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We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model
the effectsof a realistic measurement, namely adding noise to, and filtering, the current through the detector.
This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the
evolution of the qubit stateconditionedon the macroscopic output of the external circuit. We achieve this by
generalizing a recently developed quantum trajectory theory for realistic photodetectorsfP. Warszawski, H. M.
Wiseman, and H. Mabuchi, Phys. Rev. A65, 023802s2002dg to treat solid-state detectors. This yields sto-
chastic equations whosesnumericald solutions are the “realistic quantum trajectories” of the conditioned qubit
state. We derive our general theory in the context of a low transparency quantum point contact. Areas of
application for our theory and its relation to previous work are discussed.
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I. INTRODUCTION

The field of research that surrounds the quest for a large-
scale quantum computer is very exciting. At present, solid-
state proposals1–5 seem promising. The ability to read out the
state of the quantum bitssqubitsd of information is of obvi-
ous importance in any quantum computational scheme. In
this paper we consider continuous measurement of the state
of a pair of coupled quantum dotssCQDsd occupied by a
single excess electron. This constitutes achargequbit. It is
worth mentioning that spin qubits1–5 are considered more
favorably for solid-state quantum computation due to their
relatively long coherence times,6 but read-out may have to
be performed via charge qubits using spin-to-charge
conversion.1,7,8

The evolution of solid-state qubits subject to continuous
measurement has received considerable theoretical consider-
ation recently.9–19 Single realizations of the continuous mea-
surement of a solid-state CQD qubit, known asconditional
sor selectived evolution, have been treated by a number of
groups.11–19These works conditioned the qubit evolution on
quantum processesssuch as tunnelingd at the scale of a me-
soscopic detector. They did not consider conditioning on the
macroscopic current that is realistically available to an ob-
server. In particular, they ignored the noisy filtering charac-
teristic of the external circuit, including an amplifier. It is
worth noting that nonidealities have been considered in some
of these works. Reference 13 considered a detector with ex-
cessive back-action. Reference 17 did this also, and also con-
sidered extra classical noise, phenomenologically. Reference
16 considered “inefficient” measurements. None of these
considered filtering.

In this paper we consider the evolution of a solid-state
qubit conditioned on the output available to a realistic ob-
server, which has been filtered and degradedsi.e., made more
noisyd by an external circuit. That is, we are interested in the
evolution of the system conditioned on information available
to an observer, not on the microscopic events occurring

within the detector to which a real observer has no direct
access. Being able to determine the state of a quantum sys-
tem conditioned on actual measurement results is essential
for understanding and designing feedback control.12,20–27As
well as being intrinsically interesting, this is also expected to
be important in quantum computing, both for state prepara-
tion and quantum error correction.28–30

A quantum trajectory13,31–33describes the Markovian sto-
chastic evolution of an open quantum system conditioned on
continuous monitoring of its output by abare detector. A
“bare” detector is one which does not include the noisy fil-
tering characteristic of realistic measurements. In an experi-
ment the output from this detector is filtered through various
noisy electronic devices. Due to the finite bandwidth of all
electronic devices, the evolution of the conditional state of
the quantum system must be non-Markovian. A general
method of describing this evolution was presented in recent
papers34,35 by Warszawski and Wiseman in the context of
photodetection, where it was applied to an avalanche photo-
diode and a photoreceiver. In the present paper the theory of
Ref. 35 is applied to a solid-state detector—the low transpar-
ency quantum point contact9,36 sQPCd, or tunnel junction,
which is an ideal detector.11 In our approach an equivalent
circuit is used to model the effects of a realistic measure-
ment. Note that for clarity we will use the terminologyde-
tector for a bare detector andmeasurement devicefor a de-
tector embedded within a measurement circuit.

The paper is organized as follows. We begin in the next
section by describing our models for the qubit and the QPC
sincluding the monitored qubit’s conditional and average dy-
namics in the bare detector cased. We then introduce and
analyze our equivalent circuit for realistic measurement in
Sec. III. The method of deriving realistic quantum trajecto-
ries is presented in Sec. IV in the context of a QPC. We
discuss our results in Sec. V and conclude in Sec. VI with a
summary, comparison with previous work, and prospects for
future work.
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II. SYSTEM

In this section we describe the models for the qubit and
the detector. Using a master equation formalism we present
the conditional and ensemble average dynamics of the qubit
state when measured by a low transparency QPC. The con-
ditional qubit dynamics in the bare measurement case are
represented by astochasticmaster equation. We choose to
present stochastic differential equations in the Itô formalism
rather than the alternative Stratonovich formalism.37 Exten-
sion of the theory to our more realistic measurement case
occurs later.

Figure 1 is a schematic representation of the CQD qubit
and nearby low transparency QPC or tunnel junction. The
CQDs slabeled 1 and 2d are occupied by a single excess
electron, the location of which determines the logical state of
the qubit. We assume that each quantum dot has only one
single-electron energy level available for occupation by the
qubit electron. These energy levels are denoted byE1 andE2.

Using the convention of"=1 sas we will for the entire
paperd, the total Hamiltonian for the qubit can be written as

Ĥqb = E1ĉ1
†ĉ1 + E2ĉ2

†ĉ2 +
V0

2
sĉ1

†ĉ2 + ĉ2
†ĉ1d, s1d

whereV0 is the coefficient of tunneling between the qubit
dots andĉ1 sĉ2d is the Fermi annihilation operator for the
single available electron state within the qubit dot labeled 1
s2d. The qubit electron tunnels between the two dots at the
Rabi frequencyV=ÎV0

2+«2, where«;E1−E2 is the asym-
metry in the CQD energy levels.

The state of a measured quantum system is affected by the
detector in two ways. First, there is the measurement back-
action caused by their mutual interaction. Second, if the out-
put of the detector is observed, then the state of the system is
conditioned by the stochastic outcomes. We describe the con-
ditional dynamics of the measured qubit, including the mea-
surement back-action, using a stochastic approach. In the
case of measurement with a bare ideal detector, the state of
the qubit is conditioned by electron tunneling events through
the detector which constitute an idealized output current. For
such an ideal detector the measurement back-action is
quantum-limited, also called Heisenberg-limited.38

A number of formalisms exist that describe the evolution
of a measured quantum system conditioned on a particular

measurement result from the detector. The conditional dy-
namics of continuously measured CQD systems have been
treated by Bloch-type equations,9,19 quantum trajectory
theory,13,14,16 and a Bayesian formalism.11,12,15,17,18 This
Bayesian formalism has been shown to coincide with the
quantum trajectory formalism with only notational differ-
encesssee the Appendix of Ref. 14d. All three formalisms
coincide for the ensemble average dynamics of the measured
CQD system. In the stochastic approach, thesMarkoviand
conditional dynamics of the measured qubit state is de-
scribed with a stochastic master equation. This generates a
“quantum trajectory,” so called because it tracks the state of
the quantum system in time. We also present the ensemble
average master equation.

The equivalent circuit for the QPC coupled to the qubit is
shown in Fig. 1. We represent the tunnel junction by a ca-
pacitanceCJ, which contains the chargeQJ. The stochastic
electron tunneling events through the junction are repre-
sented by a current source. The location of the CQD electron
changes the height of the potential barrier in the QPC and
consequently the current through it, thus providing the means
to measure the qubit state. For simplicity, we assume that
electrons tunnel only from source to drain. This tunneling
occurs at two different rates, namelyr and r8, which corre-
spond to the nearsdot 1d and farsdot 2d CQD being occu-
pied, respectively.

The ensemble average master equation for the qubit state,
r, when measured by a low transparency QPC, or similar
single tunnel-junction device, is9,11,13,14

drstd
dt

= − ifĤqb,rstdg + DfT + Xn̂grstd ; Lrstd. s2d

Heren̂= ĉ1
†ĉ1 is the occupation of the near dot. The Lindblad

superoperatorD represents the irreversible part of the qubit
evolution—the decoherence. It is defined in terms of two
other superoperators,J andA:

DfX̂gr ; JfX̂gr − AfX̂gr, s3d

whereJ sthe “jump” superoperatord andA sthe anticommu-
tating superoperatord are defined by

JfX̂gr ; X̂rX̂†, s4d

AfX̂gr ;
1

2
sX̂†X̂r + rX̂†X̂d. s5d

These superoperators, introduced in Ref. 32, are used com-
monly in quantum optics measurement theory.

For simplicity we assume real tunneling amplitudes
whereby

T 2 = r8, sT + Xd2 = r , s6d

which implies thatX,0. Complex tunneling amplitudes are
allowed in the model of Ref. 14 and the generalization here
would be straightforward.

A realistic observer may not be able to tell when a tun-
neling event through the QPC occurs. However, we argue
that in principle this information would be contained in the

FIG. 1. An equivalent circuit for a low transparency QPC or
tunnel junction and nearby charge qubit. The arrow indicates the
direction of electron tunneling through the QPCsrepresented by a
current sourced.
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movement of the Fermi sea electrons in the leads attached to
the QPC. Thus we can legitimately represent theconditional
evolution ofrstd sdenoted with a superscriptmd in terms of
these microscopic events. Using the method for quantum
jumps introduced in Ref. 13, this conditional evolution is
described by the following Itô stochastic master equation:14

drmstd = dNstdH JfT + Xn̂g
EfdNstdg/dt

− 1Jrmstd

− dtHF1

2
R̂+ iĤqbGrmstd, s7d

where we have introduced the classical point processdNstd
that represents the numberseither 0 or 1d of electron tunnel-
ing events through the QPC in an infinitesimal time interval
ft ,t+dtd. The expectationsensemble averaged value ofdNstd
is

EfdNstdg = dt Tr†JfT + Xn̂grmstd‡. s8d

In Eq. s7d we have also introduced the convenient superop-

eratorH and operatorR̂ which are defined by

HfX̂gr ; X̂r + rX̂† − TrfsX̂ + X̂†drgr, s9d

R̂; sT + Xn̂d2. s10d

It can be seen from the master equations2d that the mini-
mum tunneling rate through the QPC,r, occurs when qubit
dot 1 is occupiedsn=1d. This is due to maximum electro-
static repulsion between the qubit electron and electrons in
the QPC vicinity. Accordingly, the maximum QPC tunneling
rate r8 occurs whenn=0. These tunneling rates could be
functions of the voltage across the detector, which we con-
sider as changing with time. However, this would necessarily
mean that the measured qubit’s evolution cannot be de-
scribed by the quantum master equation formalism. To allow
for this would be to go beyond what anyone has done in this
area.

III. EQUIVALENT CIRCUIT FOR REALISTIC
MEASUREMENT

Our equivalent circuit for realistic measurement of the
CQDs is shown in Fig. 2. We emphasize that this circuit

modelseffectsof realistic measurementsadditional classical
noise and filtering of the signald, not an actual experimental
apparatus.

The circuit is biased by a nonideal dc voltage consisting
of a noiseless voltage« and a noisy voltage sourceei. This
swhited noise source could be considered as the Johnson-
Nyquist noise from the equivalent circuit resistanceRi at
some effective temperatureTi. We emphasize again that this
is a model only and need not correspond to a real tempera-
ture in an actual apparatus. The small current through the
detector is amplified, then measured. In this process an ob-
server will see white noise in addition to the current through
the detector. This is modeled by adding a noisy output cur-
rent eo/Ro to the signal from the detector prior to measure-
ment by a perfect ammeter, yielding the currentI. Thepara-
sitic capacitanceC across the detector is due to the large
cross-sectional area of the leads relative to the detector junc-
tion.

Again, it is important to note that the circuit components
are not necessarily representative of an actual experimental
setup. For example, an amplifier does not consist of a noisy
voltage and a resistor, rather the observedeffectof amplifi-
cation of the current through the detector can be modeled as
the addition of an output noiseeo/Ro to the current through
the detector. Although our description of the circuit is rather
simple, we believe that it is a reasonable starting point that
models some essential effects of a realistic measurement.
Future improvements to this circuit model could include con-
sidering an actual circuit from an experiment.

We analyze the equivalent circuit with the low transpar-
ency QPC as the detector and produce expressions for the
measured currentIstd and the time evolution of the parasitic
capacitor chargeQstd. The variableQstd is used to describe
the state of the circuit part of the measurement device.

For the moment, ignore tunneling through the QPC.
Analysis of the measurement circuit using Kirchhoff’s elec-
trical circuit laws yields the following Itô differential equa-
tion for the increment inQ sthe charge on the parasitic ca-
pacitord due to the circuit components

dQstd = S−
Qstd
RiC

+
«

Ri
+

ei

Ri
Ddt. s11d

Similar analysis yields an expression for the measured
current as a function of time:

Istd = −
Qstd
RiC

+
«

Ri
+

ei

Ri
+

eo

Ro
. s12d

For the purposes of our work it is useful to express the
sJohnson-Nyquistd noise sourcesei and eo in terms of sto-
chastic increments. In the steady state, Johnson-Nyquist volt-
age noise iswhite noise and has a flat spectrum

S= 2kBTR, s13d

whereT is the temperature of the resistorR andkB is Bolt-
zmann’s constant. The current spectrums“spectral density”d
definition40 used here is

FIG. 2. A schematic of our equivalent circuit for the realistic
measurement of the state of a CQD charge qubit.
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Ssvd =E
−`

`

expfivtgGstddt, s14d

whereGstd is the two-time autocorrelation function of the
measured current.54 Obviously a current flow is not an equi-
librium situation, but for reasonable bias voltages the ap-
proximation of Eq.s13d remains valid.41 For simplicity, we
take the flat spectra of the input and output voltage noises to
be 2DiRi

2 and 2DoRo
2, respectively. This allows us to write

Eqs. s11d and s12d in terms of the input and output Wiener
processes,dWistd anddWostd, as

dQstd = S−
Qstd
RiC

+
«

Ri
Ddt + ÎDidWistd, s15d

Istd = −
Qstd
RiC

+
«

Ri
+ ÎDi

dWistd
dt

+ ÎDo
dWostd

dt
, s16d

where Di =2kBTi /Ri and Do=2kBTo/Ro. These expressions
correct the expressions in Refs. 34, 35, and 42 from 4kBT/R
to 2kBT/R. The Wiener increment is related to Gaussian
white noisejstd by dWstd=jstddt.37

Now consider a single electron tunneling event through
the QPCfdNstd=1g. The charge on the parasitic capacitor
will change by an amountedNstd, wheree is the charge on
an electron. This gives

dQstd = f− aQstd + bgdt + ÎDidWistd + edNstd, s17d

where we have introduced the simplifying notationsa
=1/RiC andb=« /Ri. The solution to this differential equa-
tion gives the value ofQstd that may be substituted into Eq.
s16d to give a lengthy expression for the measured current.42

IV. DERIVATION OF REALISTIC
QUANTUM TRAJECTORIES

The derivation of realistic quantum trajectories follows a
number of well-defined steps as presented for photodetectors
in Ref. 35. We refer the reader to Ref. 35 for specific details
of the derivation steps and only present the essential points
and details that are unique to the solid-state situation. Note,
however, that we use a somewhat simpler derivation, using
the Zakai equation in Sec. IV B rather than the Kushner-
Stratonovich equation of Ref. 35.

A. Stochastic differential Chapman-Kolmogorov equation

Equations15d describes the evolution of the circuit state
for situations whereQstd is known. A realistic observer will
not have direct access to the precise value ofQstd due to the
randomness of the microscopic events occurring within the
device. We therefore require an equation for the evolution of
the probability distribution forQ, written Psqd. Following
the procedure outlined in Ref. 35, we obtain the stochastic
differential Chapman-KolmogorovsSDCKd equation for the
evolution ofPsqd:

dPmsqd = dtS−
]

]q
m+

Di

2

]2

]q2 − ÎDi
]

]q
dWiDPsqd

+ dNfPsq − ed − Psqdg, s18d

wherem=−aq+b. This equation gives the increment in the
probability distribution for the charge on the parasitic capaci-
tor conditioned by the unobserved microscopic eventssmd
occurring within the measurement device.

B. Zakai equation

The state of the circuit part of the measurement device is
now represented by the probability distributionPsqd that was
introduced in the previous section. The state of this classical
system changes upon measurement and soPsqd must be up-
dated. The best estimate of the new probability distribution
representing the conditioned state of the measurement de-
vice, given a measurement resultI, is found using Bayesian
analysis43 to be

P̃squId =
PsIuqdPsqd

LsId
, s19d

whereLsId=PsI uq=b /ad. Here P̃squId is read “the prob-
ability of q given I.” The tilde denotes an unnormalized
distribution and the value ofq=b /a is chosen for conve-
nience. The Zakai equation tells us how to update the prob-
ability distribution Psqd when the measurement resultI is
obtained. The quantityPsI uqd is the probability of obtaining
the resultI given that the state isq. We will use the simpler
notationPqsId; PsI uqd, where the subscript denotes the re-
sult upon which the conditioning is performed.LsId can be
thought of as theostensibleprobability distribution,33 as op-
posed to the actual probability distribution

PsId =E dqPsIuqdPsqd = LsId E dqP̃squId, s20d

which replacesLsId in the expression for the normalized
distributionPsquId.35

From our expression for the measured current, Eq.s16d,
PqsId is a Gaussian distribution with a variance ofn
=sDi +Dod /dt and a mean ofm=−aq+b. Thus Eq. s19d
gives the Zakai equationsto orderdtd:

P̃Isqd = F1 +Idt
m

DS
GP̃sqd, s21d

where we have definedDS=Di +Do for convenience. Note
that I has the ostensible distributionLsId=expf−I2/2ng /
Î2pn.

C. Combining the stochastic increments

Our description of the stochastic conditional evolution of
the measurement device is found by combining the incre-

mentsdPmsqd anddP̃Isqd given in the previous two sections.
The stochasticity of these two increments is related as the
input noisedWi plays a role in both. For this reason we must
combine them into one increment using
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P̃sqd + dP̃I
msqd = F1 +Idt

m

DS
GfPsqd + dPmsqdg, s22d

rather than by simply adding them together. Remembering
that we will eventually average over unobserved processes,
the input noise needs to be separated into observed and un-
observed parts. We express this as

dWi = aIdt + bdW8 + cdt, s23d

where

dW8Idt = 0. s24d

Here a, b, and c are as yet undetermined expressions and
dW8 is unobserved, normalized white noise that is unrelated
to the known outputI. When averages are taken,dW8 will be
averaged over andI kept. The observed outputfEq. s16dg
can be expressed as

Idt = mdt+ ÎDidWi + ÎDodWo. s25d

Using Eqs.s24d and s25d gives the expression fordW8:

dW8 =
ÎDidWo − ÎDodWi

ÎDS

. s26d

Using this in Eq.s23d and equating the left- and right-hand
sides allowsa, b, andc to be determined. Substitution ofa,
b, andc back into Eq.s23d yields

dWi =
ÎDi

DS

Idt −ÎDo

DS

dW8 −
ÎDi

DS

mdt. s27d

Using this result and the SDCK equationfEq. s18dg in Eq.
s22d gives

Psqd + dP̃I
msqd = H1 + dtS−

]

]q
m+

Di

2

]2

]q2D
+ Sm− Di

]

]q
DIdt

DS

+ÎDiDo

DS

]

]q
dW8JPsqd

+ dNfPsq − ed − Psqdg. s28d

This result represents the evolution of the circuit state con-
ditioned on both the microscopic events occurring within the
device and the observed currentI.

D. Joint stochastic equation

The stochastic state of the joint classical-quantum system
is found by forming the new conditional quantity

r̃I
msqd = P̃I

msqdrmstd. s29d

The evolution ofr̃I
msqd is described by

r̃sqd + dr̃I
msqd = fP̃sqd + dP̃I

msqdgfrstd + drmstdg. s30d

The result of this process is the joint stochastic equation35

dr̃I
msqd = HdtS−

]

]q
m+

Di

2

]2

]q2D + Sm− Di
]

]q
DIdt

DS

+ÎDiDo

DS

]

]q
dW8 + EfdNg + dtsL − JfT + Xn̂gdJ

3r̃sqd + dNHJfT + Xn̂gr̃sq − ed
EfdNg/dt

− r̃sqdJ . s31d

Averaging over unobserved processessdW8 anddNd is the
next step in the derivation of realistic quantum trajectory
equations and yields an expression fordr̃Isqd. This proce-
dure removes the stochasticity associated with the unob-
served processes within the detector and leaves the stochas-
ticity associated with the measurementsId. The resulting
equation is called a superoperator Zakai equation as we have
obtained a quantum analog of the Zakai equation in that from
measurement we are conditioning the state of a supersystem
that contains a quantum system. It is important to realize that
after averaging over unobserved processes the supersystem
stater̃sqd+dr̃Isqd will not factorize as in Eq.s30d.

E. Normalization

Normalization of the superoperator Zakai equation is the
final step in our derivation and yields the superoperator
Kushner-StratonovichsSKSd equation. The normalization is
achieved as follows:

rsqd + drIsqd =
r̃sqd + dr̃Isqd

E Trfr̃Isqd + dr̃Isqdgdq

. s32d

After normalization the true expression for the observed cur-
rentI should be substituted into the SKS equation. The true
probability distribution forI can be found using Eq.s21d in
Eq. s20d to yield

PsId = s2pnd−1/2 expf− sI + akQl − bd2/2ng, s33d

wherekQl=eqPsqddq. Thus the true expression for the ob-
served current is

Idt = s− akQl + bddt + ÎDSdW, s34d

wheredW is theobservedwhite noisesa Wiener incrementd.
Here the average iskQl=eqTrfrIsqdgdq, since we are con-
sidering the outputI for the combined classical-quantum
supersystem.

Averaging over the unobserved noisedW8 and tunneling
processdN yields the superoperator Zakai equation, which
upon normalization via Eq.s32d and substitution of Eq.s34d
for I produces the SKS equation:

drIsqd = dtF ]

]q
saq − bd +

Di

2

]2

]q2GrIsqd

−
dW
ÎDS

Fasq − kQld + Di
]

]q
GrIsqd + dtLrIsqd

+ dtJfT + Xn̂gfrIsq − ed − rIsqdg. s35d
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This is the main result of our paper. The first line of Eq.s35d
describes the evolution of the classical measurement device.
The second line consists of two terms: the first term de-
scribes both information gain about the measurement device
sqd from its outputfEq. s34dg, and back-action on the classi-
cal device due to the observed noise; the second term de-
scribes the average evolution of the quantum system, includ-
ing quantum back-action. The final line describes the effect
of the quantum system on the measurement device.

It is worth noting that the term involvingJ represents
average evolution due to electron tunneling events through
the QPC. It changes the most likely value for the charge of
the parasitic capacitor fromQ to Q−e when an electron tun-
nels through the QPC—effectively counting the average
number of electrons passing through the QPC. The approach
of Ref. 10salso used in Ref. 39d involves a similar technique
in which the exact number of electrons that have tunneled
through the detector is tracked. This was also considered in
the searlierd derivation of the rate equations in Ref. 9.

The numerical solution of Eq.s35d would produce a tra-
jectory for the state of the combined circuit-qubit system
conditioned by a particular realization of the measured cur-
rent Istd. The normalized conditioned qubit state is found
from

rIstd =E rIsqddq. s36d

Thus the realistic quantum trajectoriessfor the qubit state
aloned are obtained by numerically solving the SKS equation
and using Eq.s36d. The results of this procedure will be
presented in a future paper.

V. DISCUSSION

A simple consistency check for our SKS equationfEq.
s35dg is to integrate it over allq and recover the uncondi-
tional master equation. It is easy to confirm that this is in-
deed the case using the fact thatwell-behavedprobability
distributionssand their derivativesd vanish at ±̀ .

A considerably more difficult task is to attempt recovery
of the ideal conditional master equations2d from the SKS
equations35d. In theory, this should be possible in the limit
of a measurement circuit with a small response time given by
RiC flarge bandwidtha=sRiCd−1g and low noisesDi andDo.
We now explore this question in detail.

The time taken to determine which CQD is occupied by
the qubit electron is equal to the time required to ascertain
the rate of tunneling through the detector. This task is made
considerably more difficult by the white noise and finite
bandwidth of the circuit containing the detector. Without the
white noise the observer would see a spike in the current
every time there was a tunneling event. Depending on the
relative sizes of the noise, the tunneling rates, and the circuit
response time, the white noise will obscure the spikes in the
current so that the observer must rely on theaveragecurrent
to distinguish between the two qubit states. The consequence
of averaging out the white noisesby integrating the currentI
over some timetd is that if the qubit electron is tunneling on

a time scaleV−1 shorter thant then the state of the quantum
system cannot be followed.

We will now present an order of magnitude estimate of
the effective bandwidth of the measurement device, which is
defined as the frequency at which a signal-to-noisespowerd
ratio of unity is obtained. Here we take the signal as being
the current that flows through the QPC when it is in the more
conducting state.

To find the noise and signal power we take the Fourier
transform of Eqs.s16d and s17d in order to obtain the spec-
trum of the currentI.42 The signal power is

r8e2 a2

a2 + v2 s37d

and the noise power is

Di
v2

a2 + v2 + Do. s38d

Upon equating the signal and noise powers, and at this fre-
quency settingv=aeff, we have an effective bandwidth of

aeff =
a

ÎN
Î1 −

Do

r8e2 <
a

ÎN
, s39d

where the dimensionless noise parameterN is defined ac-
cording to

N =
sDi + Dod

r8e2 . s40d

The approximation of Eq.s39d holds in the limit where the
noise powerDo is small compared to the signal powerr8e2

swhich is the regime that will lead to good measurements of
the qubit stated. For an observer to be able to follow the
evolution of the qubit reasonably well we must haveaeff
.V.35,44

VI. CONCLUSION

A. Summary

We have presented a new model for continuous measure-
ment of a coupled quantum dotsCQDd charge qubit by a low
transparency quantum point contactsQPCd. We considered
the evolution of this solid-state qubit conditioned on the out-
put available to a realistic observer, which has been filtered
and degradedsi.e., made more noisyd by an external circuit.
This description is closer to the true conditioned evolution of
the system, not a hypothetical evolution conditioned on the
microscopic events occurring within the detector, to which a
real observer has no direct access. Knowledge of the state of
a quantum system conditioned on actual measurement results
is essential for understanding and designing feedback
control.12,20–27It is also expected to be important in quantum
computing, both for state preparation and quantum error
correction.28–30

Our model for the conditional dynamics of the qubit due
to measurement by a low transparency quantum point con-
tact sQPCd was based on the quantum trajectory models of
Refs. 13 and 14. We have presented a stochastic master equa-
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tion that describes the time evolution of the measured qubit
conditioned on a hypothetical detector output. Korotkov has
derived equivalent conditional dynamics equations for the
QPC swith notational differencesd using a Bayesian
formalism.11,12,15,17,18We generalized a realistic quantum tra-
jectory theory34,35 srecently developed for photodetectorsd to
treat solid-state detectors. The solutions of the resulting sto-
chastic equations are the “realistic quantum trajectories” of
the measured qubit state. These will be presented elsewhere.

B. Comparison to previous work

The conditional dynamics of continuously monitored
CQD systems has been studied in Refs. 11–19. However, the
model of realistic measurement that we have presented in
this paper is new. Korotkov has recently presented a phe-
nomenological theory17 involving “non-ideal” detectors that
is in the same spirit as oursssee the Appendix for a deriva-
tion of Korotkov’s result using our stochastic master equa-
tion approachd. However, he still assumed an infinite band-
width detector and also assumed that the ideal detector could
be described by diffusion rather than jumps. We believe that
our approach offers a more satisfying description of this
measurement process because the non-Markovian55 effects
of a realistic measurement circuit are included and the tun-
neling process through the QPC is described as a point pro-
cesssjumpsd as one would expect.

Finite detector temperature effects in the case of bare
measurement were not considered in our model. The effects
of a nonzero detector temperatureTd have been considered
previously12,14,45 and result in an approximately linear
scothfeVd/2kBTdgd increase in the ensemble decoherence rate
and shot noise level withTd for eVd,2kBTd, whereVd is the
detector bias voltage. With a detector temperature of the or-
der of mK,46 finite temperature effects could be expected to
become important at bias voltages ofVd,0.3 mV. These
voltages are several orders of magnitude below a sample bias
voltage for maximum response of a single electron transistor
sSETd detecting the charge state of a quantum dot,47,48which
suggests that our omission of finite detector temperature ef-
fects in the bare detector scenario is reasonable.

C. Future work

There are many possibilities for future work in the theory
of realistic quantum trajectories. Other detectors will be con-
sidered, for example, the single electron transistor49,50sSETd.
As the field of mesoscopic electronics is progressing at such
a tremendous rate it is likely that the choice of detector will
quickly become outdated. In fact, the SET has already been
surpassed by the radio-frequencysRFd SET51–53 as the mea-
suring device of choice for the read out of the charge state of
a mesoscopic qubit. This is one reason why we view the
work in this paper as preliminary. The extension of realistic
quantum trajectories to the RF-SET is a future aim. Further
work is also appropriate for the circuit model, which at
present is considerably simplified, but is a good starting
point which models some essentialeffectsof a realistic mea-
surement. These and other possibilities for work on the

theory of realistic quantum trajectories will be pursued in the
future.
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APPENDIX: DERIVATION OF KOROTKOV’S RESULT
USING OUR APPROACH

In this appendix we derive an equivalent result to Korot-
kov’s phenomenological result for nonideal detectors17 using
a diffusive stochastic master equation approach and our
method involving observed and unobserved noises.

We begin by defining a diffusivelinear stochastic master
equation33 for the state matrix of a measured two level sys-
tem. The Itô stochastic master equation involving three clas-
sical, normalized white noise processesdW0 sideal detector
output noised, dW1 sextra output and back-action noised, and
dW3 sunobserved back-action noised is

dr̃ = dtLr̃ + dW0
Îk0sŝzr̃ + r̃ŝzd + dW1

Îk1Hf− iŝzgr̃

+ dW3
Îk3Hf− iŝzgr̃, sA1d

where L=Hf−iĤg+sk0+k1+k3dDfŝzg and Ĥ=Vŝx+ 1
2«ŝz.

Equations9d defines the superoperatorH.
The three white noise processesdW0, dW1, anddW3 cor-

respond to Korotkov’s three unnormalized noise processes
j0std, j1std, andj3std. The white noisedW0/dt represents the
output of an ideal detector. Korotkov’s added output noise is
known as dark noise,56 which we model by setting the output
of the realistic detector to be the current

Istddt = sÎf0dW0 + Îf1dW1d/ÎfS, sA2d

wheref0 is the shot noise power,f1 is the dark noise power,
andfS;f0+f1 ensures thatIstd has a normalized Gaussian
white noise distribution.

We now desire the quantum trajectory for the system state
rI conditioned on the realistic detector output in Eq.sA2d
rather than ondW0/dt. We rewritedW0 as

dW0 = sÎf0Istddt + Îf1dW8d/ÎfS, sA3d

wheredW8=sÎf1dW0−Îf0dW1d /ÎfS is an unobserved nor-
malized noise process that is independent of the observed
outputIstd. The extra output noisedW1 can be expressed in
terms of observed and unobserved quantities as

dW1 = sÎf1Istddt − Îf0dW8d/ÎfS. sA4d

Substituting these into Eq.sA1d yields

dr̃ = dtLr̃ +
Îf0Istddt + Îf1dW8

ÎfS

Îk0sŝzr̃ + r̃ŝzd

+
Îf1Istddt − Îf0dW8

ÎfS

Îk1Hf− iŝzgr̃

+ dW3
Îk3Hf− iŝzgr̃. sA5d
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Averaging over the unobserved noise processesdW8 and
dW3 removes the terms involvingdW8 and dW3 from Eq.
sA5d. Normalization of this result is performed in a similar
manner as in Sec. IV E with the final result being the follow-
ing nonlinear SME:

dr = dtLr +Îk0f0

fS

dtSIstd − 2kŝzlÎk0f0

fS

DHfŝzgr

+ dtÎk1f1

fS

SIstd − 2kŝzlÎk0f0

fS

DHf− iŝzgr.

sA6d

Now we substitute in for the actual measured current,
Istddt=2kŝzlÎk0f0/fSdt+dW, to obtain

dr = dtLr +Îk0f0

fS

dWHfŝzgr +Îk1f1

fS

dWHf− iŝzgr,

sA7d

which is equivalent to the nonideal result of Korotkov in Ref.
17 with some notational differences.
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