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Transient currents and universal time scales for a fully time-dependent quantum dot
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Using the time-dependent noncrossing approximation, we calculate the transient response of the current
through a quantum dot subject to a finite bias when the dot level is moved suddenly into a regime where the
Kondo effect is present. After an initial small but rapid response, the time-dependent conductance is a universal
function of the temperature, bias, and inverse time, all expressed in units of the Kondo temperature. Two
timescales emerge: the first is the time to reach a quasimetastable point where the Kondo resonance is formed
as a broad structure of half-width of the order of the bias; the second is the longer time required for the
narrower split peak structure to emerge from the previous structure and to become fully formed. The first time
can be measured by the gross risetime of the conductance, which does not substantially change later while the
split peaks are forming. The second time characterizes the decay rate of the small split Kond8K@ak
oscillations in the conductance, which may provide a method of experimental access to it. This latter timescale
is accessible via linear response from the steady state and appears to be related to the scale identified in that
manner{A. Rosch, J. Kroha, and P. Woélfle, Phys. Rev. L&¥, 156802(2001)].
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[. INTRODUCTION In the present work we consider the response of a quan-
tum dot, operating as a single-electron transistor, already
The theoretical predictiofs’® of consequences of the subject to a finite dc bias when the dot level is shifted into
Kondo effect for the steady state conduction through quanthe Kondo regime. When a finite bias is present across the
tum dots began a decade ago. At low temperatures, a narrotot, Kondo resonances appear at each of the leads. Due to
resonance in the dot density of states can form at the Fernthe finite bias, these resonances are broadened in comparison
level, leading to a large enhancement of the dot's conducwith the zero bias situatiol. While the equilibrium or zero
tance, which is strongly dependent on temperature, bias, arllas situation is relatively well understod¥imuch less is
magnetic field. Many of these effects have been recently obknow about the fully time-dependent situation, with Refs. 21
served by a set of beautiful experiments by severahnd 22 being most relevant to the present work. These two
groups?-®These successes, supplemented by the anticipatiomorks identify two separate timescales for the quantum dot
that time dependent experiments are not far behind, havie the Kondo regime, a slow time scéleand a faster on&
spurred a number of theoretical groigg to consider the The current work is a thorough study of both. While the slow
effects expected when sinusoidal biases or gate potentials atiene scale is also accessible through steady-state correlation
applied. Indeed recent experimeritbave now seen Kondo functions, one needs a full dynamical theory to access the
sidebands. Also the predictioi®of split Kondo conductance latter. Recent approaches that are complementary to the time
peaks have been observed in dodiblend multiplé® dots.  dependent NCA used here include the determination of exact
Surprisingly, the application of steps or pulses, which carspin correlation functions at the Toulose péias well as
provide a less ambiguous measure of time scales than dbe dynamical 1IN approach to time-dependent currents
modulation, have been considered less extensivelyhrough the dot? The latter work considers the effect of
theoretically:%17-18and not at all to our knowledge experi- pulsed bias potentials and obtains results consistent with
mentally. When pulsed voltage is applied to the to the quanthose we previously obtainédusing a similar perturbation.
tum dot level so that it suddenly is shifted into the Kondo Generalizations of this method would presumably also en-
regime, the conductance of the dot will begin to increaseable access to the faster or dynamic timescale mentioned
The current saturates when the system reaches its new eqabove.
librium configuration. In a previous investigatidhye con- The present calculation determines, within the noncross-
sidered a quantum dot biased by a small voltage and calcing approximation(NCA), the transient current after a gate
lated the time dependent change in linear responspulse moves the level of the single electron transistor into the
conductance when a stepped potential was applied to a gatépndo regime, under a large variety of temperatures and
thereby shifting the dot into the Kondo regime. Some generabiases. The calculations were performed using the Kadanoff-
qualitative observations were made, which now can be madBaym time-dependent Green function technique. The time
quantitative through the study of a different configuration ofloop Green functions of the pseudo-operators are solved in
voltage switching. real time on a discrete grid. The transient currents are calcu-
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lated directly from the current operator which can be ex- Our calculations use the noncrossing approximation
pressed in the pseudo-operator propagators. The instantdCA), which is reliable for temperatures down Te< Ty.?°
neous spectral functions can also be calculated from th&he details of the time-dependent method of solution have
Greens functions of the pseudo operators. As mentionedeen described in several previous publicatiifs.
above, we are able to extract two different time scales fronThroughout this work energies, temperatures, and biases are
our analysis, in addition to the trivial very rapid scale of thegiven in units of[’, and times in units of 17, with A=Kkg
very small time response set by the tunneling rate to thece=1. In the regions of parameter space whggeT, andV
leads(or the width of the virtual-level resonancelhe first are much smaller thary,; and I', physical properties are

of these is characterized by the time to reach a quasimetdunctions of T/Tk,V/Tk, and Tt, alone, provided that the
stable point where the time-dependent conductance has egdantity under consideration is made dimensionless by ap-
sentially risen to its equilibrium value, and where the Kondopropriate factors ofx andGy= 2(e?/27%). In what follows
resonance has formed into a broad quasismooth structure afe mostly focus on properties relevant to this universal re-
half-width roughly equal to the bias. The second is the timegion, except when a property is directly relevant for experi-
scale for the emergence and formation of the narrower indiments.

vidual split Kondo peak$SKP), at a much slower time scale. In the present calculations, we investigate the transient
This scale is also relevant for the decay of SKP conductancelectric currents trough the dot. The current into the dot de-
oscillations, which may provide an experimental access to itpends on the time as

lin(t) = 162 Videl, (e, (1) + c.c. 3
Il. MODEL ker

We model the quantum dot by a single spin degeneratlet may .be divided_ into contributiongeﬁ(t) and lign(t) by_,
level of energye,, coupled to two leads through tunnel bar- respectively, restricting thk summations to the appropriate

riers. The Coulomb charging enerdy prevents the level lead. For simplicity, we will only consider dots with left-

from being doubly occupied. The system may be describeff9nt Symmetry. The transport current is thef(t)

by the following Anderson Hamiltonian: _:1/2[I|eﬁ(t)—|right(t)]. The; finite- bias on the leads is _tgken
into account by introducing a time-dependent phas¥,im
H(t) = E Egolt)N, + E [y, + (VKCIUCH h.c)], (1) (1). We calculate the Keldysh propagators corresponding to
o ke the angular-bracketed expectation value&3jnfor each lead,

with the constraint that the occupation of the dot cannot ex? nd hence obtaif(t).

ceed one electron. He, creates an electron of spin in
the quantum dot, with,, the corresponding number operator;
cl, creates an electron in the leads.

For zero bias across the dot, the general features of the The quantum dot systems studied in this paper all start
static equilibrium spectral density when the dot lekels  from an equilibrium steady state with a bias across the dot
sufficiently below the Fermi level are well known. There is aequal toV. The initial value of the virtual level parameter
broad resonance of half-widii(e) =27=,|V,|?d(e—¢) at an  ey(t) is at a negative value of magnitude sufficient that the
energy~ ey The notationl” with no energy specified will initial Kondo temperature is much smaller than the physical
always refer the value at the Fermi level. In addition, there isemperaturdl’. This choice of virtual level parameter ensures
a sharp temperature sensitive resonance at the Fermi levglat the initial conductance is so small as to be negligible. In
(the Kondo peak characterized by the low energy scalg¢ practice we use a starting value fef.(t<<0)=-5I". At t

IIl. TIME-DEPENDENT CONDUCTANCE RESULTS

(the Kondo temperatuye =0 the virtual level parametey,(t) is suddenly shifted to its
12 final value, which we will simply calley, (with no time
r 7| €god . . ; .
Tk = D(—~) p<_ ¢> , (2) argumeny, with the biasV and virtual-level width parameter
4E r I unchanged. The majority of our calculations takg to be

=2I', and we will denote the system so describedsystem

whereD is a high energy cutoff equal to half bandwidth 0 (gy) |ts Kondo temperatur,=0.0027". We also make
when modeled by a symmetric flat band. Our calculationsa number of calculations wherey,=-2.229", for which
[¢] . ’

here use a symmetrigparabolic.band of half bandwidgh T(=0.001T. This latter system we catlystem twdS2).

=9I'. We useD =Dy/ e, the choice that gives the correct “\yhen the dot level is in its lower position, the Kondo
normalization for the leading logarithmic corrections in thetemperature of the dot is much smaller than the system tem-
Kondo modeF® For our case whereg is in the bandE  perature and the Kondo resonance is essentially absent. The
=D in Eq. (2). Only for € sufficiently below the band cut- spectral function is dominated by the broad virtual level of
off does the formE= ey, expected from the Schrieffer- width ~2I" centered roughly atq.{t<0). When the level is
Wolff transformation from the Kondo model, result. For fi- moved, a new virtual-level resonance of width2l' is

nite biasV, the Kondo peak splits into two sub-pe&kat formed around the new dot level. The time scale for the
+V/2 relative to the Fermi level, which we will always take formation of this resonance iE.1° The Kondo resonance

to be at zero energy. The nature of this splitting at lafdgeas  take longer time to form. In th&(t) curves shown in this
recently been elucidated. section, only this Kondo time scale is apparent.
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FIG. 1. (Color onling Time dependent conductance vs time for
system one. The ordinate is the time dependent conductaftge
=I(t)/V in units of the open-channel conductanc&;
=2(e?/27h). As before,l(t) is the time dependent current, akd
the bias. The abscissa is the timafter the gate switches the dot
into the Kondo regime, in units df~*. The numbers in the legend
are the temperatureE for the corresponding curves in units Bf
All curves are in the linear response region of approaching zero bias B. Results for finite values of bias

V. The finite bias calculations were performed in the same
way, except that a constant bis(sis present at all times. In

Fig. 3 we show the results for system one for a variety of
different biases and two different temperatures. The simple

FIG. 2. (Color onling Universality of time-dependent conduc-
tance curves. The S1 curves are identical to the corresponding ones
in Fig. 7 with the time axis rescaled to inverg units, where here
Tx=0.0027". The S2 are curves for system tweee texk, which
has a smallefig.

A. Results for small bias

We display first the results appropriate to very small

i.e., V<Ty, such that the conductance is in the linear re- °38 ' ' ' ' '
sponse regime, for a variety of temperatures in system one — 0.001

These are shown in Fig. 1. It is obvious by inspection of the —— 0.0025

figure that the rise time of the conductance, whatever its T 8-8?5
precise definition should be, is increasing as the temperatur. 06 ——— 002 -
is lowered. This increase begins to saturate when the tem — 0.04
perature gets to arountk. More quantitatively the inverse 0.08

rise time (rise rat¢ is aroundTy at low temperatures, but
increases withT for higher ones. These rates are much = 04
slower than the rat& which is associated with the virtual ©
level. These trends are quantified in Sec. IV.

In Fig. 2 we combine results from system one and system
two to test universality. We find the results satisfying. How- g2
ever, we believe that the small differences between the twc
sets of curves are not due to computational inaccuracy, bu
rather are true deviations from universality, however tiny.
The small time region't~1 is always nonuniversal, and 0 . . . . !
around 25% smaller for system two than for system one. 0 200 400 600 0 100 200
With our present algorithms, we cannot further separate the r It
time scales using much smal!er Kondo tempe.ratur.es, so the FIG. 3. (Color onling Time dependent conductance vs time.
results even on the_ Kondo time scgle are still sl!ghtly af'The ordinates are the time dependent conduct&@ite=1(t)/V in
fected by the nonuniversal fast contribution. For this reasonypits of the open-channel conductar@g= 2(€2/ 24). Herel (t) is
the conductances for system two will be a little smaller thanye time dependent current, aMtithe bias. The abscissas are the

for system one. In Fourier space, one could say that there ifmet after the gate switches the dot into the Kondo regime, in units
a small nonuniversal background, whose changes from sygf 1 Both panels are for system on@ee text with T

tem one to two are reflected in the final value®fHowever,  =0.0013" (left pane) andT=0.009" (right pane). The numbers in
our results clearly show that the parts expected to be univethe legend are the biasasin units of T' for the corresponding
sal behave in this manner. curves in each panel.
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02 - - show the initial oscillations for successively larger values of

|esol- The second panel more clearly establishes that the fre-
quency of these oscillations is the difference between the
Fermi level and the virtual level position.

D. Alternative roughly equivalent measurement

The investigations described above shows that by measur-
ing the transient currents in a quantum dot subject to a finite
bias as a function of biag and temperature, one can probe
the bias-induced and thermal broadening of the nonequilib-
rium Kondo problem. The most straightforward implementa-
tion of such a measurement would be to measure the total
charge transported through the d@tr) when the dot level is
subject to a pulse train in which the dot level is raised to the
Kondo regime for a timer. By measuring the total charge
Q(7) transported through the dot during a single pulse as a
function of pulse length + and taking the deriva-

FIG. 4. (Color onling Initial oscillations at short times. The top tive With respect to 7,dQ(7)/d7, a quantity is ob-
(long-dashejicurve in the top panel is the short time version of the tained  tha/home/langreth/text/papers/nordland/qdot3/2003/
system ond|eyod=2I") curve for biasv=0.01". Thus it represents PRB/resubmitt closely follows the transient currents in the
the very short time behavior of the curves in Fig. 3. The behavior igdot. The equivalence would be exact if the the current were
similar for all biases studied. The other three curves are for otheinstantly returned to zero at the end of the pulse. Specifically
values of|eyo] Whose ratio td is indicated in the legend. In each . -
case the time coordinate is rescaled as indicated, to show that the Q7 :J I(t)dt+J I(t)dt. (4)

0 T

115l t/m

frequency of the oscillation is about equal to the magnitude of vir-

tual resonant level’s energyneasured from the Fermi leyelThe

renormalized value of the latter is a bit larger than the bare valu&ince the switching goes to a non-Kondo region, the domi-

lesof- The bottom panel, showing the second derivatives of thenant contribution to the turnoff rate will beI". This means

curves in the top panel, more clearly identifies the period ofthat the contribution of the second term(# will be small.

oscillation. Features that occur on that scale, like the initial oscillations,
will be masked by the slightly unsharp cutoff, but teand

descriptive facts that are evident by inspection of the rise:r I’ates, as well as the SKP oscillations will be preserved. In
times implied by these curves are théj:for V<T there is  addition, the variation ofiQ(7)/dr will slightly lead of the
little change; the rising rate proportional Tadiscussed in the Vvariation of I, because the effective cutoff time will be
previous Sec. Il A still prevailstii) for V=T the rising rate ~ slightly larger thanr. We have verified these features by
increases roughly linearly with'. explicit NCA calculations, an example of which is shown in

On a finer scale, one may see small oscillations about thEig. 5.
final value, especially in the curves for largérThese result
from the fact®?8that in the presence of a finite bi&% the IV. ANALYSIS AND INTERPRETATION OF ZERO BIAS
Kondo peak in steady state is split into two peaks ¥t 2, RESULTS
respectively. These split Kondo peé&KP) oscillations were
clearly identified in earlier work?:182° They have a fre-
qguency almost precisely equal Yoand a decay rate that is In Fig. 6 we display the large time limit of our calcula-
much longer than that implied by thé and T rate scales, tions for systems one and two. Since the bias is essentially
something suggested by the prescient fact that in mean fielgkro, these represent the steady state linear response conduc-
theory the oscillations are undamp&diVe put off a detailed tance. This figure shows that our results agree with general
analysis of this effect to a later section. expectations including approximate universality.

The exact asymptotic curve at largeTinTy)

G 37?

For small times,I't<10 in Figs. 1 and 3 there appear G_=W(T/T)
oscillations, which are invisible on the scale of those figures. 0 K
As opposed to the features mentioned in the previous twevas first calculated by Abrikosé¥for the Kondo impurity
subsections, they are nonuniversal in the usual sense. Hoygroblem, and has been more recently adapted and applied to
ever, for a given system, they take the same form and frequantum dots! It can also be derived by the so-called poor
quency, independently af andV, at least for values of these man’s scaling methotf-33 However, if one applies the per-
parameters that are much smaller thgg or I'. They are turbative procedure used in Ref. 21 for laigéo the similar
shown in the top curve in the top panel of Fig. 4 for systemlargeT case, one finds that within NCA, the asymptote is 4/3
one atT=0.0019" and V=0.01I". The next several curves times the value in Eq(5) The NCA asymptote is the one

A. Large time limit

C. Initial oscillations

(5
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FIG. 5. (Color online Comparison of instantaneous conduc- Value vs temperaturg, with zero biasv=0. The solid dots are for
tance G(7)=1(7)/V as a function of timer after the level was System onesee text, while the open circles are for system two,
moved and[dQ(7)/d7]/V as a function of pulse length, both which has a different Kondo temperatufg. The solid curve is a
expressed in units dB,. The quantum dot is system one. The bias Straight line of sloper through the origi{see Eq(9)].
across the dot i¥=0.04" and the temperature =0.0019".

sponse to a time-dependeeiffective temperature cTgiven
shown in the figure. Our lowest temperature poinbt by Te=TcothwTt/27. We start with the tautology
shown is slightly above the unitarity limit, another NCA dl/1=[d(In G)/d(In T¢)]&Te/ T, Defining the fractiorf as the
error also found by others. finite difference

1) -1
B. Extraction of the rise rate f= [() ' (6)
Here we use previous analytic restflteo extract the rise and
time 7 from the data of Fig. 1. What was found there, was
that the current response to a stepped turning on of the __,dinG) R
Kondo interaction would be the same as #wiilibriumre- o “dinT)’

we have in the largelimit f — fo(coth#Tt/24-1)/2. which

10 ' ' becomes
t
08 L i f—fg exp(— —T) (8)
with
(’2\0 0.6 | ~——- g; A 1
=) —-— asymptote | - =aT. 9
% 0.4 T This suggests that we should fit the upper part of the our
curves in Fig. 1 to Eq(8), and compare the resultingwith
Eq. (9). Since the derivation in Ref. 10 was only to lowest
0.2 r 1 logarithmic order(and certainly cannot be expected to be
- valid for T<Ty), there exists a possibility of logarithms of
e T/Tk to become predominant at large However, we find
0-90_1 160 161 1(')2 0 no evidence for the latter effect ir_1 thg curves of Fig. 1_. We
, display the rateg=1/7) that we find in Fig. 7. The quite

FIG. 6. (Color onling The large-time limit ofG(t)/ Gy vs tem-
perature. Sinc&/~ 0, this is the equilibrium value o&/Gg. The

good agreement of the curves in Fig. 7 over a major part of
the range is satisfying. The curves also strongly suggest that
the low temperature limit of Eq9) replacesT by something

points labeled S1 and S2 are from system one and two, respective§f the order ofTy. Our points appear to deviate slightly from
(see text The curve labeledsymptoten the legend represents the Eq. (9) at higher temperatures. However, our fitting proce-
large T asymptote within NCA(see text dure is less accurate at high temperatures wlire) is
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FIQ. 8. Long time or dc_conquctance vs bias. The ordinate FIG. 9. Rate(inverse time at which the conductance ap-
G/Gq is the dc conductance in units of the open channel conduc-

_ . . . . ~_proaches its “final value” vs biag, at several temperatures as in-
tanceG_O—Zezlzﬂ—h for the two spins, while the abscissa is the bias dicated. The open circles, squares, and diamonds are for system one
V in units of the Kondo temperatufg. The triangles represent the

. . see text, while the corresponding solid symbols are for system 2,
zero temperature NCA data of Ref. 21 with the abcissa rescaled X P 9 y y

oh i S hich has a different Kondo temperature. O¥i=0 points are
correct for the~30% difference bgtween the two deflnlt[ons of the shown in the figure a¥/T,=0.1. The solid lines are the predictions
Kondo temperature. The open circles, squares, and diamonds reps Eq. (10).
resent the long time saturation of our time-dependent conductance
curves for system one at the temperatures indicated. The smaller

solid symbols represent the values at the same respective tempeﬁe@‘-'CUkjlteal for T=0, which are included in the plot. Since
tures for system two, which is a different Kondo temperatsee  the formula for the Kondo temperature used there gave a
text). value some 30% greater than E@), their values forV/ Ty

were rescaled appropriately, so they could be put on the same

small, and our estimated numerical error is of the same madll@Ph with ours. Our values show approximate universality

nitude as this deviation. For this reason, we are not preparedf discussed earlier and agreement with Ref. 21 in the appro-

to say with certainty whether the slight deviation of our cal-P"ate regions.
culated rates from Eq(9) at large temperatures is a real
effect or not.

An analysis of the temporal evolution of the instantaneous The very large time behavior of our curves in Fig. 3 is
spectral function of the dot level does reveal significant specdominated by the decay of the SKP oscillations. It is clear
tral reshaping of the Kondo resonance well beyond the timghat their amplitude is very small and for the smallés
where the conductance has saturafetihis effect suggests entirely negligible. Since the amplitude of the SKP oscilla-
the presence of a slower time scale at large temperatures. Wens is small, they will have no effect on any common sense
might certainly expect a slower timescale to emerge, if wedefinition or experimental measurement of the risetime. De-
apply the arguments of Ref. 21 to the low bias, high tem-spite the SKP oscillations, the form E&) well describes the
perature case, as done in Appendix A. A more detailed inupper part of the time-dependent conductance curves in Fig.
vestigation of the origin of this effect and the possibility for 3 up until they reach within~1% of the saturation value.
its experimental detection is in progress. Experimentally thisTherefore, as a practical empirical technique to characterize
will be more difficult than the large/ case discussed later, the rise time, we use the same technique asvief). The
because here the Kondo peak is not split, so there are n@sults of this analysis are shown in Fig. 9.
oscillations originating from that source. At the moment the
computational effort required prevents further numerical re- C. Interpretation
sults from being presented here.

B. Extraction of the rise rate

If the physical origin of thel' dependence in Eq9) is the
same as the source of thedependence in the Korringa rate,
V. ANALYSIS AND INTERPRETATION OF FINITE BIAS Eqg. (Al), then it arises because a changeSimvolves the

RESULTS absorption of an electron-hole pair of zero energy from the

leads. The phase space for such a process is doubly restricted
by the Pauli principle, and produces the facfate f(¢e)(1

We begin by plotting the large time values @ft) in our  —f(¢))=T wheref(e) is the Fermi function.
finite V calculations. This quantity is the steady state conduc- The application of these ideas to a biased dot allows the
tance, and our curves in Fig. 8 supplement results previouslghase space factor to be tuned in a continuous fashion by

A. Large time limit
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FIG. 10. (Color onling Time-dependent spectral functions for FIG. 11. The rise in conductance as the Kondo peak forms for

the time scale relevant for the rise time of the conductance. Thes jlasV=0.08" atT_:0.0015. Tl'he'solid curve is a magnified_ SeCFion
curves are for system one witfi=0.0018"=0.69Ty, and V of the corresponding curve in Fig. 3 with the horizontal axis shifted
=0.08"=37Ty. The curves are at equal time intervﬂ;;:z g1 as indicated in the legend. The dashed curve is the indicated expo-

:0_005;1:0_17(4/7\/)' where the 44V factor is motivated by the nential fit. The ratéRk obtained in this way characterizes the risetime

high temperature asymptote of H40). This factor has the value of (R;l/r) of the conductance, and' this_ is the. rqte used in the prepa-
unity att=6 At (thick solid black curvi The lowest curve is for ration of Fig. 9. Of all the curves in Fig. 3 this is the worst case for

time (t=2 At) after the virtual level parameter was switched to its the exponential fit, because here the SKP oscillations are largest.

final value of —2". By curve 15 the conductance has for all practical 'I_'hle flrstlperlod OL thesg OShCIlli’:ltlonS IS par_:cl_ally_ V|5|beeF_her§.3 MTurI]
purposes reached its dc value. tiple cycles are shown in the larger magnification of Fig. 13. The

guantum dot is system one.

varying the biasv across the two leads of the dot, which for . . . .
sim>|lali3ity we assume to be symmetric under lead inter_essent|al physical feature deriving from E@l) is that the

. . 1 .
change. The phase space restriction factor in this case f%ctor ofTin 'Zq'd(g) ;}S replaced at larg¥ It_)y_Z\_/' Tne nohé)n
given byiEH,fdef|(e)(1—f|,(6)),Where the indicekand|’ of an expanded phase space is implicit in the Anderson

. ; : odel rate calculation of Wingreen and Méiand in a dif-
designate which lead is referred to. For example, the Femﬁ;rent context in the work of %aminslét al’2 In any case
functions f,(e) and f,(e) have Fermi levels displaced by h f Eq(10 id o i h | -
+eV/2, respectively, where is the magnitude of the elec- Ita'?e (;ateoi(r)ns ?n( Fi) prgviln eas aa\;\;a%é%rraftrlggav\llze tvfhifzicﬁas
tronic charge and/ is the bias. The integral above can be b g P Y,

. ; predictive power for the rise-time of the conductance. The
evaluated analytically, with the result that ) should be comparison shown in that figure shows that it captures the

replaced by main trends of the NCA results, although not with such good
1 \V; agreement as for thé=0 case(Fig. 7).
—=aTFl =/, (10
T T
here VI. TIME-DEPENDENT SPECTRAL FUNCTION: TWO
wher TIME SCALES
F(x) = }(1 +1+ X — xe"x_ ) (12) A. Faster time scale
4 1-e* 1-¢€™*

As an aid to the interpretation of the conductance behav-
In writing Eqg. (11) we have sacrificed conciseness to facili- ior, we display the time-dependent spectral functions
tate clarification of the origin of the terms in parentheses, iMg{®,t) for the dot®! Figure 10 shows the cas&
terms of the wave function of the annihilated particle-hole=0.0019"=0.69Tx and V=0.08"=37Tx. The snapshots
pair. The first two terms arise when the two components oshown here are for the time scale appropriate for the risetime
this object are in the same lead; in this case the existence of of the conductance, as shown in detail in Fig. 11. Figure
V has no effect on the result; the phase space for these pré9 shows the rise of the Kondo peak as a mostly smooth
cesses is still constricted, and the contribution te is/still  structure of half-width~V, with the individual split peaks
small. For the third term, the particle is on lead 1 and themostly undeveloped. This structure appears to be converging
hole on lead 2; here the phase space is opened widé. by toward a quasistationary steady state. It is clear that this time
Finally for the fourth term, the particle is on lead 2 and thescale, intermediate between the trivial very rapid time scale
hole on lead 1; the phase space is, aside from an exponegeverned by thd’ rate, and the longest time scale yet to
tially small tail, closed off entirely a¥ is increased. So the emerge, is the one governing the risetime of the conductance.
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] ] ] FIG. 13. (Color online SKP oscillations for biad/=0.0a" at

FIG. 12. (Color onling Time-dependent spectral functions for -0 0015. The solid curve is a magnified section of the correspond-
the time scale relevant for the development of the split Kondo peal,g curve in Fig. 3 with the position of the horizontal axis shifted as
and the damping of SKP oscillations. This is a continuation of thejngicated in the legend. The dashed curve is a progressively more
snapsh_ots shown_ in Fig. 10,_ so all the parameters ha\_/e th_e Va'“%gnified version of the solid curve, so that more SKP oscillations
shown in the caption O_f that figure. Here, however, the time |_ntervat:an be seen. As indicated in Fig. 15, the angular frequency of these
between the successive snapshots is much greater, varying frogyijjations is almost exactly equal ¥o The quantum dot is system
5 At to 50 At, as indicated by the labeling in the legend. The quan-gpe.
tum dot is system one.
continuations of them on a highly magnified scale are shown
It is probably only available through a fully nonequilibrium " F'g' 13. Gen%ra:]'y, mamzj complete %erlolds of OSC'”F“O”
theory, since it is the scale relevant for approaching a steadf?" P€ S€en, and this period corresponds almost exactly to an

state that is metastable at best. It is therefore probably u ingular frequency oW/, becoming closer r?md clo_ser from_
elow asV gets larger and larger. The details of this analysis

available through perturbgtion theory from the true stead s given in Appendix B. There it is also shown that the decay
f‘;ﬁg? :Jr:it?c()ennsce will not likely appear in steady-state correz;, is close to constatexponential decay For largeV this
: rate is substantially smaller than the rates identified earlier
B. Slower time scale characterizing the risetim_e of thel conductance. _The method
' of extraction of the rates is described in Appendix B.

Figure 12 shows the development of the spectral function For the case shown here, the decay rate of the SKP oscil-
on the longest time scale, showing the rate at which thdations is on the order of the distance to the inflection point
individual split peaks emerge from the quasistructure ofon either of the peaks in the converged spectral function.
width V formed at the metastable point. Fot>T, this  The rate is not inconsistent with, but possibly a little slower
latter rate is much smaller than that illustrated in Fig. 10, inthan, the slow-scale rise rate of the time dependent spectral

this case by an order of magnitude. During the time intervafunction, although the latter is more difficult to pinpoint. We

shown in Fig. 12, the conductance changes only by the smafian with much less ambiguity compare this rate with the 2
oscillatory amounts indicated by the SKP oscillations. In-raté identified in Ref. 21, and calculated f6~0; y was

deed, in this time interval, the area undgg, (WhenT<V) defined to be the the imaginary part of the pseudofermion

in between ¥/2 andV/2 remains almost constant in time, Self-energy. _ o .

with the additional area under the split peaks being almost What we find is that if we divide the SKP oscillation
exactly compensated by the loss in area between peaks. Vlecay rates by two, then these values at our lowest tempera-
have verified that the conductance in this regime, which stilfure (~0.3Tx) agree within their accuracy with theyZurve.

has a tiny fluctuation due to the SKP oscillations, is given byThis is shown in Fig. 14. We are not certain why half the
the steady-state formuldor example, Eq(12) of Ref. 19, decay rate is what seems to correspond+d@t presumably

provided that theAy, used is the time-dependent instanta-the issue is dephasing which occurs both ¥tz and /2
neous spectral functiot. giving roughly additive contributions. Another possibility is

that T=0 (which is currently unavailable for wsvill be fur-

VIl. SKP OSCILLATIONS AND THE LONGEST ther from our lowest points 8t=0.34T than we expect. But
TIME SCALE a definitive answer will have to await further and more com-
A. SKP oscillations in the quantum dot plete studies. V\_/ha_t is very clear, however, is that the damp-
: ing of SKP oscillations is controlled by a rate much slower

In Fig. 11, which extends a little beyond the range of Fig.than~V for largeV, and which is numerically quite close to
10, one can see the beginnings of the SKP oscillations. Thihe 2y rate.
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10 oscillations. Third, at the very beginning of switching the

gate, there are small initial nonuniversal oscillations at a fre-
quency corresponding to the dot level's separation from the
Fermi level (for V's small with respect to that separatjon
Finally we predict forN-fold degenerate models, that the
damping of SKP oscillations decreases abl Idr V> Ty.
Although our calculations are framed in terms of the
Anderson model, through universality and the Schrieffer-
Wolff transformation, we are really dealing only with the
issue of the decay of excitations produced by switching the
Kondo temperatur@y from far below the physical tempera-
ture to something that is much less below or comparable to
Tk. This means that any change in the physical parameters
that have the same effect drx (and no other effegtwill
produce the same physical effects. The ability to observe the
long time scale will of course be independent of excitation
method(one only needs to wait long enougtand nonuni-
versal methods such as sudden switching from a mixed va-
FIG. 14. Decay of SKP oscillations vs biag The empty lent state co'uId be used. However, the abil?ty to obser\_/e Fhe
squares, diamonds, and triangles represent data derived from tII\Qe faster time scale under such nonunlversal'eXCItatlon
damping rate of the SKP oscillations in our calculations of conducM€thods must be regarded as unknown, pending further
tance vs time at the temperature indicated, respectively. The qua®tudy.
tum dot is system one. The solid circles are the calculationsy @it2
zero temperature in Ref. 21. ACKNOWLEDGMENTS
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B. Decay of SKP oscillations inN-fold degenerate models

Y APPENDIX A: THE KORRINGA RATE

= 12
2N InleK (12

2y A half a century ago, the framework and starting point for

discussion of the time scatefor a localized spin in an elec-
As noted in Appendix A, the NCAloes noteed correcting tron sea was set by Korringdwhose contribution has been
by multiplying this byS(S+ 1), which would be proportional promulgated at the textbook level for decad&sn simple
to N? at largeN. Equation(12) indicates that the decay rate terms 1/ gives the fractional rate at which a component of
of SKP oscillations approaches zero afNXér largeN. This  spin S representing a magnetic impurifgr a quantum dot
is consistent with the trend of NCA stud#®f this damping  is changing due to the electrons in the conduction KHanéh
as a function oN, and with the fac® that these oscillations the leads of a quantum dott is given by an expression of
are undamped in mean field thedif=<). In this case the the type

effect of the vertex correctiofsee Appendix Ais dramatic 1

indeed, making a qualitative change, as opposed to the — =afT, (A1)
~30% correction for theN=2 quantum dot case. Tkor

where « is a dimensionless constant aids the tempera-
ture. Although Korringa’s original derivation applied to a
VIil. ADDITIONAL CONCLUSIONS nuclear spin where the interaction with electrons is dipolar, it
Many of our important conclusions are contained in theN@S been widely applied to impurity electron spins as well,
abstract and final paragraph of the introduction. We mentioSing the Kondo model
here the few that are not. H=> (e -Js -S)
First, for V~0 the risetime of the conductance is very i k=S o)
accurately characterized by the simple expressiorFT,
Eq. (9), over a wide range of temperatuffe> Ty, and ap-  for the interaction. In Eq(A2), k; is a generalized quantum
pears to heal towardsTy for smaller T. Second, for number for theith conduction(or lead electron, ¢ is its
V> ~ 4T, one should replac& by V/4 in the above. These energy, ands is its spin operator. For a symmetric quantum
rates appear to lead toward a quasimetastable point, and dot, k is assumed to include the information on which lead is
not negate the emergence of slower rates at longer timeseferred to. The exchange couplidds taken to be indepen-
which in the case of large¥ control the damping of SKP dent ofk, aside from the usual high-energy cutoff at energies

(A2)
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FIG. 15. (Color online Positions of extrema and zeros of SKP FIG. 16. Determination of the decay rate of the SKP oscillations
oscillations forv=0.08Q" as in Fig. 13. The slope of the fitted line from the positions of the minima in Fig. 13. The slope of the curve

gives a frequency of 0.0783 The frequency is always slightly less 91Ves a rate of 0.015for V=0.08" andT=0.0015. These rates are
thanV, but for our largesV's, we find the difference to be only Universal functions oW//Ty andT/Ty, and hence depend dn,E,

around 0.1%. The quantum dot is system one. andD only through Eq{(2). The quantum dot is system one with a
Kondo temperaturd,=0.0022".

further thanD above or below the Fermi level. In terms of 1 T

Anderson model parameteis —2|V|?/ €4, Where hereV is =T (A4)

the matrix element in Eq(l), and not the bias voltage. To Tk

lowest order inJ, the quantitye in Eq. (A1) is given, for  Similarly one gets largd/ results through the replacement
example, by Eq(1.16 in Ref. 39, T— 3V in Eq. (A4). These agree exactly with what one gets
from high V or high T expansion& of the NCA equations,
and we conclude that NCA gets the right answer here. Of

— 2
a=7(Ip)%, (A3) course, the NCA misses the facl%lin the conductance, Eqg.
(5), as previously pointed oét.
wherep is the density of states in the leaflsoth leads to- APPENDIX B: DETAILS OF SKP OSCILLATION
gethej, when applied to a symmetric quantum dot. PARAMETERS

One should note thatA3) applies to a general spifB) i , "
In Fig. 15 we map the successive positions of the zero

Kondo model,(Szé for a quantum dot and there is no , I h > £ th . o
factor of §S+1). For S=1 this can be shown to be incontro- crossings as well as the positions of the maxima an minima
. 2 . . for the case shown in Fig. 13. It is obvious that a fixed period
vertible by the solution of a simple master equation for theig maintained over many cycles. This period is determined by
occupation probability of up or down spin statés = a least squares fit to the minimum and maximum positions.
-R(P,—P_,), whereR=R; =R/, is the spin-flip rate of the The zero crossings straddle the fitted line because the peak-
dot spin due to its interaction with the lead electrons. This igo-peak envelope center is still a small way below its final
readily solved for the decay rate of an averaged spin compo+alue. The decay rate was determined as shown in Fig. 16,

nent(S,)=—(S,)/ 7o, Where 1fo,=2R=aT whereR,; was by a least square fit to the logarithm of the difference be-
or or ’

evaluated by the Fermi golden rule, givioil) with iven tween the dc conductance and its value at the minimum
by (A3) y 9 9 a9 points vs. the time corresponding to these points. If one

SO I . looks closely, there appears to be a small curvature at the

While it is true that the equilibrium pseudo-fermion peqginning. This is probably real and not noise, as according
propagator’s self-energy’s imaginary patvesindeed con- (4 Fig. 12, the split Kondo peaks in the instantaneous spec-
tain theS(S+1) factor[Eq. (C4) in Ref. 39, the time decay 4| functions are still narrowing slightly in this region. Aside
rate of the spin correlator does not, because of vertex corregrom rejecting early points that were obviously out of line,
tions, which are summed in Ref. 39 via the Kadanoff-Baymwe did not attempt to account for this in the analysis. The
equations. small misalignment of the final point, on the other hand is

WhenJ is rescaled via the poor man’s scaling techniquecertainly due to noise, an ubiquitous feature for extremely
Jp——1/In(T/Ty), as done by many authors to obtain resultslarge times, which deterred us from trying to distinguish be-
valid for In(T/Tk)>1, one gets tween the “initial” and “final” slopes.
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