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Stochastic current switching in bistable resonant tunneling systems
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Current-voltage characteristics of resonant-tunneling structures often exhibit intrinsic bistabilities. In the
bistable region of thé-V curve one of the two current states is metastable. The system switches from the
metastable state to the stable one at a random moment in time. The mean switchirglépends exponen-
tially on the bias measured from the boundary of the bistable reyjpnWe find full expressions for
(including prefactors as functions of bias, sample geometry, and in-plane conductivity. Our results take
universal form upon appropriate renormalization of the threshold voltggeWe also show that in large
samples the switching initiates inside, at the edge, or at a corner of the sample depending on the parameters of

the system.
DOI: 10.1103/PhysRevB.71.165326 PACS nun®er73.40.Gk, 73.21.Ac, 73.50.Td
I. INTRODUCTION The electric current in the device fluctuates, because the

Recent advances in experimental techniques have madgectrons tunnel in and out of the well at random moments in
possible the study of fast stochastic processes such as dy"e. The resulting shot noise of current through the hetero-
namic current switching in resonant tunneling structures. Thétructure gives rise to the metastability of some current
electron transport in these devices has attracted a lot of agfates. The two solid lines in Fig. 1 correspond to the most
tention since the pioneering work of Tsu and Esafihe  probable values of current at a given bias. These two
interest was further stimulated by the discovery of the phebranches are stable, i.e., asiypallfluctuation of current near
nomenon of intrinsic bistabiliy®in double-barrier resonant a solid line will decay with time, and the current will return
tunneling structures(DBRTS). Other resonant tunneling to its value at the solid line. The dashed line betw¥grand
structures, such as superlattices, are also known to shoyy, corresponds to the unstable state. Here any deviation
bistable behaviof-'°Recent experimerits'®established that  from the dashed line which raises or lowers the current will

in the bistat_)le region one of the current states i_s metastablgyitch the system to the upper or lower stable current state,
and the switching to the stable state was studied. Both th%spectively.

mean swgchmg time and its distribution function were Qualitative understanding of the metastability can be
measured_. o achieved by considering the system at a bias Mgare.g.,

The existence of intrinsic bistability is well understood pointM on the upper branch of tHeV curve, Fig. 1. Then,
theoretically:*~* It was shown® that in a certain range of 55 gne can see from Fig. 1, a relatively small fluctuation can
bias, Vi, <V <Vy, for every value ofV the current can take shift the current below the dashed line corresponding to the
two different values, see Fig. 1. If one increases the biasinstable state. If that happens, the system switches to the
starting from any value below,,, the current follows the lower branch. The opposite process is much less probable,
upper branch of the-V curve shown in Fig. 1 untV reaches ~ since the distance from the lower branch to the dashed line is
Vin, Where the current switches to the lower branch. On thénuch larger than that from the upper branch. Therefore, the
other hand, if one decreases the bias from the values great@er branch is stable, and the system remains in that state.
than Vy,, the current follows the lower branch and then The dependence of the mean switching timen the bias
switches to the upper branch . was ?:drtisseﬁl Tgeorﬁtmall)ihm IRef. _tth. Itfwgshshown that

The bistability can be understood by considering the po_near e threshold voltagé, the logarithm ofr behaves as

tential profile of the DBRTS schematically shown in Fig. 2.
If the level E;, in the quantum well is below the bottom of the
conduction band of the left lead, tunneling into the well is
not possible, and the current through the heterostructure is
zero. In this case the charge in the w@i-0. However, if a
nonzero charg®) is added to the well, the levé&, rises due

to the charging effects and may become higher than the bot-
tom of the conduction band of the left lead. Then, another
steady state of current is possible. In this state the current
into the well from the left lead is compensated by the current
out of the well through the right barrier. Thus, it is possible ~ FIG. 1. Thel-V curve of the DBRTS. The bistable region is
to have two different current states at the same Wi@ee, present in the range of bias betwedq andVy,. The bold dashed
e.g., pointsM andS on thel-V curve, Fig. 1) line corresponds to the unstable current state.
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FIG. 2. Schematic potential profile of the double-barrier reso-
nant tunneling structure. The structure consists of a quantum we
separated from two leads by tunneling barriers. The electrons witl
three-dimensional wave vectoksandp fill all the states up to the
Fermi energieEr in the left and right leads, respectively. In the
quantum well the motion of electrons in thelirection is quantized,
and the electrons with two-dimensional transverse wave veqtors
occupy all the states up to the Fermi eneigy The inset shows the
potential profile at zero bias.
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Here L is the size of the sampleyx a2V, —V) Y4 is a
characteristic length scale, ands the in-plane conductivity.
In small sampled,. <r, the current switches from the meta-

(Vth - V)3/2|
V'[h - V,

L<rg,
L>r,.

1)

stable state to the stable one simultaneously over the entii@

area of the device. On the other hand, in large samjles,
>rg, the switching is initiated in a small critical region of
radiusrg. After the switching has occurred in that region, it
extends rapidly to the rest of the sample.
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samples acquires logarithmic corrections to its linear voltage
dependence.

The paper is organized as follows. In Sec. Il we obtain the
Fokker-Planck equation for tunneling in DBRTS which com-
pletely describes the electron transport in small samples.
This equation enables us to find a simple result for the mean
switching time in these samples. In Sec. Il we derive the
Fokker-Planck equation for the case of large samples which
describes the dynamics of electron density in the well due to
both the diffusion in the plane of the well and tunneling
between the well and the leads. We use it to investigate the
effect of weak density fluctuations on the decay of meta-
stable current state in small sampl&ec. I\) and to study

e switching in large samplgSec. \j. The application of
pur theory to the existing and future experiments is discussed

in Sec. VI.

II. FOKKER-PLANCK EQUATION FOR TUNNELING
IN DBRTS

The bistable current-voltage characteristic of DBRTS was
studied theoretically in Refs. 11-14. Th&/ curve shows the
dependence of thaveragecurrent on voltage applied to the
device. In addition, shot noise was studied in the regime of
small fluctuationg?-1* On the other hand, the switching be-
tween the branches of tHeV curve is caused by large fluc-
tuations of current. In this section we use the model of Ref.
14 to derive the Fokker-Planck equation for tunneling in
BRTS, which accounts for these large fluctuations, and thus
describes the switching.

The model is illustrated in Fig. 2. The well is extended in
the x-y plane. The motion in the direction in the well is
quantized, and the well is assumed to have only one resonant

In this paper we show that if the sample is large, thelevel of energyE,. The two-dimensional wave vectors in the
switching can initiate not only inside, but also at the edge ofwell are denoted byy. The left and right leads are three-

the device. The latter process tends to be more efficient

since the exponential in the respective expressionrfos

smaller than in the case of switching far from the edges ob

the samplgSec. \j. On the other hand, the switching at the
edge can be initiated anywhere along the boundary of th
device, and thus the prefactor of the switching rate due
to these processes is proportional to the perimeter Simi-

imensional; the wave vectors of electrons are denotekl by
and p, respectively. The conduction bands in the leads are
ccupied up to the Fermi enerdig. In typical devicesk, is

of the order ofEg; for definiteness we assuntg>Er. The
eemperaturerl is assumed to be small comparedEp and

eV. The well is separated from the leads by two tunneling
barriers with the transmission coefficients much smaller than

larly, the prefactor of the rate of switching inside the deviceunity.

is proportional to the area L2, which makes these processes
more efficient in larger samples.

We obtain analytically the full expressions fey includ-
ing the pre-exponential factors. Apart from the dependenc

In Ref. 14 the tunneling through the double barrier was
described quantum mechanically using the Breit-Wigner for-
mula. The level widths with respect to the decay to the right
and left leadsI',,I'y were eventually taken to be much

on sample dimensions, the calculation of the prefactors resmaller than all other relevant energy scales. We make this
veals the nontrivial dependence of the threshold voltdge assumption from the beginning, and describe the electron
on the degree of disorder of the sample. Formal evaluation dfansport through the barriers using the sequential tunneling
the prefactors in the case of nonuniform electron density irapproach. This method is an alternative to the use of the
the well results in ultraviolet divergences. Similar diver- Breit-Wigner formula. Unlike the latter, it cannot account for
gences appear in quantum field theory, where they are elimthe coherent tunneling through the well at laiges. On the

nated with the use of a renormalization proced§r€.The

other hand, at small'_ it enables us to discuss both the

application of a similar technique to our problem leads to thd-V characteristic and the large fluctuations of curfént.

renormalization of the threshold voltage which depends

strongly on the conductivity of the quantum welBecs.
IVA2 and V). Upon this renormalization Im in large

16532

In order to have a steady state of nonzero current in the
device, the electrochemical potential in the well should lie
between those in the left and right leads, i.e.,
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eV+Eg > Ey+ep+EF > Eg. (2 In the sequential tunneling approximation the average
number of electrons in the well can be determined from the
Here E‘g=hzq§/2m is the Fermi energy in the well witm  conditionJ, =Jg,
being the effective mass. Then, in the limit of low tempera-
ture the inequalitie$2) dictate that the tunneling is possible N = Sm I
only in one direction, namely, from left to right, Fig. 2. The wh?T +Tr

probability to tunnel through a barrier is given by the Fermi ] ] ] )
golden rule. The rates of electron tunneling into the well ©One cannot directly obtaiN from Eq.(8), since the potential
and out of the welly take the form ¢ depends on the number of electrons in the well. Consider-

ing the barriers as two capacitors, one finds from electrostat-

(Er+eV-Ey—eg). (8)

A ics the following expression for the electric potential of the
J = ;% [t|* O, fi(1 = fq) S(eV+ E(k) — Eg — e), well (Fig. 2:
3) \% . eN
=—+ . 9
¢ 2 2C ©
Jr= 4—772 Itp |25qp fq8(Eo +ed—E(p). (4) Here we assumed for simplicity that the capacitances of the
iy * ! left and right barriers are equal to each other, and denoted the

3212 o . , capacitance of each barrier @s
Here E(k)=A°k*/2m; f, and fq are the Fermi occupation — 5ne can obtain the current-voltage characteristic of the
numbers in the left lead and the quantum well, respectivelypgrTs by repeating the following steps of Ref. 14. First,

In Eq. (4) we used the fact that the Fermi occupation num-5ne npotices that the level widths are energy dependent,
bers in the right leadi, =0 at energies abovg,+e¢, because
Eo> Er. Expressiong3) and(4) include an additional factor I' =g VEo(Ey - eV+ed), (109
of 2, which accounts for electron spins. The matrix elements
tpz(tkz) describe the transitions between the resonant level in
the well and the state with component of the wave vector
pAk,) in the right(left) lead. The conservation of the trans- where g,  are dimensionless constants. Sirice and I'y
verse momentum is taken into account by Kronecker deltagiepend ong, they are also functions d¢d. Therefore to find
To simplify the expression for the tunneling ra#® we N one must solve the pair of EG®) and(9). The latter leads
usedgp, to remove the sum ovey;. The remaining sum over to an equation oiN, which has three solutions in the bistable
q of Fermi functionf, gives exactly the number of electrons region. One of the solutions corresponds to the average num-
in the well with a given spilN/2. Then Eq.4) reduces to  ber of electrons on the unstable branch, while the other two
correspond toN on the lower (N=0) and upper stable
Jo= EQN (5) branches. Upon substitution &f into Eq. (5) one finds the
R%p dependence of the average current on bias, i.e., the bistable

_ _ _ o I-V curvel* which is schematically shown in Fig. 1.
HereI'y is the level width with respect to tunneling into the 14 5ccount for the noise, we go one step further and write

right lead. We define the level widths for the two possibleyne master equation for the time evolution of the distribution

I'r=0grVEy(Ep + ed), (10b

tunneling processes as function P(N,t) of the number of electrons in the wel. In
terms of the tunneling ratg8) and(4), the master equation
[ =27 |tkz|25(eV+ E(k) ~Eo—ed), G P(N,t) takes the f%rm |
K ’

J
= 2772 |tpz|25(EO +ed-E(p)). (6b) EP(N,I) =P(N-1)J,(N-1)+P(N+1,t)Jg(N+1)
Pz

= P(N,O)[JL(N) + Ix(N)]. 11
To find J, we use the Kronecker delta to remove the sum (NOLRN) + Jp(N)] (D

overk; in Eq. (3), while the value ofk’=(2m/#?)(Ey+e¢  The first two terms on the right-hand side of Efl) account
-eV) is fixed by the delta function. Ak=(q,k,) andT—0  for the processes which increase the probability to hidve
the sum overg of f,(1-f;,) can be easily evaluated, and electrons in the well, while the last term corresponds to the
gives(S/4m)(k2-k*-g2) under the conditiori2), whereSis ~ OPpOSite processes.

the area of the sample. Then, the expresgBrcan be sim- In this section we consider the samples of large in-plane
plified as follows: conductivity where the density in the well is uniform. There-

fore, in the steady state of nonzero current the total number
of particles in the well is proportional to the area of the
sample. The linear dimensions of the sample are assumed to
be large compared to the Bohr radius in the semiconductor.
Here we used the expressihln:S(f:IZw for the total number Thus the total number of electrons in the well is larde,

of electrons in the well. Note that a&V>e¢+E, the level >1, and one can expand Ed.1) in 1/N. Keeping the terms
width (6a) vanishes, and thud =0. up to the second order, the master equation red8ices

r
JL:_L

; ( SM g+ ev- Eo—e¢)—N). 7)

h?
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J d 1 &P
QP(N,t) =- m[A(N)P(N,t)] + EW[B(N)P(N'D]'

(12

HereA(N)=J,(N)-Jr(N) andB(N)=J, (N) +Jx(N). Equation
(12) is known as the Fokker-Planck equation, and is widely
used for the description of various stochastic processes, see,
e.g., Refs. 20,21.

The stationary solution of Eq12) can be easily obtained,

N ’
Po(N) = %te'”““), UN)=-2 JO %dl\l', (13 o

Ref. 20. The extrema of functidd(N) are determined by the
condition A=J, —-Jz=0, which we used above to find the
average current through the device. Therefore each extre-
mum of U(N) corresponds to one of the branches of the ~ ’
[-V curve. Outside the bistable region the curréfl) is A ’
uniquely defined, andJ(N) has a single minimum. In the )
bistable regiorJ(N) has two minima and a maximum, which ot
correspond to the locally stable current branches and the un-
stable branch, respectivelfig. 1).

From the definitions oA andB, it is clear that their ratio

FIG. 3. (a) Generic behavior ofJ(N) at different values of bias.
Outside the bistable regiod(N) has one minimum(top curve.

. . Inside the bistable region the functi®i(N) has two minima and a
is independent of the area of the samBléJsing the expres- maximum, which correspond to the locally stable current branches

sion (13) and' the fact thaN S, one can see t,ha” IS Imf and the unstable branch, respectivatyiddle and bottom curves
early proportional td5. ThusU(N) is an extensive quantity, ) the sketch ofU(N) for the model of Fig. 1. Solid line corre-

and its dependence oN and S has the general form gponds to a bias slightly below;, whereas dashed line depicts
U(N,9=Sun), wheren=N/S is the electron density. Since U(N) for the bias slightly aboviy,

the area of the sample is large, we h&l® 1. Therefore, the
distribution functionP, is peaked sharply near the global
minimum of U(N).

The experiments?? studying the switching between the

As the voltage approaches its threshold value, the maxi-
mum atN,,,, and the local minimum ofJ(N) at N, (Fig. 3)

branches of thé-V curve are set up as follows. One starts atmove closer to each other, and at the threshold they coincide.
’ At this point one can define a threshold electron dengijty

V<V, Fig. 1, where only one value of current is possible.ENmax/Sszm/S In the vicinity of n=ny, and V=V,, the

In this caseU(N) has only one minimum, as shown sche- nction u(n) can be approximated by a cubic polynomial,
matically by the dashed-dotted line in FigaB If we in-

crease the bias up to some value slightly abdygthe func- u(n) =~ - a(n—ny,) + Z(n “ng)3+ U, a=a(Vy-V).
tion U(N) will acquire a new minimum to the left of the old 3
one, see the dashed line in FigaB This corresponds to the (14)

appearance of the lower current branch of thécurve. The )

new minimum is a local one, and the main peak of the disHere the constani, is the value ofu at n=ny andV=Vy,.
tribution function is still centered at the old minimum. Thus, 10 derive Eq.(14) microscopically, one has to consider
the system remains on the upper branch of e curve.  A(N) andB(N) on the upper branch of thieV curve in the
Further increasingy, we transformi(N) to the shape shown Vicinity of the threshold/y,. An analytical calculation of(V)
schematically by the solid line in Fig.(®. Here the right is possiblé® if the dimensionless parameter
minimum of U(N) is a local one, and if we leave the system me

in this state for a sufficiently long time, it will eventually A= 2hiZe

switch to the left minimum. To switch from the local mini-

mum to the global one, the system must overcome the barriés small,\ <1. Herec=C/Sis the capacitance per unit area.
of height Uy, Fig. 3a). From the form of the distribution In Appendix A we extend this approach to fiddN),B(N),
function (13) it is clear that this process takes a long timeand the coefficients of expansi¢h4) at A <1.

rxexp(Up). To perform the measurement of the switching  The expansiori14) can be justified for any in the spirit
time from the upper to the lower current branch, one in-of the Landau theory of second-order phase transitidise
creases the bias to the chosen value over an interval of timgotentialu is expected to be an analytic functionmaindV.
short compared te, and then waits until the system switches Thus,u can be expanded in Taylor series near the threshold,
to the lower branch. with n—ny, playing the role of the order parameter. Since the

(15
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local minimum and the maximum ofcoincide at the thresh- Egs.(14) and (17) is correct. However, the situation is dif-
old, both the first and second derivativesugh) vanish at ferent for the switching from the lower to the upper branch
V=V,, and n=ny, Therefore, the expansion starts with the of the [-V curve. To study this process, we decrease the bias
third-order term. The sign of is not important; we choose tg the value slightly abov&,,. The functionU(N) for this
y>0, which corresponds to the behaviorldfnear the right  case is depicted schematically by the dashed line in Kig. 3
minimum as shown in Fig. @). At V# Vy, the lineara(n  HereU(N) is nonanalytic at its local minimum, and therefore
—ny,) and quadratig 8(n-ny,)? terms are also present. Since we cannot use expressiofs4) and (17) for the switching
a=pB=0 atV=Vy, we expecta=(Vy,—V), B=(Vyp,—V). We  time. The nonanalytic behavior &f(N) is a consequence of
keep only the linear term in the expansion, because therudeness of our model, in which the current on the lower
second-order term is quadratic in small paramateny,, and  branch is exactly zero. On the other hand, the experimentally
therefore is small compared to the linear one. In orderfor measured-V curves show nonzero current on the lower
to have a local minimum a¢ <Vy, the coefficienia should  branch. Thus, in a more detailed model which accounts for

be positive. _ _ this nonzero current, the minimum corresponding to the
Near the threshold the functid(N) can be approximated lower branch of thd-V curve will be reached at nonzehh
by a constant, The discussion based on Eq44) and (17) will then be
valid.
B(Nth) = ZJR = ZFRNth/fL. (16)

In the case of constar® the Fokker-Planck equatiofi2)
has been studied in detail. In particular, the exact expressiol- FOKKER-PLANCK EQUATION FOR TRANSPORT IN
for the mean switching time can be obtained including the DBRTS OF LARGE AREA

prefactor(Ref. 20, Sec. XIIl.2 In our notations it reads In Sec. Il we studied the decay of a metastable state in
A DBRTS under the assumption that the electron density in the
7= — exp(Uy). (170  quantum well is uniform. Then the switching timeiven by
BVU"(Niin) [U"(Niay)| Eq. (18) grows exponentially with the area of the sample.

Since electrons can tunnel at any point of the quantum well,

the tunneling process creates a nonuniform electron density.

On the other hand, the diffusion of particles in the well leads

to spreading of the charge across the sample. In small

samples the spreading is fast, and the density becomes uni-
2 49a(Vy, - V)]*? form. In samples of large area the electron density may

= gT ' (18) change significantly before the charge spreads over the entire

well. In this case the switching between the two branches of

whereb=B/Sis independent of the area of the sample. Thisthe I-V curve is initiated in a small part of the sample, and

result obviously agrees with Eqd) for small samples the switching time is not exponential in the arga

(L<ro). In this section we generalize the Fokker-Planck equation
Expansion(14) is quite generic, and similar theoretical (12) to the case of nonuniform densityr), wherer =(x,y)

results were found in many different areas of physicé’In  is a position in the well. In subsequent sections this equation

particular, Eq.(12) is also used to describe the motion of a will be used to study the decay of a metastable state in

Brownian particle in external potential, whehe plays the DBRTS of large area.

role of the coordinate of the particle. Therefore, the loga-

rithm of the mean escape time of the Brownian particle from _ o ] o

a local minimum of potential is also expected to obey theA- Equation for distribution function of electron density in an

For the potential(14) one can easily find the barrier
height, U,=4Sa*?/3y"2. The prefactor of Eq(17) can be
also straightforwardly evaluated, and one obtains the follow
ing expression for the mean switching time:

T=——
bvay

3/2-power law. Recently this behavior of the escape time isolated quantum well
was confirmed experimentally for the optically trapped We begin by considering the simplest case of a quantum
Brownian particle?’ well not coupled to the leads. At finite temperature the elec-

The lower branch of thé-V curve corresponds to the tron density in the well fluctuates and can be described by a
situation where the level in the welf,+e¢ is below the  distribution functionP{n(r),t}. Here we derive the Fokker-
bottom eV of the conduction band in the left lead. In this planck equation for the distribution function of electron den-
caseJ =0 andB=-A=Jg. Consequently, all—0 we have sity due to the in-plane diffusion of electrons in the well. In
U(N)=2N, see Eq.(13). Since N cannot be negativel)  Sec. IIl B we add the tunneling through the barriers and ob-
reaches its minimum at the boundad=0 of the range of tain the Fokker-Planck equation for DBRTS of large area.
allowed values ofN, where the derivative’(N) # 0, Fig. We consider density fluctuations at length scales much
3(b). The nonanalyticity ofJ(N) near the left minimum does greater than the inelastic mean free path. These density fluc-
not affect the calculation of the time of switching from upper tuations are slow in comparison with the energy relaxation
to the lower branch. Indeed, at a bias slightly beMy the  time in the well. Therefore the system is in a local equilib-
function U(N) is analytic near its maximum and the local rium, and the distribution of electrons at any point in the well
minimum [solid line in Fig. 3b)], and the description of the is given by a Fermi function. Note that the chemical potential
switching from the upper to the lower branch in terms ofin this Fermi function is determined by the electron density,
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and therefore varies from point to point following the depen- In short timeAt an electron can only diffuse over a short
dencen(r). distance, so thdju; - u,| <T. Therefore using Eq21), one

Let us choose a time intervalt much smaller than the can expand the expression in the curly brackets on the right-
relaxation time forP{n(r),t} and large in comparison with hand side of Eq(20) to the leading order ifu,—u,)/T, and
the collision time, so that the motion of electrons can bewith the help of Eq(22) obtain
treated as diffusive. Then one can write the following equa-
tion for the evolution of the distribution function: S S

AP{n,t} == ffdrldrz{~ ( )

an(ry  on(ry

R 5 \?
X[n(rl)—n(rz)]+(m(rl) - (m(rz)) ]

X Wiye(r 1,1 2;mP{n,t}. (23

P{n(r),t + At} = P{n(r),t}

= J J dr,dr ;[ P{n(r) + oNnyo(r ), tiWi(r 4,1 25 0(r)

+0ngp(r)) = P{n(r),t}Wy(ro,r 1;n(r))]. (19) . .
To proceed further we need an expression for the transi-

Here dn,,(r)=8(r —r,) = 8(r —r,) is the correction to the den- tion probability densityw,,. This quantity is affected by all

sity n(r) due to the displacement of one electron from pointthe relevant processes of electron scattering, such as elastic
r, to rq; the probability densityWy(ry,r,;n(r)) describes scattering of electrons by impurities, electron-phonon and
diffusion of an electron from a point in the quantum well electron-electron scattering. Instead of accounting for all
to pointr, during the time intervalAt. Since the diffusion NS processes explicitly, we expresf, in terms of in-

rate may depend on the electron densit, is a functional ~ Plane conductivityo, which can in principle be measured
of n(r). experimentally. Assuming that electron motion is diffusive,

we conclude that the average square of the distance traveled
by an electron during a short time interval is proportional to
At, i.e.,

Expanding the first term on the right-hand side of E)
up to the second order ifn,(r), one obtains the following
equation:

1 1) 1) . _ —
AP{n,t}=§ffdr1dr2{(m— 6h(r2)> fWAt(rlaern)“l ro°dr, = GAL. (24)

Here the constan® is proportional to the conductivityG
an(ry) =4To/€?, see Appendix C.
At small At the transition probability densitw,; can be

2
) [Wm(rl,rz;n)+WAt(rz,r1;n)]]P{n,t}. expanded as

1
X [Wie(r 1,1 2;0) = Wy(ro,rq;n)] + 5(

i o
on(rp)

(20) tV25(r1—r2) .

ToA
Wiyi(rq,rosn) =4ary—rp + 2

The probability densitiesV,, to diffuse fromr, to r, and

back are not independent, (25

21) The physical meaning of the first term in this expansion is
that electron remains at its initial position at At=0. Thus
the second term is needed to account for the electron diffu-
sion. The coefficient in the second term is found by applying
Yhe expansiori25) to Eq. (24).
Equation(23) can be simplified significantly using expan-
sion (25), and eventually takes the form

Wi(r 1,1 250 T = Wiy (1,1 ;n)e 2T,

Here u; and u, are the electrochemical potentials at points
r, andr,, respectively. For the case of elastic scattering by,
impurities considered in Ref. 15 expressi@i) directly fol-
lows from Eq.(8) of Ref. 15. Generalization of Eq21) to
arbitrary scattering mechanism is discussed in Appendix B.
In order to findu we need to account for the interactions
between elt_actrons. We limit ourselves to the chargi_ng energy iP{n f)=- f dr-2 ( v2n + TV22 1) )P{n,t}.
approximation; the electron exchange and correlation effects &
are neglected. Then at low temperaturesEg, the values of (26)
the electrochemical potential are found by adding the elec-

trostatic potentiak?n/c to the Fermi energy, .. . .
cp ! ! 9y This is the Fokker-Planck equation for the evolution of the

&2 distribution function of electron density. The first term in Eq.
2= —N(ry o). (22) (26) describes the spreading of the charge in the_well,
“C ' whereas the second term accounts for the thermal noise.
It is instructive to substitute into E426) the equilibrium
Here the effective capacitance per unit ateis defined by distribution functionPg{n}. The latter has the Gibbs form

e?/t=€e?/c+1/v, andv is the density of states in the well. e &T, namely,
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1 ( en?(r) d b )
Po{n}:exp(—?f—zE dr|. aP{n,t}=§fdr% - a+y(n-ny)?
)
Here the energy per unit areae’n?/2¢ is chosen in a way -29V2n+ %) P{n,t}, (29)

that reproduces the electrochemical poteniiabe/dn in the
form (22). It is easy to check tha®y{n} satisfies the Fokker- \yhere we definedy=/eb. In Eq. (29) we omitted the term

Planck equatior(26). proportional to the temperature, since it is negligible at low
T. (The exact criterion is discussed in Appendix) Dhus

B. Combined Fokker-Planck equation for tunneling and from now on we study only the _effect_of the shot noise due to
diffusion the tunneling of electrons at high bi@y/>T, whereas the

thermal noise is neglected.

In this section we obtain the combined Fokker-Planck The stationary solution of Eq29) is found by setting the
equation which incorporates both the tunneling through thgeft-hand side to zero,
barriers and diffusion inside the well. We begin by general-
izing the tunneling Fokker-Planck equati¢h?) to the case Pofn} =&,
of nonuniform electron density. This is accomplished by di-
viding the plane of the well into small pieces, so that the y
density is uniform within each piece. In the absence of in-  F{n}= f df(‘ a(n=ny) + g(n‘ ) + U(Vn)z)-
plane diffusion, the distribution function of electron density
in the entire plane is given by the product of distribution (30)
functions of its piecesP=II;P;{N;}. Applying Eq. (12) to
each piece we obtain the following Fokker-Planck equatio
for the distribution function of the entire quantum well,

The functionalF{n} has two contributions: the first two terms
Thecount for the tunneling, and the remaining term is due to
the in-plane diffusion.

J J 1
EP => m(— A(N;) + 23 N B(N )) C. Dimensionless Fokker-Planck equation
J . For the following discussion it is convenient to param-

The functionsA(N;) and B(N;) are extensive quantities, etrize the electron density(r) in terms of a dimensionless
and it is convenient to rewrite them #§N;)=AS&n) and  functionz(p) that vanishes at the minimum atn),
B(N;)=ASK(n), whereASis the area of each piece. Replac-
ing the sum with the integral over the area of the sample and —n . _ 2\/; 1
a/N; with the functional derivatives/ on(r;), we find the ) = i Arlro), (313
continuous form of this equation,

\7] [ o
%P{n,t}= f dr%(—a(n(r)ﬂ%%b(n(r)))P{n,t}. fo (ap™  NtoVay (310

(27) Herg the density at the minimum,,=ny,+ \s'm can be
easily found from Eq(14). The Fokker-Planck equatid29)
Let us now take into account the in-plane diffusion of in terms ofz(p) takes the form
electrons, which was discussed in Sec. Ill A. Because the
tunneling and diffusion are independent processes, we can aP{z t} —
add the right-hand sides of Eq26) and(27) and obtain the f d”_<_
combined Fokker-Planck equation for DBRTS of large area,

16
Viz+ Z_ZZ+U_§Z)P{Z’t}’

0

(32
d 1) 16 o where
—P{nt}=| dr—| - +=—~Db(n) - =V?
Py f Hsn( a(n) + 5 —b(n) - <V
8na
g_,0 Up=——. (33
‘Te_zvzg P{n,t}. (28) Y
The stationary solutio®, of Eq. (32) is given by
This equation generalizes E@®6) to the case of a quantum V2?2 2 B
well coupled to the leads. Pilzy=€F, F= Uof dp(—L +— - —). (34)
In the vicinity of the threshold/y, the functionb(n) can 2 2 3
be approximated by a constast b(ny,). In addition, one can One can see that the characteristic value of the functional

substitute 2/b=2A/B=-u’(n), cf. Eq.(13). At bias neaVy, F is given byU,, whereas the characteristic sizgplays the
the functionu(n) is given by the approximate expression role of a typical length scale of stochastic fluctuations of
(14), and Eq.(28) can be rewritten as electron density(r).
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IV. DECAY OF THE METASTABLE STATE IN EXTENDED =
SAMPLES 2(p) = 2 x¢i(p), (38)
i=0

In Sec. Il we obtained the expression for the mean switch-
ing time in DBRTS under the assumption of uniform electronwhere ¢(p) are the normalized eigenfunctions of the
density in the well. This assumption is valid only if the di- Laplace operator, ¥2¢i(p)=€i¢i(p). In particular ¢o(p)
mensions of the sample are small compared to the Iengthro/\Sand €=0. Smce there is no current flowing through
scaler of the density fluctuations, E31b). If the sample is  the boundaries of the sample, the eigenfunctions must satisfy
large, the fluctuations of electron density must be taken intéhe boundary conditioné-V¢i(p)|boundary:0, wheren is a
account. unit vector normal to the boundary. Thkg coordinate corre-

In Sec. lll we obtained the Fokker-Plank equati(@9) sponds to the average electron density in the well, whereas
which describes the time evolution of the distribution func-the other coordinates describe small fluctuations of the den-
tion of electron density. Unlike Eq12) for the case of uni- sity. The eigenvalueg; are numbered in order of increasing
form density, this equation has an infinite number of vari-magnitude,e; ~r2/S> 1.
ables, since the density is different at every point. To obtain thex representation of the Fokker-Planck equa-

The most general form of the multidimensional Fokker-tion we substitute the expansi¢88) into Eq.(32) and find
Planck equation is

—| < 14
IP(x,t L=by ( +1-2 X + )
(X ):[:P(X,t), \7a|:i20 %, (& boXo)Xi UO
ot
+ _¢0Xo E guk XJXk] ) (39
L=-2 —K(x) + 2 — D). (35) kel
i J ij Xi (7X]
where

Assuming that the system has a metastable state, one can
consider its domain of attractioff. The domain boundary 3 :f dod ,
40 is a separatrix of the drift fiel& . The mean time of the Si pi(p)4(p)lp).

first passage out of the domafd has been found in Refs.
30,31. For the process described by E85 the mean
switching time is obtained as doubled mean first-passag
time! and takes the form

The stationary solutiorP,=€F in terms of x, can be
found by substituting expressid88) into Eq.(34). Then the
functional F takes the form

l o
2 f d%%Py(x) Fix}= UO(EE( +1 = 2hpX)XE + — d’o —x0
i=0
. (36) 12
E J dsz DIJ (X) PO X) Hf(x - 5 2 fiijinXk> . (40)
ij,k=1

Here P, is the stationary solution of Eq35). The form  One can easily verify that expF{x}) solves the Fokker-
function f(x) is a stationary solution of the adjoint equation, Planck equation withC given by Eq.(39).
21 (%) The stationary probability density, is sharply peaked at
L£(x,t) = 2 (K (x) + 2 D;;(x) ) X =0. (37) the minimum of the functionaF, i.e., atz(p)=0(x=0).
Xi) X Therefore, keeping terms up to the second ordek;iin
. . . . expansior(40), we can evaluate the integral in the numerator
In addition, f(x) is d_efl_ned to vanish at the boundai§ and of Eq. (36) in Gaussian approximation,
reachf(x)=1 well inside().

In subsequent sections we use the expres@énto find
the mean time of current switching in double-barrier struc- J H dxP{x} = H (41)
tures. - i=0 0( +1)

In a multidimensional case in order to switch from the
metastable state the system must pass from the local mini-
In samples with linear dimensions small compared wjth mum of F to its global minimum. The switching process is
the density fluctuations are weak. In this section we studyominated by the paths which go through the vicinity of the
their effect on the mean switching time. We will show that lowest saddle point separating the domains of attraction of
even these weak fluctuations can result in significant changeetastable and stable states. The boundary of the dafhain
of . lies exactly at the saddle point and is orthogonal to the di-

rection of the steepest descent.
The integral in the denominator of E(B6) is dominated
In order to bring the Fokker-Planck equatit@®) to the by the saddle point of. The latter is found from the condi-
form (35) we presentz(p) as an expansion tion 8F/8z=0. This equation has an obvious solutingp)

A. Mean switching time in small samples

1. Evaluation of the mean switching time
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=1. In x representation it corresponds ¥g=1/¢, and x; o1 1 L1
=0 fori=1. Expanding expressia@d0) near this point up to InYo=- > . =" 212 W (48)
the second order irx; we approximateF near the saddle nMEO =M 0 nM=0 2 Tz
point by where the prime in the sum means that the term wwithm
) . =0 is excluded.
_ 1 1 1 1 2 The infinite sum in Eq(48) is logarithmically divergent.
Fix} = UO[GT&% - 5("0 - %) * Ez (6 =1 ] : However, since the diffusion picture is only valid at distances

greater than the mean free pdththe wave vectors of the
(42) density fluctuations cannBtexceed ™. Therefore, we need

to cut the sum_off am=<L/l andn=w/I.
In small_sample951> 1, and thereford- .has_only one un- At L~w~1S the sum(48) can be approximated by a
stable directionx;, whereas all other directions are stable., _qimensional integral and yields

One can see from Ed42) that in this approximation the
boundarydQ is the planex,=1/d. s s

Since the boundaryQ is orthogonal to the, direction, InYo=- ﬁlnl_' (49)
the sum oveii in the denominator of Eq(36) reduces to a 0
single term withi=0. Comparing Egs(35) and (39) one  Note, that although in small samples the a&a small com-
finds thatD;;=(byya/Ug) &;. Noting thatD;; is diagonal, the  pared tor3, the effect of density fluctuations may become

sum overj also reduces to the only term wijk0. significant atl < VS.

To find 9f/9x, one needs to solve E@37). Noting that In the case of strip geometryy<<L, we separate the sum
€,=0 and using Eq(39), we can write the adjoint equation into two parts, withn=0 andn>0. The first part gives the
(37) near the saddle point as sum of 1/m? which can be explicitly evaluated and results in

a small contributiorL.?/6r3<1 to InY,. In the second part
1 ad | of we approximate the sum oven by the integral with an in-
Uo| %o = go + 50 XO =Y (43 finite upper limit. Then neglecting terms(L/ry)?, we obtain
the sum of 1h. Cutting off this sum as discussed above, we
Solving this equation, we obtain find
Lw w
(9_f =— A /%e-(Uo/Z)[Xo‘ (1/¢o)]2_ (44) InYo=- ;I-(Z)lnT' (50)
dXg T

For simpligty, from now on we will consider samples
Here the prefactor was found using the fact thafl inside  with w~L~ \S.

the domainQ (i.e., at x,—-=) and f=0 at the domain
boundaryxy=1/¢y. 2. Renormalization of threshold voltage

Using Egs.(42) and (44) we can evaluate the integral in Using Egs.(18), (45), and (49) we find the following

the denominator of Eq(36) in Gaussian approximation. expression for the mean switching time in small samples:
Then dividing the numeratd#1) by this integral, we find the

following expression for the mean switching time: - 2m 49aVep - VP2 S\ya(Vy- V)2 \s
T= — = 12 - In—|.
b\/afy 3 ’yl 27T7] |

Here 7 is the switching timg18) obtained without the inclu-  The second term in the exponential of EB{) represents the
sion of density fluctuations. The latter gives rise to the réNOTeorrection(49) due to the density fluctuations.

malization factor Let us consider the regime when the magnitude of this
" term is larger than unity, but still small compared to the first
Yo=1] [6—1 (46) term in the exponential of Eq51). Then this correction can
0 o Ve+1 be interpreted as a shift of the threshold voltage in formula
(18). Indeed, substitutiny/y,— Vi, + 8V, With the shift
To estimate the produdy we assume a rectangular geom- 1 \@
etry of the sample with lengtih and widthw. Then the &/th:——lm—, (52
eigenvalues; are given by 4man |
5 into Eq.(18) and expanding it up to the first order &v,, we
_ _ 2.2 f n- reproduce the resu(61). In experiments the threshold volt-
El_Enm_72r0< >t )r (47) . L . -
L2 w? age Vy, is not knowna priori. If one treats it as a fitting
parameter, Eq918) and (51) are equivalent up to the first
wheren, m are non-negative integers. order in 6Vy,.
In small sampleg,,> 1 and the expression for M, can The last term in the exponential of E¢p1) formally di-
be expanded as verges atl —0. Similar divergences have been studied in
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quantum field theory in the problem of the decay of the false e
vacuumt®17:33-3"According to Eq.(14), the shift(52) of the et [
threshold voltage is equivalent to adding a linear term o
—aéVy(n—ny,) to the integrand of the function&B0). This
corresponds to the standard in quantum field theory method
of renormalization of actio#®'” Such renormalization pro-
cedure removes all the divergences.

The origin of the renormalization of the threshold voltage
can be understood as follows. The “actidA”describes the
so-called¢® field theory in two dimensions, wheré=(n
-ny,) is a scalar field. An alternative approach to the renor-
malization of this scalar field theory is to integrate out the
fast modesgr corresponding to large wave vectors, while
keeping only slow modeg&g with small wave vectors in the
actionF. One can find that the averaging«b,%_ gives the sum
of inverse eigenvalues of Laplace operator identicaii®),

FIG. 4. The sketch of the density profile at the saddle pniipf)

3 : : _ corresponding to the solution of E(3) with the boundary condi-
S0 that the terniy/3)¢” after the integration over the fluc tions (54). The precise radial dependenz€p) obtained by solving

tuathns of the fast mOd_eS gives rise¥05F) ds=—adVinds. _ Eq. (55) numerically is shown in the inset.
Physically this renormalization corresponds to the averaging
of the switching rate over fluctuations of the electron density

n in the well with characteristic scales between the mean frelé"hIIe the saddle points can be found as nontrivial solutions

path and the sample size. z{p) of Eq. (53).

Due to the renormalization of the threshold voltage the _ )
parametera is modified asa— a+adVy, Therefore, the A. Nucleation processes in very large samples
quantities which depend oa, such thatr andr,, are also Let us consider the switching in an infinite samp®,

renormalized. More precise expressiop fdl? giV_en by EQ. —o. Due to the symmetry of the problem, the solutions of
(18) upon substitution of the renormalizedinto it. On the  Eq.(53) should be azimuthally symmetric. Placing the origin
other hand, the small corrections to the prefactor dfie to  of the coordinate system at the center of the switching region

the renormalization are more challenging to observe experiand writing Eq.(53) in polar coordinates, we find
mentally, and for comparison with experiment they can be

. 1
ignored. Z(p) *+ “2(p) ~2(p) + Z(p) =0. (55)

V. MEAN SWITCHING TIME IN LARGE SAMPLES This equation should be solved with the boundary condition
_ ) z(p)=0 at p— oo, since otherwisd-{z} =S, and the switch-
So far we studied samples of small a®&rg. We found ing time 7o 7% will be infinite atS— . One can show that
that the switching occurs when the electron density at thenhis condition is consistent with Eq54), that is z)(«)=0.
saddle point is uniform, because the. d|ffu5|_on_ processes aligdeed, Eq(53) can be interpreted as a Schrodinger equation
fast and the32/ smooth out all density variations. In largefor a particle in potential z, i.e., (V2+z)z=-z, There-
samples,S>rg, the diffusion is slower, and the system cantqre 7 () has the meaning of an eigenfunction of a bound
reach the critical density in a small part of the well. After the ;+q- " its asymptotic behavior at large distanceszis
switching occurs in that part, the switching process spreads .-,

. - X X —>e‘f’/\f;3, so thatz,(ec)=0. The nontrivial solution of Eq.
rapldly_ thrpughout the entire well. In th_|s section we StUdy(55) with the boundary condition described earlier can be
the switching time due to these nucleation processes.

. . e A obtained numerically. The result is shown in the inset of Fig.
To find the expression for the mean switching timén y 9

large samples we need to obtain the minimum and the saddle
points of the functionaF in Eq. (34). They can be found
using the conditiorsF/6z=0, i.e.,

-V%z+z-7=0. (53)

The main exponential dependence of mean switching time
7 in an infinite sample is given bg %", Substituting the

numerical result fozyp) into Eq. (34), one finds®
_ na(Vip — V)
The boundary conditions for E¢53) should account for the =T exp<8§ y ' (56)
fact that there is no current flowing through the boundaries _
of the sample. Since the current is proportional to the densityvhere the numerical constant

gradientVn, according to Eq(31a these boundary condi- ) (Vz)? é _é -
{=| dp — + >3 ~7.751.

tions take the form (57)

n-Vz =0, 54 . . .
|b°“”dary (54) Equation(56) is the counterpart of the resiflt8) derived
wheref is a unit vector normal to the boundary. The trivial for small samplesS<r3. Because of the dependencergbn

solution z(p) =0 gives the minimum of the function&{z}, V, see Eqgs(14) and (31b), both types of behavior can be
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observed in a single device by tuning the bias. At the crossit will be convenient to use their real combinations, ous

over,r§~3 the two results coincide. and sinmg, and introduce the following notationa¥ ()
The problem of stochastic current switching is similar to=1/+2, \Ifm(cp):(cosmgo)/\;r form=1, 2, ..., andV(¢)

the problem of finding the probability of spontaneous decay= (sin mgo)/\f; for m=-1, -2,....

of a metastable vacuum near a Peierls transition poirLin Substituting the expansiofb9) into Eq. (58) and using

+1) dimensional scalar field theory. The latter problem wasthe orthonormality condition for the eigenfunctions, we find

solved in Ref. 37, and the exponential factor in the result for

the decay time is analogous to E§6). On the other hand, Ups s ~

the prefactor of the decay time is essentially different from F{X} = F{zd + ?OE 2 Nom%am (62)

7-, since we study the shot noise described by the classical n=0 m=-e

Fokker-Planck equation, while the false vacuum decay prob- The discussion leading to E461) did not rely on the

lem is inherently quantum mechanical. assumption of large sample size. In the case of small samples
. Eq. (61) reproduces the expansid¢d?2), if one identifies\
1. Evaluation of the prefactor =e-1. This relation is easily understood by noticing that in

In a finite sample the switching can occur anywhere in theSmall samples the density at the saddle point(p)=1.
well, hence the prefactor of the switching raf¢ must be ~ Comparing the definition ot given in the paragraph after
proportional to the are&. Thus, whiler; has a large expo- Ed. (38) with Eq. (60), where we substituta,;=1, we repro-
nential, Eq.(56), its prefactorr, is proportional to 156 and  ducex=e-1.
can be small in large samples. Therefore, to fully understand The form of Eq.(61) suggests that in the case of large
the switching one needs to fimﬁ. samples it is more convenient to evaluate the integral in the

The time evolution of distribution functioR{z,t} in large  denominator of Eq(36) using variableX,, rather thanx
samples is given by the Fokker-Planck equati@2). To  Since the eigenfunctiong,,, and ¢, are normalized, the
evaluate the prefactor of the mean switching time we agaixpansion coefficient®,, are related to coefficients,,, of
use the expressiof86). The procedure is similar to the one expansion(38) via an orthogonal transformation. The Jaco-
for small samples described in Sec. IV A. However, the in-bian of this transformation equals unity, and therefore the
tegration in Eq(32) is now over a large sample, and there- integration oveildx,, in the denominator of Eq36) can be
fore the density at the saddle point becomes nonuniform, Figeplaced by the integration ov&idX,

4. This significantly complicates the evaluation of the pref- |n order to evaluate the integral in the denominator of Eq.
actor 7 . (36) in theX representation, we need to find the eigenvalues

We evaluate both integrals in E(B6) in Gaussian ap- Y of £q (60). All X, are positive with the exception of

proximation. As in Sec. IV A the integral in the numerator of . . ~ .

Eq. (36) is dominated by the minimum d#{z} and is given °N€ negative eigenvalugq,<0, and two zero eigenvalues,
by the expressiori41). The denominator of36) is domi-  Mo1=Ao-1=0. Numerical solution of Eq.(60) yields
nated by the saddle point. Presentizig) near the saddle \y,~-1.648. This negative eigenvalue is associated with un-
point asz(p)=z(p)+v(p), we obtain the expansion &z}  stable deviation fronzs corresponding to the motion over the

in the form saddle point. In Eq(36) the boundang() of the domain of
U attraction of the metastable state is orthogonal toxijgedi-
Fiz+T = Fz + 2 | dp T(0) (= V2= 2.+ 1)T(p) . rection, so that the mtegra_ltlon in the denommatqr is per-
(& +op=Fal 2 f po(p)(=V, = 22+ 1o(p) formed only over the positive and zero modes. Since each

(58) positive \,,, corresponds to a Gaussian integral, the integra-
) ) ) ) tion over them is straightforward. The integration over the
It is convenient to evaluate the integral in E&8) by  ;erg modes is more challenging; to perform it we first need

expanding to understand their physical meaning.
3p) =S % B (p) (59 The existence of two zero eigenvalues is due to the trans-
vip) = nanm¢nm P lational invariance of the function&{z} with respect to any

5 shift of the center of the switching region in the plane of the
where ¢,(p) are the normalized solutions of the eigenvaluequantum well. The two zero eigenvalues correspond to two
problem orthogonal to each other directions in the plane along which

_ - such a shift can be performed. Indeed, a small gtyfof the
[~ Vi—ZZs(p)+1]¢nm(p)=)\nm¢nm(p). (60) center of switching region results in the following small

h in th ddl int density:
The boundary conditions for this equation are given by Eq.C ange In the saddle point censity

(54). 0z 9z

Equation(60) can be interpreted as a Schrodinger equa- z(p+Ap) - z(p) = &—Apx"r 20 Apy. (62
tion for a particle in the attractive potential z2vith energy Px Py
Xnm— 1. Since the potential is azimuthally symmetric, we canOne can check by differentiating EG3) with respect tg,,
separate the variables @§(p)=Qnm(dp)¥m(¢). The solu- Ehat the derivative®z,/ dp,, are solutions of Eq(60) with
tions for the azimuthal pat,(¢) are given bye™¢. Below  \=0. Furthermore, dz/dp,=2zi(p)cose and 9zl dpy,
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=z{(p)sin ¢, so the azimuthal quantum numbers correspond- To evaluate the infinite produ&” we need to find the

ing to zero modes amg=+1 in our notations. Thus we con- continuous spectrum of E¢60). The radial part of?ﬁnm 0s-

clude thatoz/ apx,y:c(,?ﬁoil(p), wherec, is a constant® cillates as a function g5 with the wave vectoq,,. The phase
Substituting these expressions e/ dpy, into Eq.(62)  of these oscillations gé— o is shifted by (d,) due to the

and comparing it with the expansidf9), we find that the scattering in the attractive potential z2The eigenvalues of

coefficients corresponding to zero modes &e;=CoAp,,.  the continuous spectrum are expressed in terms of these scat-

Thus the integral over the zero modgs, andX, _; amounts  tering phase shifts as follows:

to the integration over the possible positions of the center of B )2 5 (m/R)\2

the switching region in the sample, Am=1+Q%=1+ (E) (1 _m—n) . (69

S
Jd;‘o,lf d~>‘o,—1:C§f d(Apy) f d(Apy) =¢—. (63)  This result is derived for a round sample of dimensionless
fo radiusR> 1, the derivation and the expression for the phase
Here the constarg, was found using azimuthal symmetry of shifts &, are given in Appendix F. The expression for the

and the fact that the eigenfunctios are normalized, €igenvalues\, is given by Eq.(68) with 6,=0.
= g i) It is convenient to calculate the logarithm %f’, thereby

) 9z \? 1 5 transforming the product over andm to a sum. Taking the
Co:f g dp= 2 f [Vz(p)Jdp=¢. (64) large sample limitR— <o, we replace the sum overby an

X integral overg=mn/R. Then expanding the integrand in
The relation between the last integral and the consfatd-  small parametes,,/n, we find
fined by Eq.(57) is proven in Appendix E. .

To find the denominator of Eq36) in the X representa- InyY" — 1(” S s g dg

tion we also need;; and df/ Xy They can be obtained ni-= (@) 1+02
from theX representation of the Fokker-Planck equation for
large samples. Substitutingp)=z4(p)+v(p) with 7 in the To investigate the convergence of the integral we need to
form (59) into Eq.(32) and using the orthonormality condi- evaluate the sum of the phase shifts at lang&his is ac-

tion for the eigenfunction§f)nm(p), we obtain the Fokker- Ccomplished with the help of the following “Friedel sum

(69)

m™ 0 m=—co

Planck equatiorP=LP with rule:
I~ . 1 P B
L=b\ya3 <~_)\nmxnm+ —7> : (65) 2 | =2 (70
nm nm Uy IXom Mmoo .

Here we neglected the terms of higher ordef& jn One can  Proven in Appendix F. The asymptotic behavi@0) of the

easily check that the solution of the stationary Fokker-PlanciPhase shifts implies that the integral in E§9) diverges

equationLP,=0 is P,=eF with F given by the Gaussian logarithmically atg— . This ultraviolet divergence signals

approximatign(Gl). 0 that Y is determined by a large wave vector cutoff or,
Comparing Eqs.(35) and (65 we conclude thatD; equivalently, by some short distance scale. An analogous di-

=(b\Vva/U)S.. To find of/ we need to solve Eq3 vergence appeared in the prefactor of the mean switching
w?th\ Zagivg)n I;ay(65) that i?'(oo a37) time in small samples, Sec. IV A. There we have shown that

this short distance cutoff is of the order of the mean free path

( S5 . 1 of ) of 0 (66) I. Following the same recipe, we cut off the integral in Eq.
00X00 U o) %oy (69) atg~ry/l, and with logarithmic accuracy find

Solving it with the conditiong =1 inside the domaif (i.e., Y - %ln<m>_ 1

atXy,— —o) andf=0 at the domain bounda®,=0, we find T \

that at the saddle poiritf/ Xoo=~(2|Xo U/ m)*>. Substituting this result into Eq67), we obtain the prefactor
Substituting Eq.(41) for the numerator of Eq(36), and ”

Egs. (61) and (63) along with the expressions fdd; and N 1 (1 (72)

dfl &KXy into the denominator of Eq.36) we reproduce the ' b\

result(56) with the prefactor given b
(56 P g y This expression completely describes the parametric depen-

2 X dence of the prefactor of the mean switching time in large
7 =——Y" Y"=[]"\/7"". (67) samples. On the other hand, because of the ultraviolet diver-
4|\ o {bS? am ¥ Am gence ofY”, the numerical coefficient im, cannot be deter-

. mined without detailed treatment of charge transport at short
Here the producly” excludes the factors corresponding to length scale?

the three nonpositive eigenvalukg,. The coefficients\,,

denote the parameters E#sed in Sec. IV A. They coincide
with the eigenvalues of the Schrédinger equatiéd) in the Expression(72) for the prefactorr, implies that in large
absence of the attractive potentialz(@). samples the switching ratq‘1 diverges atl—0. In Sec.

2. Renormalization of threshold voltage in large samples
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IV A 2 we encountered the same problem while consideringt on the edge of the sample, the resulting function
small samples. There it was shown that the dependence of B ON2 . 291/
on the mean free path can be absorbed into the definition of Zdpwpy) = Zd[(px = pi) "+ P ) (76)

the threshold voltag®,. Following the same renormaliza- gytomatically satisfies not only E€53) but also the bound-
tion technique, one can shift the threshold voltageby the 51y condition. Therefore, the expressidii6) gives the
amount saddle-point density for the half-plane.
1y 1 One can argue that there are no other saddle-point solu-
Np=———In—, (73 tions for edge switching. Indeed, suppose that we have a
4man | solutionZ(py, py) of Eq. (53) for a half-plane. Then we can
chosen in such a way that the resulting correction to thdélefine the functionz(p,,p,) in the entire plane, so that
exponential in Eq(56) cancelsY” in the prefactorr, see  =Z(px,py) for p,>0, andz=Z(p,,—p,) for p,<0. By con-
Egs. (67) and (71). The renormalized result for the mean structionz(py,p,) satisfies Eq(53) at p,# 0. However, this
switching time then takes the form procedure does not guarantee that the derivatjves con-
1 8 na tinuoys atpy:_O; as a resultazz_/_apf, may havey_ a delta-
T~ 2ex;< R>, ar=a+adVy,. (74) function contribution. More specificallg(py, p,) satisfies the
bSag 4 equation

This expression is equivalent to Eq56) and(72) up to the _v2 25y

correction in the prefactor; due to the substitution— ag. Viztz-z= 22py(px, + 0oy (7
The characteristic length scalg is sensitive to the posi- |f in additionZ(p,, p,) satisfies the boundary conditidbd),

tion of the threshold voltage, so its value must be renormali e 7’ (p,, +0)=0, Eq.(77) coincides with Eq(53) every-

ized. Since the size of the critical nucleus aAd,, are "

coupled to each other, Eq73), they should be evaluated

self-consistently,

where in the plane. Then by constructizip,, p,) =z(p), and
thereforez(py, p,) is given by a half of the saddle-point so-
lution z; shown in Fig. 4 with its center on the boundary of
the half-plane. Thus, there are no saddle-point solutions for
(758  edge switching excefi6).
The main exponential dependence of the mean switching
time 7 is given bye™%. In the definition(34) of F{z} the
N = — ilmr_R (75h) integral is taken over the area of the sample. In the case of
th . 9 U :
4mran | switching far from the boundaries it is over an entire plane,
while for the edge switching this integral is over a half-plane.
ThereforeF is reduced by a factor of 2 compared to the case
of switching far from the boundaries. Thus, instead of Eq.
(56), the expression for at the edge takes the form

r _—\“"77
R [(a+adVy) yI¥

To find 6V, one can solve the system of equatidi$) it-
eratively starting withrg=r. The result(73) then should be
understood as the first iteration of Eq5b).

Upon the substitution of the shiff5b) into Eq. (74), the
logarithm of the switching timer; acquires an additional . na(Vin = V)
logarithmic dependence on voltage due to the bias-dependent Te=Te€XP4— —|.
renormalization oVy,. This dependence is physically mean-
ingful and can, in principle, be tested experimentally. How- The evaluation of the prefactet, is similar to the one for
ever, these corrections to the voltage dependé€b6eof T, the switching in the middle of a large sample, Sec. VA 1. In
are small, and to the leading orderdnis still linear in volt-  that case we found two types of modes for the azimuthal part

age. of the eigenfunctiong,(p) of Eq. (60), namely, sime and
cosme. At the edge only the eigenfunctions proportional to
B. Nucleation near sample boundaries cosme are consistent with the boundary conditim@(px,

In Sec. V A we studied the nucleation processes in veryt 0 =0 on the dimensionless density In the notations of
large samples assuming that the switching initiates far fronpec- V A 1 these modes corresponde0, 1, 2,....
the boundarie§.e., at distances significantly greater thigh The functionalF{z} is invariant with respect to the shifts
In this section we show that the switching can be more efof densityz(p,, p,) along the edge of the sample. Thiz}
fective when it is initiated near the boundaries of the sampléias a single zero mod&,; it corresponds to the eigenfunc-
and evaluate the mean switching time for such processes. tion with the azimuthal part cas. Integration over the zero

mode, in analogy with Eq63), is performed as

(78)

1. Nucleation at a smooth edge [P
To study the nucleation near an edge which is smooth on f dXo1 = \/;—, (79
the scale, we model the sample by a half-plane and set up fo
the coordinate system so thatis the coordinate along the whereP is the perimeter of the sample.
boundary andp, is positive inside the half-plane. Then the  To evaluate the prefactor we again use formi@@). Ex-
boundary conditior{54) takes the forne, (p, +0)=0. If we  pression(41) for the numerator and the formulas ; and
place the center of the saddle-point sorutkgrshown in Fig.  df/dXqg in large samples are still applicable, as they were
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obtained in a way independent of the exact form of thed< m the functionalF{z} does not possess translational sym-
saddle-point density. Following the procedure of Sec. V A 1 metry with respect to the shifts afp), and therefore there

we find the prefactor in the form

Y = HI/ )\ﬂ'l’

n,m=0 nm

. 77_3/ ZYH

T e = — y
V2¢XogbyHas P

(80)

cf. Eq. (67). The definition of Y” assumes that the factors

corresponding to the two lowest eigenvalueg,and\g,, are
excluded.

In the productY” the quantum numben changes from 0
to oo, while in Y the same product is fromes-to «. Thus

using the fact thaﬁinm and\,, are even functions afn, we
obtain

1
Y= ZinY" = - £|n(@>,

(81)
T |

see Eq(71).
Similarly to Eg.(72) we find the prefactor ofr for the
edge switching

. 1 I \9m
Te ™ bPyHAas E) ' (82)
Note that due to the ultraviolet divergence ¥f we can
evaluater, only up to an undetermined constant.
Performing the same renormalizatit#8) of the threshold

are no zero modes. Due to the boundary conditi®$) the
allowed modes of the azimuthal part of the eigenfunction

bon(p) of Eq. (60) are cosmme/ ). Then instead of Egs.

(78) and (80), we obtain
/X
Y’ = H/ ﬂ‘l.
)\nm

27Y' 4 49{7]01)
= T /_eX ,
Nod by ya ™ nm=0

(84)

Here'):nm are the eigenvalues of E0) with the boundary
conditions(54), which take the fom{a?{snm/ &(p)|(p:0’0:0 for
the corner switching. Unlike in Secs. VA 1 and V B 1, here
atn>1 the eigenvalue")§nm are given by Eqs(68) and(F4)
with m replaced byrm/ 6. The productY’ excludes the fac-

tor corresponding to the negative eigenvalyg

Following closely the calculations of Secs. VA1 and
V B 1, one can find the prefactor ef, and the expression for
the mean switching time takes the form

1 ( | )%/”2 l<4t9§7]a)
To~ ——|— exp ——— |.
bvya\rlo my

One might expect that a&— = this result should coincide
with Egs. (78) and (82) describing the edge switching. On

(85)

voltage as in Sec. V A 2, one can eliminate the explicit dethe other hand, the prefactors for the edge and corner switch-
pendencd{/ﬂ' of the prefactor on the mean free path anding are qualitatively diffel’ent, since the latter does not de-
obtain the following expression for the mean switching timePend on the perimeteP. This is due to the fact that &

at the edge:

1 4mag
Te ™ belMagMeX[{ » ) (83

< there is no zero mode, i.e., 5l|1m excethoo are posi-

tive. At #— m the eigenvalue\y;— 0, which corresponds to

the appearance of a zero mode. In this case one needs to
apply the same procedure as in Sec. V B 1, which will lead

The exponent in Eq(83) is a factor of 2 smaller than the (0 the result82) for the prefactor.

exponent ofr for the switching far from the boundaries, Eg.

Performing the same renormalizatid@3) of Vy, as in

(74). Far from the threshold the exponential factor is domi-S€CS: VA2 and VB 1, we find the expression for the mean
nant, and therefore edge switching is more efficient. To deSWitching time at a cormner of anglg

termine which switching mechanism is more efficient near 1 40¢ pa
the threshold, one needs to take into account the depen- T~ T F— ) (86)
by yag Ty

dences of the prefactors in Eq3¥4) and(83) on the dimen-
sions of the device.

2. Nucleation in a corner

In Sec. VB 1 we considered the processes of switching

Note that ath< 7 the exponent of for the corner switching
is smaller than that for both interior and edge switching. This
makes corner switching more efficient far from the threshold.

VI. DISCUSSION

initiated near a smooth edge of the sample. In samples with

pronounced corners, such as the devices of square or trian- In the preceding sections we studied the mean tinod
gular shape, there is also a possibility of nucleation in awitching from the metastable to the stable current state in
corner. As we will show, such processes may be more effidouble-barrier resonant-tunneling structures. We calculated
cient than the nucleation in the interior and at the edges dboth the exponentials and prefactorsrdbr switching in the

the sample.
We consider a corner of angte< 7. Similarly to the dis-

small sample regimgEg. (18)] and for the interior, edge, and
corner switching in the large sample regifteys.(74), (83),

cussion in the beginning of Sec. V B 1, one can show that thand (86), respectively. In this section we discuss the depen-
saddle-point solutioray(p) centered at the corner both solves dence of the mean switching time on voltage for different

the equation(53) and satisfies the boundary conditi(G9).

structural parameters of DBRTS.

The subsequent consideration is similar to the one for the We concentrate on the case of round samples, such as the
switching at a smooth edge of a large sample, Sec. V B 1. Abnes used in the recent experimeht8As we have shown,
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when the voltag® is tuned close to the threshold, the size of @
critical nucleusr, is large compared to the radius of the (Vin—V)
sampleL, and the device is in the small sample regime. Ifthe |~ e
voltage is far fromVy, the device is in the large sample | TN
regime,L>r,. In a typical experimentr is measured in a
single device for different values of bias. We will therefore Va V

(b)

(Vin — V)2

assume that all structural parameters and the size of the lnt
sample are fixed, and discuss the switching time as a func-
tion of voltage. For comparison with experiment we will not
distinguish betweeng andrg in this section, since the loga-
rithmic in voltage corrections due to the renormalization of
the threshold voltag¥®,, are more challenging to observe. N
Our approach is valid as long as the exponents in the VeV V
expressions for the switching time, Eq48), (56), and(798)

are much greater than unity. To check when these conditions FIG. 5. Schematic dependence of the logarithm of the mean
Switching timer on voltage.(a) In round samples dt<d, close to

are satisfied, it is convenient to write the exponent in EqThe threshold there is a region of 3/2-power law dependencenf In
(56) as followed by the region of linear dependence corresponding to the
q\4 switching at the edge in the regime of the large sample. In samples
<_> . (87) with pronounced corners the region of linear dependence corre-
lo sponds to the switching at the sharpest cofdeshed ling (b) At
. o L>d, two regions of different linear behavior corresponding to the
Here we introduced a new characteristic length scale switching in the interior and at the edge of the large round sample
3\ 1/4 are present. In samples with pronounced corners these two regions
d= <%_7> (89) are followed by an additional region of linear voltage dependence
yz corresponding to the switching at the corner of smallest adgle
shown by dashed line. The slope of this linear dependence is
and applied the definition of, given by Eq.(31b). Note that  smaller by a factor ofr/ ¢ than that of edge switching.
the length scalel depends on structural parameters of the

8{na _
Y

device, but not on the sample size or bias. _ the region of linear dependenc83) corresponding to the
Similarly, the exponent of the switching tim@8) in a  gyjitching at the edge in the regime of large sample, see solid
small sample can be expressed in termsl @ihdrg as line in Fig. Sa).
32 5 4 At L>d the system is never in the small sample regime.
4Sa” _ EL_<E> (89)  Inthis case the dependence ofdon voltage is linear, but it
3y"2 6rrg\rg) may be due to either interior or edge switching. According to

) ) Eq. (90), atro=d and very large_ interior switching domi-
where we used the fact that in round samesrL?. This  npates. At very smalt, the exponential in Eq(90) becomes
exponent is much greater than unityrgt<(Ld*)*. On the yery |arge, and therefore the switching takes place at the
other hand, the regime of small sample is defined by thedge. The crossover voltayé between these two regions of

condition ro>L. Therefore, it exists only in sufficiently |inear dependence can be determined from the condition
small sampled. <d. In this case close to the threshold there 7.t=7 1 applied to Eq(90),

is a region of 3/2-power law behavi¢t8). As voltage tuned
further away fromVy, (i.e., atro<<L), it crosses over to the . 277 L
region of linear voltage dependence ofdfor the regime of V' = V- ﬁ'na- (9D
large sample, see solid line in Fig(ah s

In large round samples the mean switching tinis given  Thus, in these large samples the interior switchiiTg)
by 7 =7 "+7.". Therefore, to find the slope of linear seg- dominates betweeW andV,,, whereas at voltage below/
ment of the curve in Fig.(®), one must compare the rates of the edge switching83) prevails. The dependence of on
switching in the interior and at the edge. Using EG¥) and  yoltage forl > d is shown schematically in Fig(5) by solid

(83), the ratio of the rates can be expressed as line.
i A If the sample size is of ordet, the dependence of inon
Te gex 1(2) -3 |nﬂ (90) voltage can be obtained from the dependences shown in Fig.
ri_l L 2\rp ol 5(a) and Fig. %b). At L~d the region of 3/2-power law

dependence in Fig.(8 and the interior switching region in
At L <d this result shows that the switching always occurs atFig. 5(b) disappear. Thus, dt~d one can only observe the

the edge rather than in the interior of the sample. region of linear voltage dependence corresponding to the
To summarize, we found that in samples of raditsd  edge switching.
starting at voltage differencévy,—V) corresponding tag In samples with pronounced corners the dependence of

~(Ld®*3, one first observes the region of 3/2-power lawIn 7 on voltage is different due to the possibility of corner
dependencél8) of In 7. Then, agV,,—V) increases, follows switching. The mean switching time in these samples is
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whether it is possible to observe them experimentally, We, CPENDIX A: CALCULATION OF COEFFICIENTS A AND
make a crude estimate of the paramederSubstituting» $ CALCU ON OF CO c S

=o/Tb into Eq. (88) and using the estimates of and B B IN EQ. (12)
found in Appendix A, we get In this appendix we find the functiom&N) and B(N) in
Eg. (12) in the vicinity of the threshold. We will assume that
1 ko \34 T \2 the parametefl5) is small,A <1. It will be convenient here
d~ ﬁ(ez_'l'R) (ﬂ) (92 to considerA and B as functions of the electron density

rather tharN=nS

Let us write the expression fd&=J, —Jg near the thresh-
To obtain this expression the capacitance of the device pajld. On the upper branch of theV curve, the level in the
unit area was estimated as-e°n/Eg, and the energy of the well lies within the conduction band in the left lead; from
level in the wellEy was assumed to be of the order Ef. Eq. (9) we obtaineV/2+e’N/2C+Ey,>eV. On the lower
The electron density in the well is typically of the order of branch, the level is below the bottom of the conduction band
2X10"cm™. The transmission coefficient§_ g of the left  in the left leadeV/2+E,<eV, so that no current can flow
and right barriers can be varied in the range from 1 to*10 through the well andN=0. Therefore, in the bistable region
whereas the conductivity measured in unitsedf# varies
from 1 to 100. AssumingT, ~Tg, the low boundd eV— ﬂ < ﬂ/+ E. < eV (A1)
~20 nm is achieved at~ €’/ and T g~1. The upper 2C 0 '

boundd~ 600 um is achieved by substituting the maximum At A<1, it follows from Eq. (8) that &N/2C is small in

value of the conductivity and the minimum value of the . itHE. andE~ O th ¢ EGAL)
transmission coefficient. These estimates show that both tHg?MParNson Witfieg andk,. Une can then See from o
atEy=eV/2, and Eq.(9) results ine¢p=eV/2. Then from

cases ofL<d and L>d are experimentally achievable in . = ;
modern DBRTS, as the sample sizes range from 1 & 9- (100 we find I'r=2grE,. The expressior(7) for the
' rateJ, can also be simplified. For<<1 andg, ~gg, to first

10 um. order in\ the expression in the square brackets of &yis
The available experimental d&faconfirm that the depen- (Sl mh)Es. Using Egs.(5), (7). and (103 with all the

dence of the mean switching time on voltage is indeed ex R e
ponential. Based on E¢92) we estimated~ 10 um, which above simplifications, close to the threshéldJ, —Jg can be
’ approximated as

is somewhat smaller than the radius of the sample

=60 um. Thus, one should expect the logarithm of the mean eV en\ Sm [50.E
switching time to behave as shown in Figbp (The switch- A(n,V) = 9 \/E0< Ep——+ —) —>Er— VEOR ons.
ing time 7 is referred to as theelocationtime in Ref. 10) On h 2 2c/mh h

the other hand, it was observed in Ref. 10 that lbends (A2)

upwards, which suggests tHatc d, see Fig. £). One of the
possible explanations can be that this experiment was pe
formed in superlattices, rather than in DBRTS studied in thi
paper, which makes our estimatedfinreliable. To test our
theory in more detail, it would be interesting to carry out /g2,\2 g, \2 Eﬁ en .\ EE eV
similar measurements of in several samples of different (—) —()x—) —(—) +<)\—> —(—— 0) =0
size but with the same structural parameters. This will ensure 2c 9r/ 2Bo\ 2¢ 9r/ 2Bo\ 2

that both dependences depicted schematically in Fig. 5 (A3)

(L<d) and Fig. §b) (L>d) will be observed. In addition, At the threshold the two solutions for coincide. This con-

the expongntlal dgpendence in Ref. 10 is Not Very PrOgiion enables us to find the threshold voltage and density
nounced, since varies by only one order of magnitude. This

_ The densityn on the metastable and unstable branches of
he I-V curve is found by solving the equatiok(n,V)=0,
which reduces to the quadratic equation,

suggests that was measured rather close to the threshold, 2E, A2 gf E,2:

and therefore the data captures only the initial part of either Vin=—11 Sl (A4)
linear dependence for interior switching=ig. 5(b)] or 9r o

3/2-power law dependence, Figiah To observe the entire ) o 2

bias dependence shown in Figabor Fig. 5b), a measure- N = L(&) cEe (A5)
ment of 7 in a wider range of voltage is needed. hT 2 gr/ €Ey’
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Using Eqs.(_16) and (A5), and the fact that near the
threshold 'g=\2ggE,, we find the value ofB(n) at the
threshold

~.,1g°C
Bamozvle—gk—- (A6)

1 gr €
Using Egs.(A4) and (A5) we expandA(n,V) given by

Eq. (A2) in Taylor series neamy,, Vy,) up to the first nonva-
nishing terms inn-ny, and V-V, respectively. At the
thresholdA(n)=0 has only one solution, i.e., the first deriva-
tive with respect to equals to zero, and therefore we need to
expand up to the second orderrin The result can be pre-
sented as

EZ.

B(n,)

A(n) =- T[- a+y(n=nyg)?, (A7a)
_2(%R\Eo_,, _

a_)\2<gL> Ege(Vth V), (A7b)
_2 9_R)4<e_2>253

7_)\4<gL c/ EY (A70)

Since dU/dN=-2A/B, the coefficientsae and y coincide
with those used in Eq.14).

Assuming rectangular potential profile in the well, param-
etersg,_ g can be estimated in terms of the transmission co
efficients of the barriers ag g=T /.

APPENDIX B: DERIVATION OF EQ. (21) FROM THE
DETAILED BALANCE PRINCIPLE

Let us consider two very close to each other poiptand
r, in the well. The system is in a local equilibrium, and the
electron distributions are given by Fermi functions. We as
sume electrons to be sufficiently well coupled to the lattice
so that the temperatufieis the same everywhere in the quan-

tum well. Then the probabilities of diffusion between these

two points are given by

Wy (i, fzin) =2 W;fi(1-f)) = V\/ijfifje&j-ug)/T’
ij ij

Wire(r2,r1;0) = 2 Wy (1= f;) = 2 W fifjelams’T,
i i

(B1)

Herei and| label the energy levels at positiong andr,,

respectively; f; are the Fermi functions, anw; is the
probability of transition from occupied levelto unoccupied
level j.

PHYSICAL REVIEW B 71, 165326(2005

electron scattering processes. For example, in the case of
elastic scattering by impuritieg=¢;, and W;=W;; due to

time reversal symmetry, so that E&2) holds. Furthermore,
one can easily check that for electron-phonon scattering ex-
pression(B2) is also valid, because the phonons are not sen-
sitive to the change in electrochemical potential.

Strictly speaking in the presence of electron-electron scat-
tering expressionB2) is incorrect. If electron during the
transition from staté to j scatters off an electron at position
r;, the latter moves to position,. Then one finds an addi-
tional factor of exp(u;—u5)/T] on the right-hand side of
Eqg. (B2). However, because the electron-electron interaction
is screened, the distancé-r is of the order of the screen-
ing length in the well. The change q@f at such short dis-
tances is small compared to the temperature, and thus Eq.
(B2) is still approximately correct.

Applying expression(B2) to Egs. (B1) we obtain Eq.
(21). Since during a short time intervalt an electron can
only diffuse over a short distance, the above proof is suffi-
cient for the purposes of Sec. Il A.

As an additional remark, let us show that the expression
(21) also holds at larger distances. We consider the probabil-
ity density W(r;,r;n) of diffusion from pointr; to a rela-
tively distant pointr;. Let us divide the time intervadlinto N
small intervalsAt=t/N. ThenW, can be represented in terms
of W, in the following way:

N

Wi(ri,resn) =TT | Wadr P n)dr e,
k=1

wherer=r; andry.,=r¢. The distances between the points
re andry,, are small, so that the expressi¢l) is appli-
cable. Since at small distancAs.<T, we can expand Eg.
(21) up to the linear terms iAw/T. Using this expansion we
can rewrite each integrand in the above expression in terms
of Whi(rys1,Tk;n). Then evaluating the product ovérwe
obtain Eq.(21). This completes the prove.

APPENDIX C: CALCULATION OF CONSTANT G IN
EQ. (24)

In this appendix we find the constaBtin Eq. (24) for an
arbitrary scattering mechanism. This is accomplished by ex-
pressingG in terms of conductivityo.

If a small electrochemical potential gradient is applied in
the x direction, it gives rise to an electric current,

(%)

1%

X

M

e

J=-Lo (C1)

In equilibrium the transition rates satisfy the detailed bal-

ance condition

VVIJ e_Ei/T:VVjie_Ej/T. (BZ)

Our system is away from equilibrium, since the electro-

chemical potential(r) varies with the electron densityr).
However, expressiofB2) is still applicable for the relevant

wherel, is the width of the sample.

Let us find the expression for the current alongxis at
x=0 in terms of the transition probability density,;. It is
given by the difference in the number of electrons crossing
the linex=0 from left to right and in the opposite direction in
unit time, namely,
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J=— dle dyzf dxlf dX2

X[Wit(r 1,7 2;0) = Wie(r2,r 150 1. (C2

In equilibrium, i.e., atdu/9x=0, the expression for the dif-
ference of probability densities in the second line of &R)

vanishes. Away from equilibrium it can be found by using

the “detailed balance” expressig@l),

Wii(rg,r2;n) = Wy(rp,rq;n) =

ro:n).

Expandingu, — us= (X1 —X,) dul X, one can see that the lin-
earized form of Eq(C2) reproduces Eq.C1) with the con-

ductivity given by
dylf dyzf XmJ dx,

X)) Wa(rq,r2;n).

7= LTAt

X (%o = (C3)
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Solution of this equation is given by

y(r)=Jdr’f(r’)g(r -r'), (D3)

whereg is presented in terms of the modified Bessel func-
tion K, as

20T
b’
At low T the characteristic size of the Green’s function

G is very small, so thatG can be approximated by a
S-function. Then Eq(D3) greatly simplifies,

g(r)= Ko(r/fT) (D4)

re=

ng{n} =u'(n(r)) - 27;V2n(r). (D5)

The solution of this equation reproduces Eg0).
The exact criterion for validity of EqD5) is given by the

It is important to note that this expression is taken in thecondition rr<<rq, whererg is the characteristic size of the

limit du/dx=0, so thatW,, in Eq. (C3) is an equilibrium

quantity. Thereforew,, depends only on the distance be-

tweenr, and ry, i.e., Wy (r1,r2;n)=Wy(|r;—=ry|;n). Then
substituting new variableg=x,—x; and u=(x;+x,)/2 into
the integral in Eq(C3), and integrating oveu, we find

sl o], o
2L, TAt), i e X

X XPW (VX + (Y1 = Y2)2).

Changing the variables tg=y;-y, and v=(y;+Y,)/2,
and using the fact thaftdv=L,, we obtain

dr r2Wy(r|;n). (C4)

77 4Tt
Finally, comparing Egs.(24) and (C4) we find G
=4Tol €.

APPENDIX D: STATIONARY SOLUTION OF EQ. (28)
NEAR THE THRESHOLD

In this appendix we discuss the stationary solutiRyn}
of the Fokker-Planck equatio(28) near the threshold. At
bias nearVy, function b(n) can be approximated by a con-
stantb=b(ny,). Then the equation foP{n} takes the form

&b bh) Pg{n}=0. (D1

Here n=o/cb and 2a/b=2A/B=-u'(n), cf. Eq. (13).

It is convenient to preser®{n} in terms of a functional
F{n}, such thaP{n}=exp—-Fn}). Then Eq.D1) takes the
following simple form:

)
"(n) + — - 27V? T—V2
(u (n) 7Vn-

-%sz(r)+y(r)=f(r),

where we introduceg(r)=6F¢/ on and f(r)=u’(n)—27V?n.

(D2)

function -u’(n)+27V?n, see Eq(31b). After substitution of
the parameters of the problem from E¢3lb) and (A7) this
criterion takes the form

E3
EVe(Vi— V)

To estimate the right-hand side (6) we take the pa-
rametersh ~1, Er~E,, e(Vy,—V)<Eg and g, ~gr. Then
the criterion(D6) reduces tdl <Eg. Therefore, one can ne-
glect the temperature term in E@8) unless the structure is
strongly asymmetrical, so that <gg.

3
T< N1 +>\)<i) (D6)
Or

APPENDIX E: PROPERTIES OF THE SADDLE-POINT
SOLUTION zy(p)

In this appendix we derive several relations between inte-
grals involving z(p). Our goal is to express the integrals
J(Vzy)?dp and fzdp in terms of defined by Eq(57).

Integrating Eq.(53) over the infinite plane and using the
fact thatzy(p) decays rapidly at largg, we find

stdp=f2§dp-

To express the integral in E¢4) in terms of the constant
Z, we transform it as

J (Vz)dp =~ f AR f Zdp + f Zdp,

(E2)

(ED

where we used Ed53) to obtain the second line dE2).

To express one of the integrals in the second line of Eq.
(E2) in terms of the other, we take advantage of the azi-
muthal symmetry of the saddle-point solution. Multiplying
Eq. (55) by p?Z, and integrating ovep, we find
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SR

o Jo dp\3

2_12

P’z
2

The first term in this equation vanishes, singece™ at p

— . The second term can be simplified by integration byP®

parts, resulting in

(E3)

[ESHED

Using Eqgs.(57) and (E1)—(E3) we find the following ex-
pressions for the integrals in Eq$4) and (F6):

f (Vz)*dp =2, f zdp=4¢. (E4)

APPENDIX F: SOLUTIONS OF EQ. (60)

In this appendix we find the eigenvalues of continuous

spectrum of the Schrodinger equati¢d0). We consider a
round sample of dimensionless radis \'S/ 715 with the

PHYSICAL REVIEW B 71, 165326(2005

| 2 T 1
Qmlp) = Eco{qp - E(m"' E) + 5m(q):| . (F3

Here 6,,(q) is the scattering phase shift due to the attractive
tential.

For our purposes we only need the expressiondgpiat
large wave vectorsg. At g>1 the phase shift$,,<1, and
can thus be found in Born approximation,

SnlQ) =7 J z((p)3%(ap)p dp,
0

(F4)

see also Eq(14) in Ref. 40. Note tha#,, is indeed small at
q>1, becausd? = 1/q.

In a finite sample the wave vectors,,, are quantized.
Using the asymptotic forniF3) and the boundary condition
Q/\m(R=0, we find

N 5m(Qnm))
qnm_ R(n - ’

wheren is given byn+1/4 if mis even, and byn+3/4 if m
is odd, withn being a non-negative integer. Then the eigen-

(F5

. 2 . .
critical fluctuation situated in the center. Note that since we'@luéShkyy are given by 1‘E!nm- Wwe use this rgsult in Sec.
are interested in the case of large samples, the size of tHéA 1 to calculatell Ay, This product is dominated by the
critical fluctuation is small compared to the sample size, i.e.factors with largeg,,, Therefore in Eq(68) we approximate

R>1.

The potential —2(p) is azimuthally symmetric, so it is
convenient to solve equatidfO) in polar coordinates. Sepa-
rating the variables in agh,,(p)=Qnm(p)¥im(¢), We can
write the equation for the radial part as follows:

1 m?
<_ ~>- 5t BV 225(P)>Qnm(P) = Qﬁanm(P)v
pdp p

(F1)

Whereqnmz~nm—1. This equation is subject to two bound-

ary conditions:Q,(p) is finite at the origin and);,(R)=0.

n by the radial quantum number and the argument of
(9 by 7n/R.

In addition, in Sec. V A1 we need an expression for the
sum of the phase shift§~4) over the azimuthal quantum
numbersm. On the right-hand side of EqF4) only the
Bessel functionsl,(qp) depend onm. Since the sum of
J2(qp) overm equals unity’! we find

2 = f z(p)p dp=2¢. (F6)

0

We used Eq(E4) to express the above integral in terms of
the constant.

Let us first consider an infinite sample. In the absence of This result can also be derived by means of the Friedel

the attractive potential -Z, the finite at the origin solutions
to Eqg. (F1) are the Bessel functions of the first kidgl(gp).
Their asymptotic behavior gt— « is

2 T 1
Inl(@p) = 4/ p— COS{QP‘ E(m+ 5)} :

(F2)

In the presence of the attractive potential the asymptotic

sum rule which states that the sum of the phase shifts on the
left-hand side of Eq(F6) is given by 7N, whereN is the
average number of levels in the attractive potential
U=-2z(p). Since the two-dimensional density of states
v,=1/4ar, we find

1
N=- f 2z{p)dp. (F7)

™

form of the radial part of the eigenfunction modifies as fol- Combining this expression with the Friedel sum rule we re-

lows:

produce the resultF6).
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