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The morphological relaxation of axisymmetric crystal surfaces with a single facet below the roughening
transition temperature is studied analytically for diffusion-limitedsDLd and attachment-detachment-limited
sADL d kinetics with inclusion of the Ehrlich-Schwoebel barrier. The slope profileFsr ,td, wherer is the polar
distance andt is time, is described via a nonlinear, fourth-order partial differential equationsPDEd that
accounts for step line-tension energyg1 and step-step repulsive interaction energyg3; for ADL kinetics, an
effective surface diffusivity that depends on the step density is included. The PDE is derived directly from the
step-flow equations and, alternatively, via a continuum surface free energy. The facet evolution is treated as a
free-boundary problem where the interplay betweeng1 andg3 gives rise to a region of rapid variations ofF, a
boundary layer, near the expanding facet. For long times andg3/g1,Os1d singular perturbation theory is
applied for self-similar shapes close to the facet. For DL kinetics and a class of axisymmetric shapes,sad the
boundary-layer width varies assg3/g1d1/3, sbd a universal ordinary differential equationsODEd is derived forF,
andscd a one-parameter family of solutions of the ODE are found; furthermore, for a conical initial shape,sdd
distinct solutions of the ODE are identified for differentg3/g1 via effective boundary conditions at the facet
edge,sed the profile peak scales assg3/g1d−1/6, andsfd the change of the facet radius from its limit asg3/g1

→0 scales assg3/g1d1/3. For ADL kinetics a boundary layer can still be defined, with thickness that varies as
sg3/g1d3/8. Our scaling results are in excellent agreement with kinetic simulations.
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I. INTRODUCTION

Advances in the fabrication of small structures and de-
vices have stimulated interest in low-temperature kinetic pro-
cesses on crystal surfaces. In most experimental situations,
nanoscale solid structures are not in thermodynamic equilib-
rium and decay in time with a lifetime that typically scales
with an Arrhenius function of the temperatureT and a large
power of the feature size. Strategies for skirting the lifetime
limitations involve processing at ever-lower temperatures for
ever-smaller feature sizes. The theoretical description of the
thermodynamics, kinetics, and macroscopic evolution of sur-
faces at low temperatures is an area of active research.1,2

Every crystal surface at thermodynamic equilibrium expe-
riences a roughening transition at a temperatureTR sRefs.
3–7d that depends on the surface orientation: for any givenT,
smooth or continuously curved parts of the surface have
roughening transition temperatureTR,T whereas macro-
scopic, flat regions of the surface known as facets8 haveTR
.T. Below TR, the surface morphology can be described by
a collection of atomically smooth terraces separated by steps;
as T increases aboveTR the step free energy vanishes and
terraces can no longer be identified, as steps cover the entire
surface, which appears rough.9 The physical processes driv-
ing surface evolution are thus distinctly different in the two
temperature regimes. In particular, belowTR surface relax-
ation occurs via the lateral motion of steps, which is caused
by three major processes: diffusion of point defectss“ada-
toms”d across terraces, attachment and detachment of ada-
toms at the step edges, and diffusion of atoms along the step
edges. The latter process is not important in a broad class of
problems such as the one considered here.

Theoretical studies of morphological evolution aim to de-
scribe the surface morphology at mesoscopic or macroscopic
length scalesstypically of the order of microns or largerd by
accounting for the motion of adatoms or individual steps at
smaller length scalesstypically of the order of nanometers or
smallerd.6,10,11 There are two different approaches for such
theoretical efforts. One approach treats directly the coarse-
grained surface height and slope profiles by using continuum
principles such as continuum thermodynamics and mass con-
servation, expressed by partial differential equations
sPDEsd1,12–29or variational formulations.30 The advantage of
this approach lies in its relative simplicity because models
invoked in this category are often analytically tractable and
hence amenable to simple quantitative predictions. However,
such models have been criticized28,31–33for not correctly tak-
ing into account the discrete effects of the facet boundaries,
which may be sensitive to the interaction between extremal
steps of opposite sign.

The second approach primarily treats surface evolution by
either mimicking the motion of many atoms via microscopic
models,34–37 or the motion of individual steps via step-flow
models and kinetic simulations19,21,32,33,38–42in which the
step motion results from the transfer of adatoms across the
terraces separating steps.43 The step-flow models provide de-
tailed information about the surface evolution at the nanos-
cale, and can offer valuable input data for the improvement
of the continuum models.28,29,32,41Nevertheless, the numeri-
cal simulations of this approach are limited in their ability to
recognize universal features of surface evolution such as the
scaling with the physical parameters.

We choose the former, continuum approach in this paper
and focus on scaling aspects of nanostructure decay. Moti-
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vated by results of kinetic simulations32,41 and the corre-
sponding efforts to combine discrete and continuum ap-
proaches for self-similar shapes at long timessin particular,
Fig. 6 of Ref. 32d, we sought to apply boundary-layer ideas
to the decay problem. Our treatment transcends the previ-
ously stated28,31,33 limitations of continuum models in the
ability to predict the scaling behavior near the facet edge.

The morphological equilibration by surface diffusion of
corrugated surfaces aboveTR was described via a classical
continuum approach over 40 years ago.12,13 This analysis is
based on the assumption that the surface free energy is a
smooth function of the surface orientation, which enables the
derivation of a fourth-order PDE with smooth solutions for
the coarse-grained height profile. Essential in this formula-
tion is a mass conservation equation for surface atoms, a
chemical potential proportional to the curvature,14 and a sur-
face current proportional to the chemical potential gradient.
The resulting PDE is not applicable belowTR, where facets
are present, because the surface free energy is not analytic at
the facet orientations.2,4,15,16

Systematic efforts to treat morphological evolution below
TR via continuum principles began in the mid-1980s and
continue to the present.1,17–27,29,30In these treatments the mo-
tion of steps below theTR of the high-symmetry, “basal”
plane of the crystal is taken into account by introduction of
the step density as a continuous variable,F, which is propor-
tional to the surface slope on a scale large compared to the
step separationstypically of the order of 1–10 nmd. Nonlin-
ear PDEs have been derived forF or the heighth in cases
with unidirectional or bidirectional periodic surface
modulations.19–21 An essential ingredient of these equations
is an analytical expression for the chemical potential of at-
oms at interacting step edges, which is termed the “step
chemical potential,”31,33 i.e., the change in the free energy of
the system of interacting steps by the removal or addition of
an atom at a step edge. Fourth-order nonlinear PDEs forF
can then be derived in the case where surface diffusion is the
rate-limiting process.19,21,23 Considerable progress has been
made in solving the PDEs by invoking separation of
variables,21 power series expansions,23,24 and shape-
preservingssimilarityd solutions21,23,32 that satisfy ordinary
differential equationssODEsd, but further progress has
been hindered by the presence of macroscopic
facets.23,27,28,30–33,41,42In this case the solutions to the PDEs
develop singularities at the facet edge, which are intimately
related to the nonanalyticity of the surface free energyG as a
function of the surface slope in the vicinity of the facet ori-
entation.

In order to address mathematically the first difficulty of
the singular behavior associated with the presence of facets,
Spohn23 allowed for time-dependent facet formation by treat-
ing the relevant PDE problem as a free-boundary problem. In
the analysis the chemical potential associated with steps is
extended continuously onto facets of unidirectional surface
modulations; the PDE was solved23,24 subject to a set of
boundary conditions at the moving facet edge. This ap-
proach, though natural and not uncommon in continuum me-
chanics, has been criticized31,33 for excluding the effects of
step-antistep attractive interactions when steps of opposite
sign bounding a facet come close to each other. However, we

do not believe that such criticisms are conclusive about the
limitations of continuum approaches for the following rea-
sons:sad From the physical and experimental standpoints, it
is of interest at the meso or macroscales to find universal,
scaling laws that involve physical, nondimensional param-
eters such as the ratio of the step interaction energy to the
energys“line tension”d of an isolated step; it is unclear to
what extent the details of the individual step motion matter
for this purpose.sbd In many physical situations the effect of
attractive step-antistep interactions can be neglected com-
pared to other energies such as line tension that can dominate
the morphological evolution, for instance, in the case with
single-faceted structures such as those originating from large
initial cones,32 which consist of circular steps.scd Spohn’s
analysis identifies and provides insight into the problem of
using suitable “effective” continuum boundary conditions at
the facet edge. We believe that issuessad and scd, though
directly amenable to a treatment by a continuum theory, have
not been adequately addressed in the literature. In this paper,
we report progress towards both of these issues.

Other continuum approaches17,25,27 deal with facets via
regularization of the surface free energy and application of
continuum equations everywhere along the surface. A small
parameter, or regulator, is introduced to smooth out the sur-
face free energy as a function of the slope. As a result, the
solutions for the slope profile are also smooth, with nearly
flat extrema but no actual facets anywhere. This method has
been criticized due to fundamental considerations30,33such as
the lack of physical meaning of the regulator; furthermore, it
has not been shown that the results converge with those of
step kinetic simulations.28

Shenoy and Freund30 circumvent the difficulty associated
with the presence of facets by using a variational formulation
and Fourier series expansions that replace local relations,
such as that between the adatom current and the chemical
potential, by coupled ODEs for the time-dependent expan-
sion coefficients, which they solve numerically. This method
appears to be consistent with Spohn’s23 treatment of facets
but does not deal directly with the scaling of the solutions
with the physical parameters.

In this paper we study universal, scaling aspects of mor-
phological evolution belowTR by using a PDE, and treat
facet evolution as a free-boundary problem.23,24We consider
crystalline structures having a single facet and closed curved
steps. Because of the inclusion of the line tension and the
step curvature in this case, our analysis is different from
Spohn’s treatment23 of surface diffusion, which focuses on
unidirectional surface modulations. We are motivated by ki-
netic simulations32 for initial conical shapes: the authors nu-
merically solved a large number of coupled ODEs to show
that the slope profileF has a self-similar behavior at long
times, with similarity variablert−1/4, where r is the polar
distance andt is time. Furthermore, in Ref. 32 the authors
started with the coupled, step-flow equations and derived an
ODE for the similarity function, but were unable to solve it
uniquely. A particular feature of the simulation results that
was not quantified or even noticed is the rapid change ofF in
a region near the facet. As we show, this region can be
treated as a “boundary layer” and its width depends nontrivi-
ally on the ratio of the step interaction energy to the line
tension for both DL and ADL kinetics.
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We apply boundary-layer theory to quantify the scaling of
the surface slopeF with the ratio of step interaction energy
to line tension for both DL and ADL kinetics, and also re-
solve the uniqueness problem for DL kinetics by giving a
sufficient set of boundary conditions at the facet edge. The
main ideas for pure DL kinetics were outlined recently in a
letter.29 This paper is organized as follows. In Sec. II we
derive a PDE for the heighthsr ,td and height gradientF
=−¹h for mixed ADL and DL kinetics, with inclusion also
of the Ehrlich–Schwoebel barrier.44,45 Specifically, in Sec.
II A we start with the kinetic equations for circular steps
bounding terraces below the basal plane’sTR and take the
continuum limit; the resulting slope profile is axisymmetric,
respects mass conservation, and satisfies a fourth-order non-
linear PDE, where the current is related to the step chemical
potential gradient via an effective diffusivity which, when
ADL kinetics is included, is slope-dependent. In Sec. II B we
apply a continuum surface-free energy approach, relax the
condition of axisymmetry and thereby derive a more general
PDE for F that includes non-axisymmetric, single-faceted
structures. In Sec. II C we formulate a boundary-value prob-
lem for pure DL kinetics and axisymmetric structures. In
Sec. III we treat DL kinetics: We develop free-boundary and
boundary-layer theories to describe a self-similar step den-
sity F close to the facet, find scaling with the ratio of step
interaction energy to line tension, and derive a uniqueF by
applying the boundary conditions of Sec. II C at the facet
edge. In Sec. IV we address the more intricate case of scaling
with the ratio of the step interaction energy to the line ten-
sion for pure ADL kinetics. We find that, although a similar-
ity solution for the step density is then not defined in the
same sense as for DL kinetics, the boundary-layer ideas still
apply. In Sec. V we compare our scaling results for DL and
ADL kinetics with the kinetic simulation data and find excel-
lent agreement for four distinct scaling predictions. Finally,
in Sec. VI we conclude our work with a general discussion
including the possible relevance of our results to experi-
ments.

II. CONTINUUM THEORY

In a coarse-grained continuum theory surface evolution is
described by using as a continuous variable the surface
heighthsr ,td or the positive surface gradientu¹hu, which is
proportional to the step density, wherer =sx,yd=rêr is the
position vector in the high-symmetry, basal plane of the crys-
tal andt is time; see Fig. 1 for an axisymmetric shape profile
h=hsr ,td. The heighth and the surface currentj satoms per
length per timed are related by the mass conservation equa-
tion for atoms,46

]h

]t
+ V ¹ · j = 0, s1d

whereV is the atomic volume; for axisymmetric structures
j = jsr ,tdêr. We consider surfaces with a single facet, a flat
part with zero slope, and with a concave downward and suf-
ficiently smooth shape outside the facet. We further assume
that no other facets are formed during evolution; for axisym-

metric structures, this assumption implies that]rh;]h/]r
,0 everywhere outside the facet.

A. Kinetic equations and continuum limit for circular steps

1. First-order kinetics

We start with the kinetic formulation of Ref. 32, largely
for completeness, though we modify it slightly to include the
Ehrlich–Schwoebel barrier,44,45 which refers to an increased
barrier for adatom attachment and detachment to a descend-
ing step. In addition, we indicate a subtlety in the derivation
of the step chemical potential, which has apparently been
overlooked. We consider axisymmetric crystal surfaces char-
acterized byN sN@1d interacting, concentric circular steps
of the same step heighta, separated by flat terraces parallel
to the basal planessee Fig. 1d; the ith terrace lies between the
ith andsi +1dth step, in the regionr i , r , r i+1, wherer is the
polar distance,i =0,1, . . . ,N−1, andi =0 corresponds to the
facet,r0=0, r , r1. It is further assumed that surface evolu-
tion is limited by the diffusion of adatoms across terraces,43

as well as by the attachment and detachment of atoms at the
step edges, while no material is deposited on the surface
from above. Other transport processes such as volumesbulkd
diffusion, evaporation-condensation, and diffusion along the
step edges are neglected.

The adatom concentrationcisr ,td on the ith terrace satis-
fies the diffusion equation,]ci /]t=Ds¹

2cisr ,td, whereDs is
the surface diffusivity which is assumed to be a scalar con-
stant. In the quasistatic approximation the time derivative in
the diffusion equation is neglected,47 ]ci /]t<0, andcisr ,td
thus satisfies the Laplace equation,¹2ci =0, where the time
dependence ofci enters only implicitly through the boundary
conditions at the step edges. Hence,cisr ,td=Ai ln r +Bi for
r i , r , r i+1, whereAi andBi depend only on time. By intro-
ducing the adatom currentJisr ,td on theith terrace,

Jisr,td ; − Ds
]ci

]r
= − Ds

Aistd
r

, r i , r , r i+1, s2d

the balance of adatoms at the steps bounding theith terrace is
expressed by48

− Jisr i,td = kufcisr i,td − Ci
eqg, s3ad

FIG. 1. View of an axisymmetric surface profile, on both the
macroscale and the nanoscale where the circular steps of atomic
height and the terraces separating the steps are evident. The decay
of this structure is caused by the motion of steps, as the top layer
periodically shrinks and collapses.
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Jisr i+1,td = kdfcisr i+1,td − Ci+1
eq g, s3bd

whereCi
eq is the equilibrium concentration of atoms in the

vicinity of the ith step, ku is the rate coefficient for
attachment-detachment from a terrace to an up-step edge,
andkd is the rate coefficient for attachment-detachment from
a terrace to a down-step edge; note thatkd,ku for a positive
Ehrlich-Schwoebel barrier.Ai andBi can thus be determined
in terms ofr i and r i+1, e.g.,

Ai =
Ci

eq− Ci+1
eq

ln sr i/r i+1d − Dss1/kur i + 1/kdr i+1d
, s4d

while the Bi are not needed for our purposes. The equilib-
rium concentrationCi

eq is related to the step chemical poten-
tial mi of the ith step by32,49

Ci
eq= cse

mi/kBT , csS1 +
mi

kBT
D , s5d

wherekB is Boltzmann’s constant,T is the absolute tempera-
ture, cs is the atom equilibrium concentration at an isolated
straight step, and kBT@ umiu for most experimental
situations.50

The currentJisr ,td is thus expressed in terms of the step
chemical potentialmi via Eqs.s2d, s4d, ands5d as

Jisr,td = −
Dscs

kBT

1

r

mi+1 − mi

ln sr i+1/r id + Dss1/kur i + 1/kdr i+1d
s6d

for r i , r , r i+1. For pairwise, short-ranged, repulsive step in-
teractionsVsr i ,r i+1d between theith andsi +1dth steps,mi is
given by32

mi =
Vg1

r i
+

V

2pari

]fVsr i,r i+1d + Vsr i−1,r idg
]r i

; s7d

the step “stiffness”g1a senergy/lengthd is the energy per unit
length of an isolated stepsline tensiond plus its second de-
rivative with respect to surface orientation, anda is the step
height. By adopting the formula for the interactions of con-
centric circular steps of the same sign,51

Vsr i,r i+1d = 2psǧ3a
2d

r ir i+1

sr i + r i+1dsr i+1 − r id2 , s8d

where ǧ3 senergy/lengthd is the interaction energy per unit
length of theith step, the step chemical potentialmi is cal-
culated to be52

mi =
Vg1

r i
+ Vǧ3aH 2r i+1

r i+1 + r i

1

sr i+1 − r id3 −
2r i−1

r i + r i−1

1

sr i − r i−1d3

+
1

r i
FS r i+1

r i+1 + r i
D2 1

sr i+1 − r id2 + S r i−1

r i + r i−1
D2 1

sr i − r i−1d2GJ .

s9d

The time dependence of each step position,r i =r istd, is
dictated by the mass-balance equation

ṙ istd =
V

a
fJi−1sr i,td − Jisr i,tdg, s10d

where throughout this paper the dot on top of a symbol de-
notes the time derivative. The system of discrete differential
equationss10d with Eqs.s6d–s9d and the initial condition of
given r is0d can be solved numerically.32 Oncer istd are deter-
mined, the step densityFistd corresponding to theith terrace
is calculated by

Fistd =
a

ri+1 − r i
. s11d

A few words are in order about the distinction of pure DL
from pure ADL kinetics on the basis of the kinetic equations.
By inspection of Eq.s6d, the behavior of the adatom current,
Jisr ,td, in i and r depends on the interplay between the two
terms in the denominator, e.g., the lnsr i+1/ r id term and the
Dsfskur id−1+skdr i+1d−1g term. If the first term dominates, the
adatom current is sensitive tospacevariations of the step
chemical potential,smi+1−mid / sr i+1−r id; this case corre-
sponds to pure DL kinetics as diffusion across terraces is the
rate-limiting process, and the continuum counterpart of
Jisr ,td equals a constant times the gradient of the step chemi-
cal potential; see Eq.s21d below. In contrast, for ADL-
dominated kinetics the term lnsr i+1/ r id is negligible and the
adatom current is sensitive tostep variations of the step
chemical potential,smi+1−mid / fsi +1d− ig; thus, the con-
tinuum adatom current is related to the gradient of the step
chemical potential via an effective surface diffusivity in-
versely proportional to the step density; see Eq.s22d below.

A relation that is useful in the next section where the
continuum limit is considered follows by differentiation of
the step densityFistd, Eq. s11d, with respect to timet using
Eq. s10d:

dFi

dt
= − a

ṙi+1 − ṙ i

sr i+1 − r id2 = V
qi+1 − pi

r i+1 − r i
, s12d

where

qi =
Jisr i,td − Ji−1sr i,td

r i − r i−1
, pi =

Jisr i,td − Ji−1sr i,td
r i+1 − r i

. s13d

We note that, by virtue of the quasistatic assumptionfEq.
s2dg, the values of the adatom current at the step edges
bounding the ith terrace are related byr i+1Jisr i+1,td
=r iJisr i ,td. Hence,

qi =
1

r i

r iJisr i,td − r i−1Ji−1sr i−1,td
r i − r i−1

, s14ad

pi =
1

r i

r iJisr i,td − r i−1Ji−1sr i−1,td
r i+1 − r i

. s14bd

For separation distances that vary slowly ini, r i+1−r i < r i
−r i−1 which yieldspi <qi.

53 Equationss14d are used in the
next section; we recognize that forr i+1−r i →0 their right-
hand sides become the divergence of the continuous surface
currentj sr ,td= êr jsr ,td.
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2. Continuum limit

We next take the continuum limit of Eq.s10d with empha-
sis on the structure of the equations involved, and not on the
conditions of our approximations. In the continuum limit
outside the facet,r i+1 and r i are presumed to approach any

distancer̃ i = l̃r i+1+s1−l̃dr i, where 0øl̃ø1; r̃ i becomes the
polar distancesindependent variabled r, and the step number
i si =0,1, . . . ,N−1d may thus vary for fixedr. The con-
tinuum step densityFsr ,td, surface currentjsr ,td, and step
chemical potentialmsr ,td are considered as the limits for

r i+1−r i →0 of the piecewise continuous functionsF̃sr ,td
=Fistd, J̃sr ,td=Jisr̃ i ,td, and m̃sr ,td=mistd which are defined
in each intervalr i , r , r i+1; in the limit r i+1−r i →0 these
functions are presumed to reduce to continuous functions
that are also smooth inr along the sloping surface outside the
facet. Necessary conditions for the validity of these assump-
tions aresid r i+1−r i ! r i,

53 i.e.,

a

riFi
! 1, s15d

andsii d r i+1−r i !L, whereL is the length over which the step
density varies. If these conditions are violated, terms that
account for the “discreteness” of the step motion must be
retained in the continuum equations.

It follows that the difference terms in Eqs.s12d–s14d are
replaced by suitable derivatives. For example, from Eq.s14ad
the continuum limit ofqi is the divergence ofj = jsr ,tdêr,
¹ ·j =s1/rds] /]rdsrj d; Eq. s12d thus becomes

]F

]t
= V

]

]r
¹ · j . s16d

BecauseF= u¹hu=−]rh is the step density, where]rh,0,
this equation is readily integrated to give

]h

]t
= − V ¹ · j + Kstd. s17d

Equations1d, the usual continuum mass-conservation state-
ment without deposition of material, is recovered forKstd
;0.

The surface currentjsr ,td can be expressed as the gradient
of the step chemical potentialmsr ,td from Eq. s6d. By defin-
ing dr i =r i+1−r i, and making the approximations

ln
r i

r i+1
, −

dr i

r i
,

1

r i
+

1

r i+1
,

2

r i
, s18d

and smi+1−mid /dr i ,]m /]r, we readily obtain

jsr,td = −
cs

kBT

Ds

1 + mF

]m

]r
s19d

in the continuum limit, where the parameterm is defined by

m=
2Ds

ka
,

1

k
=

1

2
S 1

ku
+

1

kd
D , s20d

and Fi =a/dr i ,F by Eq. s11d. Equations19d has the form
j =−scsDs/kBTd¹m, whereDs=Dss1+mFd−1 is an effective

surface diffusivity that depends on the step density whenm
Þ0. Note that the effect of the Ehrlich–Schwoebel barrier
enters here implicitly via the effective attachment-
detachment rate coefficientk, which is the harmonic average
of the rate coefficientsku and kd. For DL kinetics, where
mF!1, Eq. s19d becomes

jsr,td = −
csDs

kBT

]m

]r
sDL kineticsd, s21d

whereas for ADL kinetics,mF@1, the respective equation is

jsr,td = −
cska

kBT

1

F

]m

]r
sADL kineticsd. s22d

We obtain an additional relation betweenmsr ,td and
Fsr ,td by using Eq.s9d. In order to simplify this equation we
use the formulasr i+1=r i +aFi

−1 and r i−1=r i −aFi−1
−1 , along

with condition s15d, and thus establish the approximations
r i+1

2 / sr i +r i+1d2, 1
4 , r i−1

2 / sr i +r i−1d2 and

2r ir i±1

r i + r i±1
, Sr i ±

a

Fi
DS1 7

a

2r iFi
D , r i ±

a

2Fi
. s23d

Hence, Eq.s9d reduces to

mi ,
Vg1

r i
+ Vǧ3aFFi

2 + FiFi−1 + Fi−1
2

a3 sFi − Fi−1d

+
3

4

1

r i

Fi
2 + Fi−1

2

a2 G . s24d

In the formal limit r i −r i−1→0, Fi−1 is replaced byFi in all
terms on the right-hand side of this equation, with the excep-
tion of the differenceFi −Fi−1. For this last term we use

Fi−1 = Fi − sdr id
Fi − Fi−1

dr i
, F −

a

F

]F

]r
, s25d

to obtain

msr,td =
Vg1

r
+ Vg̃3

1

r

]

]r
srF2d, s26d

where g̃3= 3
2sǧ3/ad, with dimensions energy/slengthd2; g̃3

here is defined such that it is proportional to the interaction
energy per unit area of a step projected on the vertical plane.

The combination of Eqs.s16d, s19d, and s26d yields an
evolution equation forF=−]rh,

1

B

]F

]t
=

]

]r

1

r

]

]r

1

r
S 1

1 + mF
D −

g̃3

g1

]

]r

1

r

]

]r

3 F r

1 + mF

]

]r

1

r

]

]r
srF2dG , s27d

where the single material parameter in the development

B =
csDsV

2g1

kBT
s28d

has dimensionsslengthd4/ time. A PDE of the same structure
as Eq.s27d here is also given in Ref. 32 in terms of the step
chemical potentialfsee their Eq.s31dg. Consistent with our
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derivation and conditions15d, Eq. s27d ceases to be valid in
regions where thesdiscreted step densityFi becomes of the
order of a/ r i. This situation arises very close to the facet
because the continuous slopeF vanishes identically on the
facet, andFi becomes vanishingly small in the vicinity of the
top stepssee Sec. II C belowd. A PDE for the height profile,
h=hsr ,td, is derived by combining forKstd=0 Eqs. s17d,
s19d, ands26d:

1

B

]h

]t
= −

1

r

]

]r

1

r
S 1

1 + mu]rhuD +
g̃3

g1

1

r

]

]r

3 H 1

1 + mu]rhuFr
]2

]r2 +
]

]r
−

1

r
GS ]h

]r
D2J . s29d

Note that the effect of step permeability,51 in which atoms
traverse the steps without attaching and detaching to and
from the step edges, has been claimed32 to be taken into
account effectively via a redefinition of the parameterm
=2Ds/ skad at long times; specifically, the parameterk, which
is associated to the attachment and detachment rate coeffi-
cients, is replaced byk+2p wherep is the permeability rate
coefficient.

B. A general continuum surface-free energy approach

In this section we derive an evolution equation for the
height profile,h=hsr ,td, and the gradient profile,¹h, di-
rectly from continuum surface-free energy considerations for
crystal shapes with a single facet by relaxing the assumption
of axisymmetry of Sec. II B. Throughout this analysis, the
position vectorr =sx,yd and the gradient¹=s] /]x,] /]yd are
defined on the basal plane. The starting point is the mass
conservation equation for atoms, Eq.s1d. The surface current
j sr ,td is the product of the areal densityssurface concentra-
tiond cs and the drift velocity, which is the product of the
effective mobility of atoms,Ds/kBT, and the driving force,
namely, the negative gradient of the step chemical potential
msr ,td. In the case with combined DL and ADL kinetics the
effective surface diffusivity is taken to beDs=Dss1
+mu¹hud−1. This relation results from generalizing Eq.s19d
from the step-flow model to include non-axisymmetric pro-
files consisting of closed steps with spacing small compared
to sid their local radius of curvature, andsii d the length over
which the step density varies:

j = −
cs

kBT

Ds

1 + mu ¹ hu
¹ m; s30d

cs is a constant andDs is taken to be a scalar constant. We
have made the approximation thatj is parallel to¹m which,
we note, is valid for a restricted set of geometries and
mu¹hu.54 Equations1d becomes

]h

]t
=

csDsV

kBT
¹ ·S 1

1 + mu ¹ hu
¹ mD . s31d

A relation between the variablesm and h is obtained by
invoking the surface free energy per unit projected area,G,
which we take as azimuthally isotropic. A common expres-
sion for theG of vicinal surfaces belowTR assumes thatG is

a concave upward, nonanalytic function of¹h,1,2,16,55,56

Gsu ¹ hud = g0 + g1u ¹ hu +
1

3
g3u ¹ hu3. s32d

The g0 term accounts for the surface free energy per unit
projected area of the basal plane. Theg1 term is the energy
for creating an isolated stepsline tensiond. The g3 term rep-
resents pairwise step interactions, including entropic repul-
sions due to step edge fluctuations, such as elastic dipole-
dipole interactions.1 Here we consider only repulsive step
interactions,g3.0, and defineg3 as multiplied by a factor13
in Eq. s32d for later algebraic convenience. The coefficients
g0, g1 andg3 are temperature dependent. Higher-order terms
Osu¹hund for G snù4d, which may originate from
quadrupole-dipole or other multipole interactions,57 are ne-
glected in Eq.s32d. As discussed in Refs. 22 and 55, the
existence of facets is analogous to a thermodynamic phase
separation, and is in principle described by nonconvex sur-
face free energies per projected area, such as those with a
double-well form. Here we limit ourselves to single-faceted
structures with a concave downward, smooth shape outside
the facet; Eq.s32d then suffices for our purposes because the
crystal shape near equilibrium is related to the surface free
energy via a Legendre transform.2,58,59

The step chemical potential is obtained by considering the
variations of the surface free energy with respect to the
height gradient,¹h=shx,hyd,14,16,21

m =
V

a
¹ ·N, s33d

where the vector quantityN is defined by60

N = − aS ]G

]hx
êx +

]G

]hy
êyD s34d

denotinghv=]h/]v for v=x,y. Mathematically, the introduc-
tion of N facilitates the expression of the boundary condi-
tions at the facet edge, as described in the next section. The
physical meaning ofN stems from the observation that
sdldĥ ·N expresses the energy of a step of lengthdl, where
ĥ=−¹h/ u¹hu is the unit vector normal to the step and par-
allel to the basal plane that points outwards the closed curve
of the step shape; for axisymmetric shapes,ĥ= êr. It follows
that

N = − ag1FS ¹h

u ¹ huD +
g3

g1
su ¹ hu ¹ hdG s35d

and

m = − Vg1F¹ ·S ¹h

u ¹ huD +
g3

g1
¹ · su ¹ hu ¹ hdG . s36d

Equationss33d–s36d are valid outside the facet.
The evolution equation for the heighthsr ,td follows from

Eqs.s31d and s36d:
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]h

]t
= − B ¹ ·H 1

1 + mu ¹ huF¹ ¹ ·S ¹h

u ¹ huD
+

g3

g1
¹ ¹ · su ¹ hu ¹ hdGJ , s37d

whereB is defined by Eq.s28d; see also Ref. 61. Because of
the approximation underlying Eq.s30d, Eq. s37d does not
fully account for terrace adatom currents parallel to steps. A
nonlinear PDE for the gradient profileF=−¹h is derived by
applying the gradient operator,¹, on both sides of Eq.s37d:

]F

]t
= − B ¹ ¹ ·H 1

1 + muFuF¹ ¹ ·S F

uFuD
+

g3

g1
¹ ¹ · suFuFdGJ . s38d

A comparison of Eqs.s37d and s38d with Eqs.s29d and s27d
for axisymmetric shapes withh=hsr ,td andF=−êr]rh shows
that

g3 = g̃3 =
3

2

ǧ3

a
, s39d

whereǧ3 is introduced in Eq.s8d.
Equations37d or s38d must be supplemented with suitable

initial and boundary conditions. As an illustration of the con-
tinuum principles involved in setting up a possible set of
such conditions, we formulate an axisymmetric boundary-
value problem for DL kinetics below.

C. Boundary-value problem for DL kinetics with axisymmetry

We consider DL kinetics and axisymmetric crystalline
surfaces with height profilehsr ,td and slope profileFsr ,td
ssee Fig. 1d. In this case the diffusion of adatoms across
terraces is the rate-limiting process; the harmonic average,k,
of the attachment-detachment rate coefficientsku andkd and
the surface diffusivityDs thus satisfy the conditionDs!ka,
so that we can takem=0 in Eq. s27d. The slope profileF
therefore satisfies the nonlinear PDE

1

B

]F

]t
=

3

r4 −
g3

g1

]

]r
¹2F1

r

]

]r
srF2dG

=
3

r4 −
g3

g1
S ]4F2

]r4 +
2

r

]3F2

]r3 −
3

r2

]2F2

]r2 +
3

r3

]F2

]r
−

3

r4F2D .

s40d

We treat facet evolution as a free-boundary problem:23 we
recognize that there is an expanding facet forr ,wstd, where
F=0, and this facet connects smoothly with the rest of the
profile for r .wstd; here,w=wst ;g3/g1d is the facet radius, a
monotonically increasing function of time. We need to
supplement Eq.s40d with an initial condition and with
boundary conditions atr =`, where the slope profile ap-
proaches its initial values, and at the moving boundaryr
=w of the facet. The unknown functions aresad the slopeF,
which in principle requires four boundary conditions because
it satisfies a fourth-order PDE, Eq.s40d, sbd the facet radius,

wstd, and scd the facet heighthfstd. Hence, we seek six
boundary conditions for these quantities.

Initially st=0d the surface has a single facet forr ,W and
is concave downward and smooth with negative slope forr
.W, where W=ws0d is the initial facet radius. It follows
from Eq. s40d that no other facets are formed during evolu-
tion. At timest.0,

Fsr,td = 0, r , wstd. s41d

The requisite initial condition is expressed in terms of a
given functionHsrd as

hsr,t = 0d = Hsrd, s42d

where the facet is flat,

Fsr,0d = − H8srd = 0, 0ø r , W, s43ad

and outside the facet the shape is smoothly and monotoni-
cally varying,

Fsr,0d = − H8srd . 0, r . W. s43bd

We next describe a set of boundary conditions atr =w and
r =`; to obtain some of these conditions atr =w we exploit
the structure of Eqs.s1d, s30d, ands33d for m=0. The result-
ing conditions suffice to provide a unique solution to Eq.
s40d.

A condition at the facet edge is that of slope continuity:F
vanishes on the facet, by definition of the facet, and varies
continuously to the surface slope outside the facet,

Fsw,td = 0. s44d

This condition is consistent with the results of kinetic
simulations32,62 for an initial conical shape, and also agrees
with the requirement of local equilibrium.2,63

A second boundary condition imposes continuity of the
surface current at the facet edge, which is dictated by mass
conservation. By Eqs.s19d ands26d of Sec. II A or Eqs.s30d
ands36d of Sec. II B form=0, the surface current outside the
facet is

jsr,td =
csDsVg1

kBT
F 1

r2 +
g3

g1
SF2

r2 −
1

r

]F2

]r
−

]2F2

]r2 DG . s45d

The current on the facet,j f = j fsr ,tdêr, follows by integrating

the mass conservation equation,ḣf +V¹ ·j f =0, wherehfstd is
the facet height. Because axisymmetry requires thatj fs0,td
=0, we find

j fsr,td = −
ḣfr

2V
, r , w. s46d

By equating the right-hand sides of Eqs.s45d and s46d at r
=w, and using Eq.s44d, we obtain the condition

1 −
g3

g1
wufsF2dr + wsF2drrgur=w = −

ḣfw
3

2B
, s47d

wheresF2dr ;]F2/]r.
The surface heighth=hsr ,td is also continuous at the

facet edge,
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hfstd = hsr = w+,td. s48d

Differentiation with respect tot of both sides of Eq.s48d
gives

ḣfstd =
dhswstd,td

dt
= U ]h

]t
U

r=w+
− ẇFsw,td. s49d

The value ofs]h/]td as r →w+ is related to the slopeF and
its spatial derivatives by Eq.s29d for m=0, where again we
useF=0 at r =w+:

U ]h

]t
U

r=w+
= BH 1

w3 +
g3

g1
UF−

1

w2sF2dr +
2

w
sF2drr

+ sF2drrrGU
r=w
J . s50d

Equations49d therefore yields a third boundary condition,

1 +
g3

g1
wf− sF2dr + 2wsF2drr + w2sF2drrr gur=w =

ḣfw
3

B
.

s51d

Before we give the rest of the conditions atr =w, we turn
our attention to the behavior ofF at r =`, where by Eq.s43bd
we have the possible asymptotic formulas

F , − H8srd, s52ad

]F

]r
, − H9srd, r → `, s52bd

for some class of initial profilesHsrd andg3/g1øOs1d. For
instance, Eqs.s52d are expected to be satisfied for an initial
conical shape, −H8srd=const. By virtue of Eq.s40d, the cor-
rection to the leading term given in Eq.s52ad satisfies a
fourth-order PDE which, when linearized about the slope
profile asr →`, can only admit two independent, decaying
exponentials as solutions forr →`; hence, formulass52d are
interpreted as describing two independent conditions at`,
while further differentiations with respect tor do not add any
new conditions. In the special case with a conical initial
shape,Hsrd=−r, these asymptotic formulas amount to the
conditions

F → 1,
]F

]r
→ 0, r → `. s53d

We now check whether total mass conservation can yield
any additional conditions atr =`. Integration in r of
s]h/]td=−V¹ ·j gives

d

dt
E

0

`

drrhsr,td = − VE
0

`

dr
]

]r
srj d. s54d

Becausejs0,td is finite, the right-hand side of this equation
vanishes if

rj sr,td → 0 asr → `. s55d

From Eqs.s45d and s52d, the last condition imposes a con-
straint on the initial profile:

H8srd2

r
− 2fH8srdH9srd + H9srd2 + H8srdH-srdg → 0

s56d

as r →`. Hence, Eq.s55d does not add any new boundary
condition.

Equationss44d, s47d, s51d, and s52d form a set of five
conditions within our continuum approach. As noted above,
we need six conditions. In order to provide the missing con-
dition for Fsr ,td, wstd andhfstd we extend continuously onto
the facet23 the step chemical potential defined by Eq.s26d
outside the facet as

msr,td = Vg1F1

r
+

g3

g1
SF2

r
+

]F2

]r
DG, r . w. s57d

Our setting, where line tension matters, is different from the
original analysis given by Spohn.23 We implement the con-
tinuous extension onto the facet of the variablem by exploit-
ing the relation between the surface currentj and m, i.e., j
=−scsDs/kBTd¹m. The extended step chemical potential,
mfsr ,td, is thus defined by

j f = êr j fsr,td = − êr
B

V2g1

]mf

]r
. s58d

We emphasize that, being a mathematical construct,mf is
neither the adatom chemical potential on the facet nor the
layer chemical potential31,33 of the topmost atomic layer. We
solve formf by using Eq.s46d and integratings58d:

mfsr,td =
Vg1

4B
fḣfr

2 + bstdg, r , w, s59d

wherebstd is an as yet undetermined function of time. The
continuity relation

mfsw,td = msw+,td, s60d

after enforcing Eq.s44d, is therefore equivalent to

ḣfw
3

B
= 4UF1 +

g3

g1
wsF2drGU

r=w
−

wb

B
. s61d

Equationss44d, s47d, s51d, s52d, ands61d form a set of six
conditions for the unknownsFsr ,td, wstd, hfstd andbstd, the
last of which was introduced by extending onto the facet the
variablem. Recalling that four boundary conditions and one
initial condition are needed forF owing to the fourth-order
PDE s40d, we still need one more condition in order to have
a reasonably posed free-boundary problem.

We lastly apply continuity of the variableN, the quantity
whose divergence yieldsm, introduced in Eq.s34d. For this
purpose we extendN from the sloping surface outside the
facet, r .w, where m=sV /ad¹ ·N, onto the facet,r ,w.
First, from Eq.s35d andN= êrNsr ,td for r .w we have

N = ag1S1 +
g3

g1
F2D, r . w. s62d

Second, we extendN to the facet region, whereN
= êrNfsr ,td, by
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mf =
V

a

1

r

]

]r
srNfd. s63d

This equation is readily integrated forNf by using Eq.s59d,
where axisymmetry implies thatNfs0,td=0,

Nf = ag1s16Bd−1fḣfr
3 + 2rbstdg. s64d

The continuity of N across r =w, Nsw+,td=Nfsw,td, thus
gives the last conditionfrecall thatFsw+,td=0g,

ḣfw
3

16B
+

wb

8B
= 1. s65d

Equationss44d, s47d, s51d, s52d, s61d, and s65d give the
requisite set of seven boundary conditions at the facet edge,
r =w, and at̀ . Sincebstd is an as yet unknown function, we
eliminate it from Eqs. s61d and s65d; with bstd=8B/w

− ḣfw
2/2B, the reduced set of conditions atr =w is

F = 0,

1 −
g3

g1
wusF2drur=w = −

ḣfw
3

8B
,

1 −
g3

g1
wufsF2dr + wsF2drrgur=w = −

ḣfw
3

2B
,

1 −
g3

g1
wufsF2dr − 2wsF2drr − w2sF2drrr gur=w =

ḣfw
3

B
. s66d

By eliminating ḣf from these equations we obtain the condi-
tions

F = 0, s67ad

g3

g1
wuf3sF2dr − w2sF2drrr gur=w = 3, s67bd

g3

g1
wuf3sF2dr − wsF2drrgur=w = 3. s67cd

Equations40d is thus solved by imposing the initial con-
dition s43bd, along with conditionss52d at r =` and s67d at
r =w. Although we now seem to have a reasonably posed
free-boundary problem in the mathematical sense, the issue
of the boundary conditions remains a topic of discussion.31

In particular, our conditions that stem from the continuous
extension of the variablesm andN onto the facet appear to
be consistent with the global variational approach described
in Ref. 30; because these authors expand the chemical poten-
tial in Fourier series and finally retain a finite number of
terms in the expansions, they effectively treatm as a variable
continuous everywhere.

III. BOUNDARY-LAYER THEORY FOR DL KINETICS
WITH AXISYMMETRY

As emphasized in Sec. II C, we treat shape evolution as a
free-boundary problem where the PDE for the gradient pro-

file, Eq. s40d for DL kinetics and axisymmetric structures,
must be supplemented with boundary conditions at the mov-
ing boundary of the facet,r =wstd. The formulation of Sec. II
is valid for arbitrary positive energiesg1 sline tensiond andg3
sstep-step interactiond. In particular, we note that only the
dimensionless ratiog3/g1 enters the PDE, Eq.s40d, while the
material parameterB simply scales time. Motivated by ki-
netic simulationsffor example, Figs. 4sbd and 6 of Ref. 32g,
we recognize that forg3/g1,Os1d there exist two distinct
regions where the slope profileFsr ,td has different behav-
iors: an “outer” region, where the slope profile varies rela-
tively slowly in distance and the line-tension energy term
proportional tog1 is important, and an “inner” region adja-
cent to the edge of the facet, or a boundary layer, where the
slope profile varies rapidly from the valueF=0 atr =w to the
values near the boundary with the outer region. In the sense
described below, inside the inner region the step-step inter-
action energy term proportional tog3 is also significant. Be-
cause the simulation results of Ref. 32 correspond to differ-
ent, small values of a parameter,g, which is proportional to
the ratio g3/g1 as explained further in Sec. V, we use the
parameter

e =
g3

g1
, s68d

and further assume thate,Os1d; note thatF=Fsr ,t ;ed. Be-
cause thise multiplies the spatial derivatives in Eq.s40d,
including the highest derivative, we can treat the shape evo-
lution described by the boundary-value problem of Sec. II C
analytically using boundary-layer theory.64

A. Outer solution

We start with the solution of Eq.s40d for e=0 where the
corresponding facet radiuswst ;ed is denotedwst ;0d=w0std.
In this limit only the line tensionsg1 termd determines the
shape evolution. From Eq.s40d, the resulting zeroth-order
solution Fsr ,t ;0d=F0sr ,td satisfies the PDE]F0/]t=3B/ r4,
which is trivially integrated subject to the initial condition
s43bd to give

F0sr,td =
3Bt

r4 − H8srd, r . w0std, s69d

andF0=0 for r ,w0std. The zeroth-order height profile out-
side the facet is

h0sr,td =
Bt

r3 + Hsrd, r . w0std, s70d

and h0sr ,td=hf0std on the facet, forr ,w0std. At the facet
edge,F0sw0,td=3Bt/w0

4−H8sw0
+dÞ0 becauseH8sw0

+d,0 by
definition of the initial slope; so, the slope profile is discon-
tinuous and conditions67ad is thus not satisfied. This failure
of the zeroth-order solution to satisfy a boundary condition at
the facet edge motivates the singular perturbation analysis of
Sec. III B. In addition, conditionss67bd and s67cd are vio-
lated fore=0.

Before we proceed to examine how the inclusion of a
nonzeroe modifies the slope profileF, we derive a formula
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for w0std starting with Eq.s69d and imposing only current
and height continuity at the facet edge,r =w0std. AlthoughF0

is not acceptable as a solution of the full boundary-value
problem, the zeroth-order facet radiusw0 determined this
way is the limit of wst ;ed as e→0 within our continuum
approach, as shown in Sec. III B below. The current and
height continuity fore=0 give a scaling with timet for w0std
that is in agreement with the kinetic simulations for an initial
conical profile32 as we demonstrate below; furthermore, we
derive the scaling with time for other initial shapesssee Ap-
pendix Ad. The scaling results are expected to remain valid
to leading order ine.

From Eq.s45d with e=0, the surface current outside the
facet isj 0= j0sr ,tdêr wherej0sr ,td=sB/Vds1/r2d. The current
on the facet is given by Eq.s46d with hfstd=hf0std. So, cur-
rent continuity implies

− ḣf0 =
2B

w0
3 . s71d

By virtue of Eq.s70d, the height continuity yields

hf0 =
Bt

w0
3 + Hsw0d. s72d

Combining Eqs.s71d ands72d, the facet radius,w0std, is thus
given implicitly by ssee Appendix A for detailsd

w0stdE
W

w0std

drr2f− H8srdg = 3Bt, w0s0d = W. s73d

An explicit relation betweenẇ0 and w0 is obtained via dif-
ferentiation int of both sides of Eq.s73d, or the use of Eq.
sA3d of Appendix A:

ẇ0 =
3B

w0
3F3Bt

w0
4 − H8sw0

+dG−1

. 0. s74d

Analytical formulas forw0std for various initial profiles
are derived in Appendix A. In particular, Eq.s73d is solved
explicitly for an initial conical shape, with slope profile
H8srd=−k=const,0; for sufficiently long times we findfsee
Eq. sA10d of Appendix Ag

w0std , S9Bt

k
D1/4

as t → `. s75d

The t1/4 scaling ofw0std agrees with that observed forw in
kinetic simulations.32 In general, the scaling behavior of the
facet width,wst ;ed, with time is determined by the initial
slope profile outside the facet. We next address the scaling of
the slope profileFsr ,t ;ed with the dimensionless energy pa-
rametere=g3/g1.

B. Inner solution

We consider the region adjacent to the edge of the facet,
r =w, to examine analytically how the inclusion of a nonzero
e in the PDEs40d renders the slopeF continuous via enforc-
ing the boundary conditionss67d. In the spirit of boundary-
layer theory,64 we consider a region of widthd=dst ;ed, d

!w, in the neighborhood of the facet edge, where the slope
profile varies rapidly, and describeF in this region in terms
of the local variable

h =
r − wst;ed

dst;ed
. s76d

Also, we retain the highest spatial derivative on the right-
hand side of Eq.s40d and balance this derivative with the rest
of terms in this equation to leading order ine.

The slope profile in the variablesh and t is denotedF
=Fsh ,t ;ed; h=Os1d inside the boundary layer, or the inner
region, andh@1 in the outer region. By direct substitution
into Eq. s40d, the PDE forF is

ẇFh

d
+ Sh

ḋ

d
Fh − FtD +

3B

shd + wd4

=
Be

d4 FsF2dhhhh +
2d

hd + w
sF2dhhh −

3d2

shd + wd2sF2dhh

+
3d3

shd + wd3sF2dh −
3d4

shd + wd4F2G , s77d

where Fh=s]F /]hd and Ft=s]F /]td; for d!w and h
=Os1d, it is advantageous to write Eq.s77d in the form

ẇd3

Be
Fh − sF2dhhhh = OS d

w
,

d4

ew4,
d4Ft

eB
,
d3ḋ

eB
D . s78d

The PDEs78d is solved inside the boundary layer, where
h=Os1d, via imposing the three conditionss67d at h=0. One
more boundary condition is given by the common limit
s“overlap”d of the inner and the outer solutions whenh
→` and r →w+ simultaneously. Specifically,Fsh ,td should
approach the outer solution, Eq.s69d:

Fsh,td ,
3Bt

wstd4 − H8swstd+d, h → `. s79d

We further seek a long-time similarity solution,65 which
depends separately on the local variableh and the timet
inside the inner region. To leading order ine, we thus antici-
pate that

Fsh,td , a0stdf0sh;ed, s80d

where, as shown below,f0 depends implicitly one via the
boundary conditionss67d anda0=Os1d.

1. Scaling of the boundary-layer width

We next derive a scaling ofd with e. Substitution of Eq.
s80d into s78d gives

ẇd3

Bea0
f08 − sf0

2d99 = OS d

w
,

d4

ew4,
d4ȧ0

eB
,
d3ḋ

eB
D , s81d

where the terms on the right-hand side are shown below to
be negligible; see Appendix B for other technical details. By
definition of the boundary layer and the variableh, f0 should
satisfy a differential equation inh with coefficients indepen-
dent of time. From Eq.s81d, ẇd3/Bea0 must be independent
of time ande,
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ẇd3

Bea0
= k0 = Os1d, s82d

wherek0 is a constant; we takek0=1 without affecting ob-
servable quantities such asF and w. Thus, to leading order
in e,

d = Ose1/3d, s83d

independently of thesaxisymmetricd initial conditions. The
neglected terms in Eq.s81d areOse1/3d!1. Then, integrating
Eq. s82d for k0=1 yields a formula forwstd to be used below,

wstd = F4BE
t0

t

dt8a0st8dw̃st8d3 + wst0d4G1/4

, s84d

where w̃;w/D, Dstd;e−1/3dst ;ed=Os1d, and t0 is a fixed
yet sufficiently long arbitrary time. The scaling result of Eq.
s83d agrees well with kinetic simulations as shown in Sec.
V A below.

2. Complete solution for the slope profile

An ODE for f0shd follows from Eq.s81d with s82d. This
ODE can be integrated once via applying conditions79d to
the similarity forms80d. The choice

a0std =
3Bt

w4 − H8sw+d s85d

determines the explicit time dependence of the slope profile,
and yields the conditions

lim
h→+`

f0shd = 1, lim
h→+`

f08shd = 0. s86d

The resulting equation forf0shd is

sf0
2d- = f0 − 1. s87d

This equation is universal in the sense that no apparent re-
striction other than axisymmetry has been imposed for its
derivation. In principle,f0shd can be obtained uniquely via
the prescribed conditionss67d and s86d. In particular, the
conditions ath=0 are

f0s0d = 0, s88ad

a0
2w̃f3e2/3sf0

2dh=08 + w̃2g = 3, s88bd

a0
2w̃e1/3f3e1/3sf0

2d8 − w̃sf0
2d9gh=0 = 3. s88cd

In order to solve Eqs.s86d–s88d, it is convenient to pa-
rametrizef0 by the independent constants that enter its ex-
pansions for small or largeh. Specifically, the behavior of
f0shd near the facet edge,h=0, is obtained from Eq.s87d by
taking sf0

2d-+1<0,

f0shd , c1h1/2 + c3h3/2, c1 . 0, h → 0+, s89d

wherec1 andc3 are arbitrary. The higher-order terms in this
expansion are of the formcjh

j /2, wherej =5,6, . . .; asshown
in Appendix C, the coefficientscj s j ù5d are known in terms
of c1 andc3. We thus implicitly parametrizef0 by c1 andc3,

use the relationssf0
2dh=08 =c1

2 and sf0
2dh=09 =4c1c3, and rewrite

conditionss88bd and s88cd in terms ofc1 andc3 as

a0
2w̃f3e2/3c1

2 + w̃2g = 3, s90ad

a0
2e1/3w̃f3e1/3c1

2 − 4w̃c1c3g = 3, s90bd

wherew̃ was defined following Eq.s84d.
We note that the square-rootssingulard behaviorOsÎr −wd

of F described by the leading term in Eq.s89d is consistent
with the local equilibrium,2 where the surface shape is the
Legendre transform of the surface free energy, Eq.s32d.
However, the prefactor here is time dependent as it involves
the moving boundary position,r =wstd. The samessquare-
rootd behavior occurs in the one-dimensional caseswith one-
rectilinear coordinated;33 this result is expected because in-
side the boundary layer, sufficiently close to the facet edge,
the facet boundary appears locally straight.66

The behavior off0shd for h@1 is derived in Appendix D.
We find that Eq.s87d may admit a growing mode inh, which
must be suppressed in order thatf0 satisfies the far-field con-
ditions s86d. The elimination of this modefe.g., takingC
=0 in Eq.sD3d of Appendix Dg amounts to imposing a rela-
tion between thec1 andc3 of Eq. s89d.

We solve the ODEs87d numerically applying conditions
s86d and s88ad. For this purpose, we fixc1 and integrate the
ODE starting fromh0!1, where values off0shd and its
derivatives are evaluated by using expansionsC1d of Appen-
dix C, towardsh* @1 to satisfy the conditionf0sh* d<1.
So, we find a family of similarity solutionsf0shd, param-
etrized byc1, which correspond to a curvec3sc1d wherec3

,0. Representative numerical solutions are shown in Fig.
2sad. The solution f0shd and the facet radiuswstd are ob-
tained uniquely via imposing the remaining conditions ath
=0, Eqs.s90d, along with Eq.s84d. Below we illustrate this
procedure and show how the unique similarity shapef0shd
and facet radiuswstd depend one for the case with a conical
initial shape.

Once f0shd and wstd are known, the slope profile every-
where outside the facet is obtained by adding the outer and
inner solutions and subtracting their overlap. The resulting
composite formula reads

Fsr,td , F3Bt

w4 − H8sw+dGff0shd − 1g +
3Bt

r4 − H8srd.

s91d

3. Conical initial shape

The formulation described above applies to a class of axi-
symmetric initial shapes. We next restrict our analysis to the
case with a conical initial shape of unity slope outside the
facet,H8srd=−1 for r .W, determine uniquely the solution
f0shd, and discuss the scaling of this solution withe. The
boundary-value problem of Eqs.s86d, s87d, and s88ad and
s90d can be solved via the observation that Eq.s84d for the
facet radius is consistent with formulass85d for a0std and
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s75d for wst ;0d if w̃ anda0 are constants for long times; so,
the boundary-layer width,dstd, increases with time at the
same rate as the facet radius,wstd.

It turns out that significant analytical progress is possible
in this case, though at the expense of some algebra. To arrive
at the analytical results it is convenient to define the param-
etersc̃1 andl by

c1 = sc̃1e−1/3dw̃, s92ad

w̃3a0
2l2 = 3, s92bd

where l.0 for definiteness. Our purpose is to usel as a
free parameter in order to relatec3, c1 and e. By virtue of
definitionss92d, conditionss90d become

3c̃1
2 + 1 =l2, 3c̃1

2 − 4c̃1c3 = l2. s93d

Hence,l.1 and 4c̃1c3=−1, by which

c̃1 = 3−1/2Îl2 − 1, c3 = − 4−1Î3sl2 − 1d−1/2; s94d

note thatc3,0 consistently with the numerical solution of
Fig. 2sad. Because the parametersw̃, a0, c1 andc3 depend on
e, l is an implicit function ofe; in the limit e→0+, l ap-
proaches 1 from higher valuessl→1+d.

We proceed to expressa0 and w̃ in terms ofl. For long
times t, Eq. s84d reduces to

wstd , s4Ba0w̃
3td1/4. s95d

The combination of this formula with Eq.s85d for H8sw+d
=−1 gives a quadratic equation fora0 which has the admis-
sible spositived solution

a0 =
1

2
+

1

2
Î1 +

3

w̃3 . s96d

Substitution of this formula into Eq.s92bd gives

w̃ = F 3

16

s4 − l2d2

l2 G1/3

. s97d

By using Eq.s96d the amplitudea0 is thus calculated as a
function of l,

a0 =
1

2
+

1

2
Î1 +

16l2

s4 − l2d2 =
u4 − l2u + s4 + l2d

2u4 − l2u
. s98d

The combination of Eqs.s95d, s97d, ands98d gives

wst;ed
sBtd1/4 , H3

8

fu4 − l2u + s4 + l2dgu4 − l2u
l2 J1/4

, s99d

which provides an explicit analytical solution for the facet
width, w, as a function ofe oncel is determined as a func-
tion of e; see Eqs.s100d below. Note that in the limite
→0+, or l→1+, formulas99d reduces towst ;0d,s9Btd1/4, in
agreement with expressions75d for k=1.

It remains to express in terms ofl the coefficientsc1 and
c3 introduced in Eq.s89d and thereby determine analytically
the e-dependent curvesc3sc1;ed. From Eqs.s92ad, s94d, and
s97d,

c1 = e−1/33−1/2F 3

16

s4 − l2d2

l2 G1/3
Îl2 − 1, s100ad

c3 = −
Î3

4
sl2 − 1d−1/2. s100bd

For each value ofe, these equations describe implicitly a
relation betweenc1 andc3 in terms of thesfreed parameterl.
By eliminatingl from Eqs.s100d we find

c1e1/3 = −
3

4c3
F 1

162c3
2

s16c3
2 − 1d2

16c3
2 + 3

G1/3

, c3 , 0. s101d

This equation describes a one-parameter family of curves,
each curve corresponding to a different value ofe. Represen-
tative members of this family for four different values of
ssmalld e are shown in Fig. 2sbd.

The intersection of the curve of Eq.s101d with the set of
pointssc1,c3d that result from solving numerically Eqs.s86d,

FIG. 2. sad Numerical solutions of Eq.s87d with the boundary
conditions f0s0d=0 and f0s`d=1. Curves a–e are parametrized by
sc1,c3d=s1.5,−818 354 8d, s2,−1.113 031d, s3,−1.721 075 02d,
s3.5,−2.030 210 2d, s3.6,−2.092 321 55d and correspond toe=9.2
310−3, 1.9310−3, 1.7310−4, 6.8310−5, 5.7310−5. sbd The
dashed curves are described by Eq.s101d for a conical initial shape
and differente, while the solid curve showsc3 as a function ofc1

from the numerical solutions of Eq.s87d in part sad.
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s87d, ands88ad is shown in Fig. 2sbd, and determines a single
value ofe for each of the solution curves of Fig. 2sad. Con-
versely, to each value ofe there corresponds a unique pair
sc1,c3d, which comes from the intersection of two curves in
Fig. 2sbd, and hence a unique solutionf0sh ;ed; as e de-
creases,c1 and uc3u increase. Note that, by using the full set
of our proposed boundary conditions, we have arrived at a
unique solution for the slope profile as a function of timet
and distancer, and hence resolved the uniqueness problem
first noted by Israeli and Kandel.32

There is one more scaling law that stems from the analy-
sis. Each of the solution curvesf0shd has a well-defined ab-
solute maximum located ath=hm. An order-of-magnitude
estimate of this maximum is obtained by differentiation of
formula s89d,

sf0dmax= f0shmd ,
2c1

3
Î c1

3uc3u
, s102ad

hm ,
c1

3uc3u
. s102bd

Because the local-coordinate description describes the shape
as independent ofe, the position of this maximum,hm,
should be independent ofe to leading order. Thus, according
to Eq.s102bd, c1=Osuc3ud; the same conclusion is reached by
inspection of the numerical curve in Fig. 2sbd. Equation
s101d then dictates thatc1 and c3 are Ose−1/6d and so the
maximum slope,sf0dmax, is estimated by Eq.s102ad to be
Ose−1/6d,

sf0dmax= Ose−1/6d. s103d

In Fig. 3 we plot the numerically evaluated maximum off0
corresponding to the solution curves a–e of Fig. 2sad versus
e, and verify thee−1/6 scaling law. This scaling result is also

in excellent agreement with kinetic simulations32 as demon-
strated in Sec. V A below.

Oncesc1,c3d are determined for eache, the parameterl is
found as a function ofe by use of Eqs.s100d. Thus,a0 andw
are determined as functions ofe via Eqs.s98d ands99d; in the
limit e→0, a0 andw areOs1d as expected. In particular, ase
decreases towards 0,w/ sBtd1/4 behaves asw/ sBtd1/4

,f3s4/l2−1dg1/4, and thus increases to the value
w0std / sBtd1/4=Î3, where w0std=wst ;0d. Hence, for c1

=Osuc3ud from Eq. s102bd or Fig. 2sbd and by use of Eq.
s100bd, we obtain the variation of the facet width withe,

wst;0d − wst;ed = Ose1/3d . 0. s104d

In Fig. 4 we plot the differencefw0std−wst ;edgsBtd−1/4 cor-
responding to the solution curves a–e of Fig. 2sad versuse,
and verify our analytically predictede1/3 scaling law. In ad-
dition, the monotonically decreasing and scaling behavior of
w/ sBtd1/4 with e predicted here analytically agrees with ki-
netic simulations32 as shown in Sec. V A below.

IV. BOUNDARY-LAYER THEORY FOR ADL KINETICS
WITH AXISYMMETRY

We next address the scaling of the boundary-layer width
with e=g3/g1 for ADL kinetics, wheree is the ratio of step-
step interaction energy to line tension. Physically, in this case
the attachment and detachment of atoms to and from the step
edges is the rate-limiting process in the surface relaxation.
From the mathematical standpoint, the continuum equations
may be more difficult to study. For example, the effective
surface diffusivity in the governing equations27d is Ds
=Dss1+mFd−1,Dsm

−1F−1, and thus appears to become sin-
gular whenF→0;67 see Eq.s22d. In ADL kinetics the behav-
ior of the step configuration is more complicated; a wealth of
physical phenomena and mathematical features exclusive to

FIG. 3. Log-log plot of the maximum off0sh ;ed, sf0dmax, as
function of e from the solution of Eq.s87d with conditions f0s0d
=0 andf0s`d=1 and Eq.s101d. The circles represent the results of
our numerical calculations and correspond to the solution curves
a–e of Fig. 2sad. The straight line describes thee−1/6 scaling law
derived analytically, Eq.s103d.

FIG. 4. Log-log plot of the differencefw0std−wst ;edgsBtd−1/4 as
function of e from the solution of Eq.s87d, with conditionsf0s0d
=0 and f0s`d=1, and Eqs.s99d, s100bd, and s101d. The circles
represent the results of our numerical calculations and correspond
to the solution curves a–e of Fig. 2sad. The straight line describes
the e1/3 scaling law of Eq.s104d.
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this limit arise which, within the continuum approach and
boundary-layer ideas, require considerations different from
those of Sec. III.

Despite the additional complications, however, kinetic
simulations32 indicate to us that the continuum step density,
Fsr ,td, in ADL kinetics retains a feature common with DL
kinetics: F still varies rapidly close to the facet, inside a
boundary layersinner regiond whose width depends nontrivi-
ally on the ratiog3/g1 fe.g., see Figs. 5sbd, 5sdd and 7 of Ref.
32g. Before we focus on this continuum aspect, we describe
the main physical features of ADL kinetics that emerge from
kinetic simulations, and discuss their implications for the ap-
plication of boundary-layer theory.

A. Implications of kinetic simulations

The results of kinetic simulations32,41 for ADL kinetics
indicate that the behavior of the step positionsr istd, which
satisfy Eqs.s6d–s10d and the initial condition of givenr is0d,
can be radically different from that for DL kinetics. Specifi-
cally, there are two interrelated features of step motion in
ADL kinetics that characterize such differences:sad For fixed
and not too small ratio of step-step interaction energy to line
tension, the motion of several steps adjacent to the first step
undergoes abrupt changes as the top layer shrinks and is
about to collapse; thus, this motion is sensitive to the details
of kinetics energetics of the top layer. In contrast, in DL
kinetics the motion of steps appears to be uniform along the
distance from the first stepssee Fig. 2 of Ref. 32d. sbd When
the ratio of repulsive step interaction energy to line tension
decreases below a threshold value, the step configuration be-
comes unstable as the steps start to form a bunch close to the
facet; further reduction of the ratio of the two energies causes
the appearance of more bunches and the notion of evolution
as driven by individual steps becomes questionablefsee Figs.
5sad, 5scd, 5sed and 5sfd of Ref. 32g. In DL kinetics, on the
other hand, no such instability occurs; the decrease of the
ratio of the two energies,g3/g1, simply causes a rise of the
sdiscreted step density,Fi =a/ sr i+1−r id, close to the facetfsee
Fig. 4sad of Ref. 32g. In view of these complications, the
issue is raised whether a similarity solution for the con-
tinuum step density is valid close to the facet and, if so, what
is its form. Another, fundamental issue is the validity of the
continuum theory for ADL kinetics, and the incorporation in
a continuum model of the motion of the top stepssd in the
form of suitable boundary conditions.

In particular, because of featuresad above, F should
change within the collapse period of the top step; a similarity
solution of form s80d then seems inconsistent with such
changes because it cannot account for the details of motion
of the top step. In fact, Eq.s80d is expected to be valid only
sufficiently far from the facet,68 where the local, inner vari-
able, h, exceeds some value. For lower values ofh, the
maximum of the similarity function appears sensitive to the
density of the first few steps for pure ADL kinetics.68 From
the mathematical standpoint, as explained in Ref. 41, the step
density very near the facet has a strong temporal, almost-
periodic behavior related to the motion of the top step.

In addition, featuresbd above, which refers to the step
bunching instability for ADL kinetics, gives rise to an issue

more serious for the continuum approach as not only is self-
similarity of the shape then lost, but also the continuum ap-
proximations that give the governing equations27d seem to
break down becauseF can vary over lengths comparable to a
terrace width; in ADL kinetics the continuum limit has to be
reconsidered wheng3/g1 becomes sufficiently small.69

Hence, taking e=g3/g1=0 for ADL kinetics within
boundary-layer theory64 in order to determine the form of the
outer solution is apparently forbidden by the conditions of
validity of the continuum theory. Nevertheless, we show that
our continuum predictions provide quantitative insight into
certain aspects of ADL kinetics.

Because of the potential complications discussed in the
preceding paragraphs, our focus here is on the scaling of the
boundary-layer width. We circumvent the difficulties out-
lined above by making the following assumptions in the case
with ADL kinetics: sad We allow for a long-time similarity
solution that, though still dependent on a local coordinate,h,
in the inner region, also has an explicit time dependence
related to the periodic motion of the top step; we subse-
quently argue that this latter dependence can be neglected for
our scaling purposes.sbd Because the outer solution, which is
usually defined through takinge=0 in the governing equa-
tion, is ill-defined, we do not address the issue of finding a
unique slope profile. Instead, we assume thate exceeds the
critical value below which the bunching instability occurs,
and derive a scaling of the boundary-layer width via balanc-
ing terms to leading order ine in the governing equation, in
complete analogy with the DL case. In Sec. V B below we
show that our scaling predictions are in excellent agreement
with the results of kinetic simulations.

The governing PDE for the slope profile,Fsr ,td, for ADL
kinetics results from Eq.s27d by neglecting unity compared
to mF, as implied by Eq.s22d; so we study the PDE

1

B̆

]F

]t
=

]

]r

1

r

]

]r

1

r
S 1

F
D −

g3

g1

]

]r

1

r

]

]r
F r

F

]

]r

1

r

]

]r
srF2dG ,

s105d

where the material parameterB̆ is

B̆ =
csskadg1V2

2kBT
. s106d

B. Scaling of boundary-layer width

Following the discussion of the preceding section and by
analogy with our approach to DL kinetics, we start with the
long-time similarity ansatz

Fsr,td , a0stdf0sh,td, h =
r − wst;ed

dst;ed
, s107d

wheret=tstd accounts for the motion of the top step;f0 is in
principle a periodic function oft and varies slowly witht
except possibly at times when the top step collapses. Differ-
entiation of Eq.s107d with respect to timet gives
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]F

]t
= ȧ0f0 − a0F ]f0

]h
S ḋ

d
h +

ẇ

d
D −

]f0

]t
ṫG . s108d

Recall thatd!w for the boundary-layer ideas to be appli-
cable; inside the boundary layerh=Os1d. We thus take

usf0dtṫu! usf0dhfsḋ /ddh+sẇ/ddgu, which neglects the
t-dependence, and Eq.s108d reduces to

]F

]t
< ȧ0f0 − a0

]f0

]h
S ḋ

d
h +

ẇ

d
D . s109d

Substitution of Eq.s107d into s105d and use of Eq.s109d
gives

1

B̆
Fȧ0f0 − a0S ḋ

d
h +

ẇ

d
D ]f0

]h
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a0d2
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]

]h

1

hd + w

1

f0
−
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2
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d
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−
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2
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GJ . s110d

The boundary layer is identified with the region whereh
=Os1d. For e,Os1d and d!w, the balance of the leading-
order terms ine thus gives

ẇd3

B̆e

]f0

]h
−

]2

]h2S 1

f0

]2f0
2

]h2D +
d2

a0
2ew2

]2

]h2S 1

f0
D

= OS ȧ0d4

B̆ea0

,
ḋd3

B̆e
,

d

wD , s111d

where we keep only the highest derivatives in the terms per-
taining to the two energetic contributions of line tensionsg1
termd and step-step interactionssg3 termd. A distinct differ-
ence of Eq.s111d here from the corresponding Eq.s81d for
DL kinetics is the presence of the additional derivative
s1/ f0dhh on the left-hand side, which arises from the line-
tension term because of theF-dependent effective surface
diffusivity.

By inspection of Eq.s111d the only possible balance,
which does not lead to inconsistencies, involves all three
terms on the left-hand side. Thus, we require that

ẇd3

B̆e
= k0std = Os1d, s112ad

d2

a0
2ew2 = k1std = Os1d, s112bd

wherek0 andk1 are slowly varying functions of time. Com-
bining these two results we find

d = Ose3/8d, s113d

which is a prediction of a scaling law for the boundary-layer
width under ADL kinetics. This result should be contrasted
with the case of DL kinetics whered=Ose1/3d. The scaling of
Eq. s113d is in excellent agreement with kinetic simulations32

as shown in Sec. V B below. The same argument seems to
imply that w=Ose−1/8d. However, we have insufficient data
to test this idea as the exponent is small and there is diffi-
culty in definingwstd in the simulations.

V. COMPARISON WITH SIMULATION RESULTS

We next compare the predictions of our continuum ap-
proach for DL and ADL kinetics with the kinetic simulations
reported by Israeli and Kandel.32 We believe that this com-
parison is meaningful as these authors used the potential of
Eq. s8d to describe repulsive step interactions between steps
of the same sign, and did not include the self-interaction of
the top step in their formulation, in analogy with our formu-
lation of Secs. II A and II B. Our approach is based on the
PDE s27d for axisymmetric structures whereas the kinetic
simulations of Ref. 32 are based on numerical solutions for
long times of the kinetic differential equations given in Sec.
II A. 70 We exercise some caution in comparing results from
these two approaches, however, as the dimensionless param-
eters used are different.

In particular, in their simulations both for DL and ADL
kinetics the authors in Ref. 32 vary a dimensionless param-
eter, g, proportional to oure=g3/g1, g=s2/3dC2·sg3/g1d,
holding g1 fixed, which in our analysis amounts to changing
only e; C=kBT/ sVg1/ad is a constant independent ofg3.
Their simulations produced ag-dependent family of solu-
tions; see their Figs. 4sbd and 6 for DL kinetics, and their
Figs. 5sbd, 5sdd and 7 for ADL kinetics. Israeli and Kandel32

also derived ag-dependent ODE in the similarity variable
x=C1/4·r / sBtd1/4 snot to be confused with the Cartesian co-
ordinated for the step densityFsr ,td; we recognize that, for
sufficiently smallg, their ODE reduces to our Eq.s87d. How-
ever, on the basis of their equation they found multiple so-
lutions because their analysis lacked one boundary condition
at the facet edge,r =w. We provide a unique solutionf0sh ;ed
for eache in the case with DL kinetics, but are unable to treat
ADL kinetics on the same detailed footing, as explained in
Sec. IV.

A. DL kinetics

We have predicted three scaling laws withe=g3/g1 ac-
cording to the analysis of Sec. III for DL kinetics:sad The
boundary-layer widthdst ;ed scales ase1/3, Eq. s83d. sbd The
maximum step density close to the facet scales ase−1/6, Eq.
s103d. scd The facet radius,wst ;ed, is monotonically decreas-
ing in e, and its spositived change from the limitwst ;0d
=Î3sBtd1/4, wst ;0d−wst ;ed, scales ase1/3, Eq. s104d.

First, we address the scaling of the boundary layer width.
In order to compare our results with the kinetic simulations,
we define the boundary-layer thickness as the distance from
the facet edge,x0=C1/4·w0/ sBtd1/4, to the position,xpeak

=C1/4·rpeak/ sBtd1/4, of the peak of the step density,Fpeak

=Fsrpeak,td. In Fig. 5 we show the results of kinetic simula-
tions for the scaled distancexpeak−x0 versus the parameter
g= s 2

3
dC2·e, and compare with oure1/3~g1/3 prediction. We

find the agreement to be very good for a wide range of values
of g. A few remarks are in order on the deviations of the
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boundary-layer width from the predicted behavior wheng
,10−6. As g sor ed decreases towards small values in the
simulations,xpeak approaches the facet edge, the boundary-
layer width becomes small on the scale of the step spacing,
and its evaluation in the discrete simulations becomes prone
to errors; therefore, the definition of the boundary-layer
width asxpeak−x0 is questionable wheng is too small.

Next, we examine how theFpeak furnished by kinetic
simulations varies withg. In Fig. 5 we compare the results of
kinetic simulations with thee−1/6~g−1/6 scaling prediction.
Again, the agreement is very good for an appreciable range
of values ofg. We note from Fig. 5 that the behavior ofFpeak
starts to deviate from theg−1/6 scaling law asg increases to
valuesOs1d, because the slope profile near the facet then has
relatively slow variations in distance andFpeak approaches
the constant slope of the conical initial shape, which is unity
in the simulationsfe.g., see the slope profiles in Fig. 2sadg.

Finally, we examine the predicted sign and scaling withe
of the change of the facet radiusw from its limit w0,
wst ;ed−wst ;0d. The kinetic simulations furnish the scaled
facet radius,x0=C1/4·w/ sBtd1/4, i.e., the distance where the
step densityF practically vanishes, to be decreasing ing, in
agreement with our prediction, Eq.s99d; see Figs. 4sbd and 6
of Ref. 32. In Fig. 6 we plot the positive change ofx0 as a
function of g with reference to the value ofx0 at extremely
small g, hereg=5310−8. The simulation results are in ex-
cellent agreement with our prediction of thee1/3 scaling law.
Note that we choose thex0 evaluated atg=5310−8 as a
reference value recognizing that the facet radius calculated
for smallerg by the kinetic simulations is prone to numerical
errors as explained above.fWe find that the use of kinetic
simulation data forx0 that corresponds togø10−8 seems to
destroy the scaling predicted by Eq.s104d.g

B. ADL kinetics

We now turn our attention to the ADL kinetics analyzed in
Sec. IV. There is one scaling law that comes from the analy-
sis and can be compared with kinetic simulation data: the
boundary-layer width scales ase3/8, Eq. s113d.

In this case the solution found by kinetic simulations has
a relatively strong temporal behavior related to the periodic
motion of the top step, and thus does not have a unique
similarity form at distances sufficiently close to the moving
facet.68 Consequently, the position of the maximum ofF can-
not be used in the definition of the boundary-layer width,
dst ;ed. BecauseF attains a unique similarity form at dis-
tancesxùxmin, wherex=C1/4·r ·sBtd−1/4 andxmin corresponds
to the position of the firstsnonzerod minimum ofF closest to
the facet, we definedst ;ed as the differencexmin−x0 between
the facet edge,x0=C1/4·w·sBtd−1/4, andxmin.

In Fig. 7 we show the results of kinetic simulations for the
scaled distancexmin−x0 versusg=s2/3dC2·e, and compare
with our e3/8 prediction. We find the agreement to be excel-
lent for a wide range of values ofg, 5310−4,gø1; note
that smaller values ofg have been shown32 to drive the sys-
tem to a step bunching instability and may thus be irrelevant
to the similarity solutions under consideration.

VI. SUMMARY AND DISCUSSION

By using a continuum description based on thermody-
namic principles and mass conservation we studied aspects
of morphological relaxation of single-faceted crystal surfaces
below the roughening transition temperature with focus on
axisymmetric surface profiles. Our approach is a blend of
three elements. The first element is a PDE for the surface
height profile h, Eq. s37d, which reduces to Eq.s29d for

FIG. 5. Log-log plot of the boundary-layer thicknessdst ;ed and
the maximum of step densityFpeakas functions ofg=s2/3dC2·e for
DL kinetics; C=kBT/ sVg1/ad is a constant independent ofg3. The
crosses represent the results of kinetic simulations given to us by
Israeli and Kandel.32 Here,dst ;ed is estimated as the scaled distance
xpeak−x0 between the facet edge,x0=C1/4·w·sBtd−1/4, whereF=0,
and the positionxpeak of the maximum ofF. The straightssolidd
lines correspond to thee1/3 ande−1/6 scaling laws predicted accord-
ing to Eq.s81d.

FIG. 6. Log-log plot of the positive, scaled bysBtd1/4, change of
the facet radiusw from its limiting value as e→0, fwst ;0d
−wst ;edgsBtd−1/4, as function of g=s2/3dC2efor DL kinetics; C
=kBT/ sVg1/ad is a constant independent ofg3. The crosses repre-
sent the results of kinetic simulations for the changex0s5310−8d
−x0sgd given to us by Israeli and Kandel;32 x0sgd=C1/4·w·sBtd−1/4 is
the scaled facet radius from kinetic simulations as function ofg.
The straightssolidd line corresponds to thee1/3 scaling law pre-
dicted according to Eq.s99d.
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axisymmetric shapes. Equations27d was derived from the
kinetic equations of a step-flow model, Eqs.s6d–s10d, or,
alternatively, from a coarse-grained surface free energy ap-
proximated by Eq.s32d for simple, repulsive pairwise step
interactions. This PDE accounts for the main step energetics,
namely, line-tension energy and step-step interaction energy.
The second ingredient of our approach is free-boundary
theory to treat the expanding facet in the spirit of Spohn;23

we extended the analysis further, to cases where both the line
tension and the step interactions play an important role. The
third element is singular perturbation theory, particularly
boundary-layer theory, by which we described systematically
rapid variations of self-similar slope profilesF close to the
facet.

The combination of free-boundary and boundary-layer
theories for DL kinetics enabled us to make two analytical
advances over past continuum treatments.sad We were able
to simplify the PDE for the slope profile close to the facet by
reducing it a universal ODE, Eq.s87d, for some class of
axisymmetric shapes. Furthermore, by exploiting the hierar-
chy of the continuum equations, as expressed by the relations
among the surface free energy per projected area, the chemi-
cal potential, the surface current and the height time deriva-
tive, Eqs. s1d, s30d, s33d, and s34d, we identified a set of
boundary conditions forF at the facet edge that provided us
with a unique solution to the ODE for each value ofg3/g1.
sbd We found scaling laws for the boundary-layer width, the
maximum slope and the facet radius as functions of the ratio
of step interactions to line tension that agree well with ki-
netic simulations. Specifically, the boundary-layer width
scales assg3/g1d1/3, the maximum slope scales assg3/g1d−1/6,
and the change of the facet radius from its limiting valuesas
g3/g1→0d scales assg3/g1d1/3.

For ADL kinetics we have recognized difficulties in ap-
plying boundary-layer theory because of the instabilities that

arise in the step motion whene=g3/g1 is sufficiently small.
One difficulty is finding a suitable ansatz for the outer solu-
tion, which usually results from takinge=0 in the equation
of motion. In this case, the difficulty is related to the strong
dependence of the slope profile close to the facet on the
motion of the top step. Despite these features we have been
able to identify a boundary layer for the slope profile close to
the facet and quantify its dependence on the step energetics:
the boundary-layer width scales assg3/g1d3/8; this scaling is
also in good agreement with kinetic simulations.

From the theoretical standpoint, our scaling results mani-
fest intimate relations between boundary layers and facet
evolution, which seem to remain almost intact in passing
from the discrete kinetic equations to the continuum limit.
The presence of the facet, where the continuum solutions
develop singularities, does not cause any problems within
our approach; in fact, the singular character of the slope pro-
file near the facet is exploited here in order to determine
scaling of the maximum step density for DL kinetics. Hence,
our treatment transcends previously stated limitations of con-
tinuum theories.28,33

From the experimental standpoint, we believe that the
shape profile predicted by the universal ODE, Eq.s87d, for a
class of axisymmetric shape profiles, or possibly its variants
for non-axisymmetric profiles, may describe real experimen-
tal situations, especially those where “mounds” are created
on crystalline surfaces. The coverage of nominally flat crys-
talline surfaces by mounds can result from homoepitaxial
growth of semiconductors,71,72 metals73 and ceramics,74 het-
eroepitaxial growth of Pb crystallites,75 or from lithographic
fabrication processes.51 Axisymmetry is rarely observed
there but two-, three-, or four-fold rotational symmetry of the
mounds is frequently observed. After the completion of
growth or patterning, some aspects of the relaxation of these
features toward flatness at temperatures belowTR may be
described by our treatment. There should be a time regime in
which sufficient mass transport has occurred for the tips of
the mounds to have attained a self-similar shape but insuffi-
cient mass transport has occurred to permit the tips to inter-
act with the bases of the mounds. In this regime, profiles and
scaling laws as presented here are indicative of the depen-
dence of macroscopic features of evolution on the step ener-
getics.

It is worthwhile placing our work in perspective with
some existing treatments of surface evolution and also point-
ing out open questions. Our motivation for treating analyti-
cally the nanostructure decay with ratio of energy parameters
e=g3/g1,Os1d was to make direct contact with kinetic
simulations.32 Furthermore, it is necessary to develop a sys-
tematic understanding of limitations of a large body of clas-
sical work based on the original step-flow model by Burton,
Cabrera and Frank43 in which e=0. We emphasize that our
results are consistent with the kinetic simulations although
our analysis is developed within the analytical framework of
continuum thermodynamics. The principal concept that
emerges from our studies as abridge between the two ap-
proaches is the boundary-layer idea.

In order to identify and quantify the boundary layer we
considered nanostructure decays in which line tension mat-
ters, as is the case with a conical initial shape. Specifically, in

FIG. 7. Log-log plot of the boundary-layer thicknessdst ;ed as
function of g=s2/3dC2·e for ADL kinetics; C=kBT/ sVg1/ad is a
constant independent ofg3. The crosses represent the results of
kinetic simulations given to us by Israeli and Kandel.32 Here,dst ;ed
is estimated as the scaled distancexmin−x0 between the facet edge,
x0=C1/4·w·sBtd−1/4, and the positionxmin of the minimum ofF,
where the similarity solution is well-defined. The straightssolidd
lines correspond to thee3/8 scaling law predicted according to Eq.
s113d.
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the corresponding simulations,32 all steps including the top
one move exclusively under the influence of line tension and
interactions with the neighboring steps. We followed this as-
pect of evolution using the same interactions. Our scaling
results are a direct consequence of boundary-layer theory.
Specifically, we believe that the scaling of the maximum step
density does not depend on the detailed form of the boundary
conditions that we chose to apply.

There are features of evolution that apparently evade a
precise description in our model, such as the detailed motion
of the top step, which is sensitive to its kinetics and energet-
ics. In this respect the question is raised whether suitable
boundary conditions at the facet edge can be found to ac-
count for the self interaction of the top step. Mathematically,
this possibility is indicated to us by the existence of the
one-parameter family of similarity solutions of Sec. IIIfsee
Fig. 2sadg; different members of this family may be reason-
ably “selected”76 via boundary conditions that can incorpo-
rate different energetics, in the form of self-interaction, of the
top step.

Our analysis is in the spirit of Spohn’s23 treatment of fac-
ets as free boundaries, and enriches that approach with the
concept of boundary layer in order to quantify analytically
the combined effect of step line tension and step-step inter-
actions. In more technical terms, by considering a neighbor-
hood of the facet where the slope varies appreciably, we need
impose similarity onlylocally for a class of initial shapes and
not globally.

A continuum aspect that needs to be explored further is
the connection of the boundary-layer theory used here with
the variational formulation of Ref. 30. In particular, there
seems to exist an intimate relation between the nature of the
boundary conditions that we apply in Sec. II C and this
variational approach.

In conclusion, our continuum approach stems from famil-
iar thermodynamic concepts and reaches analytical results by
using a PDE and combining free-boundary and boundary-
layer theories. It is thus promising to apply these ideas to
other problems at the mesoscale and nanoscale, with or with-
out the assumption of self-similar shapes. The extension of
our studies to fine details of nanostructure decay for a range
of processes may require a more careful examination of the
effective boundary conditions at the facet edge.
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APPENDIX A: ZEROTH-ORDER FACET RADIUS

In this appendix we derive Eq.s73d and also give analyti-
cal formulas forw0std for various initial profiles. Differentia-
tion with respect tot of both sides of Eq.s72d gives

ḣf0 =
B

w0
3 −

3Bt

w0
4 ẇ0 + H8sw0

+dẇ0. sA1d

By virtue of Eq.s71d, elimination ofḣf0 yields

ẇ0w0
2H8sw0

+d = −
3B

w0
+

3Bt

w0
2ẇ0. sA2d

The last equation reads

d

dtHEconst.

w0std

drr2f− H8srdgJ =
d

dt
F 3Bt

w0stdG . sA3d

Integration of this equation with the initial conditionw0s0d
=W readily gives Eq.s73d.

1. Conical initial shape

When the initial surface profile is a cone, Eq.s73d can be
solved exactly for all timest.0. With H8srd=−k,0 for r
.w0s0d=W, w0std satisfies the equation

w0std4 − W3w0std −
9Bt

k
= 0. sA4d

By the known procedure of finding roots of quartic
polynomials,77

w0std =
Îu1

2
+

1

2
Î2Su1

2 +
36Bt

k
D1/2

− u1, sA5d

where

u1 = s+ − s−, sA6d

s± = FÎS12Bt

k
D3

+
W12

4
±

W6

2
G1/3

. sA7d

2. Long-time asymptotic formulas for class
of initial shapes

We consider solutionsw0std to Eq.s73d that, for a class of
initial shapes, are monotonically increasing and unbounded
for sufficiently long timest. We distinguish the following
cases.

a. Bt/w0\` as t\`

It follows that the integral in Eq.s73d diverges asw0
→`. We assume the slope profile

− H8srd = krr + lrn, k . 0, r . n . − 3, sA8d

wherer .W andk, l, r andn are given constants. Equation
s73d furnishes

k
w0

r+4

r + 3
= 3Bt − l

w0
n+4

n + 3
+ Osw0d, sA9d

where theOsw0d terms can be neglected. The leading term
for long times is
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w0std , F sr + 3d3Bt

k
G1/sr+4d

. sA10d

For r=0, an initial conical shape, this formula agrees with
Eq. sA5d in the limit whereW! sBtd1/4 so that 36Bt/k domi-
nates overu1. The next-order term is derived from Eq.sA9d
by a simple iteration:

w0std , F sr + 3d3Bt

k
G1/sr+4d

−
l

k

r + 3

sn + 3dsr + 4d

3 F sr + 3d3Bt

k
Gf1−sr−ndg/sr+4d

. sA11d

In particular, forr=1 andn=0 Eq.sA8d describes a parabo-
loid and Eq.sA11d gives

w0std , S12Bt

k
D1/5

−
4

15

l

k
, sA12d

in agreement with the scaling in time derived directly from
the step motion in Ref. 38. If the paraboloid axis of symme-
try coincides with thez-axis, thenl=0. In the case withl
=0 and arbitraryr, Eq. s73d gives

w0std , F sr + 3d3Bt

k
G1/sr+4d

+
Wr+3

r + 4
F sr + 3d3Bt

k
G−sr+2d/sr+4d

.

sA13d

Note that the initial facet radius,W, enters the next-order
term.

The case withr=−3 andl=0 deserves some special at-
tention because the integral in Eq.s73d becomes logarithmi-
cally divergent. Equations73d reads

kw0 ln Sw0

W
D = 3Bt. sA14d

A formula for w0std is found by taking the logarithm of both
sides of this equation:

w0std ,
3Bt/k

ln s3Bt/kWd − ln ln s3Bt/kWd
. sA15d

Finally, we consider the case withn=−3,r and lÞ0.
The equation forw0std is

k
w0

r+4

r + 3
= 3Bt − lw0 ln Sw0

W
D + k

Wr+3

r + 3
w0. sA16d

This equation is solved iteratively by treating the two last
terms of its right-hand side as small:

w0std , F sr + 3d3Bt

k
G1/sr+4d

−
l

k

r + 3

r + 4
F sr + 3d3Bt

k
G−sr+2d/sr+4d

3 lnH 1

W
F sr + 3d3Bt

k
G1/sr+4dJ

+
Wr+3

r + 4
F sr + 3d3Bt

k
G−sr+2d/sr+4d

. sA17d

b. Bt/w0=O„1… as t\`

In this case the facet expands at a constant speed,ẇ
=const. Thus, the initial slope profile must satisfy

I ; E
W

`

dr r2f− H8srdg , `. sA18d

It follows that

w0std , I−13Bt. sA19d

In particular, whenH8srd=−krr andr,−3,

w0std ,
ur + 3u
kWr+33Bt. sA20d

The exponential slope profile −H8srd=ke−sr ss.0d leads to
the formula

w0std ,
3esW

ksW2/s + 2W/s2 + 2/s3d
Bt. sA21d

The Gaussian slope profileH8srd=−kre−r2/a2
gives

w0std ,
6eW2/a2

ka2sW2 + a2d
Bt. sA22d

APPENDIX B: SCALING FOR THE BOUNDARY-LAYER
WIDTH

In this appendix we argue that Eq.s83d is the only possi-
bility of scaling. As is common in problems of singular
perturbation,64 we assume that, to leading order ine, the
boundary-layer widthd scales as

dst;ed = eaDstd, a . 0, sB1d

whereD=Os1d and the exponenta is to be determined. We
show that there is a unique value ofa consistent with the
boundary conditionF=0 at h=0 and conditions79d as h
→`. This value can be obtained by reductio ad absurdum as
described below.

By use of formulasB1d, Eq. s78d reads

e3aẇD3

B
sFdh = esF2dhhhh + Ose1+a,e4ad. sB2d

So, we distinguish two ranges of values fora.
sid a,

1
3. The leading term in Eq.sB2d is thus Ose3ad;

hence,Fh=0, by whichFsh ,td=0 for all h in order to sat-
isfy the condition of zero slope ath=0. This solution is
impossible.

sii d a.
1
3. The leading term in Eq.sB2d is Osed. Hence,

sF2dhhhh=0, or

F2sh,td = b3stdh3 + b2stdh2 + b1stdh, sB3d

which satisfiesFs0,td=0. So, Fsh ,td=Oshl/2d as h→`,
where l is a positive integer, which cannot match the outer
solution according to formulas79d. We conclude thata= 1

3 is
the only possible value. Futhermore, it is shown in Appendix
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D that the resulting similarity solution forF inside the
boundary layer can approach the outer solution ash→`
with correction terms that decay exponentially inh.

APPENDIX C: BEHAVIOR OF f0„h… AS h\0+

In this appendix we derive a small-h expansion for the
f0shd that satisfies the ODEs87d with f0s0d=0. By virtue of
Eq. s89d we start with the expansion

f0shd , o
j=1

M

cjh
j /2, c2 = 0, h → 0+. sC1d

We chooseM =11 for the number of terms in this expansion,
as a compromise between the amount of labor to calculatecj
and the accuracy needed for our actual numerical calcula-
tions. It follows that

f0shd2 , c1
2h + 2c1c3h2 + 2c1c4h5/2 + sc3

2 + 2c1c5dh3 + 2sc1c6

+ c3c4dh7/2 + s2c1c7 + 2c3c5 + c4
2dh4 + 2sc1c8 + c3c6

+ c4c5dh9/2 + 2sc1c10 + c3c8 + c4c7 + c5c6dh11/2

+ s2c1c9 + 2c3c7 + 2c4c6 + c5
2dh5

+ s2c1c11 + 2c3c9 + 2c4c8 + 2c5c7 + c6
2dh6, sC2d

sf0
2d- ,

15

4
c1c4h−1/2 + 6sc3

2 + 2c1c5d +
105

4
sc1c6 + c3c4dh1/2

+ 24s2c1c7 + 2c3c5 + c4
2dh +

315

4
sc1c8 + c3c6

+ c4c5dh3/2 + 60s2c1c9 + 2c3c7 + 2c4c6 + c5
2dh2

+
693

4
sc1c10 + c3c8 + c4c7 + c5c6dh5/2 + 120s2c1c11

+ 2c3c9 + 2c4c8 + 2c5c7 + c6
2dh3. sC3d

From Eq.s87d, the last expansion equals

f0 − 1 , − 1 +c1h1/2 + c3h3/2 + c4h2 + c5h5/2 + c6h3.

sC4d

The system of equations for the coefficients thus is

c4 = 0, 6sc3
2 + 2c1c5d = − 1,

105

4
sc1c6 + c3c4d = c1,

24s2c1c7 + 2c3c5 + c4
2d = 0,

315

4
sc1c8 + c3c6 + c4c5d = c3,

60s2c1c9 + 2c3c7 + 2c4c6 + c5
2d = c4,

693

4
sc1c10 + c3c8 + c4c7 + c5c6d = c5,

120s2c1c11 + 2c3c9 + 2c4c8 + 2c5c7 + c6
2d = c6. sC5d

After some algebra the coefficientscj for j ù5 are calcu-
lated in terms ofc1 andc3 srecall thatc2=c4=0d,

c5 = −
1

2c1
Sc3

2 +
1

6
D, c6 =

4

105
,

c7 =
c3

2c1
2Sc3

2 +
1

6
D, c8 = −

8

315

c3

c1
,

c9 = −
5

8c1
3Sc3

2 +
1

30
DSc3

2 +
1

6
D ,

c10 =
4

55c1
2S4c3

2

7
+

1

27
D ,

c11 =
c3

4c1
4Sc3

2 +
1

6
DS7c3

2

2
+

1

4
D +

202

s105d2c1
. sC6d

APPENDIX D: BEHAVIOR OF f0„h… AS h\`

In this appendix we derive an asymptotic formula whenh
is large for thef0shd that satisfies Eq.s87d with f0s`d=1.
Because of conditions86d we introduce a functiong0shd
such that

f0shd = 1 +g0shd, ug0u ! 1, h @ 1. sD1d

Substitution of this formula into Eq.s87d yields the ODE

2g0- − g0 = Osg0
2d. sD2d

By neglecting the right-hand side of this equation, we notice
that the resulting linear ODE has three independent solu-
tions, one of which is a growing exponential:

g0shd , Ce2−1/3h + Ae−2−4/3h cosS Î3

24/3h + fD , sD3d

whereA, C andf are arbitrary real constants. We thus take
C=0 in order to suppress the growing exponential. The re-
sulting formula is

g0shd , Ae−2−4/3h cosS Î3

24/3h + fD, h @ 1. sD4d
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