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The morphological stability of a growing spherical particle epitaxially stressed in a supersaturated matrix has
been investigated with respect to shape deviation of the particle from sphericity expanded on a basis of
spherical harmonicsYl

0sud. A dispersion law has been determined for the growth rate of each harmonic, and a
critical radius of the particle above which the sphere is unstable has been determined as a function of the
different parameters of the problem such as the lattice mismatch between the matrix and the particle or the ratio
of shear modulus. The influence of stress on the instability threshold already studiedfMullins and Sekerka, J.
Appl. Phys. 34, 323 s1963dg in the case of a stress-free particle has been finally investigated.
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I. INTRODUCTION

The diffusional evolution of microstructures consisting of
matrix and particle phases in metals is of great technological
importance since the shape of the particles strongly influ-
ences the mechanical characteristics of materials, among
which are stiffness, strength, or toughness. The evolution of
the size and shape of particles has been widely investigated
for a number of materials ranging from nickel-based super-
alloys and aluminum to steel from both experimental and
theoretical points of view. For example, experimental obser-
vations of nickel-based superalloys have demonstrated that
the kinetic of the precipitate evolution by diffusion is influ-
enced by the elastic effects of epitaxy in the general case of
anisotropic and nonhomogeneous elastic media as well as by
the surface energy and nucleation density effects.1,2 It has
also been observed in Ni-Al alloys that spherical precipitates
may evolve toward cuboid, platelike, or rodlike shaped par-
ticles depending on the values of the elastic and interface
energy or the magnitude and symmetry of stress.1 Using
diffusion3–5 or sharp interface modelsssee Ref. 6 and refer-
ences thereind, the microstructure evolution of multicompo-
nent materials has also been widely investigated. The diffu-
sion interface model where the evolution of materials is
mimicked through the evolution of a smooth fieldse.g., com-
position or phase fieldd has been used to characterize, for
example, martensitic transformation and diffusional micro-
structures in three dimensions.7–9 Recently, sharp interface
models have been used to study the coarsening and Ostwald
ripening.10,11 Simulations in two and three dimensions have
been carried out and the development of microstructures, i.e.,
precipitate alignment, translation, merging, and coarsening,
has been characterized as a function of elastic inhomogene-
ity, misfit strain, and applied fieldsssee Refs. 13–15 and
references thereind.

Analytical analysis of the linear stability of the shape of
precipitates undergoing diffusion-controlled growth in a su-
persaturated matrix has been first performed by Mullins and
Sekerka16,17 and co-workers.18 These authors have demon-
strated that above a critical radius equal to seven times the
nucleation radius, the spherical particles are unstable with
respect to shape perturbations decomposed on a basis of
spherical harmonics. In their papers, two terms have been

considered in the expression of the growth rate of each har-
monic: the gradient of concentration in the matrix favoring
the growth of the perturbation and the surface energy favor-
ing the decay. A similar study has been performed by Coriell
et al.19 in the case of a cylindrical precipitate embedded in an
infinite size matrix. Considering radial and axial sinusoidal
perturbations of the interface of the precipitate, a critical ra-
dius has also been determined above which the particles are
unstable. In the present paper, the stress effect on the insta-
bility threshold of spherical particles has been investigated.

The problem of the stability of the surface of stressed
planar solids has been first studied by Asaro and Tiller, Grin-
feld, and others.20–25 Considering sinusoidal fluctuations of
the surface, a critical wave number has been determined be-
low which the solid undergoes morphological changes. The
stability of cylindrical stressed structures such as pores in a
matrix, whiskers, or tubules has also been investigated as-
suming that the mass transport mechanism is surface
diffusion.26–29It has been demonstrated that an applied stress
along the axis of the cylinder strongly influences the insta-
bility threshold when sinusoidal fluctuations of the radius are
considered. The more general case of nonaxisymmetric in-
stability has been investigated by Kirillet al.28 It has been
demonstrated by these authors that a corkscrew-shaped insta-
bility can appear for a particular spectrum of applied stress,
and for a cylindrical tubule, two distinct eigenmodes develop
for any wave number, applied stress, or geometry.

In this paper, the problem of the morphological change of
a spherical particle growing in a supersatured matrix has
been reexamined in the case where the precipitate is epitaxi-
ally stressed in its infinite size matrix. The interaction of the
elastic deformation and the composition fields has been con-
sidered through the generalized Gibbs-Thomson boundary
condition for the composition in the matrix at the matrix-
precipitate interface. It is then assumed that the atomic vol-
umes of the two chemical species are of the same order of
magnitude so that stress generated by nonuniform concentra-
tion is negligible.10–12,14,15The effect of this stress due to
compositional inhomogeneity has already been studied but in
the case of a precipitate growing from a supersatured melt.30

The elastic deformation of the spherical precipitate and the-
matrix has been first calculated in the case where the epitaxy
reduces to an eigenstrain located in the precipitate. Consid-
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ering shape deviation of the particle from sphericity decom-
posed on a basis of spherical harmonicsYl

0sud, a critical ra-
dius has been determined above which the particle is
unstable. The effect of lattice mismatch on instability thresh-
old has been finally characterized.

II. LINEAR STABILITY ANALYSIS OF THE SHAPE
OF SPHERICAL PARTICLES

A. Determination of the epitaxial stress

An initially spherical particle of radiusr0, shear modulus
mp, and Poisson’s rationp is embedded in an infinite-size
matrix of shear modulusmm and Poisson’s rationm ssee Fig.
1d. The two lattice parameters of the matrixam and the pre-
cipitateap are assumed to be independent of the concentra-
tion fields. The calculations presented in this paper have been
performed using spherical coordinatessr ,u ,wd. Since the
two lattice networks of the matrix and particle are different
and the interface is assumed to be coherent, an eigenstrain
err

p,* =da/ap can be defined in the particle whereda=sap

−amd is the lattice mismatch. Without loss of generality, it is
assumed thatap.am. The first step of this work has been to
determine the elastic deformation of both phases when the
interface is flat. This has been carried out in the framework
of linear elasticity theory solving in both phasessk=m,pd the
Navier’s equation,

mk¹
2uk,0 + slk + mkd ¹ ¹ uk,0 = 0, s1d

with uk,0 the elastic displacement field andlk andmk Lame’s
constants of both phases.

Considering a displacement field of the form

ui
k,0 = fk,0srdxi , s2d

it has been found that Navier’s Eq.s1d is satisfied if fk,0srd
=Ak,0/ r3+Bk,0, whereAk,0 and Bk,0 are two constants. Once
the elastic displacement is determined, the strain tensorei j

k,0

= 1
2sui,j

k,0+uj ,i
k,0d can be derived as well as the stress tensor with

the help of Hooke’s law written in the particle phase,

si j
p,0 = Cijkl

p hekl
p,0 − ekl

p,*j, s3d

and in the matrix,

si j
m,0 = Cijkl

m ekl
m,0, s4d

with Cijkl
r the elastic constants of the two phasessr =m,pd.

Considering that the interface must be traction-free and
the deformation continuous atr =r0,

ssi j
p,0 − si j

m,0dnj = 0, s5d

err
p,0 +

da

ap
= err

m,0, s6d

with si , jd=sr ,u ,wd andn=s1,0,0d the normal to the sphere,
the elastic state can be easily determined to the first order in
da/ap. For example, thesrr component of stress in the par-
ticle has been found to be

srr
p,0sr,u,wd = −

2mpm*

m*
1 − 2np

1 + np
− 1

da

ap
s7d

and

srr
m,0sr,u,wd = −

2mm

m*
1 − 2np

1 + np
− 1

r0
3

r3

da

ap
s8d

in the matrix, withm* =mm/mp. At this point, it can be un-
derlined that even if the nonhomogeneous strain is localized
in the precipitate, the resulting elastic strains and stresses
extend over the sphere in the matrix.

B. Morphological change by diffusion

The diffusion-controlled growth of a spherical particle has
been investigated from a supersaturated matrix of initial con-
centrationc`. The concentration in the particlecp is assumed
to be constant; the position-dependent concentration in the
matrix is labeledcm. The equilibrium value ofcm when the
matrix-particle interface is flat is denoted byc0. The velocity
v of the growing interface by diffusion is then defined as

v =
D

cp − cs

]cm

]n
, s9d

wherecs is the concentration in the matrix near the curved
interface,D is the diffusion coefficient, ands]cm/]nd is the
normal derivative of the concentration field at the interface.
The evolution of the stressed precipitate is investigated in the
rest of this paper with the hypothesis16

Uc` − cs

cp − cs
U ø Uc` − c0

cp − c0
U ! 1, s10d

where the concentration field near the interface can be ob-
tained solving Laplace’s Eq.s11d while holding constant the
shape of the precipitate. Assuming also local equilibrium at
the interface, the concentration fieldcm and the radius of the
distorded sphere r satisfy the following set of
equations:3–5,31,32

D2cm = 0, s11d

cms`,td = c`, s12d

in the matrix and

SD
]cm

]n
D

r=r

= scp − csd
dr

dt
, s13d

FIG. 1. An initially spherical surface of radiusr0 is perturbed by
a spherical harmonicYl=3

0 .
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cmsr,td = cs = c0 + c0GDSk +
Gelas

g
D , s14d

at the interface, wheret is time andGD is the capillarity term
defined byGD=gV /RT with g the interfacial energy,V the
increment of particle volume per mole of added solute,R the
gas constant, andT the absolute temperature. Since the shape
of the sphere is modified, the initially traction-free particle is
assumed to undergo elastic deformation to satisfy the me-
chanical equilibrium at the interface. Relaxation stresses and
strains labeledsi j

k,rel andei j
k,rel, respectively, are then appear-

ing in both phases leading to an elasticity termGelas in the
modified Gibbs-Thompson Eq.s14d. Since it is assumed that
the lattice parameter does not depend on concentration fields
in the matrix and in the precipitate, the coupling effect be-
tween elasticity and diffusion occurs through this Gibbs-
Thomson Eq.s14d which is a good approximation for sys-
tems where stress generated by composition gradients is
much smaller than misfit stress. During the diffusion-
controlled growth of the precipitate, the total stress and strain
tensors are defined by

si j
k,tot = si j

k,0 + si j
k,rel, ei j

k,tot = ei j
k,* + ei j

k,0 + ei j
k,rel, s15d

with si j
k,rel=Cijop

k eop
k,rel and k=m,p. Following Leo and

Sekerka,31 the elasticity termGelas can be then written as

Gelas=
1

2
si j

p,totsei j
p,tot − ei j

p,*d −
1

2
si j

m,totei j
m,tot

+ si j
m,totsei j

m,tot − ei j
p,totd. s16d

The key point in solving this boundary value problem is to
determine for each profiler of the moving interface the elas-
tic deformation in the precipitate and the matrix. This has
been achieved considering a radius of the spherer of the
form ssee Fig. 1d

rsu,td = rostd + dstdYl
0sud, s17d

wherer0 is the radius of the growing spherical particle and
d is the amplitude of the shape perturbationYl

0, l assuming
integral valuessl =0,1,2, . . .d. At this point it has to be no-
ticed that the linear stability analysis of the sphere has been
carried out to the first order in amplituded with respect to
Legendre’s functionPl

0scosud corresponding to a spherical
harmonicYl

0sud that does not depend onw angle, i.e., for
m=0. Since the epitaxial strain determined in the first sub-
section is independent ofw, the elasticity problem has been
carried out in the hypothesis of a symmetrically loaded
sphere where the displacement componentsur and uu are
independent ofw. It can also be emphasized that the evolu-
tion of any infinitesimal distortion of the sphere independent
of w can be obtained by developing the fluctuation on the
basis of orthogonal functionsYl

0 and considering the set of
linear equations of evolution used in this work. Writing the
mechanical equilibrium equations on the perturbed interface
of the precipitate yields

ssi j
p,0 + si j

p,reldnj
rel = ssi j

m,0 + si j
m,reldnj

rel, s18d

ui
p,tot = ui

m,tot s19d

with ui
k,tot the total displacement,si , jd=sr ,u ,wd, and nrel

=(1,−sd / r0dsdYl
0dud ,0) the normal to the perturbed sphere.

Navier’s Eq.s1d has been solved representing the elastic dis-
placement of relaxationuk,rel in terms of Papkovich-Neuber
potentialsck,rel andfk,rel as follows:

uk,rel =
1

mk
Fck,rel +

1

4s1 − nkd
¹ sfk,rel − r · ck,reldG , s20d

with k=m,p and

¹2ck,rel = 0, s21d

¹2fk,rel = 0. s22d

Following Lur’e,33 the general potentialscp,rel and fp,rel in
the precipitate can be taken as

cr
p,relsr,ud = − a0

plr lYl−1
0 sud,

cu
p,relsr,ud = a0

prl Yl−1
0

du
sud,

cw
p,relsr,ud = 0, fp,relsr,ud = − a1

prl−1Yl−1
0 sud, s23d

and the displacement field yields in this case

ur
p,relsr,ud = fa0

prl+1sl + 1dsl − 2 + 4npd + a1
prl−1lgYl

0sud,

s24d

uu
p,relsr,ud = fa0

ps5 − 4np + ldr l+1 + a1
prl−1g

dYl
0

du
sud. s25d

Changingl by −sl +1d in the potentials defined in Eq.s23d
yields the following displacements in the matrix:

ur
m,relsr,ud = Fa0

m

rl lsl + 3 − 4nmd −
a1

msl + 1d
r l+2 GYl

0sud,

s26d

uu
m,relsr,ud = Fa0

m

rl s4 − 4nm − ld +
a1

m

rl+2GdYl
0

du
sud. s27d

The stress and strain tensors in the precipitate and the matrix
can then be easily derived in the framework of linear and
isotropic elasticity theory.33 The constantsa0

k and a1
k have

been determined with the help of Eqs.s18d ands19d, and the
elasticity termGelasdefined in the modified Gibbs-Thompson
Eq. s14d has been found to be to the first order in the fluc-
tuation amplituded

Gelas= G0 + dGrel + Qsd2d, s28d

with
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G0 = mpSda

ap
D2

g0

= mpSda

ap
D2m*s1 + npdf10m*s1 − 2npd − s1 + npdg

2f1 + np − m*s1 − 2npdg2 ,

and

Grel =
mp

r0
Sda

ap
D2

grel =
mp

r0
Sda

ap
D2 fsm* ,np,nmd

gsm* ,np,nmd
. s29d

The two dimensionless functionsf andg are defined by

fsm* ,np,nmd = 3ls1 + ldm*
2s1 + npd„s− 2 + 3l + 2l2dm*

2s1 + nmds1 − 2npdf1 − 2np + ls3 − 4npdg

− s1 + npdh− 6 + 7nm + 6np − 5nmnp + ls− 7 + 9nm + 7np − 10nmnpd

+ l2f7 − 7np + nms− 9 + 4npdg + 2l3f3 − 3np + nms− 5 + 4npdgj

− 2m*h2s1 − 2npdf1 − s2 − 3nmdnpg + lf2 − 11np + 8np
2 − 3nms1 − 6np + 4np

2dg

+ 2l3fs4 − 5npdnp + nms− 2 − 3np + 8np
2dg + l2f2 + 8np − 15np

2 + nms− 8 − 9np + 32np
2dgj… s30d

and

gsm* ,np,nmd = fl2s3 + m* − 4nmd − s2 − m*ds1 − nmd

+ ls− 1 +m* + 2nm − 2m*nmdg

3f1 + np − m*s1 − 2npdg2h1 + l + l2 + np + 2lnp

− s2 + ldn*f− 1 + 2np − ls3 − 4npdgj. s31d

The concentration of solutecm has also been determined to
the first order ind. Following Mullins and Sekerka,16 the
general solution of Laplace’s Eq.s11d has been written as

cmsr,u,wd = c` +
Am

r
+ Bm

d

r l+1Yl
0sud + Qsd2d. s32d

The constantsAm andBm have been determined with the help
of Eqs. s12d–s14d considering that the first-order develop-
ment ind of the curvaturek in Eq. s14d can be expressed as16

ksu,wd =
2

r
− ¹2r + Qsd2d =

2

r0
S1 −

d

r0
Yl

0sudD
+ d

lsl + 1d
r0

2 Yl
0sud + Qsd2d. s33d

Finally, the concentration field in the matrix yields

cmsr,u,wd

= c` + sc0 − c`d
r0

r
+

GDc0

r
S2 +

r0

g
G0D

+

sc0 − c`dr0
l + c0GDlsl + 1dr0

l−1 +
GDc0

g
SG0

r0
+ GrelD

r l+1

3 dYl
0sud + Qsd2d. s34d

With the help of Eqs.s9d, s13d, ands34d, the velocityv of the
interface satisfies the following relation:

v =
dr0

dt
+

dd

dt
Yl

0sud

=
D

cp − cs
S ]cm

]n
D

r=r

=
D

cp − cs
Fc` − cR

r0
−

c0GD

r0
2

r0G
0

g
+ dHsl − 1d

c` − c0

r0
2 −

c0GD

r0
3

3hlsl + 1d2 − 4j −
c0GD

g
Ssl − 1d

G0

r0
2 + sl

+ 1d
Grel

r0
DJYl

0sudG , s35d

with cR=c0+s2c0GD / r0d the concentration on the undistorded

sphere. Equating coefficients ofYl
0, the growth rate ḋ

=dd /dt of the amplitude of the spherical harmonic has been
finally found to be

ḋ

d
=

D

cp − cs

l − 1

r0
Fc` − c0

r0
−

c0GD

r0
2 h2 + sl + 1dsl + 2dj

−
c0GD

g
SG0

r0
+

l + 1

l − 1
GrelDG . s36d

All harmonics such thatl .1 and satisfying the inequality

c` − c0

r0
−

c0GD

r0
2 h2 + sl + 1dsl + 2dj −

c0GD

g
SG0

r0
+

l + 1

l − 1
GrelD

ù 0 s37d

are assumed to grow. The problem of a stress-free precipitate
already investigated by Mullins and Sekerka16 have been first
reexamined here since the instability threshold defined by the
above-cited authors can be derived from Eq.s37d assuming
there is not epitaxy between the precipitate and the matrix
sda=0d. In that case, a critical radius of the spherer0

csld can
be defined above which the harmonics develop,
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r0
csld = f 1

2sl + 1dsl + 2d + 1gr* , s38d

wherer* is the critical nucleation radius defined by

r* =
2GDc0

c` − c0
. s39d

The critical radius for which at least the second harmonicY2
0

develops is

r0
cs2d = 7r* =

14GDc0

c` − c0
. s40d

When the precipitate is epitaxially stressed in the matrix, the
critical radius is modified as follows:

r0
csld =

1
2sl + 1dsl + 2d + 1

1 − KSg0 +
l + 1

l − 1
grelD r* , s41d

where K=s2r* /2mpg is a dimensionless constant ands
=mpsda/apd is the epitaxial stress. The sphere is then as-
sumed to be unstable when at least the second harmonicY2

0

appears that is for radiir0. r0
csl =2d. This minimum critical

radiusr0
cs2d has been plotted in Fig. 2 as a function of super-

saturationsc`−c0d /c0 for different values of the lattice mis-
matchda and for the following average values of the physi-
cal parameters:GD<10−9 m, g<1 J/m2, mp<100 GPa,m*
=0.5, andnp=nm=0.3 corresponding to binary alloys. It can
be observed that the critical radiusr0

cs2d strongly decreases
as the lattice mismatch increases, demonstrating the destabi-
lizing effect of epitaxy on the sphere. For a supersaturation
sc`−c0d /c0 of 10%, the critical radiusr0

csl =2d for particles
free of any stress has been found to be 0.14mm.16 The evo-
lution of r0

csld has been plotted in Fig. 3 as a function of the
lattice mismatchda/ap for a 10% supersaturation and forl
=2,3,4.From this curve, it can be emphasized that the effect
of epitaxy already observed on the development of the har-
monic l =2, i.e., diminution of the critical radius, still applies
for the harmonics of higher orders. For a lattice mismatch

da=0.01ap, the radiusr0
cs2d is reduced by 20% compared to

the radius determined in the case of unstressed particle. The
growth of perturbation amplituded can also be compared to
the growth of the radiusr0. Using Eqs.s35d and s36d, the
relation already determined by Mullins and Sekerka16 in the
case of an unstressed particle embedded in a matrix is modi-
fied as follows when the precipitate is epitaxially stressed:

ḋ/d

ṙ0/r0

= sl − 1dF1 −
r0

csld
r0

GF1 − KSg0 +
l + 1

l − 1
grelDG

3F1 −
r*

r0
− Kg0G−1

. s42d

Since the term

− KSg0 +
l + 1

l − 1
grelD

is always positive whenm* ø1 and increases withl, the ep-
itaxy is assumed to accelerate the growth of spherical har-
monic perturbationYl

0 compared to the growth of the radius
r0. This accelerating effect can be observed in Fig. 4, where

the ratiotsld= ḋ /d / ṙ0/ r0 has been plotted as a function of the
lattice mismatchda/ap for a particular radiusr0=10r0

csl =4d
and for l =2,3,4 andsc`−c0d /c0=0.1. For the harmonicl
=2, the ratiots2d, always smaller than 1 in the case of a
stress-free particle, has been found to be greater than 1 above
a critical lattice mismatchda/apù0.0028. This shows that
under stress, even theY2

0 harmonic may develop faster than
the sphere radius. As the lattice mismatch increases, the
growth rate difference between high-order harmonics and the
sphere becomes more and more important. It can finally be
emphasized that one particular harmonicYlM

0 for which the
growth rate is maximum can be determined differentiating

the growth rateḋ /d defined in Eq.s36d with respect tol. An
average wavelength of the harmonic can then be defined as
lM =2pr0/ lM. The variation of this wavelengthlM as a func-
tion of the lattice mismatchda/ap has been drawn in Fig. 5
for sc`−c0d /c0=0.1, r0=50r* , and m* =0.5. It can be ob-

FIG. 2. sColor onlined Critical radiusr0
c of the harmonicY2

0 as a
function of supersaturationsc`−c0d /c0 for different values of the
lattice mismatchda/ap.

FIG. 3. Critical radiusr0
csld for different values ofl vs the lattice

mismatchda/ap.

MORPHOLOGICAL INSTABILITY OF STRESSED… PHYSICAL REVIEW B 71, 165403s2005d

165403-5



served that the epitaxy reduces the length scalelM of rough-
ness developing onto the spherical surface.

III. CONCLUSION

In this paper, the linear stability analysis of a growing
spherical particle epitaxially stressed in an infinite size ma-
trix has demonstrated that whenm* ø1, the critical radius of
the sphere above which spherical harmonic fluctuations can

develop is strongly reduced as the lattice mismatch increases.
The growth rate difference between the fluctuations and the
radius of the sphere has been also observed to increase with
the epitaxy and with the order of the considered spherical
harmonic of the shape development of the sphere. The most
probable harmonic to appear has been finally observed to be
strongly stress-dependent.

The further step of this work would be the numerical
study of the time evolution by diffusion of the different har-
monic coefficients of the development of the surface profile
including the nonlinear effect,w dependence of stress, as
well as stress due to composition inhomogeneity.

*Electronic address: jerome.colin@univ-poitiers.fr
1A. J. Ardell and R. B. Nicholson, Acta Metall.14, 1295s1966d.
2A. Maheshwari and A. J. Ardell, Phys. Rev. Lett.70, 2305

s1993d.
3P. H. Leo, J. S. Lowengrub, and H. J. Jou, Acta Mater.46, 2113

s1998d.
4Y. Wang and A. G. Khachaturyan, Acta Mater.43, 1837s1995d.
5W. C. Johnson and P. W. Voorhees, Solid State Phenom.23, 87

s1992d.
6K. Thornton, J. Agren, and P. W. Voorhees, Acta Mater.51, 5675

s2003d.
7Y. Yang and A. Kahachaturyan, Acta Mater.45, 759 s1997d.
8D. Orlikowski, C. Sagui, A. Somoza, and C. Roland, Phys. Rev.

B 59, 8646s1999d.
9L.-Q. Chen, Annu. Rev. Mater. Sci.32, 113 s2002d.

10N. Akaiwa, K. Thornton, and P. W. Voorhees, J. Comput. Phys.
173, 61 s2001d.

11K. Thornton, N. Akaiwa, and P. W. Voorhees, Acta Mater.52,
1365 s2004d.

12K. Thornton, N. Akaiwa, and P. W. Voorhees, Phys. Rev. Lett.86,
1259 s2001d.

13X. Li, J. Lowengrub, V. Cristini, and P. H. Leo, Metall. Mater.
Trans. A 34, 1421s2003d.

14H. J. Jou, P. H. Leo, and J. S. Lowengrub, J. Comput. Phys.131,
109 s1997d.

15P. H. Leo, J. S. Lowengrub, and Q. Nie, J. Comput. Phys.157, 44
s2000d.

16W. W. Mullins and R. F. Sekerka, J. Appl. Phys.34, 323 s1963d.
17W. W. Mullins, J. Appl. Phys.28, 333 s1975d.
18F. A. Nichols and W. W. Mullins, J. Appl. Phys.36, 1826s1965d.
19S. R. Coriell and R. L. Parker, J. Appl. Phys.36, 632 s1965d.
20R. J. Asaro and W. A. Tiller, Metall. Trans.3, 1789s1972d.
21M. A. Grinfeld, Dokl. Akad. Nauk SSSR290, 1358s1986d.
22D. J. Srolovitz, Acta Metall.37, 621 s1991d.
23H. Gao, J. Mech. Phys. Solids42, 741 s1994d.
24B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett.

67, 3696s1991d.
25F. Jonsdottir, Modell. Simul. Mater. Sci. Eng.3, 503 s1995d.
26J. Colin, Acta Mater.46, 4985s2004d.
27N. Sridhar, J. M. Rickman, and D. J. Srolovitz, Acta Metall.45,

2715 s1997d.
28D. J. Kirill, S. H. Davis, M. J. Mikisis, and P. W. Voorhees,

Interfaces Free Boundaries4, 371 s2002d.
29F. Yang, Scr. Mater.49, 571 s2003d.
30B. Caroli, C. Caroli, B. Roulet, and P. W. Voorhees, Acta Mater.

37, 257 s1989d.
31P. H. Leo and R. F. Sekerka, Acta Metall.37, 3119s1989d.
32F. Larche and J. W. Cahn, Acta Metall.26, 1579s1978d.
33A. I. Lur’e, Three-Dimensional Problems of the Theory of Elas-

ticity sWiley -Interscience, New York, 1964d.
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