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Using the time-dependent noncrossing approximation, we calculate the transient response of the current
through a quantum dot subject to a finite bias when the dot level is moved suddenly into a regime where the
Kondo effect is present. After an initial small but rapid response, the time-dependent conductance is a universal
function of the temperature, bias, and inverse time, all expressed in units of the Kondo temperature. Two
timescales emerge: the first is the time to reach a quasimetastable point where the Kondo resonance is formed
as a broad structure of half-width of the order of the bias; the second is the longer time required for the
narrower split peak structure to emerge from the previous structure and to become fully formed. The first time
can be measured by the gross risetime of the conductance, which does not substantially change later while the
split peaks are forming. The second time characterizes the decay rate of the small split Kondo peaksSKPd
oscillations in the conductance, which may provide a method of experimental access to it. This latter timescale
is accessible via linear response from the steady state and appears to be related to the scale identified in that
mannerfA. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. Lett.87, 156802s2001dg.
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I. INTRODUCTION

The theoretical predictions1–3 of consequences of the
Kondo effect for the steady state conduction through quan-
tum dots began a decade ago. At low temperatures, a narrow
resonance in the dot density of states can form at the Fermi
level, leading to a large enhancement of the dot’s conduc-
tance, which is strongly dependent on temperature, bias, and
magnetic field. Many of these effects have been recently ob-
served by a set of beautiful experiments by several
groups.4–6 These successes, supplemented by the anticipation
that time dependent experiments are not far behind, have
spurred a number of theoretical groups7–12 to consider the
effects expected when sinusoidal biases or gate potentials are
applied. Indeed recent experiments13 have now seen Kondo
sidebands. Also the predictions14 of split Kondo conductance
peaks have been observed in double15 and multiple16 dots.
Surprisingly, the application of steps or pulses, which can
provide a less ambiguous measure of time scales than ac
modulation, have been considered less extensively
theoretically,10,17,18 and not at all to our knowledge experi-
mentally. When pulsed voltage is applied to the to the quan-
tum dot level so that it suddenly is shifted into the Kondo
regime, the conductance of the dot will begin to increase.
The current saturates when the system reaches its new equi-
librium configuration. In a previous investigation,10 we con-
sidered a quantum dot biased by a small voltage and calcu-
lated the time dependent change in linear response
conductance when a stepped potential was applied to a gate,
thereby shifting the dot into the Kondo regime. Some general
qualitative observations were made, which now can be made
quantitative through the study of a different configuration of
voltage switching.

In the present work we consider the response of a quan-
tum dot, operating as a single-electron transistor, already
subject to a finite dc bias when the dot level is shifted into
the Kondo regime. When a finite bias is present across the
dot, Kondo resonances appear at each of the leads. Due to
the finite bias, these resonances are broadened in comparison
with the zero bias situation.19 While the equilibrium or zero
bias situation is relatively well understood,20 much less is
know about the fully time-dependent situation, with Refs. 21
and 22 being most relevant to the present work. These two
works identify two separate timescales for the quantum dot
in the Kondo regime, a slow time scale21 and a faster one.22

The current work is a thorough study of both. While the slow
time scale is also accessible through steady-state correlation
functions, one needs a full dynamical theory to access the
latter. Recent approaches that are complementary to the time
dependent NCA used here include the determination of exact
spin correlation functions at the Toulose point23 as well as
the dynamical 1/N approach to time-dependent currents
through the dot.24 The latter work considers the effect of
pulsed bias potentials and obtains results consistent with
those we previously obtained,17 using a similar perturbation.
Generalizations of this method would presumably also en-
able access to the faster or dynamic timescale mentioned
above.

The present calculation determines, within the noncross-
ing approximationsNCAd, the transient current after a gate
pulse moves the level of the single electron transistor into the
Kondo regime, under a large variety of temperatures and
biases. The calculations were performed using the Kadanoff-
Baym time-dependent Green function technique. The time
loop Green functions of the pseudo-operators are solved in
real time on a discrete grid. The transient currents are calcu-
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lated directly from the current operator which can be ex-
pressed in the pseudo-operator propagators. The instanta-
neous spectral functions can also be calculated from the
Greens functions of the pseudo operators. As mentioned
above, we are able to extract two different time scales from
our analysis, in addition to the trivial very rapid scale of the
very small time response set by the tunneling rate to the
leadssor the width of the virtual-level resonanced. The first
of these is characterized by the time to reach a quasimeta-
stable point where the time-dependent conductance has es-
sentially risen to its equilibrium value, and where the Kondo
resonance has formed into a broad quasismooth structure of
half-width roughly equal to the bias. The second is the time
scale for the emergence and formation of the narrower indi-
vidual split Kondo peakssSKPd, at a much slower time scale.
This scale is also relevant for the decay of SKP conductance
oscillations, which may provide an experimental access to it.

II. MODEL

We model the quantum dot by a single spin degenerate
level of energyedot coupled to two leads through tunnel bar-
riers. The Coulomb charging energyU prevents the level
from being doubly occupied. The system may be described
by the following Anderson Hamiltonian:

Hstd = o
s

edotstdns + o
ks

feknks + sVkcks
† cs + h.c.dg, s1d

with the constraint that the occupation of the dot cannot ex-
ceed one electron. Herecs

† creates an electron of spins in
the quantum dot, withns the corresponding number operator;
cks

† creates an electron in the leads.
For zero bias across the dot, the general features of the

static equilibrium spectral density when the dot levele is
sufficiently below the Fermi level are well known. There is a
broad resonance of half-widthGsed=2pokuVku2dse−ekd at an
energy,edot. The notationG with no energy specified will
always refer the value at the Fermi level. In addition, there is
a sharp temperature sensitive resonance at the Fermi level
sthe Kondo peakd, characterized by the low energy scale25 TK
sthe Kondo temperatured,

TK = DS G

4Ẽ
D1/2

expS−
puedotu

G
D , s2d

where D is a high energy cutoff equal to half bandwidth
when modeled by a symmetric flat band. Our calculations
here use a symmetric parabolic band of half bandwidthD0
=9G. We useD.D0/Îe, the choice that gives the correct
normalization for the leading logarithmic corrections in the

Kondo model.26 For our case whereedot is in the band,Ẽ
=D in Eq. s2d. Only for edot sufficiently below the band cut-

off does the formẼ~ uedotu, expected from the Schrieffer-
Wolff transformation from the Kondo model, result. For fi-
nite biasV, the Kondo peak splits into two sub-peaks19 at
±V/2 relative to the Fermi level, which we will always take
to be at zero energy. The nature of this splitting at largeV has
recently been elucidated.21

Our calculations use the noncrossing approximation
sNCAd, which is reliable for temperatures down toT,TK.20

The details of the time-dependent method of solution have
been described in several previous publications.26,27

Throughout this work energies, temperatures, and biases are
given in units ofG, and times in units of 1/G, with "=kB
=e=1. In the regions of parameter space whereTK ,T, andV
are much smaller thanedot and G, physical properties are
functions ofT/TK ,V/TK, and TKt, alone, provided that the
quantity under consideration is made dimensionless by ap-
propriate factors ofTK andG0;2se2/2p"d. In what follows
we mostly focus on properties relevant to this universal re-
gion, except when a property is directly relevant for experi-
ments.

In the present calculations, we investigate the transient
electric currents trough the dot. The current into the dot de-
pends on the timet as

I instd = ieo
ks

Vkkcks
† stdcsstdl + c.c. s3d

It may be divided into contributionsI leftstd and I rightstd by,
respectively, restricting thek summations to the appropriate
lead. For simplicity, we will only consider dots with left-
right symmetry. The transport current is thenIstd
=1/2fI leftstd− I rightstdg. The finite bias on the leads is taken
into account by introducing a time-dependent phase inVk in
s1d. We calculate the Keldysh propagators corresponding to
the angular-bracketed expectation values ins3d for each lead,
and hence obtainIstd.

III. TIME-DEPENDENT CONDUCTANCE RESULTS

The quantum dot systems studied in this paper all start
from an equilibrium steady state with a bias across the dot
equal toV. The initial value of the virtual level parameter
edotstd is at a negative value of magnitude sufficient that the
initial Kondo temperature is much smaller than the physical
temperatureT. This choice of virtual level parameter ensures
that the initial conductance is so small as to be negligible. In
practice we use a starting value foredotst,0d=−5G. At t
=0 the virtual level parameteredotstd is suddenly shifted to its
final value, which we will simply calledot swith no time
argumentd, with the biasV and virtual-level width parameter
G unchanged. The majority of our calculations takeedot to be
−2G, and we will denote the system so described assystem
onesS1d. Its Kondo temperatureTK=0.0022G. We also make
a number of calculations whereedot=−2.225G, for which
TK=0.0011G. This latter system we callsystem twosS2d.

When the dot level is in its lower position, the Kondo
temperature of the dot is much smaller than the system tem-
perature and the Kondo resonance is essentially absent. The
spectral function is dominated by the broad virtual level of
width ,2G centered roughly atedotst,0d. When the level is
moved, a new virtual-level resonance of width,2G is
formed around the new dot level. The time scale for the
formation of this resonance isG.10 The Kondo resonance
take longer time to form. In theGstd curves shown in this
section, only this Kondo time scale is apparent.
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A. Results for small bias

We display first the results appropriate to very smallV,
i.e., V!TK, such that the conductance is in the linear re-
sponse regime, for a variety of temperatures in system one.
These are shown in Fig. 1. It is obvious by inspection of the
figure that the rise time of the conductance, whatever its
precise definition should be, is increasing as the temperature
is lowered. This increase begins to saturate when the tem-
perature gets to aroundTK. More quantitatively the inverse
rise time srise rated is aroundTK at low temperatures, but
increases withT for higher ones. These rates are much
slower than the rateG which is associated with the virtual
level. These trends are quantified in Sec. IV.

In Fig. 2 we combine results from system one and system
two to test universality. We find the results satisfying. How-
ever, we believe that the small differences between the two
sets of curves are not due to computational inaccuracy, but
rather are true deviations from universality, however tiny.
The small time regionGt,1 is always nonuniversal, and
around 25% smaller for system two than for system one.
With our present algorithms, we cannot further separate the
time scales using much smaller Kondo temperatures, so the
results even on the Kondo time scale are still slightly af-
fected by the nonuniversal fast contribution. For this reason,
the conductances for system two will be a little smaller than
for system one. In Fourier space, one could say that there is
a small nonuniversal background, whose changes from sys-
tem one to two are reflected in the final value ofG. However,
our results clearly show that the parts expected to be univer-
sal behave in this manner.

B. Results for finite values of bias

The finite bias calculations were performed in the same
way, except that a constant biasV is present at all times. In
Fig. 3 we show the results for system one for a variety of
different biases and two different temperatures. The simple

FIG. 1. sColor onlined Time dependent conductance vs time for
system one. The ordinate is the time dependent conductanceGstd
; Istd /V in units of the open-channel conductanceG0

;2se2/2p"d. As before,Istd is the time dependent current, andV
the bias. The abscissa is the timet after the gate switches the dot
into the Kondo regime, in units ofG−1. The numbers in the legend
are the temperaturesT for the corresponding curves in units ofG.
All curves are in the linear response region of approaching zero bias
V.

FIG. 2. sColor onlined Universality of time-dependent conduc-
tance curves. The S1 curves are identical to the corresponding ones
in Fig. 7 with the time axis rescaled to inverseTK units, where here
TK=0.0022G. The S2 are curves for system twossee textd, which
has a smallerTK.

FIG. 3. sColor onlined Time dependent conductance vs time.
The ordinates are the time dependent conductanceGstd; Istd /V in
units of the open-channel conductanceG0;2se2/2p"d. HereIstd is
the time dependent current, andV the bias. The abscissas are the
time t after the gate switches the dot into the Kondo regime, in units
of G−1. Both panels are for system onessee textd, with T
=0.0015G sleft paneld andT=0.005G sright paneld. The numbers in
the legend are the biasesV in units of G for the corresponding
curves in each panel.
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descriptive facts that are evident by inspection of the rise-
times implied by these curves are that:sid for V&T there is
little change; the rising rate proportional toT discussed in the
previous Sec. III A still prevails;sii d for V*T the rising rate
increases roughly linearly withV.

On a finer scale, one may see small oscillations about the
final value, especially in the curves for largerV. These result
from the fact19,28 that in the presence of a finite biasV, the
Kondo peak in steady state is split into two peaks at ±V/2,
respectively. These split Kondo peaksSKPd oscillations were
clearly identified in earlier work.17,18,29 They have a fre-
quency almost precisely equal toV and a decay rate that is
much longer than that implied by theV and T rate scales,
something suggested by the prescient fact that in mean field
theory the oscillations are undamped.29 We put off a detailed
analysis of this effect to a later section.

C. Initial oscillations

For small times,Gt,10 in Figs. 1 and 3 there appear
oscillations, which are invisible on the scale of those figures.
As opposed to the features mentioned in the previous two
subsections, they are nonuniversal in the usual sense. How-
ever, for a given system, they take the same form and fre-
quency, independently ofT andV, at least for values of these
parameters that are much smaller thanedot or G. They are
shown in the top curve in the top panel of Fig. 4 for system
one atT=0.0015G and V=0.01G. The next several curves

show the initial oscillations for successively larger values of
uedotu. The second panel more clearly establishes that the fre-
quency of these oscillations is the difference between the
Fermi level and the virtual level position.

D. Alternative roughly equivalent measurement

The investigations described above shows that by measur-
ing the transient currents in a quantum dot subject to a finite
bias as a function of biasV and temperature, one can probe
the bias-induced and thermal broadening of the nonequilib-
rium Kondo problem. The most straightforward implementa-
tion of such a measurement would be to measure the total
charge transported through the dotQstd when the dot level is
subject to a pulse train in which the dot level is raised to the
Kondo regime for a timet. By measuring the total charge
Qstd transported through the dot during a single pulse as a
function of pulse length t and taking the deriva-
tive with respect to t ,dQstd /dt, a quantity is ob-
tained tha/home/langreth/text/papers/nordland/qdot3/2003/
PRB/resubmitt closely follows the transient currents in the
dot. The equivalence would be exact if the the current were
instantly returned to zero at the end of the pulse. Specifically

Qstd =E
0

t

Istddt +E
t

`

Istddt. s4d

Since the switching goes to a non-Kondo region, the domi-
nant contribution to the turnoff rate will be,G. This means
that the contribution of the second term ins4d will be small.
Features that occur on that scale, like the initial oscillations,
will be masked by the slightly unsharp cutoff, but theV and
T rates, as well as the SKP oscillations will be preserved. In
addition, the variation ofdQstd /dt will slightly lead of the
variation of I, because the effective cutoff time will be
slightly larger thant. We have verified these features by
explicit NCA calculations, an example of which is shown in
Fig. 5.

IV. ANALYSIS AND INTERPRETATION OF ZERO BIAS
RESULTS

A. Large time limit

In Fig. 6 we display the large time limit of our calcula-
tions for systems one and two. Since the bias is essentially
zero, these represent the steady state linear response conduc-
tance. This figure shows that our results agree with general
expectations including approximate universality.

The exact asymptotic curve at large lnsT/TKd

G

G0
=

3p2

16 ln2sT/TKd
s5d

was first calculated by Abrikosov30 for the Kondo impurity
problem, and has been more recently adapted and applied to
quantum dots.31 It can also be derived by the so-called poor
man’s scaling method.32,33 However, if one applies the per-
turbative procedure used in Ref. 21 for largeV to the similar
largeT case, one finds that within NCA, the asymptote is 4/3
times the value in Eq.s5d The NCA asymptote is the one

FIG. 4. sColor onlined Initial oscillations at short times. The top
slong-dashedd curve in the top panel is the short time version of the
system onesuedotu=2Gd curve for biasV=0.01G. Thus it represents
the very short time behavior of the curves in Fig. 3. The behavior is
similar for all biases studied. The other three curves are for other
values ofuedotu whose ratio toG is indicated in the legend. In each
case the time coordinate is rescaled as indicated, to show that the
frequency of the oscillation is about equal to the magnitude of vir-
tual resonant level’s energysmeasured from the Fermi leveld. The
renormalized value of the latter is a bit larger than the bare value
uedotu. The bottom panel, showing the second derivatives of the
curves in the top panel, more clearly identifies the period of
oscillation.
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shown in the figure. Our lowest temperature pointsnot
shownd is slightly above the unitarity limit, another NCA
error also found by others.21

B. Extraction of the rise rate

Here we use previous analytic results10 to extract the rise
time t from the data of Fig. 1. What was found there, was
that the current response to a stepped turning on of the
Kondo interaction would be the same as theequilibrium re-

sponse to a time-dependenteffective temperature Te given
by Te=T cothpTt/2". We start with the tautology
dI / I =fdsln Gd /dsln TedgdTe/Te Defining the fractionf as the
finite difference

f ;
Is`d − Istd

Is`d
, s6d

and

f0 ; − 2
dsln Gd
dsln Td

, s7d

we have in the larget limit f → f0scothpTt/2"−1d /2. which
becomes

f → f0 expS−
t

t
D , s8d

with

1

t
= pT. s9d

This suggests that we should fit the upper part of the our
curves in Fig. 1 to Eq.s8d, and compare the resultingt with
Eq. s9d. Since the derivation in Ref. 10 was only to lowest
logarithmic ordersand certainly cannot be expected to be
valid for T&TKd, there exists a possibility of logarithms of
T/TK to become predominant at largeT. However, we find
no evidence for the latter effect in the curves of Fig. 1. We
display the ratess;1/td that we find in Fig. 7. The quite
good agreement of the curves in Fig. 7 over a major part of
the range is satisfying. The curves also strongly suggest that
the low temperature limit of Eq.s9d replacesT by something
of the order ofTK. Our points appear to deviate slightly from
Eq. s9d at higher temperatures. However, our fitting proce-
dure is less accurate at high temperatures whereGs`d is

FIG. 5. sColor onlined Comparison of instantaneous conduc-
tance Gstd= Istd /V as a function of timet after the level was
moved andfdQstd /dtg /V as a function of pulse lengtht, both
expressed in units ofG0. The quantum dot is system one. The bias
across the dot isV=0.08G and the temperature isT=0.0015G.

FIG. 6. sColor onlined The large-time limit ofGstd /G0 vs tem-
perature. SinceV,0, this is the equilibrium value ofG/G0. The
points labeled S1 and S2 are from system one and two, respectively
ssee textd. The curve labeledasymptotein the legend represents the
largeT asymptote within NCAssee textd.

FIG. 7. Rates1/td at which the conductance approaches its final
value vs temperatureT, with zero biasV=0. The solid dots are for
system onessee textd, while the open circles are for system two,
which has a different Kondo temperatureTK. The solid curve is a
straight line of slopep through the originfsee Eq.s9dg.
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small, and our estimated numerical error is of the same mag-
nitude as this deviation. For this reason, we are not prepared
to say with certainty whether the slight deviation of our cal-
culated rates from Eq.s9d at large temperatures is a real
effect or not.

An analysis of the temporal evolution of the instantaneous
spectral function of the dot level does reveal significant spec-
tral reshaping of the Kondo resonance well beyond the time
where the conductance has saturated.10 This effect suggests
the presence of a slower time scale at large temperatures. We
might certainly expect a slower timescale to emerge, if we
apply the arguments of Ref. 21 to the low bias, high tem-
perature case, as done in Appendix A. A more detailed in-
vestigation of the origin of this effect and the possibility for
its experimental detection is in progress. Experimentally this
will be more difficult than the largeV case discussed later,
because here the Kondo peak is not split, so there are no
oscillations originating from that source. At the moment the
computational effort required prevents further numerical re-
sults from being presented here.

V. ANALYSIS AND INTERPRETATION OF FINITE BIAS
RESULTS

A. Large time limit

We begin by plotting the large time values ofGstd in our
finite V calculations. This quantity is the steady state conduc-
tance, and our curves in Fig. 8 supplement results previously

calculated21 for T=0, which are included in the plot. Since
the formula for the Kondo temperature used there gave a
value some 30% greater than Eq.s2d, their values forV/TK
were rescaled appropriately, so they could be put on the same
graph with ours. Our values show approximate universality
as discussed earlier and agreement with Ref. 21 in the appro-
priate regions.

B. Extraction of the rise rate

The very large time behavior of our curves in Fig. 3 is
dominated by the decay of the SKP oscillations. It is clear
that their amplitude is very small and for the smallerV’s
entirely negligible. Since the amplitude of the SKP oscilla-
tions is small, they will have no effect on any common sense
definition or experimental measurement of the risetime. De-
spite the SKP oscillations, the form Eq.s8d well describes the
upper part of the time-dependent conductance curves in Fig.
3 up until they reach within,1% of the saturation value.
Therefore, as a practical empirical technique to characterize
the rise time, we use the same technique as forV=0. The
results of this analysis are shown in Fig. 9.

C. Interpretation

If the physical origin of theT dependence in Eq.s9d is the
same as the source of theT dependence in the Korringa rate,
Eq. sA1d, then it arises because a change inS involves the
absorption of an electron-hole pair of zero energy from the
leads. The phase space for such a process is doubly restricted
by the Pauli principle, and produces the factorede fseds1
− fsedd=T where fsed is the Fermi function.

The application of these ideas to a biased dot allows the
phase space factor to be tuned in a continuous fashion by

FIG. 8. Long time or dc conductance vs bias. The ordinate
G/G0 is the dc conductance in units of the open channel conduc-
tanceG0=2e2/2p" for the two spins, while the abscissa is the bias
V in units of the Kondo temperatureTK. The triangles represent the
zero temperature NCA data of Ref. 21 with the abcissa rescaled to
correct for the,30% difference between the two definitions of the
Kondo temperature. The open circles, squares, and diamonds rep-
resent the long time saturation of our time-dependent conductance
curves for system one at the temperatures indicated. The smaller
solid symbols represent the values at the same respective tempera-
tures for system two, which is a different Kondo temperaturessee
textd.

FIG. 9. Rate sinverse timed at which the conductance ap-
proaches its “final value” vs biasV, at several temperatures as in-
dicated. The open circles, squares, and diamonds are for system one
ssee textd, while the corresponding solid symbols are for system 2,
which has a different Kondo temperature. OurV=0 points are
shown in the figure atV/TK=0.1. The solid lines are the predictions
of Eq. s10d.
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varying the biasV across the two leads of the dot, which for
simplicity we assume to be symmetric under lead inter-
change. The phase space restriction factor in this case is
given by 1

4ol,l8ede f lseds1− f l8sedd, where the indicesl andl8
designate which lead is referred to. For example, the Fermi
functions f1sed and f2sed have Fermi levels displaced by
±eV/2, respectively, wheree is the magnitude of the elec-
tronic charge andV is the bias. The integral above can be
evaluated analytically, with the result that Eq.s9d should be
replaced by

1

t
= pTFSV

T
D , s10d

where

Fsxd =
1

4
S1 + 1 +

x

1 − e−x +
xe−x

1 − e−xD . s11d

In writing Eq. s11d we have sacrificed conciseness to facili-
tate clarification of the origin of the terms in parentheses, in
terms of the wave function of the annihilated particle-hole
pair. The first two terms arise when the two components of
this object are in the same lead; in this case the existence of
V has no effect on the result; the phase space for these pro-
cesses is still constricted, and the contribution to 1/t is still
small. For the third term, the particle is on lead 1 and the
hole on lead 2; here the phase space is opened wide byV.
Finally for the fourth term, the particle is on lead 2 and the
hole on lead 1; the phase space is, aside from an exponen-
tially small tail, closed off entirely asV is increased. So the

essential physical feature deriving from Eq.s11d is that the
factor ofT in Eq. s9d is replaced at largeV by 1

4V. The notion
of an expanded phase space is implicit in the Anderson
model rate calculation of Wingreen and Meir19 and in a dif-
ferent context in the work of Kaminskiet al.12 In any case,
the rate of Eq.s10d provides a way to rationalize the calcu-
lated points in Fig. 9 in a parameter free way, which has
predictive power for the rise-time of the conductance. The
comparison shown in that figure shows that it captures the
main trends of the NCA results, although not with such good
agreement as for theV=0 casesFig. 7d.

VI. TIME-DEPENDENT SPECTRAL FUNCTION: TWO
TIME SCALES

A. Faster time scale

As an aid to the interpretation of the conductance behav-
ior, we display the time-dependent spectral functions
Adotsv ,td for the dot.31 Figure 10 shows the caseT
=0.0015G=0.69TK and V=0.08G=37TK. The snapshots
shown here are for the time scale appropriate for the risetime
of of the conductance, as shown in detail in Fig. 11. Figure
10 shows the rise of the Kondo peak as a mostly smooth
structure of half-width,V, with the individual split peaks
mostly undeveloped. This structure appears to be converging
toward a quasistationary steady state. It is clear that this time
scale, intermediate between the trivial very rapid time scale
governed by theG rate, and the longest time scale yet to
emerge, is the one governing the risetime of the conductance.

FIG. 10. sColor onlined Time-dependent spectral functions for
the time scale relevant for the rise time of the conductance. These
curves are for system one withT=0.0015G=0.69TK, and V
=0.08G=37TK. The curves are at equal time intervalsDt=2.8G−1

=0.006TK
−1=0.17s4/pVd, where the 4/pV factor is motivated by the

high temperature asymptote of Eq.s10d. This factor has the value of
unity at t=6 Dt sthick solid black curved. The lowest curve is for
time st=2 Dtd after the virtual level parameter was switched to its
final value of −2G. By curve 15 the conductance has for all practical
purposes reached its dc value.

FIG. 11. The rise in conductance as the Kondo peak forms for
biasV=0.08G at T=0.0015. The solid curve is a magnified section
of the corresponding curve in Fig. 3 with the horizontal axis shifted
as indicated in the legend. The dashed curve is the indicated expo-
nential fit. The rateR obtained in this way characterizes the risetime
sR=1/td of the conductance, and this is the rate used in the prepa-
ration of Fig. 9. Of all the curves in Fig. 3 this is the worst case for
the exponential fit, because here the SKP oscillations are largest.
The first period of these oscillations is partially visible here. Mul-
tiple cycles are shown in the larger magnification of Fig. 13. The
quantum dot is system one.
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It is probably only available through a fully nonequilibrium
theory, since it is the scale relevant for approaching a steady
state that is metastable at best. It is therefore probably un-
available through perturbation theory from the true steady
state, and hence will not likely appear in steady-state corre-
lation functions.

B. Slower time scale

Figure 12 shows the development of the spectral function
on the longest time scale, showing the rate at which the
individual split peaks emerge from the quasistructure of
width V formed at the metastable point. ForV@TK, this
latter rate is much smaller than that illustrated in Fig. 10, in
this case by an order of magnitude. During the time interval
shown in Fig. 12, the conductance changes only by the small
oscillatory amounts indicated by the SKP oscillations. In-
deed, in this time interval, the area underAdot swhenT!Vd
in between −V/2 andV/2 remains almost constant in time,
with the additional area under the split peaks being almost
exactly compensated by the loss in area between peaks. We
have verified that the conductance in this regime, which still
has a tiny fluctuation due to the SKP oscillations, is given by
the steady-state formulaffor example, Eq.s12d of Ref. 19g,
provided that theAdot used is the time-dependent instanta-
neous spectral function.34

VII. SKP OSCILLATIONS AND THE LONGEST
TIME SCALE

A. SKP oscillations in the quantum dot

In Fig. 11, which extends a little beyond the range of Fig.
10, one can see the beginnings of the SKP oscillations. The

continuations of them on a highly magnified scale are shown
in Fig. 13. Generally, many complete periods of oscillation
can be seen, and this period corresponds almost exactly to an
angular frequency ofV, becoming closer and closer from
below asV gets larger and larger. The details of this analysis
is given in Appendix B. There it is also shown that the decay
rate is close to constantsexponential decayd. For largeV this
rate is substantially smaller than the rates identified earlier
characterizing the risetime of the conductance. The method
of extraction of the rates is described in Appendix B.

For the case shown here, the decay rate of the SKP oscil-
lations is on the order of the distance to the inflection point
on either of the peaks in the converged spectral function.35

The rate is not inconsistent with, but possibly a little slower
than, the slow-scale rise rate of the time dependent spectral
function, although the latter is more difficult to pinpoint. We
can with much less ambiguity compare this rate with the 2g
rate identified in Ref. 21, and calculated forT=0; g was
defined to be the the imaginary part of the pseudofermion
self-energy.

What we find is that if we divide the SKP oscillation
decay rates by two, then these values at our lowest tempera-
ture s,0.3TKd agree within their accuracy with the 2g curve.
This is shown in Fig. 14. We are not certain why half the
decay rate is what seems to correspond to 2g but presumably
the issue is dephasing which occurs both at −V/2 and +V/2
giving roughly additive contributions. Another possibility is
that T=0 swhich is currently unavailable for usd will be fur-
ther from our lowest points atT=0.34TK than we expect. But
a definitive answer will have to await further and more com-
plete studies. What is very clear, however, is that the damp-
ing of SKP oscillations is controlled by a rate much slower
than,V for largeV, and which is numerically quite close to
the 2g rate.

FIG. 12. sColor onlined Time-dependent spectral functions for
the time scale relevant for the development of the split Kondo peak
and the damping of SKP oscillations. This is a continuation of the
snapshots shown in Fig. 10, so all the parameters have the values
shown in the caption of that figure. Here, however, the time interval
between the successive snapshots is much greater, varying from
5 Dt to 50 Dt, as indicated by the labeling in the legend. The quan-
tum dot is system one.

FIG. 13. sColor onlined SKP oscillations for biasV=0.08G at
T=0.0015. The solid curve is a magnified section of the correspond-
ing curve in Fig. 3 with the position of the horizontal axis shifted as
indicated in the legend. The dashed curve is a progressively more
magnified version of the solid curve, so that more SKP oscillations
can be seen. As indicated in Fig. 15, the angular frequency of these
oscillations is almost exactly equal toV. The quantum dot is system
one.
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B. Decay of SKP oscillations inN-fold degenerate models

We conclude this section by discussing models with larger
degeneracyN than theN=2 appropriate for quantum dots.
Repeating the largeV NCA perturbative analysis21 for that
case gives

2g =
pV

2N ln2 V
TK

. s12d

As noted in Appendix A, the NCAdoes notneed correcting
by multiplying this bySsS+1d, which would be proportional
to N2 at largeN. Equations12d indicates that the decay rate
of SKP oscillations approaches zero as 1/N for largeN. This
is consistent with the trend of NCA studies36 of this damping
as a function ofN, and with the fact29 that these oscillations
are undamped in mean field theorysN=`d. In this case the
effect of the vertex correctionssee Appendix Ad is dramatic
indeed, making a qualitative change, as opposed to the
,30% correction for theN=2 quantum dot case.

VIII. ADDITIONAL CONCLUSIONS

Many of our important conclusions are contained in the
abstract and final paragraph of the introduction. We mention
here the few that are not.

First, for V,0 the risetime of the conductance is very
accurately characterized by the simple expression 1/t=pT,
Eq. s9d, over a wide range of temperatureT.TK, and ap-
pears to heal towardsTK for smaller T. Second, for
V. ,4T, one should replaceT by V/4 in the above. These
rates appear to lead toward a quasimetastable point, and do
not negate the emergence of slower rates at longer times,
which in the case of largerV control the damping of SKP

oscillations. Third, at the very beginning of switching the
gate, there are small initial nonuniversal oscillations at a fre-
quency corresponding to the dot level’s separation from the
Fermi level sfor V’s small with respect to that separationd.
Finally we predict forN-fold degenerate models, that the
damping of SKP oscillations decreases as 1/N for V@TK.

Although our calculations are framed in terms of the
Anderson model, through universality and the Schrieffer-
Wolff transformation, we are really dealing only with the
issue of the decay of excitations produced by switching the
Kondo temperatureTK from far below the physical tempera-
ture to something that is much less below or comparable to
TK. This means that any change in the physical parameters
that have the same effect onTK sand no other effectd will
produce the same physical effects. The ability to observe the
long time scale will of course be independent of excitation
methodsone only needs to wait long enoughd, and nonuni-
versal methods such as sudden switching from a mixed va-
lent state could be used. However, the ability to observe the
the faster time scale under such nonuniversal excitation
methods must be regarded as unknown, pending further
study.
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APPENDIX A: THE KORRINGA RATE

A half a century ago, the framework and starting point for
discussion of the time scalet for a localized spin in an elec-
tron sea was set by Korringa,37 whose contribution has been
promulgated at the textbook level for decades.38 In simple
terms 1/t gives the fractional rate at which a component of
spin S representing a magnetic impuritysor a quantum dotd
is changing due to the electrons in the conduction bandsor in
the leads of a quantum dotd. It is given by an expression of
the type

1

tkor
= aT, sA1d

wherea is a dimensionless constant andT is the tempera-
ture. Although Korringa’s original derivation applied to a
nuclear spin where the interaction with electrons is dipolar, it
has been widely applied to impurity electron spins as well,
using the Kondo model

H = o
i

seki
− Jsi ·Sd, sA2d

for the interaction. In Eq.sA2d, ki is a generalized quantum
number for theith conductionsor leadd electron,eki

is its
energy, andsi is its spin operator. For a symmetric quantum
dot,k is assumed to include the information on which lead is
referred to. The exchange couplingJ is taken to be indepen-
dent ofk, aside from the usual high-energy cutoff at energies

FIG. 14. Decay of SKP oscillations vs biasV. The empty
squares, diamonds, and triangles represent data derived from the
damping rate of the SKP oscillations in our calculations of conduc-
tance vs time at the temperature indicated, respectively. The quan-
tum dot is system one. The solid circles are the calculations of 2g at
zero temperature in Ref. 21.
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further thanD above or below the Fermi level. In terms of
Anderson model parametersJ=−2uVu2/edot, where hereV is
the matrix element in Eq.s1d, and not the bias voltage. To
lowest order inJ, the quantitya in Eq. sA1d is given, for
example, by Eq.s1.16d in Ref. 39,

a = psJrd2, sA3d

wherer is the density of states in the leadssboth leads to-
getherd, when applied to a symmetric quantum dot.

One should note thatsA3d applies to a general spinsSd
Kondo model,sS= 1

2 for a quantum dotd, and there is no
factor of SsS+1d. For S= 1

2 this can be shown to be incontro-
vertible by the solution of a simple master equation for the

occupation probability of up or down spin statesṖs=
−RsPs−P−sd, whereR=R↑↓=R↓↑ is the spin-flip rate of the
dot spin due to its interaction with the lead electrons. This is
readily solved for the decay rate of an averaged spin compo-

nentkṠml=−kṠml /tkor where 1/tkor=2R=aT, whereR↓↑ was
evaluated by the Fermi golden rule, givingsA1d with a given
by sA3d.

While it is true that the equilibrium pseudo-fermion
propagator’s self-energy’s imaginary partdoes indeed con-
tain theSsS+1d factor fEq. sC4d in Ref. 39g, the time decay
rate of the spin correlator does not, because of vertex correc-
tions, which are summed in Ref. 39 via the Kadanoff-Baym
equations.

WhenJ is rescaled via the poor man’s scaling technique,
Jr→−1/ lnsT/TKd, as done by many authors to obtain results
valid for lnsT/TKd@1, one gets

1

t
=

pT

ln2 T
TK

. sA4d

Similarly one gets largeV results through the replacement
T→ 1

4V in Eq. sA4d. These agree exactly with what one gets
from high V or high T expansions21 of the NCA equations,
and we conclude that NCA gets the right answer here. Of
course, the NCA misses the factor3

4 in the conductance, Eq.
s5d, as previously pointed out.21

APPENDIX B: DETAILS OF SKP OSCILLATION
PARAMETERS

In Fig. 15 we map the successive positions of the zero
crossings as well as the positions of the maxima an minima
for the case shown in Fig. 13. It is obvious that a fixed period
is maintained over many cycles. This period is determined by
a least squares fit to the minimum and maximum positions.
The zero crossings straddle the fitted line because the peak-
to-peak envelope center is still a small way below its final
value. The decay rate was determined as shown in Fig. 16,
by a least square fit to the logarithm of the difference be-
tween the dc conductance and its value at the minimum
points vs. the time corresponding to these points. If one
looks closely, there appears to be a small curvature at the
beginning. This is probably real and not noise, as according
to Fig. 12, the split Kondo peaks in the instantaneous spec-
tral functions are still narrowing slightly in this region. Aside
from rejecting early points that were obviously out of line,
we did not attempt to account for this in the analysis. The
small misalignment of the final point, on the other hand is
certainly due to noise, an ubiquitous feature for extremely
large times, which deterred us from trying to distinguish be-
tween the “initial” and “final” slopes.

FIG. 15. sColor onlined Positions of extrema and zeros of SKP
oscillations forV=0.080G as in Fig. 13. The slope of the fitted line
gives a frequency of 0.0783G. The frequency is always slightly less
than V, but for our largestV’s, we find the difference to be only
around 0.1%. The quantum dot is system one.

FIG. 16. Determination of the decay rate of the SKP oscillations
from the positions of the minima in Fig. 13. The slope of the curve
gives a rate of 0.015G for V=0.08G andT=0.0015. These rates are
universal functions ofV/TK andT/TK, and hence depend onG ,E,
andD only through Eq.s2d. The quantum dot is system one with a
Kondo temperatureTK=0.0022G.
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