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Chiral spin resonance and spin-Hall conductivity in the presence
of the electron-electron interactions
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We discuss the electron spin resonance in two-dimensional electron gas at zero external magnetic field. This
spin resonance is due to the transitions between the electron states, which are split by the sfB@brbit
interaction, and is termed as the chiral spin resond@8&R). It can be excited by the in-plane component of
the electric field of microwave radiation. We show that there exists an inherent relationship between the
spin-Hall conductivity and the CSR in a system with the SO interaction. Since in the presence of the SO-
interaction spin is not conserved, the electron-electron interaction renormalizes the spin-Hall conductivity as
well as the frequency of the CSR. The effects of the electron interaction in systems with the SO interaction are
analyzed both phenomenologically and microscopically.
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[. INTRODUCTION underline the nature of this resonance, we use the term “chi-
ral spin resonance{CSR), which emphasizes that the dis-

In systems with spin-orbitSO) interactions the spin of cussed electron-spin resonance occurs between the chiral
electrons can be coupled to an electric field, making it posstates that are spin split by the SO interaction rather than by
sible to manipulate electron spins without applying magnetidhe external magnetic field.
fields. This is the main reason why the properties of the In the presence of the SO interaction the dynamics of the
electron gas in the presence of the SO interaction are in th@tal current and the total spin is affected by the electron-
focus of the research in spintronits. electron(e-e) interaction. Consequently, the frequency and

In semiconductors with a zinc-blende or a wurtzite latticethe width of the CSR as well as the spin-Hall conductivity
the SO interaction originates from the bulk-inversion asym-acquire renormalization corrections. We start this paper by
metry (BIA) of the crystal structur@? whereas the structure applying the Kohn's theorefh procedure to analyze the
inversion asymmetrySIA) typical for heterostructures is an- transverse transport coefficients in systems with the SO in-
other source of the SO interactfohin two-dimensional elec- teraction. In systems witmo SO interactions it is easy to
tron gas(2DEG). show that the absence of tleee renormalization of the Hall

In the presence of the SO interaction the spin degeneragyoefficient Ry at w.7>1 is a direct consequence of the
of the electron spectrum is lifted. In this context, the possi-Kohn's theorem. We observe, however, that the SO and the
bility of the existence of the spin-Hall current mediated by e-e interactions are not compatible in a sense that the equa-
the SO interaction has been discussed recénthit is now  tions of motion for the current operators can be closed when
widely acceptett6that in the static limit the disorder sup- only one of these interactions is present. Still, this approach
presses the spin-Hall conductivity in the bulk of a macro-proves to be useful in finding a relation between the spin-
scopic system! Therefore, to investigate the bulk effects Hall conductivity and the dynamic spin-susceptibility that
related to the SO interaction it is worthwhile to turn to the holds in the clean limifw7> 1) even in the presence of both
high-frequency phenomena whemnr> 1. the SO and the-e interactions?

In this paper we study the ac spin-Hall conductivity in a A discussion of the Hall and spin-Hall conductivities fol-
2DEG with the Bychkov-Rashba SO interactiblive dem-  lowing the lines of the Kohn’'s theorem argumentation is
onstrate that similar to the Hall conductivity, which in the given in Sec. Il. A calculation of the spin-Hall conductivity
absence of the SO interaction is inherently related to thén the absence of the-e interaction using the equation of
cyclotron resonance, the spin-Hall conductivity is related to anotion for the current operators is given in Appendix(A.
specific (for SO systemsversion of the electron-spin reso- reader not familiar with the spin-Hall conductivity is recom-
nance(ESR), which has been termed by Rashba as a “commended to look at the calculations in Appendix A before
bined resonance®-2°The combined resonance occurs as aproceeding further.In Sec. Il we consider the renormaliza-
result of the transitions between the electron states, which artén effects in the dynamic spin-susceptibility induced by the
split by the combined action of the SO interaction and thee-e interaction within the framework of the phenomenologi-
Zeeman interaction induced by a static magnetic field. In a&al Fermi-liquid theory. We find the spectrum of the spin
2DEG with the Bychkov-Rashba SO interacfidiie spin-  excitations in the SO system and, in particular, determine the
split eigenstateén the limit of zero magnetic fieldare char-  frequency of the spin resonance. Simultaneously, we calcu-
acterized by their chirality. We will be interested in the par-late the effects of the-e renormalization on the spin-Hall
ticular limit of the combined resonance when a staticconductivity. This is how the relationship between the spin-
magnetic field is absent and the resonance is due to the traktall conductivity and the CSR can be established. In Sec. IV
sitions between electron states with different chirality. Toan alternative microscopic Fermi-liquid analysis of the dy-
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namic spin susceptibility is presented for a justification of theresonancé! The essence of the theorem is the observation
both approaches. In Sec. V we find the disorder-inducedhat the electron interaction does not affect the equation of
width of the CSR, including it®-e renormalizations. In ad- motion for the total current operator
dition, the Fermi-liquid renormalizations of the D’yakonov-
Perel rate of the spin relaxati&hare obtained. In the end of _ iﬁ\]i(t) = + 0 JH(1) (5)
this section we discuss the electron-dipole mechaffisih at ST '
the excitation of the CSR.

Finally, in the concluding sectiofV/1) we discuss the per- The unique property of the operatal$is that they connect
spectives of the experimental observation of the CSR, i.ethe pairs of states,m with the energy differencés, -E,,
the combined resonance in the vanishing magnetic field. T& +@. only. The closed equatio(b) yields for the time de-
observe the CSR, the spin splitting induced by the SO interpendence of the total current operators
action should be sufficiently isotropic. For the purpose of Lo otk
definiteness, the calculation has been performed for the case F(t) = e, (6)

of Bychkov-Rashba SO interactid$IA). However, the re-  \yiih the Kohn's result for the time dependence of the current
sults of this ana_ly5|s are _appllcable in various other _S'tua'operators, we are fully equipped for the calculation of the
tions. In Appendix B we discuss the forms of the SO inter-cqnqctivity tensor. According to the Kubo formula, the con-

action due 10 the lack of the inversion symmetry of the hosy, ity tensor in the presence of thee interaction is given
crystal(BIA)“ corresponding to quantum wells grown in dif- by

ferent crystallographic directions. We demonstrate that there

is a duality transformation relating the linear terms in the SO e~ ne?

. . S . _ Wt/ 1+ - _ : We
interaction originating from the SIA and BIA mechanisms. o= —f dte“X[J*(t),J (0)]>__2|m_+—’ (7)
Because of this duality all the conclusions about the spin- @Jo QT Qe

Hall conductivity and the electron-spin resonance found forvvhere(---) means quantum mechanical as well as thermal

the Bychkov-Rashba SO interaction hold equally wellfortheavera e andh is the density of the electron oas. Finall
linear terms originating from the Dresselhaus SO interaction 9 y gas. Y

. i i having in mind thato_,(w)=-0,_(-w), o.,,=c__=0, and
in the cases of001]- and[111]-grown quantum wells. 0 =-0y=(114)[0_,~0,], one gets for the transverse

components of the conductivity tensor the following result:
Il. TRANSVERSE CONDUCTIVITIES IN THE PRESENCE
OF THE ELECTRON-ELECTRON INTERACTION né o,

Oxy = 2_ 2° (8
Let us start with the application of the Kohn’s theorem W~ W
procedure to the Hall conductivitiand the Hall coefficient
in a system without a SO interaction. In the presence of
magnetic fieldB with the corresponding vector potentila
many-electron system is described by the Hamiltonian

Remarkably, the factan preserves here its physical meaning
?f the density of the electron gas and does not acquire any
renormalization correction in the presence of the electron
interaction because of the universal form of the commutator
1 e 2 1 (4). Together with the absence of the renormalization correc-
H=2> En|:pi - EA(ri):| + 52 Veelri=rj). (1)  tions to the cyclotron frequency this leads to an important
i i#] consequence for the Hall coefficieRf; =p,,/B. Inverting the
In this papem denotes the band-structure mass of an elecconductivity tensor one obtains in the dc linait— 0,
tron in a heterostructure in contrast t, denoting the
vacuum mass of the electron. The current operator in the
presence of the vector potentialis

m R 1l/nec 9
= —Ww, , = -
Pxy ne e H
1 e Thus, the absence of the renormalization correctiorig,tm
J_ZE pi_EA(ri) - (2 the clean limit, w1, is a direct consequence of the
! Kohn’s theorem. For the limit of a weak magnetic field,
It is convenient to introduce “the angular-momentum com-w.7<<1, the proof of the absence of the renormalization cor-

ponents” of the current operatdr rections to the Hall coefficient of an interacting electron gas
a1y requires a considerable effdft.
J=J+1 ©) Let us check the possibility to extend the Kohn's theorem
with the commutator to a 2DEG with the Bychkov-Rashba SO interactiomigi-
nating from the structure-inversion asymmetry of the hetero-
[ ]=- 2%0&’ @) junction
HSO=23 o[ p; X (] - o, (10)

where w.=|e|B/mc is the frequency of the cyclotron reso-

nance andN is an operator of the total number of particles in where the unit vectof is perpendicular to the plane of the
the system. The Kohn'’s theorem states thateteeinterac- 2DEG. In the presence of the SO interaction the current op-
tion does not change the frequency of the cyclotroneratorJ contains a spin-dependent term
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J=> (%+a[€ X (ri]) =P/im+2a[¢ X S]. (11

Here P and S are the operators of the total momentum and

spin, respectively. Since thee interaction commutes with
the current operator the interaction drops out from the equ

tion of motion forJ, as it takes place in the Kohn’s theorem.

Still, the current operator has a complicated dynamics due
the SO interaction. For example, for the compon&hone
gets

id/dt= - 2ia? >, plo? = - 4ima?y%, (12)
whereJ} is thex component ofz-spin current operator

ao s P
\52—22 ot (13)

An attempt to get a closed system of equations by suppl
menting Eq.(12) with the equation of motion fog fails. It

happens in the following way: in the equation of motion for

the total curreng® the contributions from the-e interaction
term V.. cancel pairwise: Ve o(ri—rj)/dri+dVeo(ri

—r;)/ar;=0. On the contrary, in the equation of motion for

the spin currenf; each of the derivatives is multiplied by a
spin operator of different particles and as a result, éhe
interaction does not drop out: ofdVe(ri—r;)/or;
+af&Ve_e(ri —rj)/é’rj :(O'IZ—O']Z) é’Ve_e(I’i _rj)/o"xi #0.

The very fact thaV,_, does not drop out from the equa-
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e
giy = E)(xx(q = O,w),

qu=aw:iJ de (3 [a(0,0/0)]). (17
0

a_

i} the presence of the SO interactigg, has a behavior that
differs radically from that wherv=0. In the absence of the
SO interaction the total spin is conserved. Therefasg(q
=0,w),-0=0 and, consequently, the spin-Hall conductivity
vanishes ate=0, whereas at any finitee one getsy,(q
=0,w) #0 and, consequently,, + 0.

It is worth noting that Eq(17) is valid only in the absence
of disorder. The correlation functiog,,, by itself, is insen-
sitive to disorder as long as the elastic scattering rate is less
than the spin-splitting energy. However, the relation between
Sy and x,, is very subtlé*'® because in the presence of
disorder the momentum is not conserved, and there is a com-
petition between the spin and momentum contributions to the
current vertex(inter- and intrabranch contributions in termi-
nology of Ref. 16. The involvement of the momentum part
of the current operator makes Ed.7) unapplicable for ana-
lyzing the static limit of the spin-Hall conductivity in the
presence of disorder or an external magnetic field. Still, Eq.
(17) is valid whenw> 7, [see Eq(57) and the discussion in
the end of Sec. Vand will be used for the analysis of the
CSR.

tions of motion indicates that in the presence of the SO in-
teraction the dynamics of the electron gas is affected by thelll. FERMI-LIQUID ANALYSIS OF SPIN CORRELATION

e-e interaction. In spite of this complication, the Kohn's

theorem approach is useful for proving the relation between

FUNCTION IN THE PRESENCE OF SO INTERACTION:
THE SPIN RESONANCE

the spin-Hall conductivity and the dynamic spin susceptibil-

ity that remains intact even in the presence of ¢éheinter-
action (see also Ref. 22 The spin-Hall conductivityy, de-
scribes the response of the sgHicomponent current in the
directionJ; to the electric field applied in thg direction. It
is determined by the Kubo formula as follows:

e ", .

Sxy= J dte*X[35, P (- 1)]). (14)
wJo

To explore its relation with the spin susceptibility we elimi-

nateJ in favor of J¥ with the use of Eq(12). Performing the
time integration by parts one obtains

Y [ aenroo). a9
ma= J o

Sy = 4
In a translation-invariant system the total momentR() is
a conserved quantity, the commutatofP(t),S(0)]

=[P(0),S(0)]=0, and, therefore, the momentum operd@¥r
drops out from Eq(15). Finally, one gets

emw:ELd@wgmg@» (16)

Thus, there is a direct connection betwegp and the dy-
namic (retarded spin susceptibility

It has been demonstrated above that in the presence of the
SO interaction, the dynamics of the total current is affected
by the e-e interaction. As a consequence of this fact, the
spin-Hall conductivity acquires corrections, which we ana-
lyze now with the use of the methods of the phenomenologi-
cal Fermi-liquid theory. Since the calculation of the spin-Hall
conductivity reduces in the clean limit to determining the
dynamic spin-susceptibility, one can follow the derivation of
the spin-waves spectrum in the Fermi liquid in an external
magnetic field(see Chap. 1, 85 in Ref. 25There is an
important difference, however, between the spin splitting in-
duced by the external magnetic field and the SO interaction.
As a result of the SO interaction the spin of an electron feels
an “individual” magnetic field, which is directed perpendicu-
lar to the momentum of the electron. For this reason, to
analyze the spin dynamics in the presence of the SO interac-
tion it is convenient to introduce the chiral basis with the
rotated Pauli matricesr=(a;- o), where ag={a1,a2,a3}
={-¢,p,p X £} andp stands for a unit vector in the direction
of momentunp. [Here we consider the Bychkov-Rashba SO
interaction. Similar analysis can be done for the case of SO
interaction induced by BIA(see Appendix B for detailg

Sincea; form an orthonormal basig; matrices have the
same commutation relations as the Pauli matrices. In the chi-
ral basis, the free single-particle Hamiltonian acquires the
diagonal form
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2 - “SO ~B
on, =y~ + onc. 23
P (18) p p p ( )
After this separation Eq22) can be linearized with respect

to 5e8 and 6ﬁ§

SO— 3
H>"= m + a|p|7p

with the energy spectrum split into two chiral branches
&= (19

In the presence of the-e interaction the spin splitting
induced by the SO interaction is renormalized. It can be de-
termined by a self-consistent equation

a. A 1 (.
==~ 5%§O,up+v(e,:)§Tr de fpp,up,}

p?/2m+ ap.

+[ 660, o 5. (24)

Here we rewritesh? in terms of the displacement function
Uy, describing the deformation of the Fermi surfad@?
=(dn/9e)l, (note thatd, depends on the direction of the
vectorp and is a matrix in spin spagen Eq.(24), the static

wheref . is the function introduced by Landau to describe Part;°has been absorbed 3%, giving the renormalized
the effects of electron interaction in the Fermi liquid, and Tr Spin-splitting energyA

denotes the trace with respect to the spin indices. In(EQ. 1
SN5°=an/ Jede,  is the response of the distribution function 5&60=a* pery=ZAT.
of the quasiparticles to the SO-interaction term, while the 2
integral term describes the modification of the quasiparticlyjith the use ofo-x:(pqug+py7-g) /p the “driving-force” term

energy spectrum as a result of the change of the quasiparticig the apove equation can be rewritten as
distribution. Note that Eq(20) is a matrix equation in spin

SO
6/1

~ dn
SO_ ' '
5%p =afpX{£]-o+Tr fdﬂ fpp/o"_e 5

(20)

(25

space, and we use for the functifgp, the standard notation
v(€r)fpp =F(pp) + Gy ) - ', Whered,,, is an angle be-
tweenp andp’, and v(eg)=m*/ 7 is the renormalized den-
sity of states for both spin components in a 2DERatu-

[6630 o ]Fe ! = - iATl%‘Se‘“’t. (26)
To solve Eq.(24), we represent the matri, in terms of

7 matrices: {, = Uy (6,) 7+ Up(6,) 75+ U3(6,) 75, Where 6, de-

rally, only the spin-dependent part of the Landau’s functionyotes the direction of the vectpr The coefficientsi(6,) are
is important for the phenomena related to the SO interacgetermined by a system of equatidit, = 6,— 6,)

tion.) To solve Eq(20) one should expan@(6) in a series of
2D harmonics,G(6)==,,G"é™’ and exploit the following
property of the Pauli matricest- Tr(o”' 7)) =27;. As a result,

the renormalized spin splitting of the electron energy spec-
a* p,:rg, is determined by the renormalized SO

trum, (5?:‘?0:

paramete* = o/ (1+G?); see also Ref. 26.

To find the dynamic spin susceptibilif(q=0,w) we cal-
culate a response linear in the time-dependempiane mag-
netic field B,e“. Consider the equation of motion of the
density matrixéh in the Landau’s Fermi liquid in the pres-
ence of the SO interaction and the perturbation tei&h,
which is introduced by the magnetic field,

€% = - gup(0¥/2)B," = - °Fe !,

where ug=€fi/2m, and the Lande-factog depends on the
semiconductor[In GaAs g=-0.44, whereas in &g _,As
heterostructures the absolute valige can be an order of
magnitude large}.Since spin variables are involved) is a

(21)

A_ldutj(te - Up(6p) + f 6/ G(6pp')COSBppr Ua( )
A*%@ = - uy(6,) - f Ay G(6ppr)Un(6p1), (27D)
_p_duz(ta ) =0. (27C)

In the transition from Eq(24) to Egs.(27a and(27b) it has
been used tha&'Tr(&T;,)ZZT;, and that the commutator
3 29_ o
(75,7 ]=-2i rlcosﬂpp,;
Since the functiorf,,, depends on the directions of vec-

torsp andp’ through cosj,,, only, Egs.(279—(27¢) can be
solved by expandingu(6) in 2D harmonics, u;(6)

matrix in spin space and its time evolution is given by the_s | ;mgmé
m™

commutator

a "
o, = [y, 5&,].

ia (22)

In our caseé%p:appﬁ+ 5EB+Tr’fdQ’?pp/éT1p,, where the
last term accounts for the effects of the Fermi liquid.

To find the response linear in the magnetic field, one has

_duf’ 1, 1 .
A 1d—t1 =UF| 142G+ G | = D(Oma + O -DFE,
(283
d m
A-ld—“tz = —ul(1 +GM). (28b)

to consider the case when the magnetic term is much smaller

than the spin-orbit onede®<2ape. In Eq. (22) the static
part of &M, induced by the SO interactiod5°, should be
separated from a time-dependent p&”@

It has been used here th@&t{6)cosd— (1/2)(G™1+G™ 1)
and that the harmonics coefficients are evemjrG"=G™

(this is because the functioﬁp, is even indy, ). After the
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time-Fourier transform one gets the frequencies of the spin R
waves ]

Y

1772

5

T
34

+ &

FIG. 1. Spin-density correlation function.

e

p

—
il

w3 (q=0=A%1+GM| 1+ %(Gm+l + Gm‘l)] . (29

In the absence of the-e interactionw,, does not depend on

m as each spin precess independently in the individual field
induced by the SO interaction with the same frequency. The
e-e interaction couples the precession motion of different
spins, thereby lifting the degeneracy of the precession by
renormalizing the frequency. As a result one gets a set of the
spin-wave excitations corresponding to different 2D harmon-
ics. Unlike the noninteracting case where the spin precessioge

is circular, in the presence of tleee interaction, the preces- Be“! coupled to the magnetic moments of electrons via the

sion is elliptical. Zeeman interaction. Actually, as a mechanism of the excita-

When an electromagnetic field is applied to the electror{ion of the CSR this type of coupling is very ineffective. In

gas .the CSR can be excited. The_only harmanics activated %e presence of the SO interaction the electromagnetic field
the in-plane field are those witlhh=+1

A can excite the spin-flip transitions much more effectively
o . A by coupling through the electric-dipole interactiotetc)AJ.
m (For the electric-dipole excited spin resonance see Ref. 20.
The relative effectiveness of the two mechanisms is of the
2 order of the ratio of the Compton length to the electron
Feot, (30p  wavelength:(x/\)?2~10°-108 We postpone the discus-
sion of excitation of the CSR as well as of the width of the
resonance to Sec. V.
Finally, a further comment is in order. The above calcula-
tion demonstrates an inherent relationship between the spin-

Hall conductivity and the CSR. The same correlation func-

Unlike ]Ehe ESR in the absence |9fef:cesRS-O where tPe (rjesot_lon,)(xx(qzo,w)a#o, describes the resonance and determines
hance frequency Is not renormalized,>is renormalized  yho \a)ye oqu(y, including its static limit. Actually, the exis-

b?f tweeK-eAn'Eertarl]ctlonﬁ:}rgs IS qu'tti nlztgratlhas the ESR a??rllogtence of a relationship between a transverse conductivity and
orthe Konns theorert does not hold In the presence ot the corresponding resonance is generic. In clean systems, in

S0 mtgracnon. . . . . the absence of dissipation, the longitudinal conductivity
Tlo find the;pm—spm correlation functiop, we calculate o,(w) vanishes when the frequeneyis in the range 1
Sc=3 (&) Tr [ ly(%/2)(d0/2m) as a response of the electron _, < AF a5 at such frequencies the dipole transitions with
gas to the magnetic fielB,. Only 72-component ofi, con- e energyAE cannot be excited. Unlike the longitudinal, the
tributes and, therefore, Hall conductivity, as well as the spin-Hall one, are related
not to the real transitions but to the virtual. This leads to the
generic relationship between the transverse conductivities
and the corresponding resonance; see also Sec. Il, where the
A2 connection between the Hall conductivity and the cyclotron

In the above consideration we find the dynamic spin sus-
ptibility by calculating the response to a magnetic field

ge, (303

+1 _ 1 B
U, =(1+G
2 = )Z(wf—wz)

and, therefore, the CSR frequene§SRis determined by,

o®SR=AM{(1+GH[1+3G°+GH P2 (3D

1
S = ZV(EF)E Uzm[‘sm,l + 5m,—]]

= v(ep) (1 + Gl)m(gus)&- (32

Noting that x,, is equal toS/(gugB,), one obtains in the
limit of small w< w“SR~ A that

1 V(fp)

s+l

Xxdd=0,0— 0)40=

and correspondingly in the absence of disorder the renormal:
ized value of the spin-Hall conductivity in the limit of small

frequency(see the discussion in the end of Setidlequal to

*
; _ € 1 m

S S R 34
T 8r1+5(G0+G) m (39

The angular structure of the correctionSgﬁg calculated in

Ref. 22 to the lowest order in theee interaction are in agree-

ment with this result.

resonance has been demonstrated.

IV. SPIN CORRELATION FUNCTION IN THE PRESENCE
OF THE SO INTERACTION: MICROSCOPIC
CALCULATION

In this section we develop a microscopic derivation of the
ynamic spin susceptibility as an alternative to the phenom-
nological description presented in Sec. lll. As a whole, we
follow the scheme elaborated for the microscopic derivation
of the dynamic spin susceptibility by one of us in Ref. 27.

Let us discuss the ladder diagrams for the spin-density
correlation function presented in Fig. 1. We choose to work
with the amplitudes known in the Fermi-liquid theory I&s
This approach has the following reasoning. A two-particle
vertex functionl’(w, k) includes an irreducible part, the con-
tributions from the incoherent scattering, and, most impor-
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tantly, the contributions from a multiple rescattering of Now we turn to triangle vertices. Like T'%, the vertexy
electron-hole quasiparticle pairs. Apart from small correc-in Fig. 1 is a dressed vertex irreducible with respect to RA
tions ~a/ve <1, neither the irreducible part of the vertex sections(i.e., it extends from an external vertex to the first
function nor the contributions from the incoherent scatteringRA section. The arguments concerning insensitivity of the
are sensitive to a small modification of the electron spectrunstatic limit of the two-particle vertex functions to the SO
because they accumulate their values far from the Fermi sumteraction remains also valigvith an accuracy~a/vg<1)
face. On the contrary, the rescattering of a quasiparticle paiior the renormalized “triangle” vertey. Since we are inter-
requires certain care. The reason is that the contribution frorasted in the spin-density correlation function, we consider
a cross section with an electron-hole pair as an intermediatine case when the external vertices contain a spin operator
state is equal to a singular combinatiopk/(iw,—Vegk),  o,/2 (such a vertex is denoted below &8). Due to the
wherevgk originates fromde (p)=e(p+k)—e(p) (see Chap. Fermi-liquid corrections the verte¥”x acquires the renor-

2, § 17 in Ref. 25 Indexk in I'* means that i'(w,k) the ~ malization factor(1 +rg), wherel“g is zero harmonics of the
contributions of such cross sections are taken as follows: oniéteraction amplitudd™,(p,p’). The last contribution in Fig.
first takesw=0 and only afterward takes the linkt—0. In 1 to be commented on is the static spin susceptibjlifyw

the presence of the SO interaction the energy difference0) (this correlation function does not contain any RA sec-
de(p) acquires a gap when the two quasiparticles have diftions). According to the same argumentation it is equal to
ferent chirality. The order of limits corresponding 1 (1/4)V(6,:)(1+F(2)).

makes this amplitude to be not sensitive to a gap in the The singular part of the matrix Green’s function in the
energy spectrum of the quasiparticles. Indeed, in the consighresence of the Bychkov-Rashba SO interaction is

ered order of limits the combinatiofe, (p)/[iw,— de(p)] is

equal to -1 for any energy spectrum of electrons. Altogether o _ a
this argumentatioif leads to the conclusion that the values Gliep) = g;‘l |§p>ie— 6,€+ M@p" (37

of the static amplitudeE* are not modified by a SO interac-

tion apart from small corrgctionga/vF<1. This_feature of where the residua is a weight of the quasiparticle part in
the amplitudel makes it particularly convenient for the the Green's function[in what follows the singular parts of
purposes of the microscopic analysis. Diagrammatically thehe Green’s functions will be used without the factorThis
amplitudel’™® can be defined as a two-particle amplitude ir- is the reason for attaching? to the matricesf‘{z in the
reducible with respect to a RA sectidloy the RA section we relations(35). With the use of the effective mass* and a
understand a product of the two Green's functions when ongoper redefinition of triangle verticegthe explicit depen-
of them is retarded, while the other one is advanc®dth  4onc0 on the residua drops out from the Fermi-liquid

the_ use oﬂ“_", the ladder diagrams for the two-particle corre- calculationg®] The direct product of spinorgp)(¢p| in the

lation functions are _rearr_ange_d in such a way that the bIOCk%reen’s functionG(ie,p) is the projector onto the chiral
of the combination iwy/liw,=de(p)] rather than oo with the eigenenergies=p?/2m* + {A/2; here and in
de(p)/liwn-dec(p)] stand separated by amplitudes what follows the chiral state indeg= +1. The eigenspinors

Depending on the spin structure the two-particle ampli-;, Eq. (37) can be found from the eigenvalue problem f@r
tude can be split into two parts

matrix
V(EF) 21kaqa Y — ’ 1 ige—iﬁp
2 O 1o (P-P) = TP ) Oy o0y Bl =do. =7z | (39
\J
v(er) wheree® %= (p,+ip,)/p.

a52152(p,P") = = T2(P,P") Sy Oy, (35) To conduct the calculation in the chiral basis, the spinors
will be transferred from the Green'’s functions to the interac-
tion amplitudes and to the verticég (see Fig. 1L As a

result, one gets for the matricé‘gyz

2

Here matricesl:‘{’2 denote the spin-dependent amplitudes,
while the dimensionless functiaki, , determine the param-
eters of the Fermi-liquid theor§in I'; , the indexk is omit- W)
ted). The r_ninus sign in the.amplitudéz is due to the anti- _Fa2r'i§;§i(p,p') =T4(p,p N &ap| apX &P’ |Zap"),
commutation of the fermionic operators. The factar 2

appears in a standard way because it describes the weight of

the quasiparticle part in the Green’s functfSrzor electrons LG

at the Fermi energy the functioly (p,p’) =T A6,,) de- — @ I542(p,p") = = T'a(p,p" XZaP'|£1p)(E3pILap "),
pend on the scattering anglg, only. The coefficients of the

expansion of’y 5(6,,/) in angular harmonics are used as the (39

gzrfa}l)r;?g\;tvesr.s of the Fermi-liquid theory. In 2D they are defmedand’ similarly, for the verticed?x

T,Zz J (Zj_zrl,Z(a)eXF(_ |m0) . (36) aalo—x%(p) = (1 + Fg)<§1p|EX|§2p>’
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a?l"“x(p) (1 +F0 (§2p| |§1p> (40)

PHYSICAL REVIEW B 71, 165329(2005

tations(charge-density excitatiopsSince the spin dynamics
is controlled by(1-%,) and (1+%,)(1-2,)=0, the singlet
channel amplitude is decoupled from spin excitations.

where the first and second lines correspond to the left and It remains to calculate the triangle verticg®, which are

right triangle vertices in Fig. 1.
The matrix elements appearing in E¢39) and(40) can

be easily found

. ggrei(ﬁp—t‘)pf)_F 1

Wplg'ph==—"7—"",

gelﬁp _ g e—lﬂ

2i (41

(Zploy'p") =
Then, for the matrixf“l one has

1
V(ZF) ZF'ig?(p,p’) = Zrl(ﬁpp')(l +{183)(1+04s),

(42)

and for the matri>f2, which is of special importance since it

controls the dynamics of spins, one géts, =4,—9,)

! F) ZFk§1§2

1 .
2 2650 (PP) == ZFZ(ﬁpp’)[l +{18olala+ (1067

+ £ala€ ], (43)

represented in a four-row-column form &g’); and;(y™).
For the left vertex, one has(y‘TX)l—ay"xfl (1+F°)
X(ployl 2|Lp)y and for the right vertex,J(y‘TX)—aﬁy”X
=(1+I'9)(Lp|oy/ 2|Z1p). With the use of Eq(41) one obtains

0
@ 25m, l]

(y7); = Elgemt-¢

(1+F)<5m 1 +5m,1

4

_¢‘) 46
" w-()

Here the column,h:[_ll] has been introduced to shorten the
notations. Similarly,

1+T9
(== Ty smo_ smay
0 _
:_<1+.r2)<5m,_1 |, m w‘) “
4] 1V 1V

To proceed further, we discuss a RA section in Fig. 1.

Note that there appears an additional angular dependen&dnce we are studying the dynamic susceptibilify,(d
because of the factoes' %’ and therefore in the expansion =0,®), the momenta in the product of the two Green’s

in a series of 2D harmonics one should take into considerfunctions GRG* coincide. After the

ation thatl'(9)et? — M1,

It will be convenient to represent the matricEsin the

chiral basis by &4 matricesf“ij. For that we choose the
following convention. The first index represents the left

pair of mdwes(i) in the order(?), (7), (*), (7), while the

second index represents the right pair of mdmé? in the

integration over
£=p?/2m*— u the product of two Green’s functions yields

2mi
wWn — A(é’l -

(GGNE = e, (49

H)I2°

Here the product of the Green’s functions with different

same order. Finally, after the expansion in 2D harmonics, thehirality acquires the difference of the frequency and the spin

explicit block form expressions for the matr|cE§ look as
follows (3,=|9%

ver) orp T2 |1+%0 0
2 AMy == s
mii-3, 1-3,
4 |1-3, 1-3
CIETH 1-3, —1+3, (44
4 |-1+3, 1-3, |
and
4G) Sk _ 1+3, 0
Tazrl(m)ij—rm 0 ol (45)

Note, that one can combirfél with the top-left block in the
first term of ', to create the amplitudel’;-T',/2)(1+3,),

splitting of the energy spectrum in the denominator, while
(GG); and(GG)_ are insensitive to the SO spin splitting. To
describe the rescattering of a pair of quasiparticles, one has

to consider a ladder of RA sections with the amplituﬁéa’n

between. The amplitudeE* are accompanied by the fre-
quency summation. Ultimately, the geometrical series of the
ladder diagrams for the two-particle propagation function
yields [(GRG?) - (w,/2m) ], wherel'¥ is determined in
Egs. (44) and (45), whereas the produd¢GRG?) is consid-
ered as a matrix with the diagonal elements only that are
given by Eq.(48). Owing to the chiral nature of the spectrum
of the excitations the triangle vertic$x activate the chan-
nels withm=x1 only. This fact has been already observed in
the phenomenological treatment and here reveals itself in
Eqgs.(46) and(47) through the Kronecker's™*!, As a con-
sequence, in the calculation of correlation functjgg only

the matriced"[~** andI';~*! are involved.

Performing the necessary matrix multiplications and the
remaining frequency summation one gets for the dynamical

which controls the singlet channel of the electron-hole excipart of the spin correlation function
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xHamiG o = 0,0) tromagnetic field through the current operatéior the sake
of brevity the electric-dipole interaction as a driving force of
:lV(GF)(1+Fo)2 the spin resonance was ignored in Sec. Ill where the cou-
8 z pling via the magnetic moment only was consideratle

— A2+ 20%(1+TY(1+T?) s_how, _howevgr, that in excitatipn <_)f the CSR the electric-
X — > 5 2 5 2 I 5. dipole interaction is, by far, d_onjma_tlng. Eventually, we com-
AL+ [T+ 19)/2] - Y1 +15) (1 +T5) (1 +T9) pare the intensity of the dissipation through the resonant
(49) transitions with the nonresonant ac-Drude losses.

) ) ) _ To account for the impurities, the RA sections in the

Here we performed an analytic continuation from the posi-apove calculations of the spin susceptibility should be re-
tive frequencies on the Matsubara axis to the realstfart'iequencmaced by the diffusion ladders. After the standard averaging
axis by iw,— w. Together with the static part ofp."(w  gyer the impurities the effective scattering amplitude due to

—) — 0 H : ~
=0)=(1/4v(e)(1+I) this leads to the final result disorder is equal t(E:nimpuz(app’)5a1a26a3a4! whereny,, is

Xg&ta'(q =0,w) the number of impu'rities per unit s'quau{ﬂpp,) is the ma-
1 trix element of the impurity potential, and the Kronecker’s
=—v(ep)(1 +1“(2’) symbols describe the spin structure®f It is assumed that
8 for electrons at the Fermi energyé,,,) is a function of the
A%(1 +F§) scattering angle only. The disorder averaged Green’s func-
X . '
AZ1+(T9+T2/2] - w21 +TY(L+TH (1 +T2) tions are
(50 1
GiAliep) =+ (53)

Remarkably, this expression reduces to E8p) obtained ie—e(p) - (A2 £i/27'

phenomenologically )
where the scattering rate i#wv(ep)nimp(uz(app,»g. For

1 v(er) (51) weak enough SO interaction the scattering rate i$/inde-
81+ %[GO +G4’ pendent of the chirality. Note also that the static amplitude

¥ can be taken ignoring the influence of the disorder when
1/ez7<1 based on the arguments presented in the beginning
(1+GM™=1/(1+T%) (52)  of Sec. Ill.
] ] ) ] To study the spin-density correlation function we sum the
is applied[see Chap. 2, § 18 in Ref. 25 and note that in Eqsjadder diagrams describing the two-particle propagation
f|_1h8-7) and(18.9 fOf the teth%(:k_C:arz aE?G;jQ?:‘gz(gérﬂ- function in the electron-hole channel. For a clean system this
e resonance frequency obtained in an re- : P RAA)-1_ ky-1
produces correctly the frequency of the CSR as given by E .ropagatlon fF‘”C“O” 'S eq_ual .@G G (“’“/.ZW)F ] '
ow the multiple rescattering induced by the impurity am-

XXX(q = O’w - 0)01#0 =

when the relation

(32). ) - . ) S
plitude Z and by thee-e interaction amplitudd™ should be
V. RENORMALIZATIONS OF DISORDER-INDUCED considered simultaneously. The impurity amplitigleunlike
RESONANCE BROADENING AND SPIN-RELAXATION I’k preserves the frequency of the scattered electrons, and

RATE therefore in the two-particles diagrams it is not accompanied

In this section we first extend the treatment of the dy-by the _frquugncy summatlgn. Hence, to |_nclude the |mpur|ty
namic spin susceptibility to include the disorder. This pro-Scattering= in the two-particles propagation function it suf-
vides us with a source of the spin relaxation, which leads tdices just to modify the previous result as follows:

the broadening of the chiral spin resonance. Next we conE(GRGA)‘l—é—(wn/27r)fk]‘1. As a result, for the total spin-
sider the coupling of the spin degrees of freedom to the elecspin correlation function one obtaifisompare with Eq(50)]

AZ(szn + 1/7'2)
A (Xg + Xp) wp/2 + 1127,] + Xown(Xywp + 1177) (Xown + 1175)

Xa=0,0)= S e (1 +T9 (59
Here the scattering rates 4,/and 1/, are determined by the impurity scattering potential as follows;,E/mv(eg)Nimp([ 1
—exp(-imé) Ju(6,,1)), With m=1,2, while the frequency renormalization factotg; ,=1+I'y"2 Since it isT', that controls
the interaction in the spin-density channel, the correlation funddhis determined only by the coefficients of the angular
expansion of this amplitude.

Equation(54) reveals the existence of the CSR when the system is clean endb&gh/ 7, ,. To determine the position and
width of the resonance, one has to perform the analytical continuation of the retarded correlation f(B#tisom the
Matsubara axis to the real one and to find the roots of the cubic polynomial in the denominator®)Em the vicinity of
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the resonance, the spin-density correlation function can baave in the Faraday geometry withi(t) =XEqe**'! and
written as B(t)=YE.e¥* . The energy dissipation rate according to the
Kubo formalism is determined by

1 (1+T9) w?
total/ ~ — - _ = 2 res _ 2 2 2
=0,0) = — Q= m .
Yo (A=0.0) SV(EF) (1 +Xo/%g) @ — W+ 2i oo 2 Reayw)Bg+ 20(gue) M xy(@)Ep. (59

(55) Note that at the absence of the external magnetic field there
is no superposition contribution from the electric- and
The renormalized frequency and the width of the CSR areMagnetic-dipole interactions Q. For the purpose of com-
correspondingly, parison of the two mechanisms, let us confing(w) to the
contribution originating from spin transitions. When only the
1 +X,/%g | Y2 spin term of the current operator is kept in the correlation
Ores= A\ "o o (56)  function determining the conductivity, it follows immedi-
172 ately that Rery,(w)=(4€?0?/ w)Im x,,(w) and the dissipa-
and tion rateQ can be written as

4e?a?
. 1 1 Q=2wlIm ny(w){—wz + (g,u,B)z} ES. (60)
2

= + . (57)
2X2(1 + X2/XO) T 2X17'1
For w=wyes the first term in the square brackets does not
Under the condition of stability of the electron liquid all the depend on the SO-coupling constant Omitting all renor-
parametersy, 1 , are positive(no Pomeranchuk’s instabili- malizations, it is~e*2/p2, while the second term can be
ties) and »>0. The positive sign ofy, corresponds to the estimated as-€’x?, where the Compton’s length=%/mgc.
attenuation of the spin-density excitations as it should be. The dipole moment corresponding to the wavelength of the

The third pole, which is purely imaginaryp,=-i/[(xg  electrons is few orders of magnitude larger than the dipole
+X,) 7], describes the relaxation rate of the “chiral magneti-moment corresponding to the Compton’s length, and there-
zation.” Both relaxation rates;; , are determined by the fore only the electric-dipole mechanism is relevant for the
combinations of the scattering rates714 only, which is  excitation of the CSR. The relative strength of the two
natural forA>1/7, ,. mechanisms i$X/\)?>~ 10°-10°8.

Note that the structure of the denominator in Esf) is Ignoring the momentum part of the current operator in the
rich enough that regimes with other relaxation rates and difeorrelation function that determines,(w) is justified in the
ferent parameters of the resonance are possible whatlean system only, i.e., when the total momentum is con-
1/(xy1y), 1/(%om), and 1[(xg+Xy) 7] differ significantly served. In the presence of disorder the situation is more
from each other. This is likely to happen near an instabilitysubtle. Namely, in the limiw<1/7 the momentum part of
when one ofxg ; > 1. the current operator participates equally in the excitation of

In the limit when the SO interaction is smdlle., when the spin-flip transitions. Moreover, there are claims that in
A<1/7 ), it follows from Eq.(54) that the rate of the spin the static limit the spin-flip transitions cannot be excited
relaxation is determined by the D'yakonov-Perelthrough the electric-dipole interaction,(efc)AJ, because
mechanisrf® with a proper Fermi-liquid renormalization there is a complete cancellation between the two terms of the

current operator(This cancellation has been noted in Refs.
A%7; 12-16 in the context of vanishing of the static spin-Hall con-
A2n/2+(1+T9)w,’ ductivity in the bulk of a macroscopic systenin the high-
frequency limit the balance between different terms of the
(58) current operator is changed, and participation of the momen-

Let us now discuss the mechanisms of excitation of thdum part of the current operator in the excitation of the spin-
CSR. The peculiar feature of the SO systems is that thdip transitions becomes insignificant.
single-particle current operatdrcontains spiisee Eq(11)]. Let us clarify the action of the different terms of the
Consequently, the electric-dipole interaction(efc)AJ  current on the spin-flip transitions when the frequency is
couples the electromagnetic fiefd to the spin density. The finite. Suppose that the current-current correlation function
electric-dipole interaction is a much more effective way ofPegins with the momentum part of the current operator.
excitation of the spin resonance compared to coupling of th&laively it cannot excite the spin transitions because
electromagnetic wave to the magnetic moments via the Ze€Fr [ d¢ peGR(ie,P) o, Gi€,p) o [déf g é), Where foqf€) is
man interaction(To excite the CSR it is necessary to have anan odd function of¢. To get a nonvanishing contribution to
in-plane component of the electric field of the radiation. Thisthe spin transitions from these terms one has to keep the
can be achieved either in the Faraday geometry when thgependence og either in the current vertex or in the spin-
electromagnetic wave is incident along the direction perpensplitting of the energy spectruriiboth depend explicitly on
dicular to the plane of the 2DEG or in the extraordinarythe momentumn This will inevitably be accompanied by the
Voigt geometry when the electromagnetic wave propagatesppearance of the small parametéw . However, the spin
parallel to the plane of the 2DEG with the in-plane electricpart of the current contains the same parameter because it
field.) To clarify this issue, consider the electromagneticalso originates from the SO interaction. Together the two

1
X (a=0,0) = e ColC, )
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terms in the current operator give a frequency-dependent fa@nalysis of the positions of the nodes in the beating pattern of
tor ga_.s=(a/vp)[1-1/(w,7+1)] for the effective coupling the Shubnikov—de HadSdH) oscillations*2-36This method,

of the electromagnetic field to spins(here, for the sake of however, has certain reservaticiisin particular, the SdH
brevity, impurities are assumed to be pointjikat low fre- oscillations are controlled by the single-particle relaxation
quencies this factor approaches zero making the excitation ¢fme 7, which in heterostructures is significantly shorter than

the spin-flip transitions problematic. At finite frequencies thethe transport time. In Sec. V we show that the width of the
second term irg,_ originating from the momentum part of CSR can be much smaller thanlds it is controlled by the

the current operator decreases, resulting in a figites, This scattering rates Irf ,. The CSR, if observed, can be a useful

is why in the Introduction we have pointed out that it is Foﬂr;%rtigg accurate measurement of the strength of the SO

. . t
worthwhile to turn to ac phenomena for studying the effectd” . : L
. . . : Let us discuss the questions of the excitation and detec-
of the SO interaction. Note that the CSR is a hlgh—frequenq{ion of the CSR. The CqSR is a limiting case of the combined

phenomenon. For the CSR to be narrow enough the_: reSQasonanck when a static magnetic field is absent. The pe-
nance frequenci.esshould much exceeg,~1/m 5. Inthis ¢ jjiar feature of the combined ES@cluding the CSRis
limit the factor[l—l/(wnr+1)1 N Ga-s app_roaches 1 .. that it can be excited by the electric-dipole interaction
. For completeness let us discuss the spin-Hall conductivity (e/c)AJ rather than by coupling of the electromagnetic
in the static limit. As it has been pointed out in Ref. 13, theyave to the magnetic moments via the Zeeman interaéfion.
statement that the spin-Hall conductivity vanishes is validrhe possibility of the electric-dipole excitation of the reso-
only inside the bulk of a macroscopic system. Namely, thenance makes the observation the combined ESR a feasible
cancellation between the two terms of the current operatofask even in 2D systems.
has been demonstrated fef(q=0;w<1/7), i.e., in a sys- A problematic point in detecting of a spin resonance in 2D
tem of infinite size. Still, in a finite-size system the spin-Hall systems is that a number of electrons available for spin tran-
phenomenon can exist as the vanishing of the faggors  sitions is small. A standard method to overcome this diffi-
may not work near the edges. In the latter case, in a broadulty is detecting the ESR by the microwave-induced change
macroscopic system only a small fraction of the longitudinalof the magnetoresistivity. The resonance frequency measured
current that flows within a narrow strip near the edges isn this way’"*®when extrapolated to zero magnetic field in-
effective for the spin-Hall voltage as the spin-Hall conduc-dicates the existence of an intrinsic spin splitting. Bychkov
tivity degrades inside the bulk of the sample. For discon-and Rashbaattributed this splitting to the SO interaction
nected(or weakly tunneling edges the existence of a non- induced by the structure inversion asymmetry and extracted
zero spin conductivity results in the accumulation oza the value of the SO coupling constamt
component of spin density at the edges. In this connection, To observe a resonance a fine-tuning control over the
let us indicate that the spin-Hall effect reported in Ref. 17resonance frequency is needed. An external magnetic field
has been observed just at the edges of the conducting chamsed commonly in ESR experiments may not be welcome for
nel. this purpose. The in-plane magnetic field makes the spin
splitting anisotropic along the Fermi surface, whereas the
VI. CONCLUDING DISCUSSION perpendicular magnetic field requires an _mterpolat!o_n of the
resonance frequency to a zero-field limit. In addition, the
The analysis of the equations of motion performed alongprbital quantization induced by the perpendicular magnetic
the lines of the argumentation of the Kohn’s theorem revealdield rapidly leads to the quantization of the energy levels
an inherent relationship between a transverse conductivityesulting in the quantum Hall-effect regime as it took place
and a corresponding resonance in a clean system. The sanmfeRefs. 37 and 38. Perhaps, for the CSR it is preferable to
correlation function that describes the resonance determingoid the use of the magnetic field and instead to analyze the
the value of the transverse conductivity, including its staticresonance by combining the transport measurements with the
limit. Such relationship is useful for understanding the prop-spectroscopy analyst8 Another possible solution of the tun-
erties of the transverse conductivity. For example, in Sec. ling problem in the case of the CSR is the gate-voltage con-
we demonstrate that the absence of éherenormalizations trol of the SO splitting. For GaAs it does not look very
to the Hall coefficient in a clean system is a direct consepromising as the shift of the resonance frequency is rather
quence of the Kohn’s theorem for the frequency of the cy-small’® However, it is known that in lGa_As the gate
clotron resonance. With this in mind, in Sec. Ill we find the voltage strongly affects the spin splitting that allows the
connection between the spin-Hall conductivity and a spirresonance frequency to vary in a broad raffgé®
resonance in a 2DEG with the SO interaction. Since this spin It is useful to compare the energy absorption related to the
resonance occurs as a result of the transitions between ttigsonant spin-flip transitions with the nonresonant heating of
electron states of different chirality, which are split by thethe 2DEG (Drude mechanisjn Assuming that the micro-
SO interaction, it is called in this paper a chiral spin reso-wave radiation has a narrow frequency range compared to
nance. the width of the resonance, one can estimate the resonant
Recently, considerable efforts have been made to detepart of the losses as€?va?r, Ej~€?YE]. At 0= wes~A,
mine the value of the SO splitting in semiconductor heterothe Drude part of the dissipation is €wZr,/(An,)ES
structures from the measurements of the magneto=-€”Y'E3 The dimensionless parametér (A, )(A/e) is
resistancé®3! Another standard method for measuring thea product of two competing factors. The factoter charac-
SO splitting in the electron energy spectrum in 2DEG is theterizes the relative strength of the SO interaction, and it is
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TABLE |. Electronic properties of 2DEG with SO APPENDIX A: CALCULATION OF SPIN-HALL
interaction. CONDUCTIVITY IN THE ABSENCE OF e-e INTERACTION
. A fil 7, Let us calculate the spin-Hall conductivity, for nonin-

nx10lcm2  (meV) (meV) (meV) Y _teracting particle_s, copying the Iogi_c of the calculatiomgg_f
in Sec. Il.[Equationg/A1)—(A3) duplicate the corresponding

InGaAs 20 100 5 0.1 5  equations in Secs. Il and lll. We repeat them here to make
GaAs 2 7 0.07 0.0008 1 this Appendix self-containetlA single-particle Hamiltonian
with the Bychkov-Rashba SO interactfois

2
relatively small, whereas the quality factar;, >1. The ra- HSO= L +o[p X (] o (A1)
tio of the two contributions to the energy absorption-¥~2. 'o2m ' "
SOTQSIi&ﬂ\?ﬁf;ﬁgg;ﬂ%éhﬁ '|2'anlieG| a_rrlﬁetrge vs:tgsgggqu; ttrr:%gere the unit vectof is perpendicular to the plane of the
. . i ' EG. As a result, the energy spectrum is split into two

the mobility u. of InGa,_As is about 2<10Pcn?/Vs, : P
which is available for the present samples. For GaAs we tak(%hlral branches, = p°/2m= ap. : . . :
11.= 20X 10° cn?/Vs available only for tHe best reported In the presence of t.he SO !nteractlon the single-particle
samples. The value of the SO splitting for,@a,_As is current operatoj; contains a spin-dependent term,
taken from Ref. 34, where it was extracted from the beat P
pattern of SdH oscillations. For GaAs the experimental scale li= m +alt X a]. (A2)
of the SO interaction;-100 ns?, is taken from Fig. 3 of Ref.
30. We see that the resonance frequency iG&_,As cor-  Since in the absence of a magnetic field the Hamiltonian
responds to the far-infrared range, whereas in GaAs the re(Al) does not contain any coordinate dependence, the mo-
evant frequencies are in the millimeter wave range. mentum part of the current is time independent. Still, the

To observe the CSR the spin splitting induced by the SGurrent has dynamics as the current operator contains spin.
interaction should be sufficiently isotropic. This may be re- We analyze the dynamics of spin in the chiral basis with
alized in various situationésee Appendix B for more de- the rotated Pauli matrices 7 =(a5-o), where aj
tails). One example is the asymmetrical quantum well where={a',a?,a%={-¢,p,p X €} andp stands for a unit vector in
the SO interaction of the structure inversion asymmetry orithe direction of momentunp. In the chiral basis the free
gin is dominant. Another variant is to fabricate a symmetricHamiltonian(A1) acquires the diagonal form
quantum well with the[001]-growth direction and, in this )
way, get rid of the SIA spin-orbit interaction leaving only the HSO= b + a|p_|73 (A3)
SO interaction because of the lack of inversion symmetry of ! 2m np

A -

the host crystal(BIA).? The last example ig111]-grown with the diagonal elements equal ‘fﬁ’

quantum well, which can be asymmetrical, where the com- . + .
bined action of the SO interactions SIA and BIA results in ANy operator of the fornT?=f(|pi[)7;, has an equation of

the isotropic spin splitting. It is generally accepted that inmotion

In,Ga;_,As heterostructures, the dominant SO interaction is d
because of the SIA* However, this may be not the case for —TE=i[HOTH]= iwﬁ_OTi’—', (A4)
the GaAs heterostructures, where the BIA spin-orbit interac- dt '

tion is of comparable strength to the SO interaction inducedynere r* are defined in the usual way*=(r+i72)/2, and
by the interface electric field. The resulting spin splitting is
SO

anisotropic on the Fermi surface. This makes an observation w’=€ - € =2ap. (A5)

P~ % %
of the CSR in §001]-grown GaAs heterostructure problem- . i .
atic In 4001}-grow ucture p These equations allows us to find the time dependence of the

In view of the considerable progress in the quality of ppeurrent opera}tor;';ix and jy’. For th"?lt’ we express the current
heterostructures it is worthwhile to extend the measuremenl%omponents in terms of thematrices

of ESR to zero magnetic field. This can give a direct infor- N O P o
mation about the strength of the SO interaction. = m “pT” 0‘37;23: (A6)
y v X
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N A S 5 ) B
Yt = o B[pyrp +pX(rocoswpt + Tsinwp)], Sy = 2am), 22

e ["dg (q2 m_a2>
2m 2 /)

(A12)

(A8) At low temperaturesi-(0)=1 ands;, =e/8 for any finite a.
and a similar expression fgi(t). On the other hand, wheam<pg one can get for arbitrary
The oscillatory terms in Eq(A8) are analogous to the temperaturesiyz(e/87r)np(e:0;T), where ng(e=0;T) is
oscillations in the cyclotron resonance that originate from théhe occupation number at the bottom of the band at a tem-
transitions between the states with different circulation; comperatureT.
pare Egs.5) and (A4). Furthermore, the same description  The expression fo«;iy as given by Eq(A11) reminds the
applies for the case of the ESR, where the transitions in theorresponding expression for the static spin susceptibil-
external magnetic field occur between the states of the oppay: X:(g,uBIZB)f[dzp/(ZTr)z][nF(ep—%AZ)—nF(ep+%AZ)],
site spin polarization. where A,=gugB. This gives a hint why there exists a
We are currently in the stage when the application of theconnectioAi-22 between the spin-density correlation function
Kohn's argumentation for the time evolution of the currentand s;,- In Sec. Il a direct connection betweefy and the
operators allows us to calculate the transverse conductivityyynamic(retarded spin susceptibility has been deriviske
The transverse spin conductivigﬁy describes the response Egs.(14)—<16)]
of the spinz-component current in thex direction, j}
=;11(azjx+jxoz), to the electric field applied in thedirection.
In the chiral basisos?=-7%, and thereforej’=—(p*/2m)7.
The transverse spin conductivity is given by the correspond-
ing Kubo formula(we restore the particles index

e
g>z<y = EXxx(q =0,w),

i
w Xxx(q = O:w) = Zf dtéwt<2 [O)I((t),o'x(O)]> (A13)
e ; AV 0
S5,=— J dte (S [/~ 1)), (A9) _ _ _
wJo A direct calculation ofy,,(q=0,w) in the presence of the SO
interaction can be done straightforwardly with the help of

which with the use of Eq(A8) yields Eqg. (A8). In the limit of small frequenciesy < »*°, the cor-

, o pp! o (pix)27-[3)i reIaFion f_unction)(xx_(q:_O ,w—0),20iS eql_JaI to a half of the
Sxy = ey, ol T a2 2_ (092 static spin susceptibility of a free 2DEG in the absence of the
R @ @y SO interaction
(A10)
To get the final result one has to perform the average in X{ 8= 0,0 = 0)0= 87 (Al4)

this equation. When averaged, the term withmatrix van- ) i _ )
ishes,<7§>=0, because the spin-dependent term in Hamil-Correspondingly, in the presence of the SO interaction the

. TR
tonian (A1) contains7®> matrix only. As the chiral states are spin-Hall conductivitys,,=e/8.

eigenstates with energies, the population of a statp is APPENDIX B: FERMI-LIQUID ANALYSIS OF SPIN
equal tong(ey) for the + chirality state andg(e;) for the = RESONANCE IN THE PRESENCE OF DRESSELHAUS SO
chirality staten:(e)=[exp(e— u)+1]™*. Correspondingly, the INTERACTION (BIA)

expected value of; is equal to{75)=Nx(€}) ~ne(e,). Finally,

In this appendix we analyze the kinetics of electrons in

this yields
y the presence of the SO interaction of the BIA origifihe
7z _ dp 1 (€) - (e spin-orbit interaction in the semiconductors with the zinc-
Sy =€ (2m)2 samp[nF &) = Ne(€p)] blende crystal structure is described by the Hamiltonian
e (d HEQ = Mok (K2 = K2) + c.pl, B1
- 8 _p[nF(e_‘—)) _ nF(EE)] (All) bulk ’y[ X X(ky Z) p] ( )
am ) 2

where c.p. stands for the cyclic permutations. For 2DEG the

Unlike, the cyclotron resonance, where all electrons preces’é‘am”tonia”,(Blz) leads to a linear in momentum term in the
together and contribute equally tqy:_(nez/m)w;l, inthe SO interactiorf? For the case of thg001]-grown quantum

- . O -
case of spin-Hall conductivity the contribution from elec- Well the linear term can be obtained frd tfu by replacing
andk, by their averagesk;) and(k,=0

trons of the opposite chirality tend to cancel each other out’z
The factor 1k in Eq. (All) is equivalent to 1. in oy, but SO _ _

due to the cancellation only a strip of the widthr between Hiooy = AP~ Pyoy), (B2)

the Fermi surfaces of electrons of the opposite chirality conwhereﬁ:—y(@_ Unlike the Rashba Hamiltoniafi0), this
tributes that makes the valuéy finite in the limit of smalla. term does not have a structure of a triple scalar product and,
For noninteracting electrons it is also possible to expsgss therefore, it is not rotationally invariant. Nevertheless, it
as a contribution from the bottom of the band. For that, re{eads to the isotropic spin splitting of the energy spectrum.

1

write € as €= 5-(pxam)?-3ma? and shift the momentum  The structure of the linear term that is formally identical

variables tog*=p+am. Then, to the Hamiltonian(10) can be realized in thgl11]-grown
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guantum well. This is a consequence of a threefold rotation The kinetic equation similar to Eq§279—(27¢) can now
symmetry with respect t¢111] axis. On the contrary, SO be written using the expansion ai(,) in terms of the
interaction in the[110]-grown quantum well results in the to-matrices:0(6,) =2u;(6p)t,. The force term is equal to
anisotropic spin splitting and therefore such heterostructures . ot 1 ) ot
are not suitable for the observation of CSR. [6€,, 0, ]5€ " = —it"(2pga * cos 6, + 2peB * sin 6,)F€,
In the following we analyze the kinetic equati¢@4) for (B7)
the casg001]-grown 2DEG when the linear SO interaction o ) )
term is given by Eq(B2). The remaining cubic terms in the and the kinetic equation acquires the form

SO interaction is a source of the CSR broadening. It can be duy(8,)
neglected for the narrow enough quantum well whg$ Aglw"—:uz(aphj 6, G( ') C¥ (b, 6y )Ua(6,1)
>K2.

It is instructive to start with the Rashba and Dresselhaus - A;l[ZpFa* COS 6, + 2peB* sin Bp]ge“”‘,
interactions acting together. The combined action of the BIA (B8a)

and SIA mechanisms of the spin-orbit interaction is de-
scribed by the Hamiltonian

_,duy(8,)
10W(0,) B
Hﬁ%ar: a(prx - pxo'y) + B(pyoy = pyo'y) AP - Ul(ﬁp) J dap’G( epp’)ul(ap’)'

dt
(B8b)
Here the structure fact@®? appears because of the commu-

wherea;+b>=1. In the presence of the two SO interaction tator[tg,ti,]:—Zit1C3v2(0p,epr), where
terms the spin-splitting energy, is a varying function along

1
= EAp[apO'X +bpoy ], (B3)

the Fermi surface C> Ay, 1) = ayay: + by
Ap=2peA,, A, =[a?+ B2+ 2apsin 26,142 (B4) = (ApAp)[(a? + B7)cos 6, — Gy1)
The coefficientsa, andb, are defined as +2a3 sin(6, + 6/)]. (B9)
a,= Agl(a sin g, + B cosf,), The structure facto€32 reduce to cod,-6,/) when only
one of the SO interaction®IA or SIA) is acting.
b, = A;l(— @ cost, — Bsino,). (B5) The kinetic equation has the same form when either the

IA or BIA mechanism acts solely. Hence the pure BIA sys-
em exhibits the same chiral spin resonance with the fre-
quency given by Eq(31) andA — Ag 4. Actually this obser-
trl) =-0, t,z) = - byoy +a,0, tg = a,oy + byoy,. vation, as.well as equal renormalization®fnd g, is gglat_ed

(B6) to a duality of thea- and p-SO terms. NamelyHj,, is
symmetric with respect to a simultaneous rotation of the
The renormalization of thg8 term by thee-e interaction is  Pauli matrices around the directidrF (X+9)/12 by =, i.e.,
analyzed in the same way as the renormalization of ther,— o, o,— -0, together with the replacement—= -z,
Bychkov-Rashba coefficient in Eqg. (20) yielding 8*/ 8  whereas the-e interaction is symmetric with respect to any

We introduce a set of the Pauli matrices such that the S
spin-splitting term takes the fornﬁeso:%Aptg, namely,

=a*/ a=1/(1+GY). spin rotations.
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