of similarity solution$y(7), param-

"wa‘)(”) =1, "waé(”) =0. (86) etrized byc,;, which correspond to a curve(c;) wherecs
= /e
. _ . < 0. Representative numerical solutions are shown in Fig.
The resulting equation foig(7) is 2(a). The solutionfy(7) and the facet radiusi(t) are ob-
2m _ tained uniquely via imposing the remaining conditionsypat
(fo)" ="fo— 1. (87)

=0, Egs.(90), along with Eq.(84). Below we illustrate this
This equation is universal in the sense that no apparent rggrocedure and show how the unique similarity shégie))
striction other than axisymmetry has been imposed for it@and facet radiusv(t) depend ore for the case with a conical
derivation. In principlefqo(#) can be obtained uniquely via initial shape.
the prescribed condition&7) and (86). In particular, the Oncefy(7n) andw(t) are known, the slope profile every-
conditions atyp=0 are where outside the facet is obtained by adding the outer and
inner solutions and subtracting their overlap. The resulting

fo(0)=0, (883 composite formula reads
agi3€?%(fg) 0+ W] = 3, (88b) 3Bt . 3Bt
’ F(r0 ~ | 7 = H'W [[fo(n) - 11+ 5 = H'(0).
o 137 1/3(§2\1 _ T, £2\/ — r
agWe'3€3(f)" —W(fd)"] 0= 3. (880) 91)
In order to solve Eqs(86)—(88), it is convenient to pa-

rametrizef, by the independent constants that enter its ex- R

pansions for small or large. Specifically, the behavior of 3. Conical initial shape

fo(7) near the facet edge;=0, is obtained from E¢(87) by The formulation described above applies to a class of axi-
taking (fg)”+1~0, symmetric initial shapes. We next restrict our analysis to the

case with a conical initial shape of unity slope outside the
facet,H’(r)=-1 for r >W, determine uniquely the solution
wherec, andc; are arbitrary. The higher-order terms in this fo(7), and discuss the scaling of this solution wighThe
expansion are of the form 7’2, wherej=5,6,...; ashown  boundary-value problem of Eq$86), (87), and (88a and

in Appendix C, the coefficients; (j=5) are known in terms  (90) can be solved via the observation that E8g) for the

of ¢; andcs. We thus implicitly parametrizé, by c; andc;,  facet radius is consistent with formul#85) for ay(t) and

folm) ~ cont?+csn®?, ¢, >0, 5—0 (89
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3.5 \ T T T " T = 3—1/2\;}\2_ 1, C3=- 4_1\*'5()\2 _ 1)—1/2; (94)
3 note thatc;<<0 consistently with the numerical solution of
— Fig. 2(a). Because the parametétsa,, ¢; andc; depend on
5°2'5' €, \ is an implicit function ofe¢; in the limit e—0*, \ ap-
- proaches 1 from higher valué¢s — 1%).
o 2 ~ .
2 We proceed to expresg andw in terms of\. For long
% 15 timest, Eq. (84) reduces to
é ; W(t) ~ (4Bagit) M. (95)
3 The combination of this formula with Eq85) for H'(w")
0.5 =-1 gives a quadratic equation fag which has the admis-
0 ‘ . . , , sible (positive solution
0 2 4 6 8 10 12 11 3
(a) scaled radial coordinate (1) =T+ A1+> 96
27575 W (%6)
0 ‘ ‘ ‘ ‘ .
9% 10~ 3 Substitution of this formula into Eq92b) gives
s AN e e W_[gm—xz)z]“ ©7)
e 171074 7 “l16 22 '
. 5 By using Eq.(96) the amplitudea, is thus calculated as a
& -1 /’e=6.8><10' i function of \,
o BEDE SN AN U N R0 S T
-1.51 ’ =573 G-N22° 24-N
2 The combination of Eq95), (97), and(98) gives
-2 i
A | | , witie) [ 3[4-A%+ @AM (M
0 2 4 6 8 10 ByYY+ |8 \? 09

®) ! which provides an explicit analytical solution for the facet

FIG. 2. (a) Numerical solutions of Eq(87) with the boundary width, w, as a function of once\ is determined as a func-
conditionsfy(0)=0 andfy(=)=1. Curves a—e are parametrized by tion of € see Egs.(100 below. Note that in the limite
(c1,c9=(1.5,-8183548 (2,-1.113031 (3,-1.72107502  — 0%, orA—1*, formula(99) reduces tav(t;0) ~ (9Bt)*/%, in
(3.5,-2.030 210 (3.6,-2.092 321 56and correspond te=9.2  agreement with expressidi5) for k=1.
X107 1.9x1073 1.7x10% 6.8x10° 57x10° (b) The It remains to express in terms Bfthe coefficients; and
dashed curves are described by Ei1) for a conical initial shape c5 introduced in Eq(89) and thereby determine analytically
and differente, while the solid curve shows; as a function ofc; the e-dependent curves;(c,; €). From Eqgs.(923a, (94), and

from the numerical solutions of E¢87) in part (a). 97),
2271/3
(75) for w(t;0) if W anda, are constants for long times; so, c, = 5-1/33-1/2[3@} W\?-1, (100a
the boundary-layer widthg(t), increases with time at the 16 A
same rate as the facet radiug}). —
It turns out that significant analytical progress is possible Ca=— E()\Z_ 1)"12 (100b
in this case, though at the expense of some algebra. To arrive 3 4 '

at the analytical results it is convenient to define the param- h val & th . q ibe implicitl
etersé, and\ by For each value of, these equations describe implicitly a

relation betweerr; andc; in terms of the(free) parametei.
¢, = E e Y¥W, (929 By eliminating\ from Egs.(100) we find
3 [ 1 (1663-1)

1/3
—> 5 | » C<0. (101
ac, 3 (101

13— _
16°c; 16c5+3

WPag\?=3, (92b) Ci€
whereA >0 for definiteness. Our purpose is to uses a
free parameter in order to relatg, c¢; and e. By virtue of
definitions(92), conditions(90) become

This equation describes a one-parameter family of curves,
each curve corresponding to a different value.dRepresen-
tative members of this family for four different values of

T+1=)\2, FT- Myes=)\2. (93) (smal) € are shown in Fig. ).
The intersection of the curve of EQLO1) with the set of
Hence A >1 and &,c;=-1, by which points(c;,c3) that result from solving numerically Eq&6),
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_ FIG. 4. Log-log plot of the differencewy(t)—w(t; €)](Bt) " as

FIG. 3. Log-log plot of the maximum ofy(#;e€), (fo)max @ function of e from the solution of Eq(87), with conditionsf,(0)

function of € from the solution of Eq(87) with conditionsfy(0) =0 and fy(®)=1, and Egs.(99), (100b, and (101). The circles
=0 andfq(»)=1 and Eq.(102). The circles represent the results of represent the results of our numerical calculations and correspond

our numerical calculations and correspond to the solution curveg the solution curves a—e of Fig(a. The straight line describes
a—e of Fig. 2a). The straight line describes thel/® scaling law  the 13 scaling law of Eq(104).

derived analytically, Eq(103).

in excellent agreement with kinetic simulatiShas demon-
(87), and(883 is shown in Fig. &), and determines a single strated in Sec. V A below.
value of e for each of the solution curves of Fig(&2. Con- Once(c,,c;) are determined for eaah the parametex is
versely, to each value of there corresponds a unique pair found as a function oé by use of Eqs(100. Thus,a; andw
(c1,¢3), which comes from the intersection of two curves in 5re determined as functions efia Egs.(98) and(99); in the
Fig. 2(b), and hence a unique solutioi(7;e€); as e de-  |imit e—0, a, andw areO(1) as expected. In particular, as
creasesg; and|cg| increase. Note that, by using the full set gecreases towards ow/(Bt)¥4 behaves asw/(Bt)Y/4
of our proposed boundary conditions, we have arrived at a_[3(4/\2-1)]¥4 and thus increases to the value
unique solution for the slope profile as a function of tilme wo()/(BYY4=\3, where wy(t)=w(t;0). Hence, for c,
and distance, and hence resolved the uniqueness problem__o(|C3|) from Eq. (102 or Fig. 2b) and by use of Eq.

first noteq by Israeli and K_andé?i. (100b, we obtain the variation of the facet width with
There is one more scaling law that stems from the analy-

sis. Each of the solution curvédg(z) has a well-defined ab- w(t;0) —w(t;e) = O(e¥®) > 0. (109
solute maximum located ah=7,,,. An order-of-magnitude . . o 14
estimate of this maximum is obtained by differentiation ofln Fig. 4 we plot the differencéwy(t) -w(t; €)J(BY™" cor-

responding to the solution curves a—e of Figg)drersuse,
formula (89), . . : 3 .
and verify our analytically predictee!’® scaling law. In ad-
¢ _ 2c, c, dition, the monotonically decreasing and scaling behavior of
(fo)max= fol7m) ~ 3 V3’ (1028 \y/(BYY4 with e predicted here analytically agrees with ki-
netic simulation® as shown in Sec. V A below.
c
T~ (102D
3/c3 IV. BOUNDARY-LAYER THEORY FOR ADL KINETICS

Because the local-coordinate description describes the shape WITH AXISYMMETRY

as independent o, the position of this maximumgy,, We next address the scaling of the boundary-layer width
should be independent efto leading order. Thus, according with e=g,/g, for ADL kinetics, wheree is the ratio of step-
to Eq.(102h), ¢,=0O(|cy)); the same conclusion is reached by step interaction energy to line tension. Physically, in this case
inspection of the numerical curve in Fig(t2. Equation the attachment and detachment of atoms to and from the step
(101) then dictates that; and c; are O(e */®) and so the edges is the rate-limiting process in the surface relaxation.
maximum slope(fo)max iS estimated by Eq(1023 to be  From the mathematical standpoint, the continuum equations
O(e'19), may be more difficult to study. For example, the effective
(fo)rne= (1) (103 surface diffusivity in the governing equatiof27) is Ds
O/max= LLE - =D(1+mF)1~DsmF, and thus appears to become sin-
In Fig. 3 we plot the numerically evaluated maximumfgf  gular whenF — 0;%7 see Eq(22). In ADL kinetics the behav-
corresponding to the solution curves a—e of Fi@) Zersus ior of the step configuration is more complicated; a wealth of
€, and verify thee V¢ scaling law. This scaling result is also physical phenomena and mathematical features exclusive to
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this limit arise which, within the continuum approach and more serious for the continuum approach as not only is self-
boundary-layer ideas, require considerations different fronsimilarity of the shape then lost, but also the continuum ap-
those of Sec. Il proximations that give the governing equati@y) seem to

Despite the additional complications, however, kineticbreak down becaudecan vary over lengths comparable to a
simulation$? indicate to us that the continuum step density,terrace width; in ADL kinetics the continuum limit has to be
F(r,t), in ADL kinetics retains a feature common with DL reconsidered whengs/g, becomes sufficiently sméif.
kinetics: F still varies rapidly close to the facet, inside a Hence, taking e=gs/g;=0 for ADL kinetics within
boundary layefinner region whose width depends nontrivi- boundary-layer theoff in order to determine the form of the
ally on the ratiogs/g; [e.g., see Figs.(6), 5(d) and 7 of Ref.  outer solution is apparently forbidden by the conditions of
32]. Before we focus on this continuum aspect, we describalidity of the continuum theory. Nevertheless, we show that
the main physical features of ADL kinetics that emerge fromour continuum predictions provide quantitative insight into
kinetic simulations, and discuss their implications for the ap-certain aspects of ADL kinetics.

plication of boundary-layer theory. Because of the potential complications discussed in the
o o ) preceding paragraphs, our focus here is on the scaling of the
A. Implications of kinetic simulations boundary-layer width. We circumvent the difficulties out-

The results of kinetic simulatio%*! for ADL kinetics  lined above by making the following assumptions in the case
indicate that the behavior of the step positian$), which ~ with ADL kinetics: (a) We allow for a long-time similarity
satisfy Eqs(6)—(10) and the initial condition of givem;(0), ~ Solution that, though still dependent on a local coordingte,
can be radically different from that for DL kinetics. Specifi- In the inner region, also has an explicit time dependence
cally, there are two interrelated features of step motion if€lated to the periodic motion of the top step; we subse-
ADL kinetics that characterize such differencé:For fixed ~ guently argue that this latter dependence can be neglected for
and not too small ratio of step-step interaction energy to linUr scaling purposesb) Because the outer solution, which is
tension, the motion of several steps adjacent to the first stegsually defined through taking=0 in the governing equa-
undergoes abrupt changes as the top layer shrinks and 9. is |II—def|ned,.we do not address the issue of finding a
about to collapse; thus, this motion is sensitive to the detail§nique slope profile. Instead, we assume thatceeds the
of kinetics energetics of the top layer. In contrast, in DL critical \_/alue belc_)w which the bunching mst_ablllty occurs,
kinetics the motion of steps appears to be uniform along th@nd derive a scaling of the boundary-layer width via balanc-
distance from the first stesee Fig. 2 of Ref. 32 (b) When  ing terms to leading order ig in the governing equation, in
the ratio of repulsive step interaction energy to line tensiorfomplete analogy with the DL case. In Sec. V B below we
decreases below a threshold value, the step configuration baow that our scaling predictions are in excellent agreement
comes unstable as the steps start to form a bunch close to tMéth the results of kinetic simulations.
facet; further reduction of the ratio of the two energies causes 1he governing PDE for the slope profilé(r, t), for ADL
the appearance of more bunches and the notion of evolutiofinetics results from Eq(27) by neglecting unity compared
as driven by individual steps becomes questionfdsle Figs. t0 mF, as implied by Eq(22); so we study the PDE
5(a), 5(c), 5(e) and §f) of Ref. 32. In DL kinetics, on the
other hand, no such instability occurs; the decrease of the ~1dF _ i}ﬁ}(l) 93914 Li}ﬁ(er)
ratio of the two energiegys/g;, simply causes a rise of the B dt Toarrarr\F grarrar Farror '

(discrete step densityf;=a/(r;,1~r;), close to the facdisee

Fig. 4@ of Ref. 32. In view of these complications, the (109
issue is raised whether a similarity solution for the con- ) -

tinuum step density is valid close to the facet and, if so, whatvhere the material parametBris

is its form. Another, fundamental issue is the validity of the 5

continuum theory for ADL kinetics, and the incorporation in B= cs(ka)g; (2 (106)
a continuum model of the motion of the top st®pin the 2kgT

form of suitable boundary conditions.

In particular, because of featur@) above, F should
change within the collapse period of the top step; a similarity B. Scaling of boundary-layer width
solution of form (80) then seems inconsistent with such ) . ) . .
changes because it cannot account for the details of motion FOllowing the discussion of the preceding section and by
of the top step. In fact, Eq80) is expected to be valid only analogy Wlt.h our approach to DL kinetics, we start with the
sufficiently far from the facet® where the local, inner vari- long-time similarity ansatz
able, », exceeds some value. For lower valuespfthe
maximum of thg similarity function appears _sen_sitive to the F(r,1) ~ ag()fo( 7,7,
density of the first few steps for pure ADL kineti¢&From
the mathematical standpoint, as explained in Ref. 41, the step
density very near the facet has a strong temporal, almoswherer=1(t) accounts for the motion of the top stef;is in
periodic behavior related to the motion of the top step. principle a periodic function ofr and varies slowly witht

In addition, feature(b) above, which refers to the step except possibly at times when the top step collapses. Differ-
bunching instability for ADL kinetics, gives rise to an issue entiation of Eq.(107) with respect to time gives

r—wt;e)

tie) (107

n=
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p= odls w\ g as shown in Sec. V B below. The same argument seems to
— =ayfg—ag| —2| =7+ — 9:1. (109  imply thatw=0(e /8. However, we have insufficient data
ot AT to test this idea as the exponent is small and there is diffi-
Recall thats<w for the boundary-layer ideas to be appli- culty in definingw(t) in the simulations.

cable; inside the boundary layej=0(1). We thus take

-—7
T

|(fo) 7] <|(Fo) [(81 )+ (W], which neglects  the V. COMPARISON WITH SIMULATION RESULTS
r-dependence, and E(L08) reduces to We next compare the predictions of our continuum ap-
pre d-ls W proach for DL and ADL kinetics with the kinetic simulations
— =~ agfo—ag—2| —p+—|. (109  reported by Israeli and Kand#.We believe that this com-
ot /AT parison is meaningful as these authors used the potential of

Substitution of Eq(107) into (105 and use of Eq(109) Eqg. (8) to desqribe repulsive step interactions between_ steps
of the same sign, and did not include the self-interaction of

gives the top step in their formulation, in analogy with our formu-
1] S W oo lation of Secs. Il A and Il B. Our approach is based on the

| afo—ao 577"‘ s)an PDE (27) for axisymmetric structures whereas the kinetic
B 7 simulations of Ref. 32 are based on numerical solutions for
19 1 9 1 1 epd 1 4 Iong;gimes of the kinetic differential equations given in Sec.
= 203 3 nd+ Wi no+wWly & dnpd+wan Il A."® We exercise some caution in comparing results from

these two approaches, however, as the dimensionless param-
1| po+wePfy 10f2  f3 eters used are different.
X\ L o T . (110 In particular, in their simulations both for DL and ADL
fo dn~  bdn  mé+w T , . .
o - . _ kinetics the authors in Ref. 32 vary a dimensionless param-
The boundary layer is identified with the region whqye eter, g, proportional to oure=gs/g;, g=(2/3)C?-(gs/9y),
=0(1). For e<O(1) and <w, the balance of the leading- holding g, fixed, which in our analysis amounts to changing

order terms ine thus gives only € C=kgT/({2g,/a) is a constant independent of.
. 202 > Their simulations produced g-dependent family of solu-
Vg—éaﬂ—iz(la—fg) +2i26—2(1> tions; see their Figs.(®) and 6 for DL kinetics, and their
Be 9m  dn~\fodn"/ agew dn°\fo Figs. §b), 5(d) and 7 for ADL kinetics. Israeli and Kand@l
) : also derived ag-dependent ODE in the similarity variable
_ as' 88 5 (111) x=CY4.r/(Bt)Y* (not to be confused with the Cartesian co-
Beay Be W/’ ordinate for the step density(r,t); we recognize that, for

sufficiently smallg, their ODE reduces to our E(B7). How-
where we keep only the highest derivatives in the terms pefayer, on the basis of their equation they found multiple so-
taining to the two energetic contributions of line tensigh  |utions because their analysis lacked one boundary condition
term) and step-step interactiorig; term). A distinct differ- ¢ the facet edge;=w. We provide a unique solutiofy(7; €)
ence of Eq(111) here from the corresponding E@1) for  for eache in the case with DL kinetics, but are unable to treat

DL kinetics is the presence of the additional derivativeap kinetics on the same detailed footing, as explained in
(1/fy),, on the left-hand side, which arises from the line- gg¢. v

tension term because of tHedependent effective surface
diffusivity.

By inspection of Eq.(111) the only possible balance,
which does not lead to inconsistencies, involves all three We have predicted three scaling laws witkgs/g; ac-

A. DL kinetics

terms on the left-hand side. Thus, we require that cording to the analysis of Sec. Ill for DL kineticéa) The
_ boundary-layer widths(t; €) scales ag'’®, Eq. (83). (b) The
W = ko(7) = O(1) (1129  Maximum step density close to the facet scales 8§, Eq.
Be ’ (103). (c) The facet radiusw(t; €), is monotonically decreas-
ing_in € and its (positive change from the limitw(t;0)
P =\3(Bt)Y4 w(t;0)-w(t; ), scales ag"? Eq. (104).
aé_ewz =ki(7) =O(1), (112b First, we address the scaling of the boundary layer width.

In order to compare our results with the kinetic simulations,
wherek, andk, are slowly varying functions of time. Com- we define the boundary-layer thickness as the distance from
bining these two results we find the facet edgex,=C**-wy/(Bt)'4, to the position, Xpeax

o =CY4.1pead (BYY4, of the peak of the step densitfeax
8=0(), (113 =F(rpeawt)- In Fig. 5 we show the results of kinetic simula-
which is a prediction of a scaling law for the boundary-layertions for the scaled distancgea—X, versus the parameter
width under ADL kinetics. This result should be contrastedg=(5)C?-¢, and compare with oue3 g3 prediction. We
with the case of DL kinetics wher&= O(e*®). The scaling of  find the agreement to be very good for a wide range of values
Eg. (113 is in excellent agreement with kinetic simulatidhs of g. A few remarks are in order on the deviations of the
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FIG. 6. Log-log plot of the positive, scaled §Bt)*/4, change of

FIG. 5. Log-log plot of the boundary-layer thicknes#; e) and  the facet radiusw from its limiting value ase—0, [w(t;0)
the maximum of step densifjpezcas functions ofy=(2/3)C2-efor ~ -w(t;9)](BY) ™4 as function of g=(2/3)C?for DL kinetics; C
DL kinetics; C=kgT/(Qg;/a) is a constant independent gf. The =kgT/(Qg;/a) is a constant independent gf. The crosses repre-
crosses represent the results of kinetic simulations given to us bgent the results of kinetic simulations for the chamgé x 1075)
Israeli and Kandet? Here, 8(t: €) is estimated as the scaled distance —Xo(g) given to us by Israeli and Kand&xy(g) =C**-w-(Bt)"*4is
Xoeak™Xo between the facet edggy=C**-w-(Bt)™"/4 whereF=0,  the scaled facet radius from kinetic simulations as functiomy.of
and the positionX,eqy Of the maximum offF. The straight(solid) The straight(solid) line corresponds to the® scaling law pre-
lines correspond to the"® and e /6 scaling laws predicted accord- dicted according to E(99).
ing to Eq.(81).

boundary-layer width from the predicted behavior wigen B. ADL kinetics

<1078 As g (or €) decreases towards small values in the We now turn our attention to the ADL kinetics analyzed in
simulations,x,e.x approaches the facet edge, the boundarySec. IV. There is one scaling law that comes from the analy-
layer width becomes small on the scale of the step spacingjs and can be compared with kinetic simulation data: the
and its evaluation in the discrete simulations becomes proneoundary-layer width scales a&®, Eq. (113).
to errors; therefore, the definition of the boundary-layer In this case the solution found by kinetic simulations has
width asX,ea—Xo is questionable wheg is too small. a relatively strong temporal behavior related to the periodic
Next, we examine how thé& ., furnished by kinetic ~motion of the top step, and thus does not have a unique
simulations varies witly. In Fig. 5 we compare the results of similarity form at distances sufficiently close to the moving
kinetic simulations with thes /6« g~1/6 scaling prediction.  facet® Consequently, the position of the maximumFogan-
Again, the agreement is very good for an appreciable rangeot be used in the definition of the boundary-layer width,
of values ofg. We note from Fig. 5 that the behavior Bfec  d(t; €). BecauseF attains a unique similarity form at dis-
starts to deviate from thg ' scaling law agy increases to  tances<= Xy, wherex=C4-r - (Bt)"* andxi, corresponds
valuesO(1), because the slope profile near the facet then hag the position of the firstnonzerg minimum ofF closest to
relatively slow variations in distance arfg,c, approaches the facet, we definé(t; ) as the difference,,—xo between
the constant slope of the conical initial shape, which is unitythe facet edgex,=C¥4-w-(Bt)™4, andXy;,.
in the simulationge.g., see the slope profiles in Figag. In Fig. 7 we show the results of kinetic simulations for the
Finally, we examine the predicted sign and scaling with scaled distance,,—X, versusg=(2/3)C?-¢, and compare
of the change of the facet radius from its limit wo,  with our €¥/® prediction. We find the agreement to be excel-
W(t;E)—W(t;O). The kinetic simulations furnish the scaled lent for a wide range of values (g‘, 5% 10‘4<g$ 1; note
facet radiusx,=C**-w/(Bt)**, i.e., the distance where the that smaller values af have been showAto drive the sys-
step densityF practically vanishes, to be decreasingginn  tem to a step bunching instability and may thus be irrelevant
agreement with our prediction, E(9); see Figs. #) and 6  to the similarity solutions under consideration.
of Ref. 32. In Fig. 6 we plot the positive change»gfas a

function of g with refer%nce to Fhe va_Iue of at extrer_nely VI. SUMMARY AND DISCUSSION
small g, hereg=5X107"°. The simulation results are in ex-
cellent agreement with our prediction of te¥® scaling law. By using a continuum description based on thermody-

Note that we choose the, evaluated ag=5x10% as a namic principles and mass conservation we studied aspects
reference value recognizing that the facet radius calculatedf morphological relaxation of single-faceted crystal surfaces

for smallerg by the kinetic simulations is prone to numerical below the roughening transition temperature with focus on

errors as explained aboveNe find that the use of kinetic axisymmetric surface profiles. Our approach is a blend of

simulation data fowx, that corresponds tg<10® seems to three elements. The first element is a PDE for the surface
destroy the scaling predicted by Eq.04).] height profile h, Eq. (37), which reduces to Eq(29) for
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10’ , ‘ . . arise in the step motion whetrgs/g, is sufficiently small.

One difficulty is finding a suitable ansatz for the outer solu-
tion, which usually results from taking=0 in the equation

of motion. In this case, the difficulty is related to the strong
dependence of the slope profile close to the facet on the
motion of the top step. Despite these features we have been
able to identify a boundary layer for the slope profile close to
the facet and quantify its dependence on the step energetics:
the boundary-layer width scales ag/g,)%®, this scaling is

also in good agreement with kinetic simulations.

From the theoretical standpoint, our scaling results mani-
fest intimate relations between boundary layers and facet
evolution, which seem to remain almost intact in passing

. ‘ . from the discrete kinetic equations to the continuum limit.
107 107" 107 10° The presence of the facet, where the continuum solutions
relative step interaction strength (g) develop singularities, does not cause any problems within
_ our approach; in fact, the singular character of the slope pro-

FIG. 7. Log-log plot of the boundary-layer thickneé&;e) as  file near the facet is exploited here in order to determine
function of g=(2/3)C?-€ for ADL kinetics; C=kgT/(Qg1/a) is @ scaling of the maximum step density for DL kinetics. Hence,
constant independent @f;. The crosses represent the results of yr treatment transcends previously stated limitations of con-
kinetic simulations given to us by Israeli and KanéfeHere, 4(t; €) tinuum theorie<833
is estimated as the scaled distamgg,—x between the facet edge, From the experimental standpoint, we believe that the
Xo=C!'%-w-(BY™""%, and the positiomy, of the minimum of , shape profile predicted by the universal ODE, EY), for a
:’.Vhere the Sim”;'rity f};‘}g“‘)“ Ii.s Wle”‘deﬁr:je.d' Jhe Strg?gbt’”d) class of axisymmetric shape profiles, or possibly its variants
(Tf; correspond o t scaling law predicted according to Eq. for non-axisymmetric profiles, may describe real experimen-

' tal situations, especially those where “mounds” are created

axisymmetric shapes. Equatiq@7) was derived from the on crystalline surfaces. The coverage of nominally flat crys-
kinetic equations of a step-flow model, Eq$)—10), or, talline surfaces by mounds can result from homoepitaxial
alternatively, from a coarse-grained surface free energy aggrowth of semiconductor;’? metals® and ceramic$} het-
proximated by Eq(32) for simple, repulsive pairwise step eroepitaxial growth of Pb crystallit€8,or from lithographic
interactions. This PDE accounts for the main step energeticsabrication processes. Axisymmetry is rarely observed
namely, line-tension energy and step-step interaction energshere but two-, three-, or four-fold rotational symmetry of the
The second ingredient of our approach is free-boundarynounds is frequently observed. After the completion of
theory to treat the expanding facet in the spirit of Spdhn; growth or patterning, some aspects of the relaxation of these
we extended the analysis further, to cases where both the lif@atures toward flatness at temperatures belgwmay be
tension and the step interactions play an important role. Thgescribed by our treatment. There should be a time regime in
third element is singular perturbation theory, particularly\yhich sufficient mass transport has occurred for the tips of
boundary-layer theory, by which we described systematicallye mounds to have attained a self-similar shape but insuffi-
rapid variations of self-similar slope profilés close to the  ¢jent mass transport has occurred to permit the tips to inter-

fac%\.e combination of free-boundary and boundarv-la eract with the bases of the mounds. In this regime, profiles and
) L y y-lay scaling laws as presented here are indicative of the depen-
theories for DL kinetics enabled us to make two analytical

advances over past continuum treatmefds\We were able dence of macroscopic features of evolution on the step ener-
to simplify the PDE for the slope profile close to the facet bygetlcs. . . . . .
reducing it a universal ODE, Eq87), for some class of It is worthwhile placing our work in perspective with
axisymmetric shapes. Furthermore, by exploiting the hierarSOMe €xisting treatments of surface evolution and also point-
chy of the continuum equations, as expressed by the relatiod@d 0ut open questions. Our motivation for treating analyti-
among the surface free energy per projected area, the chen@lly the nanostructure decay with ratio of energy parameters
cal potential, the surface current and the height time deriva€=93/9:<O(1) was to make direct contact with kinetic
tive, Egs. (1), (30), (33), and (34), we identified a set of simulations®? Furthermore, it is necessary to develop a sys-
boundary conditions foF at the facet edge that provided us tematic understanding of limitations of a large body of clas-
with a unique solution to the ODE for each value@f g;. sical work based on the original step-flow model by Burton,
(b) We found scaling laws for the boundary-layer width, the Cabrera and Frarikin which e=0. We emphasize that our
maximum slope and the facet radius as functions of the ratipesults are consistent with the kinetic simulations although
of step interactions to line tension that agree well with ki-our analysis is developed within the analytical framework of
netic simulations. Specifically, the boundary-layer widthcontinuum thermodynamics. The principal concept that
scales a$gs/g;)'3, the maximum slope scales @s/g;) >, emerges from our studies asbadge between the two ap-
and the change of the facet radius from its limiting valae  proaches is the boundary-layer idea.
gs/9,— 0) scales aggs/g;)3. In order to identify and quantify the boundary layer we
For ADL kinetics we have recognized difficulties in ap- considered nanostructure decays in which line tension mat-
plying boundary-layer theory because of the instabilities thaters, as is the case with a conical initial shape. Specifically, in

10 |

boundary-layer width (xmin—xo)

4
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the corresponding simulatiod$all steps including the top : B 3Bt. .

one move exclusively under the influence of line tension and hro = 2k ot H' (Wp)Wo. (A1)

interactions with the neighboring steps. We followed this as- 0 0

pect of evolution using the same interactions. Our scalingy virtue of Eq.(71), elimination ofhfo yields

results are a direct consequence of boundary-layer theory.

Specifically, we believe that the scaling of the maximum step

density does not depend on the detailed form of the boundary

conditions that we chose to apply. )
There are features of evolution that apparently evade dhe last equation reads

3B 3Bt
. 2007 (ot — .
WoW, H (W ) =- + Wo. (AZ)
0 0 W WO2

precise description in our model, such as the detailed motion d| oo dl 3Bt
of the top step, which is sensitive to its kinetics and energet- — J drrf-H'(n)]¢ = —{—} . (A3)
ics. In this respect the question is raised whether suitable dt| Jconst dt wo(t)

boundary conditions at the facet edge can be found to ac- : : . . - .
count for the self interaction of the top step. Mathematicallyﬁ:\tﬁ?;tgi’lr; SIV?SISEZT%;IO” with the initial conditiamy(0)

this possibility is indicated to us by the existence of the
one-parameter family of similarity solutions of Sec. [ldee

Fig. 2(a)]; different members of this family may be reason- 1. Conical initial shape
ably “selected™ via boundary conditions that can incorpo-

rate different energetics, in the form of self-interaction, of the hen the initial surface profile is a cone, Eg3) can be

solved exactly for all time$>0. With H'(r)=-—«<0 for r

top step. L )
Our analysis is in the spirit of SpohA%&treatment of fac-  ~ Wo(0)=W, W(t) satisfies the equation
ets as free boundaries, and enriches that approach with the OBt
concept of boundary layer in order to quantify analytically Wo(t)* = WRWq(t) — = 0. (A4)

the combined effect of step line tension and step-step inter-
actions. In more technical terms, by considering a neighborgy the known procedure of finding roots of quartic
hood of the facet where the slope varies appreciably, we neq§g|ynomia|s7,7
impose similarity onlylocally for a class of initial shapes and —
not globally. Ay 1\/ , 36Bt)2

A continuum aspect that needs to be explored further is Wo(t) = > '3 2\ur+ ) 4o (A5)
the connection of the boundary-layer theory used here with
the variational formulation of Ref. 30. In particular, there Where

seems to exist an intimate relation between the nature of the Ui=S. — S (AB)
boundary conditions that we apply in Sec. Il C and this 1T
variational approach.
. . . 3 12 1/3
In conclusion, our continuum approach stems from famil- - { (125t) + w- V\_ﬁ] (A7)
iar thermodynamic concepts and reaches analytical results by - K 4 — 2

using a PDE and combining free-boundary and boundary-

layer theories. It is thus promising to apply these ideas to

other problems at the mesoscale and nanoscale, with or with- 2. Long-time asymptotic formulas for class

out the assumption of self-similar shapes. The extension of of initial shapes

our studies to fine details of nanostructure decay for a range , )

of processes may require a more careful examination of the e consider solutione(t) to Eq.(73) that, for a class of

effective boundary conditions at the facet edge. initial shapes, are monotonically increasing and unbounded
for sufficiently long timest. We distinguish the following
cases.
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(73) furnishes

APPENDIX A: ZEROTH-ORDER FACET RADIUS W6+4 W6+4
' K =3Bt—-A—— + O(wy), (A9)
. . . . . pt v+
In this appendix we derive E73) and also give analyti-
cal formulas forwy(t) for various initial profiles. Differentia- where theO(w,) terms can be neglected. The leading term
tion with respect ta of both sides of Eq(72) gives for long times is
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(p+ 3)3|3t} U(p+4) (AL0) b. Bt/wy=0(1) as t— o

Wo(t) ~ [

In this case the facet expands at a constant speaed,
=const. Thus, the initial slope profile must satisfy

K

For p=0, an initial conical shape, this formula agrees with

Eq. (A5) in the limit whereW< (Bt)¥* so that 3®t/ x domi- NP
nates oveu,. The next-order term is derived from EGA9) =] drrf-H(n] <. (A18)

by a simple iteration: W

(p+3)3Bt |Me+9 ) p+3 It follows that
Wolt) ~ { K } T k(w3 (p+4) Wo(t) ~ 1713Bt. (A19)
+ 3)3Bt |[L-(0)p+4) In particular, wherH’(r)=-«r? and p< -3,
><[(p ) ] Ay MNP (n)=-xt" andp
. ) . Wo(t) ~ M3Bt (A20)
In particular, forp=1 andv=0 Eq.(A8) describes a parabo- 0 KWPH3TT

loid and Eq.(A1l) gives _ i B
The exponential slope profileH (r)=«xe ™" (¢>0) leads to

12Bt\Y® 4 )\
Wy(t) ~ ( ) A (A12) the formula
15« oW
3e
in agreement with the scaling in time derived directly from Wo(t) ~ K(W2l o+ 2WI o2 + 2/5) Bt. (A21)
the step motion in Ref. 38. If the paraboloid axis of symme- ) s
try coincides with thez-axis, then\=0. In the case withh ~ The Gaussian slope profilé’(r)=-«re™’*" gives
=0 and arbitraryp, Eq. (73) gives W2
6e™ '@
+3)3Bt | Y+ WS (p+ 3)3Bt |T(Pr2V(e4) Wo(t) ~ —5—5—-Bt. A22
Wo(t) ~ [—(" ) ] S W (o 338t , o0~ 2wt o (A22)
K pt+4 K
(A13)
Note that the initial facet radiudyV, enters the next-order = APPENDIX B: SCALING FOR THE BOUNDARY-LAYER
term. WIDTH

The case withp=-3 and\=0 deserves some special at-
tention because the integral in E§3) becomes logarithmi-
cally divergent. Equatiori73) reads

In this appendix we argue that E@3) is the only possi-
bility of scaling. As is common in problems of singular
perturbatiorf* we assume that, to leading order é&n the
boundary-layer width5 scales as

ot e)=€*At), a>0, (B1)

whereA=0(1) and the exponent is to be determined. We
show that there is a unique value afconsistent with the
3Bt/k boundary conditionF=0 at »=0 and condition(79) as 7

W,
KWo In (WO) = 3Bt. (A14)

A formula for wy(t) is found by taking the logarithm of both
sides of this equation:

Wolt) ~ In (3Bt/«W) — InIn (3BY/«kW) (A15) — 00, '_I'his value can be obtained by reductio ad absurdum as
described below.
Finally, we consider the case with=—-3<<p and A #0. By use of formula(B1), Eq. (78) reads
The equation fomg(t) is ,
WA
AN W w3 e = e(F?),,py + O, 4. B2
—> =3Bt-AwyIn (_O>+K wy.  (Al16) B (F) = €T gy + O ) (B2)
p+3 w +3

. L ) . . So, we distinguish two ranges of values ter
This equation is solved iteratively by treating the two last 0) a<%_ The leading term in Eq(B2) is thus O(3%);

terms of its right-hand side as small: hence,F,=0, by whichF(,t)=0 for all 7 in order to sat-

(p+3)3Bt |Y+4 isfy the condition of zero slope ay=0. This solution is
Wo(t) ~ P impossible.
(i) @>%. The leading term in Eq(B2) is O(e). Hence,
—(p+2)/(p+ 3
_ Aﬁ[w_:ﬂ%t} (el (72),=0, or
kpt+4 K ’ 3 5
1[ (p+ 3B+ FAm,t) = bg(t) 777 + by(t) 7~ + by (1) 7, (B3)
p
X '”{V_V[—K } } which satisfiesF(0,t)=0. So, F(5,t)=0(%'?) as p—,

s D) wherel is a positive integer, which cannot match the outer
. WP (p+ 3)3Bt | PP (A17) solution according to formulé79). We conclude that=+% is
p+4 K ' the only possible value. Futhermore, it is shown in Appendix
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D that the resulting similarity solution forF inside the 693

boundary layer can approach the outer solutionzas e T(C1C10+ C3Cg + C4C7 + Cs5Ce) = Cs,
with correction terms that decay exponentiallyzn
APPENDIX C: BEHAVIOR OF fy(%) AS p—0* 120(2¢1Cq 4+ 2C5Cq + 2C4Cg + 2C5C7 + cé) =cs. (CH)
In this appendix we derive a smajl-expansion for the After some algebra the coefficientsfor j=5 are calcu-

fo( ) that satisfies the ODEB7) with f,(0)=0. By virtue of  lated in terms oft; andc; (recall thatc,=c,=0),
Eq. (89) we start with the expansion

c ! <c2+ 1> c 4
M 5: T A 3 ~ | 6: PP
. 2c 6 105
fo(m) ~ 2 7% =0, »—0".  (Cl '
—
i - _ _ C—CS(C2+}> S 83
We chooseM =11 for the number of terms in this expansion, 7= _Zcf stg) Ce7 —31501,

as a compromise between the amount of labor to calcojate
and the accuracy needed for our actual numerical calcula-

tions. It follows that ng_i<cz+ i)<02+ })
22 2 52, (2 3 8ci\ ® 30/\° 6/’
fo(m)® ~ cim+ 2C1C377° + 2C1C4 777" + (C5 + 2C1C5) 77° + 2(C1Cs
+CaC) 772+ (261C7 + 2C5C5 + C3) 7" + 2(C4Cq + CaCo - 4 (4_03 + i)
+C4C5) 7°/2 + 2(C1C10+ CaCq + CoC7 + CsCo) 72 10 5&ci\ 7 27/
+(2C1Cq + 2C5C7 + 2C4Cg + C2) 7°
(201Cq + 2C4C7 + 24C5 + C3) 7 i _ G, 1)(7¢5, 1), 202 ce
+ (20111 + 2C3Cq + 2C4Cq + 2C5C7 + CE) 70, (C2) = 4ct E 6/\ 2 4/ (109°%; (co

15 ~ 105
()" ~ ~ CiCar 12+ 6(c5 + 2c,C5) + 4 (CiCe+ CaCa) 7

, 315
+24(2¢1C7 + 2¢5C5 + ) + T(Clcs +C3Cq
3/2 2y 2
+C4Cs) 17+ 60(2C1Cq + 2C3C7 + 2C4Cs + C5) 77
693
+ T(Clclo + CaCg + C4C7 + CsCq) 772 + 120(2¢C

+ 2C4Cq + 2C4Cg + 2CsC; + C2) 77°. (
From Eq.(87), the last expansion equals

fo=1~=1+c 92+ c3n®2+ cun + Cs”? + co7p°.
(

The system of equations for the coefficients thus is

105
c4=0, 6B(c5+2cic5)=-1, T(C’lCG +C3Cy) = Cy,

1/2
APPENDIX D: BEHAVIOR OF fy(n) AS p—

In this appendix we derive an asymptotic formula whgn
is large for thefy(#) that satisfies Eq(87) with fy()=1.
Because of conditior(86) we introduce a functiorgy(z)
such that

1 fo(m)=1+go(m), |9l <1, »m>1. (D1)
c3) Substitution of this formula into Eq87) yields the ODE

294 - 9o = 0(g}). (D2)

By neglecting the right-hand side of this equation, we notice
ca) that the resulting linear ODE has three independent solu-
tions, one of which is a growing exponential:

—
/

_ _ 3
Go(7) ~ C& 1+ AeZ °°S<2\Tmz+ ¢), (D3)

whereA, C and ¢ are arbitrary real constants. We thus take
C=0 in order to suppress the growing exponential. The re-

5 315 , !
24(2c,c; + 2c5c5+ €3 = 0, T(ClC8 + C4Cq + C4C5) = C3, sulting formula is

60(2C,Cg + 2C3C7 + 2C4Cq + C2) = Cy,

In

_ =43
go(r;)~Ae2 WC°S<ZT/377+¢)1 n>1. (D4
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