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Quantum trajectories for the realistic measurement of a solid-state charge qubit
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We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model
the effectsof a realistic measurement, namely adding noise to, and filtering, the current through the detector.
This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the
evolution of the qubit stateonditionedon the macroscopic output of the external circuit. We achieve this by
generalizing a recently developed quantum trajectory theory for realistic photodefé&ctdfarszawski, H. M.
Wiseman, and H. Mabuchi, Phys. Rev. 865, 023802(2002] to treat solid-state detectors. This yields sto-
chastic equations whogaumerica) solutions are the “realistic quantum trajectories” of the conditioned qubit
state. We derive our general theory in the context of a low transparency quantum point contact. Areas of
application for our theory and its relation to previous work are discussed.
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I. INTRODUCTION within the detector to which a real observer has no direct

The field of research that surrounds the quest for a large3ccess. Being able to determine the state of a quantum sys-
scale quantum computer is very exciting. At present, solidiem conditioned on actual measurement results is essential
state proposals® seem promising. The ability to read out the for understanding and designing feedback corft8f-2’As
state of the quantum bitgjubit9 of information is of obvi-  well as being intrinsically interesting, this is also expected to
ous importance in any quantum computational scheme. lbe important in quantum computing, both for state prepara-
this paper we consider continuous measurement of the stat®n and quantum error correctigfr3°
of a pair of coupled quantum dot€QDS occupied by a A quantum trajector{?*1-33describes the Markovian sto-
single excess electron. This constituteshargequbit. It is  chastic evolution of an open quantum system conditioned on
worth mentioning that spin qubft® are considered more continuous monitoring of its output by lare detector. A
favorably for solid-state quantum computation due to their‘bare” detector is one which does not include the noisy fil-
relatively long coherence timé&shut read-out may have to tering characteristic of realistic measurements. In an experi-
be performed via charge qubits using spin-to-chargement the output from this detector is filtered through various
conversiont’8 noisy electronic devices. Due to the finite bandwidth of all

The evolution of solid-state qubits subject to continuouselectronic devices, the evolution of the conditional state of
measurement has received considerable theoretical considéite quantum system must be non-Markovian. A general
ation recently’~1° Single realizations of the continuous mea- method of describing this evolution was presented in recent
surement of a solid-state CQD qubit, knownamditional  paperé*3® by Warszawski and Wiseman in the context of
(or selective evolution, have been treated by a number ofphotodetection, where it was applied to an avalanche photo-
groupst~1° These works conditioned the qubit evolution on diode and a photoreceiver. In the present paper the theory of
guantum processdsuch as tunnelingat the scale of a me- Ref. 35 is applied to a solid-state detector—the low transpar-
soscopic detector. They did not consider conditioning on thency quantum point contdct® (QPQO, or tunnel junction,
macroscopic current that is realistically available to an obwhich is an ideal detectdt. In our approach an equivalent
server. In particular, they ignored the noisy filtering charac-circuit is used to model the effects of a realistic measure-
teristic of the external circuit, including an amplifier. It is ment. Note that for clarity we will use the terminologhe-
worth noting that nonidealities have been considered in somector for a bare detector ancheasurement devider a de-
of these works. Reference 13 considered a detector with exector embedded within a measurement circuit.
cessive back-action. Reference 17 did this also, and also con- The paper is organized as follows. We begin in the next
sidered extra classical noise, phenomenologically. Referencgection by describing our models for the qubit and the QPC
16 considered “inefficient” measurements. None of thesdincluding the monitored qubit’s conditional and average dy-
considered filtering. namics in the bare detector cas®Ve then introduce and

In this paper we consider the evolution of a solid-stateanalyze our equivalent circuit for realistic measurement in
qubit conditioned on the output available to a realistic ob-Sec. Ill. The method of deriving realistic quantum trajecto-
server, which has been filtered and degra@ded, made more ries is presented in Sec. IV in the context of a QPC. We
noisy) by an external circuit. That is, we are interested in thediscuss our results in Sec. V and conclude in Sec. VI with a
evolution of the system conditioned on information availablesummary, comparison with previous work, and prospects for
to an observer, not on the microscopic events occurrindguture work.
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— measurement result from the detector. The conditional dy-
namics of continuously measured CQD systems have been

-0 treated by Bloch-type equatiofd? quantum trajectory
et | I theory!31416 and a Bayesian formalisf}:121517:18 This
CJ - Bayesian formalism has been shown to coincide with the
+QJ qubit quantum trajectory formalism with only notational differ-

ences(see the Appendix of Ref. 14All three formalisms
coincide for the ensemble average dynamics of the measured
+ CQD system. In the stochastic approach, tMarkovian

FIG. 1. An equivalent circuit for a low transparency QPC or Cond'tlonal dynamics O.f the measure(_d QUb't. state is de-
tunnel junction and nearby charge qubit. The arrow indicates théc”bed with a StOCflaStIC master equathn. This generates a
direction of electron tunneling through the QR@presented by a quantum trajectory, _SO (_:alled because it tracks the state of
current source the quantum system in time. We also present the ensemble
average master equation.

The equivalent circuit for the QPC coupled to the qubit is
shown in Fig. 1. We represent the tunnel junction by a ca-
In this section we describe the models for the qubit anddacitanceC;, which contains the charg®;. The stochastic
the detector. Using a master equation formalism we preser@lectron tunneling events through the junction are repre-
the conditional and ensemble average dynamics of the qub®ented by a current source. The location of the CQD electron
state when measured by a low transparency QPC. The coghanges the height of the potential barrier in the QPC and
ditional qubit dynamics in the bare measurement case areonsequently the current through it, thus providing the means
represented by atochasticmaster equation. We choose to t0 measure the qubit state. For simplicity, we assume that
present stochastic differential equations in the 1té formalisnelectrons tunnel only from source to drain. This tunneling

rather than the alternative Stratonovich formalfnExten-  occurs at two different rates, namelyandr’, which corre-
sion of the theory to our more realistic measurement casépond to the neafdot 1) and far(dot 20 CQD being occu-
occurs later. pied, respectively.

Figure 1 is a schematic representation of the CQD qubit The ensemble average master equation for the qubit state,
and nearby low transparency QPC or tunnel junction. The, when measured by a low transparency QPC, or similar
CQDs (labeled 1 and Rare occupied by a single excess single tunnel-junction device, %3%13.14
electron, the location of which determines the logical state of dp(t) A
the qubit. We assume that each quantum dot has only one —— =~ i[Hgnp()]+ D[T+ XA]p(t) = Lp(t). (2
single-electron energy level available for occupation by the dt
qubit electron. These energy levels are denoteBgndE,.  peren=¢lg, is the occupation of the near dot. The Lindblad

Using the convention ofi=1 (as we will for the entire g neroperatoD represents the irreversible part of the qubit
papey, the total Hamiltonian for the qubit can be written as g olution—the decoherence. It is defined in terms of two

other superoperators] and A:

D[X]p = JXIp - AlX]p, (3

where ), is the coefficient of tunneling between the qubit where7 (the “jump” superoperatorand.A (the anticommu-
dots andg,; (&,) is the Fermi annihilation operator for the tating superoperatpare defined by

single available electron state within the qubit dot labeled 1 N S ot

(2). The qubit electron tunnels between the two dots at the JIX]p = XpX', (4)
Rabi frequenc;&):\r’ﬂng, wheree=E;-E, is the asym-
metry in the CQD energy levels.

The state of a measured quantum system is affected by the
detector in two ways. First, there is the measurement back- _ )
action caused by their mutual interaction. Second, if the out] hese superoperators, introduced in Ref. 32, are used com-
put of the detector is observed, then the state of the system f8only in quantum optics measurement theory. _
conditioned by the stochastic outcomes. We describe the con- For simplicity we assume real tunneling amplitudes
ditional dynamics of the measured qubit, including the meaWhereby
surement back-action, using a stochastic approach. In the T2=t', (T+X)?2=r (6)
case of measurement with a bare ideal detector, the state of ' '
the qubit is conditioned by electron tunneling events througtwhich implies thatt<0. Complex tunneling amplitudes are
the detector which constitute an idealized output current. Foallowed in the model of Ref. 14 and the generalization here
such an ideal detector the measurement back-action isould be straightforward.
quantum-limited, also called Heisenberg-limiféd. A realistic observer may not be able to tell when a tun-

A number of formalisms exist that describe the evolutionneling event through the QPC occurs. However, we argue
of a measured quantum system conditioned on a particulahat in principle this information would be contained in the

Il. SYSTEM

~ R R QO R R
Hgo= E; 818, + ELCh¢, + ?O(Czcz +&5e), (1)

A[X]p = %(k*kp + pXTX). (5)
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modelseffectsof realistic measuremertadditional classical
noise and filtering of the signalnot an actual experimental
apparatus.
The circuit is biased by a nonideal dc voltage consisting
of a noiseless voltage and a noisy voltage sourag. This
(white) noise source could be considered as the Johnson-
Nyquist noise from the equivalent circuit resistariReat
qubit some effective temperatuiie. We emphasize again that this
is a model only and need not correspond to a real tempera-
ture in an actual apparatus. The small current through the
detector is amplified, then measured. In this process an ob-
server will see white noise in addition to the current through
the detector. This is modeled by adding a noisy output cur-
rent e,/ R, to the signal from the detector prior to measure-
movement of the Fermi sea electrons in the leads attached t@ent by a perfect ammeter, yielding the curr@ntThe para-
the QPC. Thus we can legitimately representcbeditional  sitic capacitanceC across the detector is due to the large
evolution of p(t) (denoted with a superscript) in terms of  cross-sectional area of the leads relative to the detector junc-
these microscopic events. Using the method for quanturgion,
jumps introduced in Ref. 13, this conditional evolution is  Again, it is important to note that the circuit components
described by the following Itd stochastic master equatfon: are not necessarily representative of an actual experimental
T[T+ AA] setup. For exampl_e, an amplifier does not consist of a noisy
dp#(t) = dN(t)) =————— — 1 [ p(t) vol'gage and a resistor, rather the obsereéféctof amplifi-
E[dN(t)]/dt cation of the current through the detector can be modeled as

FIG. 2. A schematic of our equivalent circuit for the realistic
measurement of the state of a CQD charge qubit.

1. . the addition of an output noisg/R, to the current through
- dtH[—R+ inb}p“(t), (7)  the detector. Although our description of the circuit is rather
2 simple, we believe that it is a reasonable starting point that
where we have introduced the classical point procké@)  Models some essential effects of a realistic measurement.
that represents the numb@ither 0 or 3 of electron tunnel- F_uturg |mprovemen'§s to_ this circuit mod(_al could include con-
ing events through the QPC in an infinitesimal time intervalSidering an actual circuit from an experiment.

[t,t+dt). The expectatiofiensemble averayealue ofdN(t) We analyze the equivalent circuit with the low transpar-
is ency QPC as the detector and produce expressions for the

measured currerii(t) and the time evolution of the parasitic
E[dN(t) | =dt TI{J[T+ Xn]p*(t)]. (8) capacitor charg€(t). The variableQ(t) is used to describe

. . the state of the circuit part of the measurement device.
In Eq. (7) we have also introduced the convenient superop- For the moment, ignore tunneling through the QPC.

erator’{ and operatoR which are defined by Analysis of the measurement circuit using Kirchhoff's elec-
2 ot S ot trical circuit laws yields the following 1t6 differential equa-
H[X]p = Xp + pX" = T (X+ X")p]p, (9 tion for the increment irQ (the charge on the parasitic ca-
pacitop due to the circuit components
R= (T+ ARh)2. (10)
- _[LQH & &
It can be seen from the master equati@nthat the mini- dQ(t) ={- rReRYR dt. (11
mum tunneling rate through the QPE,occurs when qubit : R R
dot 1 is occupiedn=1). This is due to maximum electro- Similar analysis yields an expression for the measured
static repulsion between the qubit electron and electrons iourrent as a function of time:
the QPC vicinity. Accordingly, the maximum QPC tunneling
rate r’ occurs whenn=0. These tunneling rates could be Qb & e g
functions of the voltage across the detector, which we con- It =- E + R E Eo (12)
1

sider as changing with time. However, this would necessarily

mean that the measured qubit's evolution cannot be de- For the purposes of our work it is useful to express the
scribed by the quantum master equation formalism. To allowJohnson-Nyquigtnoise source® and e, in terms of sto-

for this would be to go beyond what anyone has done in thishastic increments. In the steady state, Johnson-Nyquist volt-
area. age noise iswhite noise and has a flat spectrum

Ill. EQUIVALENT CIRCUIT FOR REALISTIC S=2gTR (13)

MEASUREMENT . . .
whereT is the temperature of the resistBrand kg is Bolt-

Our equivalent circuit for realistic measurement of thezmann’s constant. The current spectr(fispectral densityf
CQDs is shown in Fig. 2. We emphasize that this circuitdefinitiorf® used here is
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_fc i wrG(Nd 14 dP( )-dt(— im+ E&—Z— "EidW)P( )
S(w) = » exdiw7]G(7)dr, (14 a)= aq 2 (?qz N |(9q i q
+dN[P(q-e) - P(q)], (18)

where G(7) is the two-time autocorrelation function of the
measured currefit. Obviously a current flow is not an equi- wherem=-aq+ . This equation gives the increment in the
librium situation, but for reasonable bias voltages the approbability distribution for the charge on the parasitic capaci-
proximation of Eq.(13) remains valid'* For simplicity, we  tor conditioned by the unobserved microscopic evepts
take the flat spectra of the input and output voltage noises toccurring within the measurement device.

be D;R? and D,RZ, respectively. This allows us to write

Egs.(11) and(12) in terms of the input and output Wiener B. Zakai equation

processestiW(t) and dWe(t), as The state of the circuit part of the measurement device is
o) e _ now represented by the probability distributiBfg) that was
dQ(t) = (- —+ —)dt+ VD dW(1), (15)  introduced in the previous section. The state of this classical
RC R system changes upon measurement anB(gd must be up-
dated. The best estimate of the new probability distribution
Qt) & —dW(t) —dW,(1) representing the conditioned state of the measurement de-
RC + R +D; at VD, at (16)  vice, given a measurement resiiltis found using Bayesian
analysié® to be
where D;=2kgT;/R; and D,=2kgT,/R,. These expressions 5 P(Z|q)P(q)
correct the expressions in Refs. 34, 35, and 42 fré@T4R P(q|Z) = ,
to 2kgT/R. The Wiener increment is related to Gaussian A
white noise&(t) by dw(t)=&(t)dt.3” B B ~ . .
Now consider a single electron tunneling event throughwhe.reA(I)_qu_?/a)' H_ere P(al2) is read “the prqb-
the QPC[dN(t)=1]. The charge on the parasitic capacitorab'“ty of g given Z.” The tilde denotes an unnormalized

will change by an amouredN{), wheree is the charge on d!strlbutlon and the valu_e ofil=pB/« is chosen for conve-
o nience. The Zakai equation tells us how to update the prob-
an electron. This gives

ability distribution P(g) when the measurement resltis
obtained. The quantit?(Z|q) is the probability of obtaining
the resultZ given that the state ig. We will use the simpler
where we have introduced the simplifying notations notatioan(I).E PZ|a), wr_]'ere. the. subscript denotes the re-
=1/RC and B=¢/R;. The solution to this differential equa- sult upon which the copd|t|on|ng IS perfor.me(-d(I)Scan be
tion gives the value of)(t) that may be substituted into Eq. thought of as th@stensibleprobability distribution’® as op-

(16) to give a lengthy expression for the measured curtent. posed to the actual probability distribution

P(Z) = f daP(Z|g)P(q) = A(2) f dgP(gD), (20

() = -

(19

dQ(t) =[~ aQ(t) + Bldt + \DAW(t) +edNt), (17)

IV. DERIVATION OF REALISTIC

QUANTUM TRAJECTORIES which replacesA(Z) in the expression for the normalized

The derivation of realistic quantum trajectories follows adistribution P(q|Z).%
number of well-defined steps as presented for photodetectors From our expression for the measured current, E@),
in Ref. 35. We refer the reader to Ref. 35 for specific details((Z) is a Gaussian distribution with a variance of
of the derivation steps and only present the essential poins(D;+D,)/dt and a mean ofm=-aq+B. Thus Eq.(19)
and details that are unique to the solid-state situation. Notegives the Zakai equatiofto orderdt):
however, that we use a somewhat simpler derivation, using
the Zakai equation in Sec. IV B rather than the Kushner- E’I(Q) = {1 +Idtm}l3(q), (21)
Stratonovich equation of Ref. 35. Ds

where we have defineBs=D;+D, for convenience. Note
A. Stochastic differential Chapman-Kolmogorov equation that 7 has the ostensible distribution(Z)=exd-7?/2v]/
. . . . 27v.
Equation(15) describes the evolution of the circuit state vemy

for situations where&(t) is known. A realistic observer will
not have direct access to the precise valu®@j due to the
randomness of the microscopic events occurring within the Our description of the stochastic conditional evolution of
device. We therefore require an equation for the evolution othe measurement device is found by combining the incre-
the probability distribution forQ, written P(q). Following  mentsdP*(q) anddP;(q) given in the previous two sections.
the procedure outlined in Ref. 35, we obtain the stochastidhe stochasticity of these two increments is related as the
differential Chapman-Kolmogoro(SDCK) equation for the input noisedW plays a role in both. For this reason we must
evolution of P(q): combine them into one increment using

C. Combining the stochastic increments

165317-4
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P F - Tdt
P(q) + dP¥(o) = [1 +1dtDﬂJ[p<q> +dPHQ)], (22 dp(o)= {dt(— L+ %iz) + (m- Di%)D—2

aq q
rather than by simply adding them together. Remembering DD, ¢ .
that we will eventually average over unobserved processes, ty D—Ea—qu’ + E[dN] + dt(£ - J[T+ A7)
the input noise needs to be separated into observed and un- T+ ARTG - @)
observed parts. We express this as %5(q) +dN rlq —E(Q)}- (31)
E[dN]/dt
dW = aZdt+ bdW + cdt, (23
Averaging over unobserved procesgdd/ anddN) is the

where next step in the derivation of realistic quantum trajectory

equations and yields an expression &r;(q). This proce-

dWZdt=0. (24) dure removes the stochasticity associated with the unob-

b q d ined . erved processes within the detector and leaves the stochas-
Here a, b, andc are as yet undetermined expressions anGicir, associated with the measuremet). The resulting
dW is unobserved, normalized white noise that is unrelate

. quation is called a superoperator Zakai equation as we have
to the known outpuf. When averages are taket) will be : . L
averaged over and kept. The observed outpliEg. (16)] obtained a quantum analog of the Zakai equation in that from

b d measurement we are conditioning the state of a supersystem
can be expressed as that contains a quantum system. It is important to realize that
after averaging over unobserved processes the supersystem

- D.dw + D
Tdt=mdt+ VDidW + VD,dW. (25) statep(q) +dp;(q) will not factorize as in Eq(30).

Using Eqgs.(24) and (25) gives the expression fa\W':

E. Normalization

\DidW, - VDdW
B - (26) Normalization of the superoperator Zakai equation is the
A final step in our derivation and yields the superoperator
Using this in Eq.(23) and equating the left- and right-hand Kushner-StratonovicliSKS) equation. The normalization is
sides allowsa, b, andc to be determined. Substitution af ~ achieved as follows:
b, andc back into Eq.(23) yields

dw' =

p(a) +dpz(q)
- _ - p(a) + dpsfe) = — PP FEE (3
dW = 7t - 4| —2dW - ~—'mdt (27) f Tr{p(0) + dpz(q)]dq
Dy Dy Dy
Using this result and the SDCK equatiffiq. (18)] in Eq.  After normalization the true expression for the observed cur-
(22) gives rentZ should be substituted into the SKS equation. The true
probability distribution forZ can be found using Ed21) in
~ 9 D, # Eq. (20) to yield
P(q) +dPH(@) = 1+dtl - —m+—~—
a2 P(Z) = (2m) exd - (T+ Q) - p%2v], (39

d \Zdt DD, a9 - : )
+ (m— Di_>_ /2 oL 4w {P(q) where(Q)-fqP(q)dq. Thus the true expression for the ob
dq/) Dy Dy dq served current is

+dN[P(q-e) - P(q)]. (29) 7dt= (- Q) + B)dt+ VDsdW, (34)

This result represents the evolution of the circuit state conwhered)V is theobservedvhite noise(a Wiener increment
ditioned on both the microscopic events occurring within theHere the average &)= /qTr[p.(q)]dg, since we are con-

device and the observed curreht sidering the outpufZ for the combined classical-quantum
supersystem.
D. Joint stochastic equation Averaging over the unobserved noid@/ and tunneling

rRrocesst yields the superoperator Zakai equation, which
upon normalization via Eq.32) and substitution of Eq.34)
for Z produces the SKS equation:

The stochastic state of the joint classical-quantum syste
is found by forming the new conditional quantity

PA(a) = PEQ)pH(1). 29 D; &
P = PP () @ - dt[ai(aq— o+ E%]”I( 2
The evolution ofp#(q) is described by g q
daw J
7(q) + dp#() =[P(q) + dPH(Q)][p(t) + dp()].  (30) - E{“(Q Q)+ Dia_q] pAQ) + dtLp(d)
The result of this process is the joint stochastic equétion +dtJ[ T+ X0 pAg-€) — pz(a)]. (35

165317-5
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This is the main result of our paper. The first line of E8f) a time scale)™! shorter thanr then the state of the quantum

describes the evolution of the classical measurement deviceystem cannot be followed.

The second line consists of two terms: the first term de- We will now present an order of magnitude estimate of

scribes both information gain about the measurement devicthe effective bandwidth of the measurement device, which is

(g) from its output[Eq. (34)], and back-action on the classi- defined as the frequency at which a signal-to-ndEaven

cal device due to the observed noise; the second term deatio of unity is obtained. Here we take the signal as being

scribes the average evolution of the quantum system, includhe current that flows through the QPC when it is in the more

ing quantum back-action. The final line describes the effectonducting state.

of the quantum system on the measurement device. To find the noise and signal power we take the Fourier
It is worth noting that the term involving7 represents transform of Eqs(16) and(17) in order to obtain the spec-

average evolution due to electron tunneling events througtrum of the currenZ.*? The signal power is

the QPC. It changes the most likely value for the charge of 5
the parasitic capacitor fro to Q—e when an electron tun- r’ez% (37)
nels through the QPC—effectively counting the average a"tw

number of electrons passing through the QPC. The approa
of Ref. 10(also used in Ref. 3dnvolves a similar technique
in which the exact number of electrons that have tunneled w?
through the detector is tracked. This was also considered in Dim *Do. (38)
the (earliep derivation of the rate equations in Ref. 9.

The numerical solution of Eq35) would produce a tra- Upon equating the signal and noise powers, and at this fre-
jectory for the state of the combined circuit-qubit systemguency settings=a.;, we have an effective bandwidth of
conditioned by a particular realization of the measured cur-

%d the noise power is

rent Z(t). The normalized conditioned qubit state is found Qo= =1 /1 - Do _ = (39)
from VN r'e N
where the dimensionless noise paraméfers defined ac-
pz(t) = f pz(g)da. (36)  cording to
Thus the realistic quantum trajectorig®r the qubit state N =M_ (40)
alone are obtained by numerically solving the SKS equation r'e?

and using Eq.(36). The results of this procedure will be

presented in a future paper The approximation of Eq(39) holds in the limit where the

noise poweD, is small compared to the signal poweg?
(which is the regime that will lead to good measurements of
the qubit state For an observer to be able to follow the
evolution of the qubit reasonably well we must hawg;

A simple consistency check for our SKS equatidy. > Q.34
(35)] is to integrate it over alf and recover the uncondi-
tional master equation. It is easy to confirm that this is in- VI. CONCLUSION
deed the case using the fact thaell-behavedprobability
distributions(and their derivativesvanish at +c.

A considerably more difficult task is to attempt recovery We have presented a new model for continuous measure-
of the ideal conditional master equati¢®) from the SKS  ment of a coupled quantum d@&QD) charge qubit by a low
equation(35). In theory, this should be possible in the limit transparency quantum point contdQPCO. We considered
of a measurement circuit with a small response time given byhe evolution of this solid-state qubit conditioned on the out-
R.C [large bandwidthe=(R,C) ] and low noise®; andD,.  put available to a realistic observer, which has been filtered
We now explore this question in detail. and degradedi.e., made more noigyby an external circuit.

The time taken to determine which CQD is occupied byThis description is closer to the true conditioned evolution of
the qubit electron is equal to the time required to ascertaithe system, not a hypothetical evolution conditioned on the
the rate of tunneling through the detector. This task is madenicroscopic events occurring within the detector, to which a
considerably more difficult by the white noise and finite real observer has no direct access. Knowledge of the state of
bandwidth of the circuit containing the detector. Without thea quantum system conditioned on actual measurement results
white noise the observer would see a spike in the currens essential for understanding and designing feedback
every time there was a tunneling event. Depending on theontrol1?22%-27|t is also expected to be important in quantum
relative sizes of the noise, the tunneling rates, and the circutomputing, both for state preparation and quantum error
response time, the white noise will obscure the spikes in theorrection?®-3°
current so that the observer must rely on #veragecurrent Our model for the conditional dynamics of the qubit due
to distinguish between the two qubit states. The consequende measurement by a low transparency quantum point con-
of averaging out the white noigby integrating the curreit  tact (QPQO was based on the quantum trajectory models of
over some timer) is that if the qubit electron is tunneling on Refs. 13 and 14. We have presented a stochastic master equa-

V. DISCUSSION

A. Summary
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tion that describes the time evolution of the measured qubitheory of realistic quantum trajectories will be pursued in the
conditioned on a hypothetical detector output. Korotkov haduture.

derived equivalent conditional dynamics equations for the

QPC (with notational differences using a Bayesian ACKNOWLEDGMENTS
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chastic equations are the “realistic quantum trajectories” o
the measured qubit state. These will be presented elsewhereaPPENDIX: DERIVATION OF KOROTKOV'S RESULT
USING OUR APPROACH

B. Comparison to previous work In this appendix we derive an equivalent result to Korot-
d kov’s phenomenological result for nonideal detectbusing

The conditional dynamics of continuously monitore L . .
diffusive stochastic master equation approach and our

CQD systems has been studied in Refs. 11-19. However, tHfe

model of realistic measurement that we have presented inmethod in\_/olving o_t)gerved gnd _unobserved noiges.
this paper is new. Korotkov has recently presented a phe- We begin by defining a diffusivénear stochastic master

nomenological theoi involving “non-ideal” detectors that equatior® for the state matrix of a measured two level sys-
is in the same spirit as oufsee the Appendix for a deriva- tem. The It fStOChaS'F'C master equation mv_olvmg three clas-
tion of Korotkov's result using our stochastic master equaSical: normalized white noise processba, (ideal detector
tion approach However, he still assumed an infinite band- output noisg dW, (extra ou_tput anq back-action nojsand
width detector and also assumed that the ideal detector coufifVs (unobserved back-action nojse

be described by diffusion rather than jumps. We believe that — At [ nm~  ~n [ in

our approach )(gffers a more satisfyijng gescription of this dﬁ_dtﬁerd_WOV k(0P +py) + dWp i =0 ]p
measurement process because the non-Markdvigffects +dWs\ksH[=i0,]p, (A1)

of a realistic measurement circuit are included and the tun- . .

neling process through the QPC is described as a point provhere £=H[-iH]+(ko+ 1+ k3) D[] and H=Q&,+ 3¢5,
cess(jumps as one would expect. Equation(9) defines the superoperatdf.

Finite detector temperature effects in the case of bare The three white noise process#dj, dW,;, anddW; cor-
measurement were not considered in our model. The effectespond to Korotkov’s three unnormalized noise processes
of a nonzero detector temperatufg have been considered &(t), &(t), andés(t). The white noiselW,/dt represents the
previously?1445 and result in an approximately linear output of an ideal detector. Korotkov's added output noise is
(coteVy/2kgT,)) increase in the ensemble decoherence rat&nown as dark noise® which we model by setting the output
and shot noise level witfy for eV <2kg Ty, whereVyis the  of the realistic detector to be the current
detector bias voltage. With a detector temperature of the or- — — —
der of mK?® finite temperature effects could be expected to Z(t)dt= (VepodWo + V by W)/ b, (A2)

become important at bias voltages #§<0.3 uV. These  \hereq, is the shot noise powed, is the dark noise power,
voltages are several orders of magnitude below a sample bl%dd)zz do+ b, ensures thak(t) has a normalized Gaussian
voltage for maximum response of a single electron transisto\;vhite noise distribution

(SET) detecting the charge state of a quantum‘dé¢which We now desire the quantum trajectory for the system state

fsugge_stshthf;l)t ourdomlssmn of finite detector tte)lmperature el conditioned on the realistic detector output in E42)
ects in the bare detector scenario is reasonable. rather than ordWy/dt. We rewritedW, as

C. Future work dW_O: (VpoZ()dt + Vb dW')/\ s, (A3)
There are many possibilities for future work in the theory WheredW'=(v;dWo—¢dWy) /¢ is an unobserved nor-

of realistic quantum trajectories. Other detectors will be con/nalized noise process that is independent of the observed

sidered, for example, the single electron transf8fSET).  OutputZ(t). The extra output noiséW; can be expressed in

As the field of mesoscopic electronics is progressing at suckerms of observed and unobserved quantities as

a tremendous rate it is likely that the choice of detector will e e e

quickly become outdated. In fact, the SET has already been dWp = (V. Z(DdE =V bod W)/ Vb (A4)

surpassed by the radio-frequen@F) SET'>3as the mea-  Substituting these into EGAL) yields

suring device of choice for the read out of the charge state of — _

a mesoscopic qubit. This is one reason why we view the VooZ(Hdt+\pdW —

work in this paper as preliminary. The extension of realistic dp=dtlp+ \;'E V(00 +pa)
quantum trajectories to the RF-SET is a future aim. Further - 7

work is also appropriate for the circuit model, which at Vo Z(Hdt =\ podW  — o

present is considerably simplified, but is a good starting + T Ve H=ialp

point which models some essentgfectsof a realistic mea- _WSE

surement. These and other possibilities for work on the + AW\ kg H[ - i6,]p. (A5)

165317-7
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Averaging over the unobserved noise procesBAS and
dW; removes the terms involvingW and dW; from Eq.
(A5). Normalization of this result is performed in a similar
manner as in Sec. IV E with the final result being the follow-
ing nonlinear SME:

dp=dtlp+ 1/ %dt(z(t) — &, %)H[&Jp

d\/"l—d’l<z - %, KO—‘l’O)H—'& :
+dt b () — 20y s [-io.lp

(A6)

PHYSICAL REVIEW B 71, 165317(2005

Now we substitute in for the actual measured current,
Z(t)dt=2(o )\ Koo/ psdt+dWV, to obtain

dp=dtlp+ \/%dWH[&Jp+ \/%dWH[— io]p,

(A7)

which is equivalent to the nonideal result of Korotkov in Ref.
17 with some notational differences.
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