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The exciton properties of self-assembled rectangular and V-shaped quantum wires are investigated theoreti-
cally in the presence of a magnetic field. The calculations are done in the single band effective mass approxi-
mation. We study the diamagnetic shift, the influence of the electron-hole Coulomb interaction, as well as the
electronic properties and the photoluminescence peak energies for magnetic fields applied along and perpen-
dicular to the wire. The results are compared with available magneto-photoluminescence experimental
measurements.
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I. INTRODUCTION

The investigation of low-dimensional structures, such as
quantum wiressQWRsd and quantum dotssQDd, have at-
tracted much attention for potential application in high-
performance devices since they are theoretically predicted to
offer superior optical and electrical characteristics.1,2 A few
main techniques exist to fabricate QWRs, such as electron
beam lithography and etching, growth on nonplanar sub-
strates, selective growth on masked substrate, molecular
beam epitaxy, and cleaved-edge overgrowth method. Differ-
ent shapes for QWRs using the aforementioned methods
have been realized; for example, the T-shaped QWRs3–5 and
the V-shaped QWRssRefs. 6–10d have been studied theoreti-
cally and investigated experimentally. Early work for
rectangular-shaped QWRs by Deganiet al.11 and later sev-
eral other studies used model calculations to describe the
properties of excitons confined to unstrained QWRs.12–14Ap-
proaches, which show the role of electron-hole Coulomb in-
teraction together with realistic profiles of the confining po-
tential ssee for example Refs. 12 and 15d have also been
presented. On the other hand, valence-band mixing effects in
the T-shaped and the V-shaped QWRs was studied by
Goldoni et al.16 using four-bandk ·p theory, and by Stieret
al.17 using eight-bandk ·p theory, which was later applied to
rectangular-shaped QWRs.18 In all the latter cases the Cou-
lomb interaction was neglected and the calculation was done
for zero magnetic field. There has been much theoretical in-
terest in the study of the magnetic properties of QWRs.
Kyrychenko et al.19 performed calculations of the valence
band states in diluted semiconductor QWR structures. They
showed that it is possible to control the relative contribution
of the light- and the heavy- hole components of the total
wave function of the holes by changing an external magnetic
field. Bryant et al.20 calculated the diamagnetic shift in
T-shaped QWRs with perturbation theory; lately, Madureira
et al.21 have investigated the magnetoexciton states and
optical-absorption spectrum in QWRs. They found an en-
hancement of the exciton binding energy with increasing
magnetic field, as was expected from experimental data.

Recently, considerable effort was devoted to the achieve-
ment of self-assembled QWRs, which can be formed under
certain growth conditions by solid source molecular beam
epitaxy. In this case the wires are formed by the Stranski-

Krastanow growth mode, in which the materials that are de-
posited on top of each other have a substantially different
lattice parameter. Spontaneous formation of self-assembled
InAs QWRs on InPs001d substrate, having 3.2% lattice mis-
match, was recently demonstrated.22,23 These nanostructures
are promising candidates for light-emitting devices for wave-
lengths 1.3 and 1.55mm.24,25 They have rectangular shape
and show a broad photoluminescencesPLd spectrum, with
several peaks that correspond to different heights of the
QWRs which can differ by a number of monolayers.24

The aim of the present paper is to investigate the
magnetic-field dependence of the exciton energy in such
QWRs. We consider V-shaped GaAs/Al0.4Ga0.6As QWRs
studied experimentally in Ref. 6 and self-assembled rectan-
gular InAs/ InP QWRs which were investigated experimen-
tally in Refs. 24 and 25 in the presence of an externally
applied magnetic field. In our approach we include the true
geometrical shape of the wire, as well as the mass mismatch
between the wire and the barrier. The calculations are based
on a finite difference scheme within the single band effective
mass approximation. Since strain is important for the forma-
tion of the self-assembled QWRs, we include the influence
of strain on the confinement potential for both the electron
and the hole. We calculate the diamagnetic shift of the exci-
ton energy for both V-shaped and self-assembled QWRs
when the magnetic field is along different directions of the
QWR. We analyze different sizes and shapes of the QWRs
and compare them with the experimental measurements. The
effect of the Coulomb interaction between the electron and
the hole is also studied.

The paper is organized as follows. In Sec. II, we describe
briefly the method and the theoretical model. The influence
of strain on the electronic structure in InAs/ InP self-
assembled QWRs is discussed in Sec. III. Section IV is de-
voted to the study of the Coulomb interaction in QWRs. In
the last section, Sec. V, we present results of the excitonic
spectrum in a magnetic field and make a detailed comparison
with available experimental data.

II. THEORY

A. Theoretical model and basic equations

We deal with the optical properties near the fundamental
band-gap energy for GaAs/Al0.4Ga0.6As and InAs/ InP
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QWRs. We assume that the conduction and highest valence
bands are decoupled. The full Hamiltonian for the system
can be written in the form

H = He + Hh + Usxe − xh,ye − yh,ze − zhd, s1d

whereHe is the electron Hamiltonian,Hh is the hole Hamil-
tonian, and the Coulomb interaction between the electron
and the hole is

Usx,y,zd = −
e2

«Îx2 + y2 + z2
, s2d

where « is taken as the average value of the wire and the
barrier. We can assume this approximation, since there is
only a small variation of« inside and outside the QWR.

Let us first introduce the Hamiltonian for the InAs/ InP
QWR. In this work, we consider the geometry of InAs/ InP
QWR as a two-dimensionals2Dd rectangular quantum box
with heighth along thex direction and widthw along they
direction. Different effective masses are assumed inside and
outside the wire. We identify the crystal orientationsf001g,
f110g, andf11̄0g with thex, y, andz axes, as depicted in Fig.

1, wheref11̄0g is the growth direction corresponding to the
experiment24,25 situation.

The single-particle Hamiltonian for the electron in the
presence of strain is the following:

He = − ¹xe
"2

2me
*sx,yd

¹xe− ¹ye
"2

2me
*sx,yd

¹ye+ Ecesx,yd

+ ac«hydsx,yd, s3d

whereme
* is the effective mass of the electron,Ecesx,yd is the

unstrained conduction band offset,ac is the hydrostatic de-
formation potential for the conduction band, and«hydsx,yd
denotes the hydrostatic strain. The Hamiltonian describing
the heavyshhd and the lightslhd hole states is, respectively,
given by

Hhh = − ¹xhh
"2

2mhh
* sx,yd

¹xhh− ¹yhh
"2

2mhh
* sx,yd

¹yhh+ Vvhhsx,yd,

s4ad

Hlh = − ¹xlh
"2

2mlh
* sx,yd

¹xlh − ¹ylh
"2

2mlh
* sx,yd

¹ylh + Vvlhsx,yd,

s4bd

wheremhh
* , mlh

* are the effective masses of the heavy and the
light holes, respectively;Vvhhsx,yd andVvlhsx,yd are the con-
finement potentials for both holes due to the band offsets and
strain. To derive these potentials we use the diagonalized 4
34 Pikus-Bir Hamiltonian26

Vvhhsx,yd = Evhsx,yd + P + sgnsQdÎQ2 + RR† + SS†,

s5ad

Vvlhsx,yd = Evhsx,yd + P − sgnsQdÎQ2 + RR† + SS†,

s5bd

whereEvhsx,yd is the unstrained valence band offset between
the wire and the barrier material,P, Q, R, andS are matrix
elements which can be calculated using the deformation po-
tentialsav, b, andd of the valence band and the components
of the strain tensor«

P = avs«xx + «yy + «zzd, s6ad

Q =
b

2
s«xx + «yy − 2«zzd, s6bd

R= −
Î3

2
bs«xx − «yyd + id«xy, s6cd

S= − ds«zx− i«yzd. s6dd

In order to obtain the strain components of the QWR
within the square cross section, we adapted the method given
by Downes.27 «xx and«yy are determined as a function of the
height and the width of the wire, while«zz is equal to the
misfit strain e0=sa0InAs−a0InPd /a0InP within the strained
QWR and equal to zero in the barrier. Therefore, the expres-
sion «hydsx,yd=«xx+«yy+«zz in the case of hydrostatic strain
for the electron depends only on thex- andy coordinates, as
well as the confinement potentials for the holesVvhhsx,yd
andVvlhsx,yd.

The Hamiltonian of the V-shaped wire for the electron
and for the hole is the same as for the self-assembled wires,
but without the strain parts. As in the previous case, we take
different masses inside the wire and in the barrier. As shown
in Fig. 2, we use for the simulation a triangular shape of the
QWR with heighth and base lengthw.

In the case of an applied magnetic field the kinetic opera-
tor for the particles is given by

FIG. 1. Schematic illustration of a two-dimensional rectangular
quantum box with heighth and width w which reproduces the
model of rectangular self-assembled InAs/ InP QWR.

FIG. 2. Schematic illustration of a triangular-shaped QWR with
heighth and base lengthw.
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Te,hsx,yd = Spe,h −
q

c
AD 1

2me,h
* Spe,h −

q

c
AD , s7d

whereq is the charge of the particle,p=−i"¹ is the momen-
tum, andA is the vector potential of the magnetic field. The
gauge is chosen such that it simplifies the problem as much
as possible.

When the magnetic field is applied along the wire growth
direction, i.e., B=Bẑ, we chose the symmetric gaugeA
=sB”2ds−yx̂+xŷd. Then the aforementioned kinetic-energy
term for the electron and the holesthe subscripts are left out
of the equationd can be written as

Tsx,yd = px
1

2m*sx,yd
px + py

1

2m*sx,yd
py +

qBy

4m*sx,ydc
px

+
qBy

4c

px

m*sx,yd
−

qBx

4m*sx,ydc
py −

qBx

4c

py

m*sx,yd

+
q2B2

8c2m*sx,yd
sx2 + y2d. s8d

The total diamagnetic contribution to the kinetic part consists
of five terms, of which the first four are linear and the last
one is an extra parabolic confinement. Note that the resulting
problem becomes two-dimensional.

For the magnetic field applied parallel to they direction
B=Bŷ, the following nonsymmetric gauge is used:A =
−Bxẑ. With this gauge the kinetic-energy term is

Tsx,yd = px
1

2m*sx,yd
px + py

1

2m*sx,yd
py + pz

1

2m*sx,yd
pz

−
qBxpz

cm*sx,yd
+

q2B2x2

2c2m*sx,yd
. s9d

The total Hamiltonianswith the confinementd still commutes
with pz, and therefore the wave function in thez direction
can still be taken as a plane wave. The ground state is ob-
tained forpz=0.

Consider now the case of a magnetic field oriented along
the x direction. If we choose the vector potential asA =Byẑ,
then the kinetic part of the Hamiltonian is given by the equa-
tion

Tsx,yd = px
1

2m*sx,yd
px + py

1

2m*sx,yd
py + pz

1

2m*sx,yd
pz

+
qBypz

cm*sx,yd
+

q2B2y2

2c2m*sx,yd
. s10d

Again, pz commutes with the Hamiltonian and as a result the
problem is still 2D.

B. Solution methods

The electron and hole states in the QWR were solved
separately and can be described by the following
Schrödinger equations:

HeCesxe,yed = EeCesxe,yed, s11ad

HhhChhsxhh,yhhd = EhhChhsxhh,yhhd, s11bd

HlhClhsxlh,ylhd = ElhClhsxlh,ylhd. s11cd

In order to solve these single-particle equations we used two
independent numerical procedures; one is based on a two-
dimensional finite difference technique with uniform grid
space, while the other relies on the finite element technique.
In these methods the real 2D confinement potential and the
different masses inside and outside of the QWR for the dif-
ferent particles were included. The values of the parameters
used in the calculations are listed in Table I. All parameters
have been taken from Ref. 31, unless indicated otherwise.

C. Coulomb interaction

In the next step, we consider the Coulomb interaction
between the particles. Electron and hole are confined in the
x- and y directions and can move freely along the wire di-
rection. Because of the strong confinement in thexy plane
we are allowed to separate thez motion from the lateral
motion in thexy plane and to assume that the Coulomb in-
teraction has no effect on thexy motion of the particles. In
this case an approximate solution to Eq.s1d has the form

Csxe,xh,ye,yh,zd = Cesxe,yedChsxh,yhdwszd, s12d

wherewszd is the wave function which describes the relative
motion of the exciton in thez direction, i.e.z=ze−zh. Aver-
aging the Hamiltonian over thex-y direction with the above
wave functions, we obtain an effective one-dimensional
equation for the motion in the wire direction

TABLE I. Input material parameters for InAs/ InP and
GaAs/Al0.4Ga0.6As QWRs used in the calculations: lattice constant
a0, band gapEg mass electronme sRefs. 28–30d, heavy hole mass
mhh, light hole massmlh, the hydrostatic deformation potential for
the conduction bandac, the deformation potentials of the valence
band av, b, and d, strain coefficientsC11 and C12, and dielectric
constant«.

Parameter InAs InP GaAs Al0.4Ga0.6As

a0sÅd 6.058 5.869 --- ---

EgseVd 0.417 1.424 1.519 2.018

mesm0d 0.023 0.077 0.067 0.1

mhhf110gsm0d 0.513 0.885 0.51 0.61

mhhs001dsm0d 0.333 0.532 0.51 0.61

mlhsm0d 0.026 0.111 --- ---

acseVd -5.08 --- --- ---

avseVd 1 --- --- ---

bseVd −1.8 --- --- ---

dseVd −3.6 --- --- ---

C11sGPad 83.29 --- --- ---

C12sGPad 45.26 --- --- ---

« 15.15 12.5 12.9 11.76
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FEe + Eh −
"2

2mz
¹z

2 + Uef fszdGwszd = Eexwszd, s13d

wheremz is the reduced mass of the electron and hole along
the wire axis andUef fszd is the effective potential, which can
be described by

Uef fszd =E E E E dxedyedxhdyhuCesxe,yedu2uChsxh,yhd

3u2Usxe − xh,ye − yh,zd, s14ad

1

mz
=E E E E dxedyedxhdyhuCesxe,yedu2uChsxh,yhd

3u2S 1

me
*sx,yd

+
1

mh
*sx,ydD . s14bd

In order to solve Eq.s13d we have to perform a four-
dimensional integration to calculate the effective potential.
We used two independent methods to calculateUef fszd: a
direct integration and an analytical method based on the Fou-
rier transformation of the Coulomb potential. The exciton
binding energy is then obtained from a solution of Eq.s13d,
which was solved numerically using a finite difference
scheme.

III. SELF-ASSEMBLED QUANTUM WIRES WITH STRAIN

The formation of self-assembled InAs/ InP QWRs is
based on the strain-relaxation effect. It is therefore interest-
ing and important to investigate the influence of strain on the
electronic properties of the QWR. For the electron, as was
defined in Eq.s3d, the edge of the conduction band is shifted
down by the hydrostatic strainac«hyd, which is 144 MeV for
InAs/ InP QWR. It should be noted that in our strain calcu-
lation model this value is independent of the size of the
QWR, because the sum of the normal strain components
«hyd=«xx+«yy+«zz is constant.32 This means that in the pres-
ence of strain the bottom of the electron confinement poten-
tial is shifted by the value of the hydrostatic strain.

In the case of the holes the situation is more complicated.
The heavy and light hole band edges can be obtained from
the aforementioned Pikus-Bir Hamiltonian, characterized in
Sec. II by the formulass5ad ands5bd. In Fig. 3 the results for
the profiles of the confinement potential for the heavy and
light hole along thex- and y direction are compared. We
plotted the case when the off-diagonalR andS matrices are
neglectedsdashed curvesd and the case when the strain
Hamiltonian includes all matrix elementssfull curvesd. The
first simple case gives the same behavior as for the conduc-
tion band, i.e., the edges of the valence band for the heavy
and light holes are shifted by a value which depends on theP
andQ diagonal matrix elements.

Further, we investigate the dimensional dependence of the
heavy hole and light hole confinements for fixed width of the
QWR as a function of the height, which is shown in Fig. 4.
For this purpose we take the central point of the potentials
and observe their dependence on the height of the QWR, as
depicted by the full curves. Note that the heavy hole is above

the light hole states in the range of the height from 0 to
250 Å and therefore is the ground state. This means that
heavy and light holes in flat QWRs behave in a similar way
as in quantum wells.

IV. CONTRIBUTION OF COULOMB INTERACTION
TO THE EXCITON ENERGY

Here, we investigate the Coulomb interaction between the
electron and the hole in the wire. Using the wave functions
from a numerical solution of the single-particle equation for
the electron and the heavy hole, we perform a direct integra-
tion in order to calculate the effective Coulomb potential
Uef fszd fsee Eq.s14adg. The heavy hole state is the ground
state for the InAs/ InP QWR, as was mentioned before, and
for the GaAs/Al0.4Ga0.6As QWRs, because the valence

FIG. 3. Heavy holefsad and scdg and light holefsbd and sddg
band edges of InAs/ InP QWR withw=180 Å and h=15 ML s
1 ML is 3.03 Åd along thex- andy direction. The full curves and
dashed curves denote potentials calculated from the strain Hamil-
tonian with and withoutsshear potentiald off-diagonal matrix ele-
ments, respectively.

FIG. 4. The center of the confinement potentials for heavy hole
and light hole as function of the height of the InAs/ InP QWR with
w=180 Å. The dashed curves are the corresponding values for the
shear potential.
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bound confinement depth is the same for the light and the
heavy holes for these V-shape wires. In Fig. 5 we plot the
effective potentialUef fs0d as a function of InAs/ InP wire
height ssolid curved and compare the results with the case
when the confinement potential along thex- andy direction
is assumed to be infinitely highsdashed curved. The differ-
ence in the behavior for small values of the wire height is a
result of the wave function spillover effect.33 For the infinity
potential the wave function will always be confined inside
the potential well, and the potential divergence atz=0 when
h→0. The inset of Fig. 5 shows the calculated effective Cou-
lomb potential for the InAs/ InP QWR whenw=180 Å and
h=5 ML.

In the next step, having the effective Coulomb potential,
we solve the one-dimensional effective Schrödinger equa-
tion, Eq.s13d, for the relative exciton wave function in thez
direction, in order to find the binding energy of the exciton.
We used the finite difference technique. The wave function
squared is shown in Fig. 6. We found that the binding energy
of the exciton for the InAs/ InP rectangular QWRs depends
weakly on the height of the flat QWR. When the wire width
is equal to 180 Å, which corresponds to the experimental

value, the binding energy of the electron-hole pair is 14.14
and 13.35 meV for 5 and 10 ML, respectively. In the case of
the V-shaped GaAs/Al0.4Ga0.6As QWR the difference is
more pronounced. When the wire height is 10 nm and base
length 20 and 40 nm, the Coulomb interaction between the
electron and the heavy hole is 18.73 and 15.58 meV, respec-
tively.

In Ref. 24 results were reported of PL experiments from
an array of self-assembled QWRs. The PL spectrum consists
of several peaks that correspond to emission from QWR with
different height, which can vary by a discrete number of
monolayers. The relation between the wire heights and the
individual peaks in the PL spectrum are unknown. But, we
know that the height of the QWR can only vary by a discrete
number of monolayers; it gives us the exact freedom to shift
the experimental data. In Ref. 33, it was proposed to shift the
experimental data by 1 ML in comparison with the results
presented in Ref. 24. However, the calculated peak energies
also had to be shifted up by 39 meV in order to obtain a
good agreement. In the present calculations, using param-
eters taken from Table I, we also included the Coulomb in-
teraction between the electron and the hole. The best agree-
ment in the shape of the calculated curves in Fig. 7 with
ssolid curved and without sdashed curved inclusion of the
Coulomb interaction is obtained when the experimental data
are shifted by 2 ML in comparison with the results which
were presented in Ref. 24. The small disagreement can be
explained for example by the size dependence of the band
gap in InAs/ InP QWR,34 or by the uncertainty on the band
offsets.31

V. QUANTUM WIRE STATES IN A MAGNETIC FIELD

In this section we calculate the diamagnetic shifts for dif-
ferent directions of the magnetic field and compare with ex-
perimental measurements. In Fig. 8 we show the shift of the

FIG. 5. The effective Coulomb potential atz=0 as a function of
the height of the InAs/ InP QWR withw=180 Å. The inset shows
the effective Coulomb potential as a function of thez direction for
a wire widthw=180 Å and wire heighth=5 ML.

FIG. 6. The probability densityssolid curved and effective po-
tential sdashed curved of the exciton in InAs/ InP QWR as a func-
tion of thez direction forw=180 Å andh=5 ML.

FIG. 7. PL peak energies as a function of the InAs/ InP QWR
height. The solid and dashed lines are the theoretical calculations
for the heavy hole excitons with and without taking into account the
Coulomb interaction, respectively. The triangles correspond to the
experimental data from Ref. 24 shifted by 2 ML and the square to
sampleC from Ref. 33.
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PL peaks in the InAs/ InP QWR for the magnetic field ap-
plied along thez direction. We compare our theoretical re-
sults, which are denoted by three different curves, with the
experimental data of Ref. 33 for QWRs with heights equal to
3 and 4 ML and with width 180 Å. As the magnetic field
increases, the wave functions are squeezed due to the extra
confinement of the magnetic field. This squeezing leads to an
increase in energy, as we see in Fig. 8. Up to 25 T a good
agreement is obtained between the experimental points and
the theoretical curves for the heights of 3 and 4 ML. The
discrepancy between theory and experiment for both heights
at 50 T is about 1 meV. The numerical results for the QWR
with a height of 5 ML are also shown for comparison.

When the magnetic length is much larger than the exciton
diameter, the effect of the magnetic field can be treated as a
perturbation and the resulting diamagnetic shift can be
expressed asDE=bB2, with the diamagnetic coefficientb
=e2kr2l /8m, wherem is the reduced mass of electron and
hole, andkrl is the average quadratic distance between elec-
tron and hole. However, when the magnetic field is large
enough, i.e., the magnetic length is comparable to the dimen-
sions of the wire in the direction perpendicular to the applied
field, the magnetic confinement becomes dominant and the
parabolic dependence changes to a linear one,DE="vc

* , with
vc

* =eB/m* . From the inset in Fig. 8 we see the fully para-
bolic behavior of the diamagnetic shift energy of the experi-
mental data as a function of the magnetic fieldB. The theo-
retical curves show a very small deviation from a linear
dependence.

Next, we investigated the effect of a magnetic field ap-
plied along they direction of the InAs/ InP rectangular self-
assembled QWR. Figure 9 shows the experimental results33

and the present theoretical calculations. Numerical results for
three different heights of the wire are depicted. Again, a fair
agreement between the experimental points and the theoret-
ical curves is obtained. A more pronounced difference of
1.5 meV for the height of 4 ML at 50 T is observed in com-
parison with the previous figure, while for 3 ML it is about

1 meV. The deviation of the theoretical calculations from a
linear dependence is seen forB.25 T in the inset of Fig. 9.
The expected magnetic field value for which the magnetic
length equals the height of 4 ML is about 450 Tsfor 3 ML it
will be even largerd, and thus much larger than 50 T. But,
because of the significant spread of the wave function into
the barrier material of the QWR for such a narrow height we
find already a deviation for smallerB values. For instance, at
the magnetic field 25 T the magnetic length is about 50 Å,
which is the value of the wave function radii along the height
direction.33

The reason for the small quantitative deviation between
the experimental data and the theoretical curves at high mag-
netic field along thez- and they direction might be due to the
following:

s1d We neglected the coupling between the heavy hole
and the light hole which increases with increasing magnetic
field. This causes only an insignificant deviation since the
energy contribution of holes in the diamagnetic shift is very
small in comparison with the contribution of the electron.

s2d The variation of« inside of the wire and in the barrier
was not included. This can only slightly modifys1–2 meVd
the Coulomb term of the ground state for zero magnetic field
for this rectangular QWR. However, the Coulomb energy
between the electron and hole in InAs/ InP QWR practically
does not change for magnetic fields up to 50 T, as we will
see later. Therefore, the diamagnetic shift is not affected by
including spatial dependence of«.

s3d The most realistic reason for the discrepancy is that
we assumed a rectangular shape for the QWR, which may
not be the exact shape, and that we assumed an abrupt inter-
face between the wire and the barrier material. But, because
of the lack of detailed structural information of the QWR we
are not able to do better without introducing extra unknown
parameters.

Next, we present our results for the V-shaped
GaAs/Al0.4Ga0.6As QWRs. The parameters used in the simu-
lations are shown in Table I. Experimental results6 were re-

FIG. 8. The exciton diamagnetic shift as a function of magnetic
field sB / / ẑd for the InAs/ InP QWR. The dashed, full, and short
dash-dot curves correspond to the numerical calculations done for
different heights of the wire. The open squares and full squares
represent the experimental data for the wire height 3 and 4 ML,
respectively, with width equal to 180 Å. The inset shows the same
dependencies using a quadratic scale for the magnetic fieldB.

FIG. 9. The exciton diamagnetic shift as a function of magnetic
field sB / / ŷd for the InAs/ InP QWR. The dashed, full, and short
dash-dot curves correspond to our numerical calculations for differ-
ent heights of the wire. The open circles and full circles represent
the experimental data for the wire height 3 and 4 ML, respectively,
with width equal to 180 Å. The inset shows the same dependencies
with a quadratic scale of the magnetic fieldB.
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ported for vertically stacked triangular-shaped QWRs, of
which the average base lengthw and heighth were reported
to be 20 and 10 nm, respectively. The orientation of the mag-
netic field was applied along thex-, y-, and z direction. In
Fig. 10 the diamagnetic shift of the exciton ground-state en-
ergy is plotted as a function of the magnetic field for all three
cases. For comparison, we show theoretical calculations for
the QWR with a height of 10 nm and a base length of 20 and
40 nm, according to Fig. 2. Note again that the diamagnetic
shift reflects the lateral size of the wave function perpendicu-
lar to the magnetic field. Therefore, in Fig. 10sad we can
observe a rather large difference for the numerical curves
with base length 20 and 40 nm, when the magnetic field is
applied in they direction, as well as in thez direction sthe
base length is along thex directiond. And, as expected, when
the magnetic field is applied along thex direction, the varia-
tion is small; even at 40 T it is less than 1 meV. We also see
that the qualitative agreement with the experimental mea-
surements is best forw=40 nm up to 20 T, beyond which
there are small deviations between theory and experiment
which become substantial forB / / ẑ. Figure 10sbd shows the
magnetic dependencies of the GaAs/Al0.4Ga0.6As QWR as a

function ofB2. The deviation from a linear behavior is found
for both the numerical and the experimental curves. This is
not surprising, since the lateral size of the wire is relatively
large, and so the magnetic field becomes important even at
small values.

We also investigate another shape of the V-shaped
GaAs/Al0.4Ga0.6As QWR, as suggested by the high-
resolution secondary electron image of the wire in Ref. 6. In
Fig. 11 we compare our simulations for this new shape,
shown in the inset of Fig. 11sbd. However, only for thez
direction is a good fit with experimental measurements ob-
tained, while for the other two directions of the magnetic
field a large discrepancy between theory and experiment is
found. Accordingly, it should be stressed that the shape of the
wire confinement plays a rather important role in the simu-
lation of the magnetic properties for QWRs. The best fit
between the experimental points and the numerical curves is
obtained for the shape mentioned in Fig. 2 withh=8.6 nm
and w=37 nm, as plotted in Fig. 12. As we can see from
Figs. 12sad and 12sbd, full agreement is observed in the
wholeB region, for each direction of magnetic field. In com-
parison with the experimentally determined dimensions of

FIG. 10. The exciton diamagnetic shift as function of magnetic fieldB for the V-shaped GaAs/Al0.4Ga0.6As QWRs withh=10 nm and
for w=20 nm sthin curvesd and w=40 nm sthick curvesd. The solid and dashed curves denote our numerical results for a magnetic field
applied along they- andx direction, whereas the dash-dot curves are forB / / ẑ. The experimental datasRef. 6d for thex-, y- ,andz direction
of the magnetic field are indicated by full triangles, circles, and squares, respectively. The results are represented for a linearfsadgand
quadraticfsbdg of B scale.

FIG. 11. The exciton diamagnetic shift as function of magnetic fieldB for V-shaped GaAs/Al0.4Ga0.6As QWR with the profile shown in
the insetsbd. The heights of the QWRh=10 nm andH=19.3 nm, the base lengthw=40 nm. The solid and dashed curves denote our
numerical calculation for the magnetic field applied along they- andx direction, whereas the dash-dot curves are forB / / ẑ. The experimental
datasRef. 6d for the x-, y- , andz direction of the magnetic field are indicated by full triangles, circles, and squares, respectively.
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the QWR, the height of 8.6 nm is about the same as the
aforementioned experimental average height of 10 nm; how-
ever, the base lengthw=37 nm is found to be almost twice
as large, as mentioned in the experimental paper,6 namely
20 nm. However, from the high-resolution electron image of
the wire in Ref. 6, the value of 20 nm as base length seems
indeed to be a clear underestimation.

Next, we discuss the influence of the magnetic field on the
exciton binding energy. In Fig. 13 we show the density for
the electron and the heavy hole for both InAs/ InP and
V-shaped GaAs/Al0.4Ga0.6As QWRs at different values of
the magnetic field. Note that for both cases the effect of the
applied field enhances the particle confinement into the wire,
particularly for the wider V-shaped wires. This is also con-
firmed when comparing the Coulomb interaction. For the
InAs/ InP QWR the Coulomb contribution to the exciton en-
ergy is 13.79 and 13.89 meV for 0 and 50 T, respectively,
while for GaAs/Al0.4Ga0.6As the difference is larger: 16.72
and 18.93 meV for 0 and 40 T, respectively.

VI. CONCLUSIONS

In summary, the excitonic properties in the presence of a
magnetic field in InAs/ InP self-assembled and V-shaped
GaAs/Al0.4Ga0.6As QWRs were investigated theoretically.
We include the effect of strain on the electronic structure of
InAs/ InP QWRs. The heavy hole states are found to be the
ground states for both types of wires. We show that the Cou-
lomb interaction energy between the electron-hole pair has a
relatively small value for the considered self-assembled
QWRs and a very small change is observed, as the wire
height increases. For the V-shaped wire the Coulomb energy
between the particles depends more strongly on the dimen-
sions of the wire.

By calculating the effective potential in the rectangular
InAs/ InP QWR, we confirm the spillover effect in the case
of flat wires with a height much narrowed as compared to its
width. We also compare our theoretical results with the ex-
perimental measurements on the PL peak energies in the self-
assembled QWR. A good agreement is reached between

FIG. 12. The exciton diamagnetic shift as function of magnetic fieldB, for the V-shaped GaAs/Al0.4Ga0.6As QWR with h=8.6 nm and
w=37 nm. The solid and dashed curves denote numerical calculation for the magnetic field applied along they- andx direction, whereas the
dash-dot curves are forB / / ẑ. The experimental datasRef. 6d for thex-, y-, andz direction of the magnetic field are indicated by full triangles,
circles, and squares, respectively.

FIG. 13. The contour plot of the densities in the rectangular InAs/ InPsleft figured and the V-shape GaAs/Al0.4Ga0.6As sright figured
QWRs for electronfsadg and heavy holefsbdg at magnetic field 0, 40, and 50 T.
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them in the region of the height of the wire from 4 to 13 ML,
when the width is fixed and taken equal to 180 Å.

Numerical simulations of the diamagnetic shift are per-
formed for InAs/ InP self-assembled QWR. Deviation from
the experiment atB=50 T is found to be less than 1.5 meV
when the magnetic field is applied along they direction. For
the z direction of the magnetic field it is even smaller than
1 meV. Calculations for three difference heights of the wire
are compared. Further, the results for the diamagnetic shift
for the GaAs/Al0.4Ga0.6As QWRs show a very good agree-
ment between the experimental data and the theoretical
curves, when the shape of the wire is considered as triangu-

lar. The nonparabolic dependence as a function ofB starts at
a small magnetic field value for both the experimental and
the theoretical data, which is a consequence of the larger
dimensions of the V-shaped wire.
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