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Morphological instability of stressed spherical particles growing by diffusion in a matrix
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The morphological stability of a growing spherical particle epitaxially stressed in a supersaturated matrix has
been investigated with respect to shape deviation of the particle from sphericity expanded on a basis of
spherical harmonics’,o(e). A dispersion law has been determined for the growth rate of each harmonic, and a
critical radius of the particle above which the sphere is unstable has been determined as a function of the
different parameters of the problem such as the lattice mismatch between the matrix and the particle or the ratio
of shear modulus. The influence of stress on the instability threshold already dtitlikids and Sekerka, J.

Appl. Phys. 34, 323(1963] in the case of a stress-free particle has been finally investigated.
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[. INTRODUCTION considered in the expression of the growth rate of each har-
The diffusional evolution of microstructures consisting of Monic: the gradient of concentration in the matrix favoring
dhe growth of the perturbation and the surface energy favor-

matrix and particle phases in metals is of great technologic = .
importance since the shape of the particles strongly influ!"9 trllge_decay. A similar study has been performed by Coriell
al*?in the case of a cylindrical precipitate embedded in an

ences the mechanical characteristics of materials, among. ' . - L . . . .
finite size matrix. Considering radial and axial sinusoidal

which are stiffness, strength, or toughness. The evolution bati f the interf f th . itical
the size and shape of particles has been widely investigaltegllertur ations of the Interface of the precipitate, a critical ra-

for a number of materials ranging from nickel-based super’ us has also been determined above which the particle_s are
alloys and aluminum to steel from both experimental an nstable. In the present paper, the stress effect on the insta-

theoretical points of view. For example, experimental obser’ ility threshold of spherical particles has been investigated.

i f nickel-based t h d trated th The problem of the stability of the surface of stressed
vations of nickel-based superalloys have demonstrate %‘ianar solids has been first studied by Asaro and Tiller, Grin-

the kinetic of the p_recipitate evoll_Jtion py diffusion is influ- feld, and other®-25 Considering sinusoidal fluctuations of
enced by the elastic effects of epitaxy in the general case Ghe syrface, a critical wave number has been determined be-
anisotropic and nonhomogeneous elastic media as well as by which the solid undergoes morphological changes. The
the surface energy and nucleation density effé€tét. has  stability of cylindrical stressed structures such as pores in a
also been observed in Ni-Al alloys that spherical precipitatesnatrix, whiskers, or tubules has also been investigated as-
may evolve toward cuboid, platelike, or rodlike shaped parsuming that the mass transport mechanism is surface
ticles depending on the values of the elastic and interfaceiffusion26-2°It has been demonstrated that an applied stress
energy or the magnitude and symmetry of stlesssing  along the axis of the cylinder strongly influences the insta-
diffusion®=® or sharp interface modelsee Ref. 6 and refer- bility threshold when sinusoidal fluctuations of the radius are
ences therein the microstructure evolution of multicompo- considered. The more general case of nonaxisymmetric in-
nent materials has also been widely investigated. The diffustability has been investigated by Kirit al?® It has been
sion interface model where the evolution of materials isdemonstrated by these authors that a corkscrew-shaped insta
mimicked through the evolution of a smooth fig¢klg., com-  bility can appear for a particular spectrum of applied stress,
position or phase fieJdhas been used to characterize, forand for a cylindrical tubule, two distinct eigenmodes develop
example, martensitic transformation and diffusional micro-for any wave number, applied stress, or geometry.
structures in three dimensiofid. Recently, sharp interface In this paper, the problem of the morphological change of
models have been used to study the coarsening and Ostwaddspherical particle growing in a supersatured matrix has
ripening?%!! Simulations in two and three dimensions havebeen reexamined in the case where the precipitate is epitaxi-
been carried out and the development of microstructures, i.eally stressed in its infinite size matrix. The interaction of the
precipitate alignment, translation, merging, and coarseninglastic deformation and the composition fields has been con-
has been characterized as a function of elastic inhomogensidered through the generalized Gibbs-Thomson boundary
ity, misfit strain, and applied fieldésee Refs. 13-15 and condition for the composition in the matrix at the matrix-
references therejn precipitate interface. It is then assumed that the atomic vol-
Analytical analysis of the linear stability of the shape of umes of the two chemical species are of the same order of
precipitates undergoing diffusion-controlled growth in a su-magnitude so that stress generated by nonuniform concentra-
persaturated matrix has been first performed by Mullins andion is negligible!®-21415The effect of this stress due to
Sekerkd®” and co-workerd® These authors have demon- compositional inhomogeneity has already been studied but in
strated that above a critical radius equal to seven times thiae case of a precipitate growing from a supersatured helt.
nucleation radius, the spherical particles are unstable witffhe elastic deformation of the spherical precipitate and the-
respect to shape perturbations decomposed on a basis mfatrix has been first calculated in the case where the epitaxy
spherical harmonics. In their papers, two terms have beereduces to an eigenstrain located in the precipitate. Consid-
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------- spherical particle p0_ Moy _
—pertul'bedparticlebyY: v (Ulj i O)nj 0, (5)
/ da
o+ —=er, (6)

ap
with (i,j)=(r,8,¢) andn=(1,0,0 the normal to the sphere,
the elastic state can be easily determined to the first order in
dala,. For example, ther,, component of stress in the par-
ticle has been found to be

FIG. 1. An initially spherical surface of radiug is perturbed by

a spherical harmoniy’... 2uous  da
P = o, 0,9) = — B (7)
. . . - *__VE -1 2
ering shape deviation of the particle from sphericity decom- vy
posed on a basis of spherical harmon¥¢6), a critical ra- .
dius has been determined above which the particle ignd
unstable. The effect of lattice mismatch on instability thresh- 2 r3 sa
old has been finally characterized. o™0(r,0,¢) = - ¢—g— (8)
1-2y, r’a,
II. LINEAR STABILITY ANALYSIS OF THE SHAPE M 1+ vy -1

OF SPHERICAL PARTICLES

in the matrix, with u. = um/ u,. At this point, it can be un-

derlined that even if the nonhomogeneous strain is localized
An initially spherical particle of radius,, shear modulus in the precipitate, the resulting elastic strains and stresses

Mp, and Poisson’s ratios, is embedded in an infinite-size extend over the sphere in the matrix.

matrix of shear modulug,,, and Poisson’s ratio,, (see Fig.

1). The two lattice parameters of the matey, and the pre- B. Morphological change by diffusion

cipitate a, are assumed to be independent of the concentra- The diffusion-controlled growth of a spherical particle has

tion fields. The calculations presented in this paper have beaseen investigated from a supersaturated matrix of initial con-

performed using spherical coordinatés 6,¢). Since the  centrationc... The concentration in the partiots is assumed

two lattice networks of the matrix and particle are differentto be constant; the position-dependent concentration in the

and the interface is assumed to be coherent, an eigenstraatrix is labeledc,, The equilibrium value of,, when the

€y =dala, can be defined in the particle whe@=(a,  matrix-particle interface is flat is denoted by The velocity

—ay,) is the lattice mismatch. Without loss of generality, it is v of the growing interface by diffusion is then defined as

assumed thad,> a.,. The first step of this work has been to

determine the elastic deformation of both phases when the 0= D %’ (9)

interface is flat. This has been carried out in the framework Cp,—Cs N

of linear elasticity theory solving in both phasé&s-m, p) the

Navier’s equation,

A. Determination of the epitaxial stress

wherecs is the concentration in the matrix near the curved
interface,D is the diffusion coefficient, an@ic,/dn) is the
wV2uRC+ (AN + ) V VU0 =0, (1) normal derivative of the concentration field at the interface.

S . ! ' The evolution of the stressed precipitate is investigated in the
with u“” the elastic displacement field angandu, Lame’s  ast of this paper with the hypothe¥is

constants of both phases.
Considering a displacement field of the form

U0 = fRO(r)x, (2)

it has been found that Navier's E€l) is satisfied iff“0(r)

C.—Cs
Cp—Cs

Cm_CO
Cp_CO

=

<1, (10

where the concentration field near the interface can be ob-
tained solving Laplace’'s Eq11) while holding constant the

— Ak0/ 3 k,0 k,0 k,0

=AY/r°+B% , whereA™ and B™" are two constants. Once shape of the precipitate. Assuming also local equilibrium at

t_hf ek'f}s“ckyo‘;“Sp'aEerge“_t IS ddeterr‘r}:ned,hthe strain tesi?ra%r _..the interface, the concentration fiadgl and the radius of the
=3(Uij +u;i) can be derived as well as the stress tensor Withyisiorded  sphere p  satisfy the following set of

the help of Hooke’s law written in the particle phase, equations-53132
ol ®= Chlel® - ek b, ) A%, =0, (12)
and in the matrix,
mo0 _ ~m _m0 Cm(,1) = Cor, (12
Jijj _Cijklekl ) (4) . .
in the matrix and
with Cj the elastic constants of the two phagesm, p).
Considering that the interface must be traction-free and D&i"> = (c _Cs)% (13)
the deformation continuous atry, n /=, P dt

165403-2



MORPHOLOGICAL INSTABILITY OF STRESSED. PHYSICAL REVIEW B 71, 165403(2005

(14) 1 1

Gelas) up,tot - um,tot (19)
’ k,tot

Cmp,t) =Cs=Co+ COFD<K +
with u™" the total displacement(i,j)=(r,4,¢), and n'el

at the interface, whereis time andl' is the capillarity term  =(1, (5/ro)(dY|Od«9),0) the normal to the perturbed sphere.
defined byl'p=vyQ/RT with vy the interfacial energy() the  Navier's Eq.(1) has been solved representing the elastic dis-
increment of particle volume per mole of added sol®ehe  placement of relaxation™ in terms of Papkovich-Neuber
gas constant, anlthe absolute temperature. Since the shapgotentialsy/™® and ¢*™® as follows:
of the sphere is modified, the initially traction-free particle is
assumed to undergo elastic deformation to satisfy the me- kel = lwm b g o gk | (20)
chanical equilibrium at the interface. Relaxation stresses and ) '
strains labeledr}t™ and ", respectively, are then appear-
ing in both phases Ieadmg to an elasticity te@#2%in the  with k=m,p and
modified Gibbs-Thompson E@l4). Since it is assumed that

the lattice parameter does not depend on concentration fields V2yKrel =0, (21)
in the matrix and in the precipitate, the coupling effect be-
tween elasticity and diffusion occurs through this Gibbs- V2gkrel = . (22)

Thomson Eq.(14) which is a good approximation for sys-

tems where stress generated by composition gradients following Lur’e 33 the general potentialg®™® and ¢ in
much smaller than misfit stress. During the diffusion-the precipitate can be taken as

controlled growth of the precipitate, the total stress and strain

tensors are defined by P (r,0)= - afir'Y ,(6),

Ulkltm—‘fho+ :jrel, Elkltot GE, +6|k]0+€:jreI’ (15)

rel _ I | 1
with of"™®=Cf et and k=m,p. Following Leo and Yy (r,0) = (‘9)
Sekerkalt31 the elast|C|ty terrrGe'f’IS can be then written as
rel - rel — _ Ppl-1
Gelas_ _o_p tot(ep Jtot _ lo__m,tot m,tot lﬁg (r' 0) - 0, d’p e (I’, 0) a’ll’ |- 1( 0) (23)
ij ij

and the displacement field yields in this case
+ 0_ tot(emtot ptO) (16)
uP"®(r, 0) = [aBr'* (1 + 1)(1 - 2+ dv) + BrHIYY(0),

The key point in solving this boundary value problem is to (24)
determine for each profilg of the moving interface the elas-
tic deformation in the precipitate and the matrix. This has v
been achieved considering a radius of the spherd the . _4.d

form (see Fig. 1 U "e(r, 6) = [af(5 = v+ r'**+ afr! l]d_al(e)' @3
p(6,1) =1o(t) + 1) Y1(6), (17)  changingl by —(1+1) in the potentials defined in E¢23)

. . . . . ields the following displacements in the matrix:
wherer is the radius of the growing spherical particle andyedSt e following displacements in the mat

6 is the amplitude of the shape perturbatM,?] | assuming (1 +1)

integral valueg1=0,1,2,..). At this point it has to be no- u™*e(r, ) :{ 211 +3 -4y, - —}Yo(e)

ticed that the linear stability analysis of the sphere has been r

carried out to the first order in amplitudgwith respect to (26)
Legendre’s functiorPlo(cosa) corresponding to a spherical

harmonic Y2(6) that does not depend om angle, i.e., for ol m
m=0. Since the epitaxial strain determined in the first sub- uiMel(r, ) :{ (4= 4v,—1)+ |+2]
section is independent a@f, the elasticity problem has been
carried out in the hypothesis of a symmetrically loaded

dyp
500 @

h h he displ q The stress and strain tensors in the precipitate and the matrix
sphere where the displacement componept&nd U, are ., then pe easily derived in the framework of linear and

independent ofp. It can also be emphasized that the evolu- isotropic elasticity theori The constantsno and al have

tion of any infinitesimal distortion of the sphere independentbeen determined with the help of Eq$8) and(19), and the

gf ® cafn beh obtamlefd by de‘g\gloelopcljng the dfluctuaﬂon on tp elasticity termG®@sdefined in the modified Gibbs-Thompson
|.a3|s 0 ort_ogon? unlctl_on and .COE.S' ermE iNe. §et c;1 Eqg. (14) has been found to be to the first order in the fluc-
inear equations of evolution used in this wor riting the 4 | ~tion amplitudes

mechanical equilibrium equations on the perturbed interface
of the precipitate yields Gees= G0+ 6G™ + O(H) (29)

)nrel (O_m 0 m rel) r]I’e| (18) with

p.rel
(U'i + oj i ij

1j
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2 2 2
GO= Mp(ﬁ) ¢ Gl = &3(@) ge= ﬂ(@) f (4, Vp, V) (29
a, o\ @y, ro 9( e, v, Vi)
_ (5_&)2#*(1 + Vp)[loﬂ*(l - 2Vp) -(1+ Vp)]
P\ a, 2[1+v,— pe(1 =20 '
and The two dimensionless functiorfsandg are defined by
|
T, vp, v) = 31(1 + Du2(1 + p)((-2+3 + 22 (1 + ) (1 - 2vp)[1 - 20, +1(3 - 4vp)]
— (1 +vp){- 6+ Tvy+ 6v,— Svpyry + (= 7 + vy + 7w, — 1001)
+12[7 = Ty + vin(= 9 + 4vy) 1+ 2133 = vy + vo(— 5+ 4w |}
= 2u{2(1 = 2v)[1 = (2 = v wp] +1[2 = 11wy + 8v] = By (1 - 6w, + 417)]
+20%(4 = 5v) vy + (= 2 = Bvy + 812)] + 172 + 8y, — 1505 + vy~ 8 = 9y + 3200) ]} (30)
[
and dro dé
v= d_to aYo(ﬁ)
(e, vp, o) = [12(3 + e = 4vi) = (2 = ) (1 = v
+1(= 1+ e + 20— 20 V) | __D (%)
X[+ v = px(1 = 20p) L +1 + 17+ v, + 2, Cp=Cs\ oM
— @+~ 1+20,-1(3 - w,)]}. 31y =-D {C“_CR—COED“G {(I p=_%_%lo
Co—Cs| To o v ra r'o

The concentration of solute,, has also been determined to oT Q0
the first order iné. Following Mullins and Sekerk#, the X{I(1 + 1)2- 4} - Co D<(| 1)_2+(|
general solution of Laplace’s EqL1) has been written as Y

Grel
e 00 =c.+ 4B R0 roH. @) TD )}Yf’w)} 39

The constants\, andB, have been determined with the help With Cr=Co*+(2col'n/ro) the concentration on the undistorded

of Egs. (1214 considering that the first-order develop- sphere. Equating coefficients of°, the growth rate 8

ment in§ of the curvaturec in Eq. (14) can be expressed'ds =dé/dt of the amplitude of the spherical harmonic has been
finally found to be

2 2 é - -
K(0,¢)=——V2p+®(52)=—<1——Y|°(0)) 9__D I-11ceG COFD{2+(|+1)(|+2)}
p o o 8 Cy=Cs Io ro r2
I(I+1 0
s Dyog) + 0. (33) _ %( G It 1Grel) (36
rO Y ro I -
Finally, the concentration field in the matrix yields All harmonics such that>1 and satisfying the inequality
cn(r, 6,¢) C.—Cy Col colp(G°® 1+1
Tocof,, .t T2+ D+ - D(—+—Gf6')
=c.+(co— )—+ D°<2+—°G°> fo £ vy \fo 1-1
r Y =0 (37)
o, I'pcy( G -
(co— cm)r'0 +col'pl(l + 1)r'O Ly M(— + Gre'> are assumed to grow. The problem of a stress-free precipitate
+ Y \To already investigated by Mullins and Seketkhave been first
ri+t reexamined here since the instability threshold defined by the
« 6Y|°( 0)+0(5). (34) above-cited authors can be derived from Ej{/) assuming

there is not epitaxy between the precipitate and the matrix
With the help of Egs(9), (13), and(34), the velocityv of the  (sa=0). In that case, a critical radius of the sphegé) can
interface satisfies the following relation: be defined above which the harmonics develop,
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FIG. 2. (Color onling Critical radiusrg of the harmonicy3 as a FIG. 3. Critical radiug (1) for different values of vs the lattice

function of supersaturatiofc..—cg)/cq for different values of the mismatchda/a,.
lattice mismatchsa/ ay,.

) X 5a=0.01a,, the radiug§(2) is reduced by 20% compared to
re) =[50+ 11 +2) + 1], (38)  the radius determined in the case of unstressed particle. The
growth of perturbation amplitudé can also be compared to
the growth of the radius,. Using Egs.(35) and (36), the
. 2pC relation already determined by Mullins and Sekéfka the
r=——_ (39) case of an unstressed particle embedded in a matrix is modi-

fied as follows when the precipitate is epitaxially stressed:

wherer” is the critical nucleation radius defined by

Ce—Co

The critical radius for which at least the second harmafjic

. [
develops is ﬁz(l_1)|:1_w:|[1_K<gO+I+_19rel):|
. . 14rpcy ro/fo ro -1
ro2)=7mw=—". (40) ¢ -1
Cs — Co X|:1———Kgoi| . (42)
When the precipitate is epitaxially stressed in the matrix, the fo
critical radius is modified as follows: Since the term

%(I+1)(I+2)+l .

[+1 ’
1-K 0+ reI)
(g -19

(41) - K(9°+ : i igre')

is always positive whem. <1 and increases with the ep-
itaxy is assumed to accelerate the growth of spherical har-

_ : oo : monic perturbatiory? compared to the growth of the radius
s JLr%(e(ija/t ipi):utnh;ate)ﬂt?;(r:zlnS;;G}lzzst-l-tr;]ee SSZZELed Irslatrr;sgnisro. This accel_erating effect can be observed in Fig. 4, where
appears that is for radii,>r(1=2). This minimum critical the_ ratioT(I)=5/ Slrolrg has beer_1 plotted as a function of the
radiusr(2) has been plotted in Fig. 2 as a function of super-lattice mismaichsa/a, for a particular radius o= 10rg(l =4)
saturation(c..—cy)/ ¢, for different values of the lattice mis- @nd for1=2,3,4 and(c..—cy)/co=0.1. For the harmonit

matchsa and for the following average values of the physi- =2 the ratio(2), always smaller than 1 in the case of a
cal parameterstp~10° m, y=~1 J/n¥?, u,~100 GPau. stress-free particle, has been found to be greater than 1 above

=0.5, andv,=r,,=0.3 corresponding to binary alloys. It can @ critical lattice mismatchSa/ap%0.00ZB. This shows that

be observed that the critical radiu§(2) strongly decreases Under stress, even thé harmonic may develop faster than
as the lattice mismatch increases, demonstrating the destafle Sphere radius. As the lattice mismatch increases, the
lizing effect of epitaxy on the sphere. For a supersaturatiorowth rate difference between high-order harmonics and the
(C..—Cg)/Co Of 10%, the critical radius$(1=2) for particles sphere pecomes more anq more important. It can finally be
free of any stress has been found to be Qui4.16 The evo- emphasized that one particular harmol‘irf'bVI for which the
lution of r§(1) has been plotted in Fig. 3 as a function of the growth rate is maximum can be determined differentiating
lattice mismatchsa/a, for a 10% supersaturation and for the growth rates/ § defined in Eq(36) with respect td. An
=2,3,4.From this curve, it can be emphasized that the effecaverage wavelength of the harmonic can then be defined as
of epitaxy already observed on the development of the harxy=27ry/ly. The variation of this wavelengtky, as a func-
monicl=2, i.e., diminution of the critical radius, still applies tion of the lattice mismatclda/a, has been drawn in Fig. 5
for the harmonics of higher orders. For a lattice mismatctfor (c,,—co)/cy=0.1, ro=50r", and u.=0.5. It can be ob-

roh) =

where K=o%"/2u,y is a dimensionless constant arx
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FIG. 4. (Color onling &/ bltolrg vs the lattice mismatclda/ay,

for harmonics of different orders and fog=10rS(1=4). develop is strongly reduced as the lattice mismatch increases.

The growth rate difference between the fluctuations and the

) radius of the sphere has been also observed to increase with
served that the epitaxy reduces the length skglef rough- e epitaxy and with the order of the considered spherical

hess developing onto the spherical surface. harmonic of the shape development of the sphere. The most
probable harmonic to appear has been finally observed to be
IIl. CONCLUSION strongly stress-dependent.

The further step of this work would be the numerical
In this paper, the linear stability analysis of a growing study of the time evolution by diffusion of the different har-
spherical particle epitaxially stressed in an infinite size mamonic coefficients of the development of the surface profile
trix has demonstrated that when <1, the critical radius of including the nonlinear effectp dependence of stress, as
the sphere above which spherical harmonic fluctuations cawell as stress due to composition inhomogeneity.
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