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Mesoscopic model for dynamic simulations of carbon nanotubes
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A mesoscopic model is developed for static and dynamic simulations of nanomechanics of carbon nanotubes
(CNTs). The model is based on a coarse-grained representation of CNTs as “breathing flexible cylinders”
consisting of a variable number of segments. Internal interactions within a CNT are described by a mesoscopic
force field designed and parameterized based on the results of atomic-level molecular dynamics simulations.
The radial size of the CNTs and external interactions among multiple CNTs and molecular matrix are intro-
duced through a computationally efficient “virtual surface” method that does not require explicit representation
of the CNT’s surfaces. The mesoscopic model is shown to reproduce well the dynamic behavior of individual
CNTs predicted in atomistic simulations at a minor fraction of the computational cost.
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I. INTRODUCTION CNTs, the continuum models are hardly applicable for direct

Since their discovery in 1991 poth single- and multi- dynamip simulation_s at a me_soscopic level. A fully three-
walled carbon nanotubd€NTS) have been investigated rig- dimensional dynamic simulation of a nanotube represented
orously for their excellent mechanical and physical properdy the finite element methé#ican be computationally as
ties at a very low density. Recent reviews summarizeEXpensive as an atomistic MD simulation.
theoretical and experimental results on the nanomechanics, In this paper we present a mesoscopic model capable of
and on the chemical and electronic properties of CKTs. simulating systems containing multiple interacting CNTs
From the mechanical characteristics viewpoint, the high aswith modest computing requirements. The model provides a
pect ratio, high stiffness, flexibility, and strength of CNTs coarse-grained description of the dynamic behavior of CNTs
suggest that they can be considered as ideal reinforcingnd, at the same time, incorporates the essential physics from
nanofibers in nanotube-matrix composites. the finer (atomig level. The conceptual description of the

Despite the great interest in the mechanical and physicanodel that includes coarse-grained descriptions of both
properties of CNTs and CNT-based nanocomposites, thereNTs and molecular matrix, is given in Sec. Il. Parametriza-
have been no computational studies addressing the dynarrion of the model representation of individual CNTs, based
behavior of multiple CNTs in a matrix. Computational efforts on the results of atomistic MD simulations, is described in
have been largely limited to quasistatic molecular dynamic$ec. Ill. The results of mesoscopic dynamic simulations of
(MD) simulations of individual nanotubes, either isol&t&8 free motion of individual nanotubes are presented and com-
or surrounded by polymer molecul&?®Although investi-  pared to the predictions of the atomistic simulations in Sec.
gation of the mechanical properties of individual nanotubedV. The capabilities, limitations, and the potential areas of
and adhesion between nanotubes and polymer matrix a@pplication of the model are briefly outlined in Sec. V.
necessary elements in the analysis of the mechanical behav-
ior of nanocomposites, the processes of plastic deformation
and fracture of nanocomposite materials can have complex
collective character that cannot be derived directly from the In this section we provide a general description of a me-
properties of individual components and can only be adsoscopic model designed to describe the dynamic behavior
dressed in simulations performed at the length scales charaof individual CNTs, the collective dynamics of multiple
teristic of multiple interacting nanotubes; i.e., at a mesosCNTs, and interaction of CNTs with an organic matrix. The
copic level. combination of the mesoscopic representation of CNTs with

Dynamic simulations of the nanomechanics of multi- existing coarse-grained models for molecular systems and
walled nanotubes, bundles of single-walled nanotubespolymerg3-2% provides a general computational framework
single-walled nanotubes in continuously spun fibers, andor the dynamic simulations of CNT-polymer nanocompos-
nanotubes in polymer composites have been hindered by thtes at time and length scales that are not accessible to either
absence of appropriate mesoscopic models. For CNTs, thetomistic or continuum computational methods. Practical ap-
descriptions originating from continuum mechanics, e.g.plication of the model to nanocomposites, though, has to be
elastic shell or beam models have been propé%efand preceded by a careful parametrization of CNT-polymer inter-
critically reviewed in Ref. 21. While the analogy with mac- action performed for particular polymer matrixes.
roscopic beams and shells can provide a convenient tool for In the mesoscopic model, each single CNT is modeled as
analysis and description of the mechanical properties o& “breathing flexible cylinder” represented by a variable

Il. MESOSCOPIC FORCE FIELD (MFF) MODEL
FOR CNTs
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corrugated potential 0

wherer} is the position ofith node in a nanotubey is the
position of kth unit of the matrix,R! is the radius of the
nanotube at node R is the radius of matrix uni, 6, is the
torsion angle at nodie m}:(mi_l,i+myi+l)/2 is the mass of a
part of the nanotube, represented by the niodws, ;,, is the
mass of the segment,i+1} of the nanotube located be-
tween nodes andi+1, m;' is the mass of th&th unit of the
matrix, M{ andMy’ are the inertia paramet&fof the internal
breathing motion of the nanotube at nadend matrix unitk,
respectiverJ\/Ii‘9 is the inertia parameter for the twisting mo-
tion of the nanotube. The potential energy of the system is
composed of terms describing the internal energy of nano-
tubes (Ustr'Ubnd'URt,U()'Ustr—R'Ustr—bnd,Ustr—(f)’ bonded
(Ummbondy and nonbondedU™™) interaction among the
FIG. 1. Schematic representation of a section of nanotube regNatrix units, bonded and nonbonded interaction among the

resented by four segments and five no@®@s The position ofith ~ Nanotubes and matrix uni@"t, utm, ytmbond) “and inter-
node in the nanotubé!), the radius of the nanotube at node nal breathing motion of the matrix unit&)*™. In particular,

i (R), and the torsion angle at nodé#d}), are the independent US"is the internal stretching potential defined as a function
variables that describe the behavior of the nanotube. The sizes aff the axial deformation of the nanotube segmetit® is

the nanotube, matrix molecule, and the amplitude/period of the corthe bending potential defined as a function of the local cur-
rugated potential are not shown to scale. The model can be used \rature of the nantotube segmerttg?t is the internal breath-
mesoscopic simulations of collective dynamics of nanotubes in dng potential defined as a function of the local rERfi'at each
matrix (b). nodei along the nanotubey)? is the torsion term defined as
1 @ function of the torsional deformation of nanotufss™R

The segments are defined by a set of nodes that are Iocaté‘Pd Usti are the pof[ential energy terms tha.‘t describe cou-
along the nanotube axis, with the length of each segmerit"d between_stretchmg of two segments adjacent to a node,
defined as the length of the nanotube section between t\/\f@t‘_jn'fl contraction at the node and local curvature at the node;
adjacent nodes. The segment length can vary along the nang- " is the potgntlal for nonbonded van der Wanilbsor:gteractlon
tube depending on the local transverse curvature. The detween matrix molecules and nanotubés; de-
grees of freedom, for which equations of motion are solvedcribes the bonded interaction between matrix molecules and

in dynamic simulations, are the nodes defining the segmentgﬂ]n%ﬂ%es due to the formation of chemical bordfS;" and
the local radii of the cylinder at the cross sections throug describe the nonbonded and bonded interactions
the nodes, and the torsion angles at the nodes. The intern@°"9 tge matrix units; ant™ is the internal breathing
interactions within the nanotube are described through Rotentiaf® for the matrix units. _

MFF consisting of terms for stretching, bending, torsion, ra- 1 he functional forms of the potentials can be chosen
dial breathing, and the coupled stretching—bending,baseq on the_result_s of experlm_ental investigations a_md/or
stretching-torsion, and stretching-breathing interactions. Thi&tomic-level simulations. In particular, data on the vibra-

description allows one to reproduce deformation of nanotional dynamics of the low-frequency modes of the nano-

tubes under complex loading conditions that can be realizef}!P€s (Iongitudinal stretching, radial breathing, transverse

in a nanocomposite material during processing or under dyl/€xion, and torsional twigt®2927as well as available data
namic or static loading conditions on the mechanical response of an individual CNT to external

A general formulation of the model for CNT-polymer loading, such as stress-strain dependence for stretching,

. - 9,10,16,27-3
nanocomposites can be based on the following Lagrargian 2€nding, and twisting of nanotub@s; ¢an be used

which describes the system of interacting CNTs and matri4C find the force constants in the corresponding terms of the
molecules/polymer units: internal force field that controls the dynamics of the nano-

2 o 5 tube. Analytical functions can be used at small deformations,
L= }E ( dri + }2 m{ Al + }2 Mt ﬁ whereas tabulated values of energies and forces can be used
2 Nde) 2 M dt ) 29 T dt to describe complex behavior at large deformations.

nanotube

t
oy, = fry,15,15)

| £ =flrl 1P RLRT)

matrix molecule
or polymer unit

(@) (b)

~
TN
’a;
~100 — 1000 nm

number of segments, as shown schematically in Fig).

I The nonbonding interaction among the nanotubes and ma-

1 o AR\ 1 of 46\ str bnd  trix units, U™ and U, is described by a corrugated poten-
* 22 Mk( dt ) * 22 M dt ) E U= 2 Ui tial field, as schematically shown in Fig(al, whereas stron-

k i i

ger chemical crosslinks between polymer groups and CNTs

SSUR-S -3 R -3 strbnd S st are included explicitly into the force field. The corrugated
i i i i [ potential does not allow the dynamic elements of the model
S kMo S gkmbond S (gt Y (ymm to roll over one anothgr without slipping. Parametrization. of
- ik e ik ;i L K the corrugated potential based on the results of atomistic

simulations is currently pursued. The equilibrium distances
= yprmibond _ UE’“, (1)  inthe interaction potentiald™™, U™ U, andutmbond are
Kl k defined in terms of the distances between the edges/surfaces
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of the nanotubes and matrix units, e.g‘s',m in Fig. 1(a), atomistic simulations are performed for nine nanotubes of
rather than their centers. Earlier, this description has beedifferent radii; namely,5,0, (5,5, (10,0, (15,0, (10,10,
implemented in a mesoscopic model used for simulation 0f20,0, (25,0, (15,15, (30,0. The results of the atomistic
laser ablation of multicomponent organic systéi& This  simulations and corresponding terms of the mesoscopic force
choice of equilibrium distance is based on the physical confield are described below.

cept that the dynamic behavior and cohesion in a nanocom-

posite is governed primarily by the interaction among atoms A. Stretching term of the MFF

on the outside of macromolecules or CNBingle- or mul-
tiwalled) and allows an easy means of simulating complex
multicomponent systems, such as nanocomposites containi
CNTs and molecules of different sizes.

In the simplest lineatharmonig approximation, the inter-
| stretching potentialJs", is defined as a function of the
axial deformation of nanotube segments:

Once the potential energy of the system is defined, the N-1 1 N-1 1 Lo -0 \2
equations of motion for the five sets of independent variables ystr= > 10~k e?.,=> L%, =k Zhitl T+l
. _ (2t 2m dt M . . . |,|+12 Stred i+l . |,|+12 Str L-O- ’
in the syster{q}={r;,r /', R;,Ry", 6} can be directly obtained i=1 i=1 ii+1
from the Lagrangian given by E@l), as (3)
daL dL _ 0. 2 whereL?,,, is equilibrium (unstrained length of a segment

between andi+1 nodes of the mesoscopic representation of

) ] ] ) the nanotubel., ;,, is current length of the segment between
The equations of motion for the independent variables can beangi+1 nodes that can be expressed through the positions
integrated and classical trajectories can be obtained in a mags ihe nOdeSLi,i+1=|Fit+1_Fit|a e111 i local axial strain of the

ner similar to the traditional moIe(_:uIar dynamics techniquesegment’ andk, is stretching force constant.

The trajectories provide complete information on the dynam- i order to determine the values of the stretching force
ics of the nanotubes and the matrix molecules at the mesogynstant, we perform a series of atomistic simulations for
copic length scale. A search for the equilibrium molecular/yanstubes of different radii. A periodic boundary condition
CNT configurations can be performed by the Metropolisi, the direction of the tube axis is used to simulate stretching
Monte Carlo method, in which the potential energy calcula-o infinitely long isolated nanotubes. Computational cells
tion is used to generate a sequence of configurations Withyntaining two and three CNT unit cells are used in simula-
probabilities defined by a desired statistical-mechanics distrigons of armchain,n) and zigzagn, 0) nanotubes, respec-
bution. A significant advantage of the MFF model descr'beqively. The axial strain is applied by changing the size of the

above is that it does not require an explicit r_epresentation 0 omputational cell along the nanotube axis and performing
the surface of the nanotube. Rather, the distances betwe rr\ergy minimization by simulated annealing. Here and in

the “virtual surfaces” of the dynamic elements of the model, o energy minimization simulations described below, the

are calculated “on the fly,” only when needed to define &;yq of the simulated annealing is chosen to ensure that the
particular external interaction. This representation of the energy of the system does not change by more than
shapes of the dynamic elements in the model drastically ré 501 eV during the last 100 ps of the simulations. Simula-
duces the number of the independent degrees of freedom agd < at four values of the axial strair-0.02. —0.01. 0.01
INcreases computational efﬂmency.of the model. . .and 0.02, are performed and the force constants are calcu-
The first tests of the MFF dynamics model reported in thisiate through the second derivative of the strain energy with

paper are done for individual nanotubes and the initial Pagegnect to the axial strain. The results of the calculations are
rametrization of the terms responsible for the free motion o hown in Fig. 2a). For nanotubes with radii larger than

a nanotube is based on the results of atomistic MD simula-4 A, the dependence of the stretching force constamt

tions as discussed in Sec. Ill. An advantage of using a singISV/A) on the equilibrium radius of the nanotu%q (in A)

set of atomistic MD simulations in parametrization of the ., po rejatively well described by a linear dependence, as
model is the ability to directly compare the predictions of the

mesoscopic and fully atomistic models. The comparison of ks = 86.64 + 100.5B¢, (4)
the dynamic behavior of individual nanotubes represented at ) .
the atomic and mesoscopic levels is reported in Sec. IV an For nanotubes with radii larger than 4 A, the values of the

is used to analyze the capabilities and limitations of the melOrC€ constant expressed in units of energy per atom are es-
soscopic model. sentially independent of the radius and chirality of the nano-

tube and fall within 2 eV/atom range around the average
value of 46.8 eV/atom. Somewhat higher values of 52.0 and
51.7 eV/atom are calculated f@6,5 and (5,00 nanotubes
having radii of 3.44 and 2.07 A, respectively. The force con-
stants for the small radius nanotubes expressed in energy per
The functional form and force field parameters for theunit length[Fig. 2(@)], are smaller as compared to the larger
stretching, bending, and torsion contributions to the mesosadius nanotubes. This is related to a more significant elon-
copic force field[Eq. (1)] are determined in a series of qua- gation of the small-radius nanotubes during the initial struc-
sistatic atomic-level MD simulations performed with semi- tural relaxation performed with fully atomistic MD. The re-
empirical many-body Brenner interatomic potentlalThe  sults on the stretching force constants reported above are in

dtog, aq

IIl. PARAMETRIZATION OF MFF FOR AN INDIVIDUAL
CNT FROM ATOMISTIC MD SIMULATIONS
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1400

r the results reported earlier, but to provide a consistent param-
< g (30,0) etrization of different terms of the MFF described by ED.
J 1200 The calculation of the stretching force constant discussed
< 1000 [ above is performed for a small range of the axial strain, from
E . —0.02 to 0.02, in which no deviations from the quadratic
'g 800 [ dependence of the strain energy on strain is observed. It is
S o known that buckling of CNTs at large compressions or for-
§ 600f (150 mation of Stone-Wales rotation defects at large tensile
g L 55) 7 (100) stresses leads to a drop in the stiffness of the nanotube. These
g 400p K 86.64+100.56 ' effects can be incorporated into the MFF as needed by de-
& s0f  °(50) o . fining switching functions and criteria for transition between
SN T TS S S SN R different regimes of nanotube deformation. As the model is
o 2 4 6 8 10 12 14 aimed mainly at large-scale phenomena, local changes in
@ PRl ARG Bl shapes of the nanotubes associated with nonlinear behavior
at large deformations are not expected to play a major role
0L and representation of CNTs as cylinders may still remain
= | (30,0) valid in the nonlinear elastic/plastic regime.
> (25,0)
x_g B. Bending term of the MFF
o 4
ks 10 The internal bending potential®® is defined as a func-
S A tion of the curvature of nanotube segments:
3 58 N-1 N-1
S 1 1\ 1 1 1 \?
7]
. °o s 10 ( 1 )2} (5)
e 2\ g ) |

Radius of the nanotube, R, (A)

>

WhereLSHl is equilibrium(unstrainedllength of the segment
between andi+1 nodes,R%} is radius of curvature of the

10°F segment defined by thieandi+1 nodes,R™" is radius of
“g g curvature at nodé, andk,,q is the bending force constant.
=2 Similar to the stretching force constant discussed above in
3 Sec. lll A, the values of the bending force constant are de-
F10tE termined in a series of atomistic simulations performed for
E g nanotubes of different radii. Larger computational cells con-
3 taining 13 unit cells for armchair nanotubes and 15 unit cells
§ for zigzag nanotubes were used in the simulations. No peri-
S 10°L odic boundary conditions are applied in the simulations. The
E E Ky = 38.44 RL, °”' CNTs are initially bent with a constant radius of curvature
g (5.0) that is varied between 22 528 and 4528dbrresponding to
. . L the bending angles from 0.0025 to 0.0127 deg/fhe bent
5 10 15 nanotubes are then allowed to relax for 1.5 ns in annealing
(c) Radius of the nanotube, R (A) simulations performed with the end segments fixed. The

force constants are calculated through the second derivative
FIG. 2. Force constants of the stretching, bending, and torsioof the strain energy with respect to the curvature, and the
energy terms of the mesoscopic force field determined from a serie®sults of the calculations are shown in Fi¢h)2 The depen-
of quasistatic atomistic simulations performed with Brenner inter-dence of the bending force constdirt eV A) on the equi-
atomic potential for nanotubes of different radii. Lines correspondiibrium radius of the nanotubén A) can be described by a
to linear(a) and power law(b,¢) fits of the data points, with corre- power law fit, yielding the following expression:

sponding expressions shown in the figures.

. . . . Kpna= 63.80R; %, (6)
good agreement with earlier calculations performed with
Brenner potentid? as well as withab initio calculations which is close to the cubic dependence of the bending force
based on the local density approximation to the density funceonstant on the radius expected for an elastic tube.
tional theory?” The values of ~59 eV/aton¥? and The calculated bending stiffness is in good agreement
~56 eV/atom’ are reported in these works for the stretch-with the values obtained from tight-binding simulations, in

ing force constants. Note that the purpose of the atomistigvhich the values of 2.08 10* and 1.95< 10* eV A are re-
simulations reported in this work is not to verify or confirm ported for(10,10 and(12,8 CNTs, respectively The bend-
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FIG. 3. (Color onling Strain energy distributions in atomistie,b) and mesoscopi¢c) simulations of an acoustic wave propagation
in a 395 A long(10,10 CNT. The value of the strain energy density is shown by the color scale: light(lidia gray in print gray-scale
version color corresponds to zero energy, rédark gray in print gray-scale versipreolor corresponds to the energy density of
0.002 eV/atom. In the atomistic simulation, the distribution of the strain energy at atomic level is sh@yara the energy averaged over
~1 nm long segments defined in the mesoscopic model is sho).iithe nanotube is represented by 39 nodes in the mesoscopic model
and by 6440 atoms in the atomistic MD model. Arrows show schematically the paths of the acoustic wave.
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6r Atomistic simulation The values of the torsion force constant are determined in
- a series of atomistic simulations performed for nanotubes of
different radii. Computational cells of the same size as in
bending simulations described above are used in the simula-
tions. The CNTSs are initially twisted with a constant torsional
deformation along the nanotube, which was varied between
0.0025 to 0.0127 deg/ A. The twisted nanotubes are then
allowed to relax for 1 ns in annealing simulations performed
with the end segments fixed. The force constant calculated
through the second derivative of the strain energy with re-
spect to the torsional deformation is shown in Fi¢c)2For
nanotubes with radii larger thar4 A, the dependence of

Velocity (A/ps)

-6:"""""""""'

0 5 n 6 s 70 the torsion force constarin eV A/rac?) on the equilibrium
(@) Time (ps) radius of the nanotubén A) can be described by a power
law fit, yielding the following expression:
6 - . . .
Mesoscopic simulation Kys = 38.4 ‘R‘raqs.m, (8)

which is close to the cubic dependence on the radius ex-
pected for a twisted hollow cylinder.

The torsion force constant of 1:310* eV A/racf calcu-
lated in this work for(10,10 CNT is in a reasonable agree-
ment with values obtained in tight-binding simulations,
1.73x 10* eV A/rac? for a (10,10 CNT, and 1.46< 10* and
1.63x 10* eV A/racf for left and right twists of a(12,9
CNT, respectively®

Large torsional deformations of CNTs can lead to devia-
[ tions from the linear elastic response, e.g., buckling of a
B N B T twisted (10,10 CNT has been reported in a computational

(b) Time (ps) study? at a shear strain of 5%. Similar to the nonlinear be-
havior in stretching and bending deformations, the effect of

FIG. 4. Velocity of the far(right) end part of a 395 A long nonlinear torsional deformation can be incorporated into the
(10,10 CNT in atomistic(a) and mesoscopith) simulations of an  MFF if large deformations are expected to take place in the
acoustic wave propagation, illustrated in Fig. 3. In the atomisticsimulations.
simulation, the velocity is averaged over atoms that belong to the
~1 nm long end segment of the CNT, in the mesoscopic simulation
the velocity of the end node is plotted.

Velocity (A/ps)

IV. FREE VIBRATIONS OF INDIVIDUAL CNTs:
MESOSCOPIC AND ATOMISTIC SIMULATIONS
ing force constant of 1.9810*eV A is measured for

(10,10 CNT in our MD simulations performed with empiri- As a first test of the mesoscopic model and the parametri-

cal Brenner potential. zation described above, we perform a series of simulations of
a free motion of a single-walled CNT with both the mesos-

Nonlinear elastic phenomena, such as rippthi§ or _ e o I
buckling®2° of CNTs at large bending angles, can substan<OPIC and fully atomistic MD models. The initial conditions

tially reduce the effective bending stifiness of the nanotubell the simulations are chosen to provide targeted testing of
The effect of nonlinear bending deformation can be incorpoth® two terms of the MFF discussed above; stretching and

rated into the MFF as needed by defining switching function&€nding. The torsion angle in the mesoscopic model is only
and criteria for transition between different regimes of nanoWeakly coupled to other independent variables through the

tube deformation. The calculation of the bending force con{orsion-stretching coupling term. As a result, torsional mo-

stant discussed above was performed for a small range dion of an isolated nanotube is trivial and is not discussed in
bending angles for which no deviation from the quadraticth's paper. The role of the radial breathing term and the cou-

dependence of the strain energy on curvature is observed. Pling terms in the LagrangidiEq. (1)] is to provide a higher
order of accuracy in the description of the dynamic behavior

C. Torsion term of the MFF of CNTs and to facilitate the energy transfer between differ-
The torsion term in the MFEU?) is defined as a function €nt modes during motion. A direct comparison between the

of the torsional deformation of nanotube segments: results of the mesoscopic and atomistic simulations de-
scribed below suggests that the omission of these terms has a

1 (6-6.)\° relatively minor effect on the dynamic behavior of the me-
Ki L0 g () soscopic representation of an individual CNT. For some of
hirl the potential applications of the model, however, high accu-

where 6, is torsion angle at node and k; is torsion force racy in the dynamic behavior of the model may be essential,

constant. and fine tuning of the mesoscopic force field through the

N-1
u’= 2 I—Ei+1§
i=1
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Atomistic simulation Mesoscopic simulation
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FIG. 5. Time dependence of the potential energy and kinetic energy of a 395 Allerig) CNT in atomistic(a,b) and mesoscopitz,d)
simulations of an acoustic wave propagation, illustrated in Fig. 3. The potential energy is shown relatively to the potential energy of a relaxed
CNT and corresponds to the strain energy due to the wave. In the atomistic simulation, the kinetic energy is calculated as a sum of kinetic
energies of the center-of-mass motion of 38 nm long CNT segments and does not include the energy of the high-frequency thermal
atomic motions in the center-of-mass reference frame.

coupling terms may be required. Therefore, we retain thetion of the initial tensile stresses in the left part of the nano-
coupling terms in the general formulation of the model,tube leads to the formation of a bimodal stress wave that
given in Eq.(1). propagates through the nanotube. The wave consists of a
tensile component that propagates first and a compression

component that follows. The bimodal structure of the wave is

A. Acoustic wave propagation a result of the interaction of the initial tensile stresses with

Acoustic wave propagation is simulated in a 395 A Iongthe free surface. Both the tgnsi!e and compres;ion compo-
(10,10 CNT represented with MFF and atomistic models. "Nt of the wave show up in Fig. 3 as red regions of high

. . . : strain energy separated by a light blue/green band that cor-
0,
i nhe W%\ée legrijn%;arttegfbt}/]gre:ﬁrlnlgfetl E:gli;egzle; t;?'tr;]gf 2 esponds to the transition from expansion to compression. By

beainni f the simulati d allowi h ~2 ps, the acoustic wave reaches the (faght) end of the
eginning of the simulations and allowing the Systems 10,4 he and reflects back. Upon reflection, the stress wave

evolve freely at later times. In the atomistic MD simulation changes sigitthe compression component now leads and the
the (10,10 CNT is represented by 6400 carbon atoms and 4Qensjle component follows While one can notice from the

hydrogen atoms. The hydrogen atoms are used at the ends@fyre that there is some dissipation of the energy of the
the nanotube20 atoms at each endo terminate dangling wave with time, the wave packet still contains the largest

bonds and to ensure stability of the nanotube. The interfraction of the initial strain energy and can be clearly identi-
atomic interaction is described by the Brenner potential forfied at all times during the simulation.

hydrocarbons, which is the potential used to deduce the MFF A mesoscopic simulation performed for the same initial
as described in Sec. Ill. In the MFF model, the CNT is rep-conditions as the atomistic one is illustrated in Fi¢c)3In
resented by 38 segments connecting 39 nodes, with eadrder to quantitatively compare the results of the mesoscopic
segment having equilibrium Iengltf),i+1 of ~10.4 A and a and atomistic simulations, the same color scale is used to
massm, ;,; of 2022 amuj=1, ..., 38. show the energy density in both simulations, from light blue
A visual picture of the acoustic wave propagation is givencolor corresponding to zero energy, to red color correspond-
in Fig. 3, where the evolution of the strain energy is showning to 0.002 eV/atom. Moreover, an alternative representa-
for different times during the simulations. The strain energytion of the potential energy distribution in the atomistic
distributions in the atomistic MD simulations are shown with simulation, in which the potential energy is averaged over
atomic-level resolution in Fig. (8). It can be seen that ini- atoms that belong to segments of the nanotube of the same
tially there is a uniform local strain energy distribution in the size as in the mesoscopic model, is shown in Fif).3Fine
strained left end of the CNT. As time progresses, the relaxeetails at the atomic level that can be observed in Fig) 3
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FIG. 6. (Color onling Strain energy distributions in atomistia,b) and mesoscopitc) simulations of free bending vibrations of a 395
A'long (10,10 CNT with the initial radius of curvature equal to 500 A. The value of the strain energy density is shown by the color scale:
light blue (light gray in print gray-scale versigprcolor corresponds to zero energy, réthrk gray in print gray-scale versiprcolor
corresponds to the energy density of 0.002 eV/atom. In the atomistic simulation, the distribution of the strain energy at atomic level is shown
in (a) and the energy averaged ovel nm long segments defined in the mesoscopic model is sho¢m. ihe nanotube is represented by
39 nodes in the mesoscopic model and by 6440 atoms in the atomistic MD model.

165417-8



MESOSCOPIC MODEL FOR DYNAMIC SIMULATIONS OFE. PHYSICAL REVIEW B 71, 165417(2005

6r Atomistic simulation tition about evenly between the potential and kinetic energy
- of the wave. To make a comparison to the mesoscopic simu-
4r lation, the kinetic energy shown in Fig(l3 is defined as the
: kinetic energy of the collective center-of-mass motion of the
2:‘ CNT segments equivalent to the ones in the mesoscopic

model. This kinetic energy does not include the energy of the
radial breathing mode as well as the thermal energy of the
high-frequency atomic motions in the center-of-mass refer-
ence frame. The spikes in the plots of the potential and ki-
netic energies correspond to the reflections of the wave from

Velocity (A/ps)
o
1

i the ends of the nanotube and the time between the spikes can
N T B be used to estimate the speed of the wav&8 000 m/s. In
(@) 0 25 50 75 100 both atomistic and mesoscopic S|mglat|ons, the wave gr.ad.u-
Time (ps) ally dissipates upon multiple reflections, although the dissi-
. , pation is more pronounced in the atomistic simulation, where
6r Mesoscopic simulation a larger number of vibrational modes and anharmonicity of
i interatomic interaction potential result in a faster energy dis-
4r sipation. Apart from the thermal energy that is not included
E ‘ in the mesoscopic model, a quantitative difference in the
2r levels of the potentiglFigs. 5a) and Hc)] and kinetic ener-

gies[Figs. §b) and 5d)] is related to the difference in the
initial energy of the stretched configuratiofsfarting points

3 in the potential energy plots &t 0). The total energy of the
'2:‘ three segmentstotal length of ~52 A) stretched by 2%
in the mesoscopic simulation is 7.87 eV, whereas the

Velocity (A/ps)
o
T

‘4:' initial energy in the atomistic simulation is somewhat lower:
T L 6.3 eV.
6 0 25 50 75 100 Overall, we can conclude that the mesoscopic model re-
(b) Time (ps) produces well most of the characteristics of the acoustic

wave propagating in a CNT. A major advantage of the me-
FIG. 7. Velocity of an end part of a 395 A 1or(@0,10 CNTin  soscopic description of the nanotube dynamics is the low
atomistic(a) and mesoscopith) simulations of free bending vibra- - computational cost of the simulations. The atomistic simula-
tions, illustrated in Fig. 6. In the atomistic simulation, the velocity tion of 10 ps trajectory of the CNT shown in Fig. 3 took 21
is averaged over atoms that belong te-a nm long end segment of 1, 5 3 dedicated SGI Origin 3800 workstation, whereas the
j[he CNT, in the mesoscopic simulation the velocity of an end “Od‘?nesoscopic simulation took less than a tenth of a second on
is plotted. a desktop PC.

are smeared out in Fig(l3), making the comparison between
the atomistic and mesoscopic simulations easier. Both the
velocity of the wave and characteristic features of the strain
energy distributions in Figs.(B) and 3c) show good agree- To additionally test the mesoscopic model, a simulation of
ment. free vibrations of a ber(tL0,10 CNT has been simulated and
Plots of the velocities of the faright) ends of the nano- compared to the results of atomistic simulations. The same
tubes, given in Fig. 4, allow for a more detailed quantitativesystem as in the study of the acoustic wave propagation, a
comparison between the atomistic and mesoscopic simul®95 A long (10,10 CNT, is used in the simulations. The
tion results. There is a good match in the overall shape of th€NT is initially bent with a constant radius of curvature,
plots and in the amplitudes of the velocity spikes that correR®“"=500 A, along the whole length of the CNT and then,
spond to the reflections of the wave packet from the far endtarting at a time of O ps, is allowed to evolve freely in the
of the nanotube. The structure of the velocity spike agreeatomistic and mesoscopic simulations.
with the notion of the bimodal wave interacting with a free  Snapshots from the simulations of free motion of the CNT
surface: the tensile component of the wave arrives first, pullare shown in Fig. 6. The color distribution corresponds to the
ing the end part of the nanotube in the negative directiorlocal potential energy density at various times. The strain
(negative part of the velocity spikethe compressive com- energy is shown with atomic-level resolution in Figagand
ponent follows, pushing the end part of the nanotube back averaged over nanotube segments in Fif).t can be
(positive part of the velocity spike seen that initially there is a uniform strain energy distribution
The time evolution of the total potential and kinetic ener-in the CNT. The relaxation of the CNT can be described as
gies of the nanotube during the simulations is shown in Figpropagation of two unloading waves that start from the end
5. In both atomistic and mesoscopic simulations all energy iparts of the CNT and propagate towards the center. The CNT
initially stored in the potential energy of the stretched part ofthen undergoes free bending vibrations with characteristic
the nanotube. As the acoustic wave develops, the energy pdrequency of 21 GHz in the atomistic simulation and 20 GHz

B. Free bending vibrations
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FIG. 8. Time dependence of the potential energy and kinetic energy of a 395 Allerig) CNT in atomistic(a,b) and mesoscopitc,d)
simulations of free bending vibrations, illustrated in Fig. 6. The potential energy is shown relatively to the potential energy of a relaxed CNT
and corresponds to the strain energy due to the bending vibrations. In the atomistic simulation, the kinetic energy is calculated as a sum of
kinetic energies of the center-of-mass motion of thirty-eigtit nm long CNT segments and does not include the energy of the high-
frequency thermal atomic motions in the center-of-mass reference frame.

in the mesoscopic simulation. The discrepancy in the frecloser to 15 eV. A lower value of the initial energy in the
quency of the bending vibrations can be attributed to theatomistic configuration is related to the deviation
deviation from the linear regiméjuadratic dependence of from the linear regime at high bending angles discussed
the strain energy on curvature, assumed in the parametrizabove. During the simulations, the energy is partitioned be-
tion of the bending force constant, Sec. Il 8 high bend-  tween the potential and kinetic energies. In the mesoscopic
ing angles realized in the simulations shown in Fig. 6. In-simylation a small part of the energy is leaking into the
deed, the bending angles up to 0.0025 deg/A were used igyretching energy through the inertial coupliftge term of
parametrization of the MFF, much below the bend_mg anglqhe MFF responsible for the explicit coupling between
of 0.1146 deg/A that corresponds R6""=500 A. This mi- stretching and bending is not activated in this simulgtion

?ortdlls,fc;&e%zatnc%c%n ::)efflxed :)y "’!df.‘p“f‘g allntgnha.rmonl'cc:jporhe stretching contribution to the potential energy does
entialfitted o the data Irom atomistic simulations In a WIAer ot exceed 1% of the total potential energy during the

range of bending angles. . simulation. Similar to Fig. &), the kinetic energy shown in

In order to perform a more detailed quantitative compar-g; 8b) is defined as kinetic energy of the collective center-
son of the dynamics of the bending vibrations predicted by 9. : 9y :
f-mass motion of the CNT segments equivalent to the

the atomistic and mesoscopic models, velocities of the end in th . del. Th fh .
parts of the CNTs are plotted in Fig. 7. Apart from a slightly S€9Ments in the mesoscopic model. The energy of the atomic
higher vibrational frequency in the mesoscopic simulation,M0tions in the center-of-mass reference frame, excluded
the agreement between the two simulations is remarkabld? this definition, increases during the first several picosec-
The velocity plots show a very good match not only in theonds of the simulation to~0.15eV (~1.1% of the

overall shapes but also in the detailed vibrational structure ofotal energy and then slowly increases up to0.2 eV

the trajectories. (2.3% of the total energyduring the time of the simulation,
The time dependence of the kinetic and potential energie300 ps. . . .
during the simulations is shown in Fig. 8. Initially, all Similar to the stretching simulations, we can conclude

the energy is stored in the potential energy of the benthat the bending vibrations of an individual nanotube can
configurations. The initial potential energy in the mesoscopide well represented by the mesoscopic model for a tiny frac-
simulation[Fig. 8@)] is 14.6 eV, somewhat lower than 15 eV tion of the computational cost. The 100 ps atomistic sim-
predicted by the first part of Eq5). The discrepancy is ulation of bending vibration took more than a week of cal-
related to zero bending energy associated with the end nodesilations on a dedicated SGI Origin 3800 workstation,
in the mesoscopic model. An increase in the number of nodeshereas the corresponding mesoscopic simulation took less
representing the nanotube brings the initial bending energthan 1 second on a desktop PC.
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V. DISCUSSION AND SUMMARY cluded in the mesoscopic model explicitly can be accounted
The princioal challenae in the computational modelin offor by connecting the long-wavelength internal elastic modes
P P 9 P 9 9lyith a “heat bath” that represents the remaining degrees of

nanos;ructures and nanocomposites based on Fafb"” Nl edom of the CNT. Although the initial parametrization and
tubes is presented by the gap between the atomistic descrtlg

tion of individual nanotubes and the collective behavior an esting of the mesoscopic model discussed in this paper has

roperties of large groups of CNTs in nanocomposite mates . performed for single-walled CNTs, the MFF given by
prop g€ groups « L P Eqg. (1) can be easily applied to multiwalled CNTs, which are
rials or nanostructures. While atomistic simulations can pro-

; ) ) . . o often used in polymer-matrix nanocomposites. Similarly to
\éﬁl?rsd?[Lae”ecilcl:mg{irgr?gOgreogo:}:]eutz%gi\zgl?r ;E :anndslx;gugll @Jngle-walled CNTs, parametrization of the model for multi-
difficu,lt to extend to systems cor?tainin mzlti Ig CNTs. In alled CNTs can be performed based on the results of ato-

. y 1hing P ' . mistic simulations or experimental data on the behavior and
this paper we present a coarse-grained force-field model fo

CNTs that provides a computationally efficient description ofﬁropertles of multiwalled CNTs,

CNTs and can help to close the gap between the atomistii The main advantage of the mesoscopic model is its high

and continuum descriptions of CNT-based materials an omputational efficiency. Simulation Of. the dynami'cs Of. a
structures. The coarse-grainea mesoscopijcmodel incor- 95.A long (10,19 CNT for several periods of bending vi- .
porates thé essential information from the atomic-level simuprmlonS took Ie_ss _than a second on a desktop PC, suggesting
lations and represents the dynamic behavior of a CNT with éhat MEs0scopIc simulations of much larger systems contain-
ing multiple CNTs and other constituents represented at a

drastically reduced number of degrees of freedom. Spec'f,,'r'nesoscale levele.q., coarse-grained representation of mo-

cally, a CNT is represented as a “breathing flexible cylinder Ifzcular systen?@-29 is possible. The length scale of a dy-

consisting of a variable number of segments. The surface Yamic simulation is defined by the size of the dynamic ele-
the nanotube is not represented explicitly in the model but is

o X : ments for which the equations of motion are solved. The
calculated fror_n a I|m|teq set of dynaml_c varlaples only Whendynamic elements in the model are significantly larger than
needed to define a particular external interaction. This rePr&ys atoms and the size of the computational cell can also be

sentation drastically reduces the number of the independe%uch larger than the one used in atomistic simulations. The
degrees of freedom and makes the model much more efflf '

cient as compared to conventional representations based Q. - scale of the simulations is defined by the time step in
. P . P e numerical integration. Since explicit atomic vibrations
continuum mechanics concepts.

First test simulations performed for the acoustic waveare not followed in the model, the time step of integration

propagation and free bending vibrations of the nanotub&d" be increased by up to several orders of magnitude. Pa-

demonstrate that the mesoscopic model reproduces well tﬁametrization of the external interactions for CNTs embed-
) SCOPIC MO P Yed in a polymer matrix and simulation of the CNT-based
short-term dynamic behavior of individual CNTs as pre-

. . T . . . polymer nanocomposite systems, such as the one shown
d|cte_d in atomistic s_lm_ulat|ons. If required for a particular stchematically in Fig. (b), is the subject of our current work.
application, a quantitative agreement between the results 0

mesoscopic and atomistic simulations can be further im- ACKNOWLEDGMENTS

proved by fine tuning the parameters of the MFF and inclu-

sion of additional terms responsible for coupling between One author(L. V. Z.) gratefully acknowledges financial
different dynamic degrees of freedom in the model. More-support provided by the National Science FoundatimlI-
over, the high-frequency vibrational modes that are not in0422632 and NIRT-0403876

*Corresponding author. Email address: 1z2n@virginia.edu 8Polymer nanocompositegdited by R. A. Vaia and R. Krish-

TEmail address: cwei@nas.nasa.gov namoorti(American Chemical Society, Washington, DC, 2D01

*Email address: deepak@nas.nasa.gov 9D. Srivastava, M. Menon, and K. Cho, Phys. Rev. L&8, 2973

1S. lijima, Nature(London 56, 354 (1997). (1999.

2T. Ebbesen,Carbon Nanotubes: Preparation and Properties 19J. W. Che, T. Cagin, and W. A. Goddard, Nanotechnolddy
(CRC Press, Boca Raton, 1997 263(1999.

3E. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Technolt'C. Wei, D. Srivastava, and K. Cho, Phys. Rev. @, 115407
61, 1899(2001). (2003.

4S. B. Sinnott and R. Andrews, CRC Crit. Rev. Solid State Mater.12D. Srivastava, D. W. Brenner, J. D. Schall, K. D. Ausman, M. F.
Sci. 26, 145(2001). Yu, and R. S. Ruoff, J. Phys. Chem. B)3 4330(1999.

5B. I. Yakobson and P. Avouris, Top. Appl. Phy80, 287(2001).  13S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, J.

60. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, CRC Crit. Phys. Chem. B106, 3046(2002.
Rev. Solid State Mater. ScR7, 227 (2002. 14y, Lordi and N. Yao, J. Mater. Resl5, 2770(2000.

’D. Srivastava, irScience and Technology of Carbon Nanotubes:'®C. Wei, D. Srivastava, and K. Cho, Nano Lef,. 647 (2002.
Applications Perspectivesdited by M. MeyyappafCRC Press, 16B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett.
Boca Raton, FL, 2004 Chap. 2. 76, 2511(1996.

165417-11



LEONID V. ZHIGILEI, CHENYU WEI, AND DEEPAK SRIVASTAVA PHYSICAL REVIEW B 71, 165417(2005

17s. Govindjee and J. L. Sackman, Solid State Comiriiiify 227 Ordejon, Phys. Rev. B9, 12678(1999.

(1999. 28M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S.
18C. Q. Ru, Phys. Rev. B2, 9973(2000. Washburn, and R. Superfine, Nattendon 389 582 (1997.
19G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise, 2°E. W. Wong, P. E. Sheehan, and C. M. Lieber, Scied@g 1971

Compos. Sci. Technol62, 1869(2002. (1997.
20K. Sohlberg, B. G. Sumpter, R. E. Tuzun, and D. W. Noid, 3°J.-P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L.

Nanotechnology9, 30 (1998. Forro, W. Benoit, and L. Zuppiroli, Appl. Phys. A: Mater. Sci.
21y, M. Harik, Comput. Mater. Sci24, 312 (2002. Process.69, 255(1999.

22p_ S, Das and L. T. Wille, Comput. Mater. S@4, 159 (2002. 31D, W. Brenner, Phys. Rev. B2, 9458(1990.
23Computer Simulation of Polymeredited by E. A. Colbourn 32D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Phys. Rev.

(Longman Scientific and Technical, New York, 1994 B 45, 12592(1992.
24K. Kremer and F. Miiller-Plathe, MRS BulR6, 205 (200J). 33|, Vaccarini, C. Goze, L. Henrard, E. Hernandez, P. Bernier, and
25|, V. Zhigilei, P. B. S. Kodali, and B. J. Garrison, J. Phys. Chem.  A. Rubio, Carbon38, 1681 (2000.

B 102 2845(1998. 34M. Arroyo and T. Belytschko, Phys. Rev. Let91, 215505
26 V. Zhigilei, E. Leveugle, B. J. Garrison, Y. G. Yingling, and M. (2003.

I. Zeifman, Chem. Re\Washington, D.Q. 103 321 (2003. 85J. Z. Liu, Q. Zheng, and Q. Jiang, Phys. Rev. Le86, 4843

27D, Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. (200J).

165417-12



