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Electron Raman scatteringsERSd is investigated in a parabolic semiconductor quantum wire in a transverse
magnetic field neglected by phonon-assisted transitions. The ERS cross section is calculated as a function of a
frequency shift and magnetic field. The process involves an interband electronic transition and an intraband
transition between quantized subbands. We analyze the differential cross section for different scattering con-
figurations. We study selection rules for the processes. Some singularities in the Raman spectra are found and
interpreted. The scattering spectrum shows density-of-states peaks and interband matrix elements maxima and
a strong resonance when the scattered frequency equals the “hybrid” frequency or confinement frequency
depending on the light polarization. Numerical results are presented for a GaAs/AlGaAs quantum wire.
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I. INTRODUCTION

Low-dimensional semiconductor systems, quantum wires
in particular, have attracted considerable attention because of
their novel physical properties and application potential. In
recent years a number of innovative techniques have been
developed to grow or to fabricate and to study experimen-
tally a variety of quantum wire structures having different
geometries and potentials. Many recent experimental and
theoretical studies have been performed on quantum wires
subjected to a transverse magnetic field.1–7 Electronic prop-
erties of quantum wells in a transverse magnetic field have
been investigated in Refs. 8 and 9. The subband dispersion
and magnetoabsorption have been studied for rectangular
quantum wires in Ref. 10.

A magnetic field perpendicular to the wire axissa “free-
electron” directiond can change significantly the electronic
states of a semiconductor quantum wire.

Electron Raman scatteringsERSd seems to be a useful
technique, providing direct information on the energy band
structure and optical properties of the investigated
systems.11–13 In particular, the electronic structure of semi-
conductor materials and nanostructures can be thoroughly
investigated considering different polarizations for the inci-
dent and emitted radiation.14 The differential cross section, in
the general case, usually shows singularities related to inter-
band and intraband transitions. This latter result strongly de-
pends on the scattering configurations: the structure of sin-
gularities varies when photon polarizations change. This
feature of ERS allows us to determine the subband structure
of the system by a direct inspection of singularity positions
in the spectra. For bulk semiconductors ERS has been stud-
ied in the presence of external magnetic and electric
fields.15–17 In the case of a quantum well preliminary results
were reported in Ref. 18.

Raman scattering in low-dimensional semiconductor sys-
tems has been the subject of many theoretical and experi-
mental investigations.19,20 Interband ERS processes can be
qualitatively described in the following way: absorption of a

photon of the incident radiation field creates a virtual
electron-hole pairsEHPd in an intermediate crystal state by
means of an electron interband transition involving the crys-
tal valence and conduction bands. An electron in the conduc-
tion band is subject to a second intraband transition with
emission of a secondary radiation photon. Therefore, in the
final state we have a real EHP in the crystal and a photon of
the secondary radiation. The influence of external fields on
such processes for bulk semiconductors is investigated in
Refs. 16 and 17.

In this work we present a systematic study of the inter-
band ERS in a direct band gap semiconducting parabolic
quantum wire in a transverse magnetic field. In these sys-
tems, due to electron confinement and magnetic field, the
conductionsvalenced band is split in a subband system and
transitions between them determine ERS processes. Numeri-
cal results for the ERS differential cross section are pre-
sented for a GaAs/AlGaAs quantum wire. This artical is
organized as follows. In Sec. II the energy spectrum and
wave functions for a quantum wire with parabolic confine-
ment potential in a transverse magnetic field are given. In
Sec. III we present the general relations needed for our cal-
culations of the ERS differential cross section. Section IV is
devoted to calculations of ERS differential cross sections.
Finally, Sec. V is concerned with a discussion of the obtained
results.

II. WAVE FUNCTIONS AND ENERGY SPECTRUM

We consider a quantum wire aligned along they axis with
a transverse magnetic fieldH =Hs0,0,Hd applied along thez
axis. The quantum wire is characterized by parabolic con-
finements in thesx,zd plane. The effective mass Schrödinger
equation for an electron in a conduction band is

PHYSICAL REVIEW B 71, 165331s2005d

1098-0121/2005/71s16d/165331s8d/$23.00 ©2005 The American Physical Society165331-1



F 1

2me
Sp +

e

c
AD2

+
1

2
mev0e

2 sx2 + z2dGcesx,y,zd = Eecesx,y,zd,

s1d

whereA =As0,xH,0d is the vector potential in the Landau
gauge,v0e characterizes the parabolic potential of a quantum
wire for electrons in a conduction band, andme and −e are
the electron effective mass and charge, respectively. We look
for the solution in the form

cesx,y,zd = wsxdhszdeipy,ey/",

wherepy,e="ky,e is the quasimomentum of an electron.
Shifting the origin of coordinates and separating the vari-

ables in the usual way we obtain the eigenfunctions and ei-
genvalues of the Schrödinger equations1d:

cN1e,N2e,ky,e
= wN1eSx − x0e

L̃e
DhN2e

S z

Le
Deiky,ey, s2d

Ee = sN1e + 1/2d"ṽe + sN2e + 1/2d"v0e +
"2ky,e

2

2me
Sv0e

ṽe
D2

.

s3d

The wave functions and energy eigenvalues for electrons
in valence band are as follows:

cN1h,N2h,ky,h
= wN1hSx − x0h

L̃e
DhN2h

S z

Lh
Deiky,hy, s4d

Eh = − Eg − sN1h + 1/2d"ṽh − sN2h + 1/2d"v0h

−
"2ky,h

2

2mh
Sv0h

ṽh
D2

, s5d

whereEg is the energy gap between the valence and conduc-
tion bands in the absence of an external magnetic field and
v0h is the oscillator frequency of the parabolic potential for
electrons in the valence band. In Eqs.s2d–s5d,

ṽe,h = Îv0eshd
2 + veshd

2 s6d

is the “hybrid” frequency. The subscriptse and h denote
conduction and valence bands, respectively,

veshd =
eH

meshdc
s7d

is the cyclotron frequency,meshd is the effective mass, and

x0eshd =
"veshd

meshdṽeshd
2 kyeshd s8d

is the oscillator center.
The full energy spectrum in Eqs.s2d–s5d is governed by

the quantum numbersN1eshd, N2eshd, andkyeshd:

wN1eshdSx − x0eshd

L̃eshd
D

= S 1

pL̃eshd
2 D1/4 1

Î2N1eshdN1eshd!

3 expS−
sx − x0eshdd2

2L̃e
2 DHN1eshdSx − x0eshd

L̃eshd
D , s9d

hN2eshdS z

Leshd
D = S 1

pLeshd
2 D1/4 1

Î2N2eshdN2eshd!

3 expS−
z2

2Leshd
2 DHN2eshdS z

Leshd
D , s10d

where the parameters

L̃eshd =Î "

meshdṽeshd
, Leshd =Î "

meshdv0eshd
s11d

are the units of length;Hnsjd is the Hermitian polynomial.

III. PRELIMINARY RELATIONS

The general expression for the ERS differential cross sec-
tion is given by16,18

d2s

dVdns
=

V2ns
2nsnsd

8p3c4nsnld
Wsns,esd, s12d

where c is the light velocity in vacuum,nsnd is refraction
index as a function of the radiation frequency,es is thesunitd
polarization vector for the secondary radiation field,V is the
normalization volume,ns is the secondary radiation fre-
quency, andnl is the frequency of the incident radiation.
Wsns,esd is the transition rate calculated according to

Wsns,esd =
2p

"
o

f

uMe + Mhu2dsEf − Eid, s13d

where

Mj = o
a

kf uĤjsualkauĤluil
Ei − Ea

+ o
b

kf uĤlublkbuĤjsuil
Ei − Eb

. s14d

In Eq. s14d, j =e,h are for the cases of electrons or holes,
respectively, anduil and ufl denote initial and final states of
the system with their corresponding energiesEi and Ef. ual
and ubl are intermediate states with energiesEa andEb.

The operatorĤl is of the form

Ĥl =
ueu
m0
Î2p"

Vnl
el · p̂, p̂ = − i" ¹ , s15d

wherem0 is the free-electron mass. This operator describes
the interaction with the incident radiation field in the dipole
approximation. The interaction with the secondary-radiation
field is described by the operator

Ĥjs =
ueu
mj

Î2p"

Vns
es · p̂, j = e,h. s16d
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This Hamiltonian describes the photon emission by the
electronsholed after transitions between conductionsvalenced
subbands of the system. In Eq.s14d the intermediate states
ual represent an EHP in a virtual statesafter absorption of the
incident photond, while the statesubl are related to the “in-
terference diagrams.”16,18 This latter term involves a negli-
gible contribution whenever the energy gapEg is large
enoughsfor instance, this is the case for GaAsd and will not
be considered in the present work.

We established that the processes of ERS given in the
following are possible.

sad The interband ERS process with the intermediate state
in the conduction band. First, an incident light quantum is
being absorbed creating an electron-hole pair between the
statesN1h,N2hd in the valence band and the statesN1e8 ,N2e8 d in
the conduction band. Second, a scattered photon is emitted
due to an electronic transition from the statesN1e8 ,N2e8 d to the
state sN1e,N2ed in the conduction band. The Raman shift
"n="snl −nsd is equal to the excitation energy of the
electron-hole pair created in the scattering process.

sbd The interband ERS process with the intermediate state
in the valence band.Two electrons take part in the process.
After the absorption of an incident photon the first electron
from the statesN1h8 ,N2h8 d in the valence band is lifted to the
statesN1e,N2ed. The second electron from the statesN1h,N2hd
falls to the vacant state in thesN1h8 ,N2h8 d subband. The real
transition corresponds to a transition from the statesN1h,N2hd
to the statesN1e,N2ed.

In the initial stateuil we have an incident radiation photon
with frequencynl, while the conduction band is empty and
the valence band completely occupied by electrons. We ne-
glect by all the transitions assisted by phonons.

The initial state energy is

Ei = "nl . s17d

The final state of the process consists of an EHP in a real
state and a scattered light with energy"ns. Thus,

Ef = "ns + EN1h
+ EN2h

+ EN1e
+ EN2e

+ Eg

+
"2kye

2

2me
Sv0e

ṽe
D2

+
"2kyh

2

2mh
Sv0h

ṽh
D2

, s18d

where

EN1eshd
= sN1eshd + 1/2d"ṽeshd,

EN2eshd
= sN2eshd + 1/2d"v0eshd. s19d

For the electron intermediate statesual the energiesEa are
easily obtained from the above discussion:

Ei − Ea = − Eg − EN1h
− EN2h

− EN1e8
− EN2e8

−
"2kye

2

2me
Sv0e

ṽe
D2

−
"2kyh

2

2mh
Sv0h

ṽh
D2

+ "nl . s20d

Similar expressions can be written for the hole inter-
mediate-state energies.

IV. RESULTS AND DISCUSSION

In the following we present detailed numerical calcula-
tions of the differential cross section of a GaAs/AlGaAs
parabolic quantum wire in the presence of uniform magnetic
field as a function of"n /Eg. The physical parameters used in
our expressions areEg=1.5177 eV,me=0.0665m0, and mh
=0.45m0 sthe heavy-hole bandd. Taking the ratio 60:40 for
the band-edge discontinuity,20,21 the conduction and valence
barrier heights are taken to beDe=255 meV and Dh
=170 meV. The oscillation frequenciesv0e and v0h of the
parabolic quantum wire are determined as

FIG. 1. The Raman spectra of the parabolic quantum wire in the
X scattering configuration forH=0. The diameterd of the quantum
wire is 2000 Å. The incident radiation frequency"n0=1.68 eV. The
positions of the singularities are defined by Eqs.sA22d and sA23d.
Resonant electron-hole transitions are indicated byN1h,
N1e, N2h, N2e.

FIG. 2. Same that in Fig. 1 forH=8 T.
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v0eshd =
2

d
Î2Deshd

meshd
,

whered is the quantum wire diameter.
In Figs. 1–3 we show the Raman spectra of the parabolic

quantum wire in theX scattering configuration for different
magnetic fields. The diameterd of the quantum wire is
2000 Å. The incident radiation frequency"nl =1.68 eV. The
positions of the singularities are defined by Eqs.
sA22d–sA24d.

Figures 4 and 5 show the Raman spectra for theZ scat-
tering configuration for the magnetic fieldsH=8 T and H
=16 T. Other parameters coincide with those of Figs. 1–3.

The structure of the differential cross section, as given in the
figures, provides a transparent understanding of the energy
subband structure of the parabolic quantum wire in a trans-
verse magnetic field.

In the present work we have applied a simplified model
for the electronic structure of the system. In a more realistic
case we should consider the real band structure using a cal-
culation model like that of the Luttinger-Kohn or Kane
model. The above-mentioned assumptions would lead to bet-
ter results, but entail more complicated calculations. How-
ever, within the limits of our simple model we are able to
take into account the essential physical properties of the dis-
cussed problem. The fundamental features of the differential
cross section, as described in our work, should not change
very much in real quantum wire case.

It can be easily proved that the singular peak in the dif-
ferential cross section will be present irrespective of the
model used for the subband structure and may be determined
for the values of"ns equal to the energy difference between
two subbands"ns="nl −"n=Ea

e −Eb
e, where Ea

e .Eb
e are

electron energies in the subbands, respectively. At present
there is a lack of experimental work on this type of the ERS.
Our major aim in performing these calculations is to stimu-
late experimental research in this direction.22

APPENDIX: CALCULATION OF THE RAMAN
SCATTERING CROSS SECTION

The matrix elements of the intraband transitions may be
written as

FIG. 3. Same that in Fig. 1 forH=16 T.

FIG. 4. The Raman spectra for theZ scattering configuration for
the magnetic fieldsH=8 T. Other parameters coincide with those of
Figs. 1–3.

FIG. 5. The Raman spectra for theZ scattering configuration for
the magnetic fieldsH=16 T. Other parameters coincide with those
of Figs. 1–3.
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ueu
me

Î2p"

Vns
kN1e,N2e,kyeuespuN1e8 N2e8 ,kye8 l

=
ueu
me

Î2p"

Vns
fkN1e,N2e,kyeuesxpxuN1e8 N2e8 ,kye8 l

+ kN1e,N2e,kyeuesypyuN1e8 N2e8 ,kye8 l

+ kN1e,N2e,kyeueszpzuN1e8 N2e8 ,kye8 lg, sA1d

where

kN1e,N2e,kyeuesxpxuN1e8 N2e8 ,kye8 l

= −
i"

L̃e

esxdN2e8 ,N2e
FÎN1e

2
dN1e8 ,N1e−1

−ÎN1e + 1

2
dN1e8 ,N1e+1Gdkye,kye8

, sA2d

kN1e,N2e,kyeuesypyuN1e8 N2e8 ,kye8 l = "kye8 esydN2e8 ,N2e
dN2e8 ,N2e

dkye,kye8
,

sA3d

kN1e,N2e,kyeueszpzuN1e8 N2e8 ,kye8 l

= −
i"

Le
eszdN1e8 ,N1e

FÎN2e

2
dN2e8 ,N2e−1

−ÎN2e + 1

2
dN2e8 ,N2e+1Gdkye,kye8

. sA4d

A similar expression can be written for the interband ERS
process with the intermediate state in the valence band:

ueu
mh

Î2p"

Vns
kN1h8 ,N2h8 ,kyh8 uespuN1h,N2h,kyhl

=
ueu
mh

Î2p"

Vns
fkN1h8 ,N2h8 ,kyh8 uesxpxuN1h,N2h,kyhl

+ kN1h8 ,N2h8 ,kyh8 uesypyuN1h,N2h,kyhl

+ kN1h8 ,N2h8 ,kyh8 ueszpzuN1h,N2h,kyhlg, sA5d

where

kN1h8 ,N2h8 ,kyh8 uesxpxuN1h,N2h,kyhl

= −
i"

L̃h

esxdN2h,N2h8 FÎN1h + 1

2
dN1h,N1h8 −1

−ÎN1h

2
dN1h,N1h8 +1Gdkyh,kyh8

, sA6d

kN1h8 ,N2h8 ,kyh8 uesypyuN1h,N2h,kyhl

= "kyhesydN2h,N2h8
dN1h,N1h8

dkyh,kyh8
, sA7d

kN1h8 ,N2h8 ,kyh8 ueszpzuN1h,N2h,kyhl

= −
i"

Lh
eszdN1h,N1h8 FÎN2h + 1

2
dN2h,N2h8 −1

−ÎN2h

2
dN2h,N2h8 +1Gdkyh,kyh8

. sA8d

If we consider allowed electron transitions between con-
duction and valence bands, the interband matrix element in
the envelope function approximation may be written as

kauĤluil =
ueu
m0
Î2p"

Vnl
spcveld

3HIN1h,N1e8
skydJN2h,N2e8

dkyh,kye8
, j = e,

IN1h8 ,N1e
skydJN2h8 ,N2e

dkyh8 ,kye
, j = h,

J
sA9d

wherepcv is the momentum matrix element between the va-
lence and conduction bandssevaluated atk =0d.

We find that the matrix elementssA2d–sA9d vanish unless
the following selection rule is satisfied:

kye= kyh = kye8 = kyh8 = ky. sA10d

The EHP does not change its total momentum during ab-
sorption or emission of a photonsa photon momentum is
neglectedd. It may be obtained that

IN1h,N1e8
skyd = S 1

p
D1/2S 1

L̃hL̃e
D1/2 N1h!N1e8 !

Î2N1h+N1e8 N1h!N1e8 !

3 o
k=0

fN1h/2g

o
k=0

fN1e8 /2g
s− 1dk+j2N1h+N1e8 −2k−2j

k! j !sN1h − 2kd!sN1e8 − 2jd!

3S 1

L̃e
DN1e8 −2jS 1

L̃h
DN1h−2k

3 o
m=0

N1h−2k
sN1h − 2kd!

m!sN1h − 2k − md!
sx0e − x0hdN1h−2k−m

3 o
n=0

N1e8 −2j+m
sN1e8 − 2j + md!

n!sN1e8 − 2j + m − nd!
fs− 1dn + 1g

3expS− sx0e − x0hd2

2sL̃e
2 + L̃h

2d
D1

2S L̃e
2 + L̃h

2

2L̃e
2L̃h

2 D−sn+1d/2

3GSn + 1

2
DS−

L̃e
2sx0e − x0hd

L̃e
2 + L̃h

2 DN1e8 −2j+m−n

sA11d

and
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JN2h,N2e8
= S 1

p
D1/2S 1

LhLe
D1/2ÎN2h!N2e8 !

2N2h+N2e8

3 o
a=0

fN2e8 /2g

o
b=0

fN2h/2g
s− 1da+b2N2e8 −2a+N2h−2b

a!b!sN2e8 − 2ad!sN2h − 2bd!

3 S 1

Le
DN2e8 −2aS 1

Lh
DN2h−2b

fs− 1dN2e8 +N2h−2a−2b + 1g

3

GSN2e8 + N2h − 2a − 2b + 1

2
D

2SÎLe
2 + Lh

2

Î2LhLe
DN2e8 +N2h−2a−2b+1

. sA12d

An expression analogous to Eqs.sA11d and sA12d holds
for IN1h8 ,N1e

skyd and JN2h8 ,N2e
after making the replacements

N1h→N1h8 andN2h→N2h8 .
Performing the summation overky in Eq. s13d we obtain

the ERS differential cross section:

d2s

dVdns
= S d2s

dVdns
D

esx

+ S d2s

dVdns
D

esy

+ S d2s

dVdns
D

esz

,

sA13d

where

S d2s

dVdns
D

esx

=
s0

L̃e
2

nl − n

nl

3 o
N1e,N2e,N1h,N2h

F o
N1e8 ,N2e8 ,N1h8 ,N2h8

H b

Asnd
dN2e,N2e8

3 fÎN1e/2 dN1e8 ,N1e−1 − ÎsN1e + 1d/2 dN1e8 ,N1e+1g

3 IN1h,N1e8
„kysnd…JN2h,N2e8

+
gsHd
Bsnd

dN2h,N2h8

3IN1h8 ,N1e
„kysnd…JN2h8 ,N2e

SÎN1h + 1

2
dN1h,N1h8 −1

−ÎN1h

2
dN1h,N1h8 +1DJG2

3 S Eg

"n − EN1e
− EN1h

− EN2e
− EN2h

− Eg
D1/2

3 ues ·X u2 sA14d

and

S d2s

dVdns
D

esy

=
s0

Le
2

nl − n

nl

3 o
N1e,N2e,N1h,N2h

F o
N1e8 ,N2e8 ,N1h8 ,N2h8

H b

Asnd

3IN1h,N1e8
„kysnd…JN2h,N2e8

dN2e,N2e8
dN1e,N1e8

+
1

Bsnd
IN1h8 ,N1e

„kysnd…JN2h8 ,N2e
dN2h,N2h8

dN1h,N1h8 JG2

3S Eg

"n − EN1e
− EN1h

− EN2e
− EN2h

− Eg
D1/2

3skysndLed2ues ·Y u2, sA15d

S d2s

dVdns
D

esz

=
s0

Le

nl − n

nl

3 o
N1e,N2e,N1h,N2h

F o
N1e8 ,N2e8 ,N1h8 ,N2h8

H b

Asnd
dN2e,N2e8

3 fÎN2e/2 dN2e8 ,N2e−1 − ÎsN2e + 1d/2 dN2e8 ,N2e+1g

3 IN1h,N1e8
„kysnd…JN2h,N2e8

+
g

Bsnd
dN1h,N1h8

3IN1h8 ,N1e
„kysnd…JN2h8 ,N2e

SÎN2h + 1

2
dN2h,N2h8 −1

−ÎN2h

2
dN2h,N2h8 +1DJG2

3 S Eg

"n − EN1e
− EN1h

− EN2e
− EN2h

− Eg
D1/2

3 ues ·Z u2, sA16d

where

s0 =
e4Lyupcvelu2"2nsnsd

Î2pm0
2mh

2Eg
5/2nsnldc4

1

Î 1

me
Sv0e

ṽe
D2

+
1

mh
Sv0h

ṽh
D2

,

sA17d

Asnd =
"

Eg
fn − nl + sN2e − N2e8 dv0e + sN1e − N1e8 dṽeg,

sA18d

Bsnd =
"

Eg
fsN2h8 − N2hdv0h + sN1h8 − N1hdṽh − n + nlg,

sA19d

b =
mh

me
, gsHd =

L̃e

L̃h

, g =
Le

Lh
, sA20d

andkysnd is the root of thed function argument:

ukysndu =
Î2

" Î"n − Eg − EN1e
− EN1h

− EN2e
− EN2h

1

me
Sv0e

ṽe
D2

+
1

mh
Sv0h

ṽh
D2 .

sA21d
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The vectorsX, Y, andZ are unit vectors along the corre-
sponding Cartesian axes.

Let us make some remarks concerning the above equa-
tions. As indicated above, when"n.Eg the Raman process
involves the combination of intraband and interband transi-
tions. From Eq.sA12d it follows that JN2h,N2e8

sJN2h8 ,N2e
d van-

ishes unlessN2h+N2e8 =2n sN2h8 +N2e=2nd wheren is an in-
teger. So a transition can only take place betweenN2h and
N2e8 sN2h8 and N2ed subbands with the same paritys2m→2n
and 2m+1→2n+1; m andn are integersd. But for Eq.sA11d
quantum numbersN1h and N1e8 sN1h8 and N1ed can change
arbitrarily.

Hence, the following selection rules are obtained for in-
terband transitions:

uN1h − N1e8 u = 0,1,2, . . . , uN2h − N2e8 u = 0,2,4, . . . ,

uN1h8 − N1eu = 0,1,2, . . . , uN2h8 − N2eu = 0,2,4, . . . .

sid When H=0, x0e=x0h=0, L̃e=Le, and L̃h=Lh, which is
the oscillator center of the conduction and valence band elec-
trons coincident. Then, making the replacementN2h
→N1h,N2e8 →N1e8 sN2h8 →N1h8 ,N2e→N1ed, we see that Eq.
sA11d turns into Eq.sA12d. Thus, forH=0 we have the se-
lection rules

uN1h − N1e8 u = 0,2,4, . . . , uN2h − N2e8 u = 0,2,4, . . . ,

uN1h8 − N1eu = 0,2,4, . . . , uN2h8 − N2eu = 0,2,4, . . . .

sii d The caseveshd@v0eshd. This condition corresponds to
the strong magnetic fields, and we have

ṽeshd = veshdÎ1 +Sv0eshd

veshd
D2

< veshd

and

x0e < xoh, L̃e < L̃h =Î c"

eH
= lH,

where lH is the magnetic length. For this case Eq.sA11d
differs from zero whenN1h=N1e8 sN1h8 =N1ed. In this way, the

selection rule uN1h−N1e8 u=2n+1 suN1h8 −N1eu=2n+1d takes
place in intermediate magnetic fields.

As can be seen from Eqs.sA14d andsA16d the differential
cross section is directly proportional to the density of states
of carriers in the valence and conduction bands and to the
interband matrix elements. In this case the scattering spec-
trum shows density-of-states peaks and interband matrix el-
ements maximums. The positions of these structures are
given as follows:

"n = EN1h
+ EN2h

+ EN1e
+ EN2e

+ Eg. sA22d

Here, the following selection rules must be fulfilled:N1e8
=N1e±1, N2e8 =N2e sN1h8 =N1h±1,N2h8 =N2hd for X scattering
configuration andN2e8 =N2e±1, N1e8 =N1e sN2h8 =N2h±1,N1h8
=N1hd for Z scattering configuration. In this case whenuN1h

−N1e8 u=2n+1 suN1h8 −N1eu=2n+1d the spectrum shows
maxima and whenuN1h−N1e8 u=2n suN1h8 −N1eu=2nd the ERS
spectrum shows singular peaks. The peaks and maxima re-
lated to these structures correspond to interband EHP transi-
tions and their positions depend on the magnetic field.

Other singularities of Eqs.sA14d and sA16d occur when-
ever Asnd=0 andBsnd=0. In theX scattering configuration
this singularities are

n = nl − ṽe, n = nl − ṽh. sA23d

Here the following selection rules are fulfilled:N1e8 =N1e
+1, N2e8 =N2e andN1h8 =N1h−1, N2h8 =N2h.

For theZ scattering configuration the Raman singularity
is

n = nl − v0e, n = nl − v0h. sA24d

In this case the selection rules areN1e8 =N1e, N2e8 =N2e+1 and
N1h8 =N1h, N2h8 =N2h−1.

As can be seen from Eqs.sA23d andsA24d these frequen-
cies correspond to electron transitions connecting the sub-
band edges for a process involving the conduction and va-
lence bandssi.e., intraband transitionsd. We can also notice
that theY scattering configuration is free from Raman singu-
larities and relates to the selection rulesN1e8 =N1e, N2e8 =N2e
andN1h8 =N1h, N2h8 =N2h.
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