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Solvable Hamiltonian for superlattice nanowires
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We consider superlattice nanowires, and find an exact solution to the model-independent quantum Hamil-
tonian. We obtained a closed-form solution to this problem. The energy levels for general interatomic interac-
tions were calculated in the context of the Hubbard model. We obtained an explicit formula for the function
whose roots render the energy states. The corresponding energy bands can be tuned by the usual superlattices
concept of pattern control but also, in the case of nanowires, by controlling the interatomic separation of the
structure. We apply our results to nanowire tunneling diodes, angle-resolved photoemission spectroscopy, and
Si-Ge superlattice nanowires.
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I. INTRODUCTION parisons, mainly in quantum wires, are open to further

One of the goals of nanometer-sized electronics is to dest“dy'll . . .

velop the ability to control atomic level patterning on atomic In addition, studies of the ground excﬂed states of the
chains. Beyond their use as connectors, nanowires can tig-bbard model have been popular in recent times. The Hub-
used as active elements if structured appropriately. In pai2ard model is of interest due to its simplicity. In addition,

ticular, all the ideas learned from band control in standardn®re is evidence that it accounts for the prominent charac-
superlattices can be transferred, contextually, to superlatticé%”s'['cS of eIeptron systems in a Iarge variety of real materi-
in nanowiresSN). Although this program is likely to require &S: In one 12'{26”5!0”’ these materials include TTF-TCNQ
substantial future research, experimental results demonstratid SrCU@-=~"Luttinger behavior is only observed above a
ing the feasibility of atomically thick SN on group IlI-V and Crossover energy range, even in strongly anisotropic materi-

roup IV elements already exist Other experiments have als. However, the Luttinger spectrum can be consistently
group ; cady - penr 4 mapped within the bandwidth onto separated spin and charge
achieved atomically thin nanowires of carbbsilicon* and

X ) excitation bands of the 1D Hubbard model away from
organic polymer$.A large number of experimental charac- half-filling. 14

terizations of these structures rely on scann_ing_tunneling With the recent experimental capabilities to create and

spectroscopySTS measurements, which provide informa- control nanowires, the number of technological nanowire-

tion about denSity of states. In order to interpret those Meahased devices has grown tremendous|y in the area of nanos-

surements, there is a need to develop specific theories thahle photonics and electronics. For a few years, people have

provide the density of states of the SN. It is the intent of thispeen making “quantum wires” by cleaved-edge overgrowth

paper to develop such theory. in GaAs-basedand othey systems® Those systems have
The impact of heterostructures in our fundamental underbeen very useful to measure transport propetfiés.

standing of electron systems and in technology is enormous. More recently quantum wire@nd patterns within them

From a fundamental standpoint, superlattices have served agve been grown on nanotubes and atomic ch&imith ap-

the physical support for novel behavior. For example, inplications for waveguides and photovoltaiés.

magnetic-nonmagnetic superlattices, the electrical resistance In Sec. I, we derive the equation that provides the ener-

is found to vary by many orders of magnitude in the presencgies of the system. In Sec. Ill, we apply the general result to

of a magnetic field. In another example, superlattices of specific situations. Section IV presents conclusions.

superconductor-insulator layers have shown a crossover from

two to three-dimensional melting of the vortex lattice as a Il. ENERGY SPECTRUM

function of the insulator layer thickness. From a technologi- There are various rigorous results regarding density of

cal standpoint, heterostrucur@giantum wells, superlattices states for one-dimensional spin systems within the Hubbard

have served as optical and electronic detectors and actuatar®del (Lieb-Mattis and Yamanaka-Oshikawa-Affleck theo-

in optoelectronic applications since their inception in therems, see Ref. 20 for detgildHowever, for the general Hub-

1970s. bard Hamiltonian it has not been possible to find explicit
On the other hand, one-dimensional electron systems afermulas for the energy spectrum. In particular, superlattice-

being extensively studied to understand the behavior of Luttype Hamiltonians have not been considered thus far.

tinger liquids. In contrast to the behavior of electron system We begin with the Hubbard Hamiltoni&n

in dimensions two and higher whose properties are well es- + . n

tablished in the context of Landau’s theory, the Luttinger H= 2 tyCuCyet 2 Udihiy, (1)

liquid does not have stable quasiparticles, and its low energy xyeh xeh

behavior is based on separated collective spin and charge

excitations’® Although some aspects of the Luttinger liquid wherecl is the creation operator at site c, is the annihila-

theory have been tested in carbon nanotdBesther com- tion operator at sitey, t,, the hopping parameters), the

o (o8
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on-site parameter$y, is the number operatar]:cx, o repre- index W labels the well region, and the subindB¥ ac-
sents the spin degree of freedom, anthe atomic chain. To counts for inter barrier-well interactions. The symb®|,
produce a general superlattice structure we write the nonvastands for the standard definition of the Kronecker d&ts.
nishing parameters as an integer equal to the total number of repetitions of the
barrier-well structureng andn,y are the(intege) size of the

R-1 1 . . .
_S S(nBJ%"’)mB 5 & )%mw) 5 barrier and well region, respectively.
thn = = VBm:s(n - hm+ 7Wm=5(n M Call Ay=de({H-E) the corresponding eigendeterminant,
B Brwee where E are the sought energies, ahtER(ng+ny,) is the
(2) length of the nanowire.
and To simplify the notation, we introduce the new variables
R-1 s(ng+ny)+ng-1 7= EB W= ﬁW fB — Y8~ E gW: Yw E
tn,n+1: tn+1,n = E Bs E Onm+t ﬁBWé\n,s(nB+nV\,)+nB Baw Baw Baw Baw
s=0 m=s(ng+ny) +1

andAy=85,Pn-. We will build Dy. Call D, (1=m=<N) any

(srD(ng*nw) -1 upper-left subdeterminant dfi-E. Defined, (O<n=ng) a

+ + . L . »
Bewdnsingsny +ngeny BWm:S(nBE‘W)mBﬂ Onm [ generic D,, when m falls within a barrier, andd, (O<n
3 <ny,,) a genericD,,, whenm falls within a well.
Consider only those determinank§=D,_., ); and G;
B ''W

where y are on site parameters agdare near neighbor in- =D(nB+nW)J-_1 (0=<j <R). With this notation, our task reduces
teractions. The subindeéXlabels the barrier regions, the sub- to finding Fg. These subdeterminants satisfy

ao = dnB

do = Fj A
di = &Fj - G; and dy = &, ~ A1 (4)

dn=&gdn-1— ﬂédn—Z 2snsng - - -
o= Ewdn-1~ Tpnz 2<N=ny.

In each set of equations, the first two equations are initial Applying the recurrence abo\Rtimes, to account for the
conditions for the recurrence relations given in the third line.total length of the system, and using thgj=1 andGy=0,
Noticing that, by definition,Fj.,=d,  and Gj,;=dy 1, this choice reproduces correctly the first two matrices as can

the above relations provide an implicit link between P€ checked by inspection,

(Fj+1,Gj+1) and(F;,G;j). This link can be made explicit no- F 1

ticing that the solutions to the recurrence relations are ( R)Z(SnanW)RFR< ) (6)
Chebyshev polynomiafs. Then, Cr 0

The matrixI'R can be written ag'R=Ug_;(zg)T'-Ug_1(zp)!,
Fier) _ 8 W Fi 5)  Wherel is the identity matrix and
G | =St o ) (
" : 1 1 &
where zRE—Tr(l“):—<wn n —M>.
2 2\ WE L
Opyye _ Onyng1 Thus, the original eigenvalue equatiaky=0, which is
7B equivalent toFg=0, reduces tdJg_1(zg)['11—Ugr_2(z5) =0 or,

F = 1

Wn,~1ng Wn, 1N~ 1

W W8 Ur-1(zR)on,n, = Ur-2(zr) = 0 (7

explicitly,

which constitutes the main result of this paper.
1 Uny-1(Zw)Un-1(28) pap
Wnng = g UnW(ZW)UnB(ZB) - e )
z=¢&/2%, i=W,B,s is chosen so that the matrix above is
unitary, andU,(2) is the Chebyshev polynomial of the sec-  We apply our results to the calculation of properties of
ond kind’ three systems: resonance position in a nanowire tunneling

Ill. APPLICATIONS
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TABLE |. The energy levels are converted into voltage Via
=2 (E-6 meV). The 6 meV corresponds to the energy of the highest
occupied level of the emitter. The factor of 2 corresponds to the fact
that in an emitter-dot-collector, one must apply a volt&ge?E to
excite a state of energ¥ in the dot.

Experimental voltage

Level Energy(meV) \oltage(mV) (mVv)a
1 47.6 83.2 80
2 68.3 125 ~100
3 184 356

3Reference 8. ) .
FIG. 1. Spectral functio\(k=7/10,w) for an elemental wire

. L. of length 90. In the horizontal axi$= B.
diode, angle-resolved photoemission spectroscopy, and

Si-Ge superlattice nanowire spectrum. The first calculation. .
will be compared with experiments, the second with othe ind a good qua_lltatlve agreement between t_he two result_s.
theories. and the third is of predicti\}e character The agreement is not perfect since the Hamiltonian used in

the two approaches differ by one term, namely in the numeri-

) ) ) cal case there is an additional total number operator.
A. Nanowire tunneling diode

The Nanometer Consortium has measured tunneling cur- C. Si-Ge superlattice nanowire

rent through InAs-InP nanowire diod&Their system con- As an illustration of application of the main formula of

sisted of an emitter, collector and dot made out of a 19 nnihis paper, we consider a Si-Ge SN with 4 repetitions of a

InAs well, and two 9 nm barriers of InP. For the correspond-2-atom long Si and a 5-atom long Ge. The parameters chosen

ing lattice parametefd a,,,s=6.05 A, a,,,0=5.86 A, the bar-  for this example give the correct effective masses and elec-

riers are 9 nm/0.586 nm=15 atom thick, while the well istron affinities for Si and G&2¢ Low-dimensional param-

19 nm/0.605 nm=31 atom thick. These amgandny, re- eters are likely to differ from those of bulk, and are

spectively. unknown?’ The roots of the equation are plotted in Fig. 2 vs
The Hubbard parameters are found from the correspondSN wave number. Three energy gaps are clearly seen, a con-

ing band gaps\E;,,=0.42 eV, AE,,,=1.37 eV, grounding sequence of the quasiperiodicity of the system.

the collector(that is the bottom of the band at the collector is  For this example, we apply our results to model superlat-

set to zerp and the effective massa®,,s=0.024, m,, tices to discuss the influence of the parameters on the energy

=0.077. Their values arey,=8.70 eV, y5=3.49 eV, By, Spectrum. This study is motivated by the Cyrot-Lackman

=4.35 eV, Bg=1.44 eV. In additionn,=31,ng=15, andR  theorem that relates the moments of the density of states

=2. The last valueR, was chosen as 2 to model only one (mean, width, etg.with structural trends in molecul&$2®

InAs between the two InP barriers. Specifically, we allow foiBg, to vary, and study its influence
Table | shows a comparison between our results and ex@n the energy spectrum. This parameter is particularly impor-

periment. Although the experimental and theoretical voltagegant since it is the least known in practical applications due to

are similar, the agreement is not perfect since the energy arits strong Si-Ge-distance-dependence. We parametrize

lattice parameters correspond to the known values for three- Baw= BawoX

dimensional lattices. For one-dimensional structures, the pa- BW™ PBW

rameters must be slightly different, but are unknown. with Bgwo=1.35 eV, where represents the fractional devia-

tion from Bgwo

B. Angle-resolved photoemission spectroscopy

We use our results to calculate the angle-resolved photo- =z}
emission spectrum for a system with,=90, ng=0, R=1,
yw=4.96 in order to compare with extant numerical calcu-
lations performed with those parametéitds not a superlat-
tice, but an elemental nanowjreSpecifically, we compute
the photoemission spectral function, which is the imaginary -1} e P (j—l)
part of the one-particle Green’s function

—~
N S .
= 0.z 0.4 . 0.6 0.8
R

1
Ak, w) = g Im( ey inek,o| o) 2

P
C
“TH + w - Eq -

Figure 1 shows both, the results of our calculations, and
those of the previous work. The dashed line corresponds to  FIG. 2. Dispersion curve. Parameters usegz—2.09 eV, yy
the numerical results, and the solid line is from this work. We=-0.66 eV,8;=0.96 eV, B,=1.74 eV, Bgy=1.35 eV.
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FIG. 3. Mean energy as a function of Si-Ge bond strength. FIG. 4. Width of energy level distribution as a function of Si-Ge

bond strength.

Figure 3 shows the mean value of the energy spectrum as _ . .
a function ofx. As x increases, the Hamiltonian becomes Volving standard superlattices, it is common practice to sub-
increasingly dominated by the Si-Ge bond. In particular,Stitute atomic potentials for average values of band edges. In
whenx— o, the Hamiltonian becomes proportional to a realn@nowires that approximation can typically break down as
symmetric matrix with null diagonal and ones located everytheré might not be enough atoms in a given region to pro-
ng andnyy sites. This matrix has eigenvaluesl , 0) centered duce an electron band. Our results show a solution that over-
on zero, which explains the asymptotic behavior. comes that problem. We applied our results to three model

Figure 4 shows the width of the energy spectrum as £YS€MS: nanowire tunneling diodes, angle-resolved photo-
function of x. Whenx— o (Si-Ge dominated Hamiltonian €Mission spectroscopy, and Si-Ge superlattice nanowires. In
and for a SN with 4 repetitions of a 2-atom long Si and athe first two cases we compared with extant experimental
5-atom long Ge, the standard deviation \i&4/27~0.72 and theoretical results. In the last case we studied the depen-

which justifies the asymptotic behavior of the widktzurve. ~ dence of DOS moments with the bond parameters in the
spirit of Cyrot-Lackman theorem. Finally, our results can

serve as the base to interpret STM spectroscopy data from

nanowires since it is known that the STM current-voltage
We obtained an analytical expression for a function whoseurve is a measure of the system’s density of st&és.

roots provide the energy spectrum of a generic SN. That

expression contains information of the model-independent ACKNOWLEDGMENTS
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