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We consider superlattice nanowires, and find an exact solution to the model-independent quantum Hamil-
tonian. We obtained a closed-form solution to this problem. The energy levels for general interatomic interac-
tions were calculated in the context of the Hubbard model. We obtained an explicit formula for the function
whose roots render the energy states. The corresponding energy bands can be tuned by the usual superlattices
concept of pattern control but also, in the case of nanowires, by controlling the interatomic separation of the
structure. We apply our results to nanowire tunneling diodes, angle-resolved photoemission spectroscopy, and
Si-Ge superlattice nanowires.
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I. INTRODUCTION

One of the goals of nanometer-sized electronics is to de-
velop the ability to control atomic level patterning on atomic
chains. Beyond their use as connectors, nanowires can be
used as active elements if structured appropriately. In par-
ticular, all the ideas learned from band control in standard
superlattices can be transferred, contextually, to superlattices
in nanowiressSNd. Although this program is likely to require
substantial future research, experimental results demonstrat-
ing the feasibility of atomically thick SN on group III-V and
group IV elements already exist.1,2 Other experiments have
achieved atomically thin nanowires of carbon,3 silicon,4 and
organic polymers.5 A large number of experimental charac-
terizations of these structures rely on scanning tunneling
spectroscopysSTSd measurements, which provide informa-
tion about density of states. In order to interpret those mea-
surements, there is a need to develop specific theories that
provide the density of states of the SN. It is the intent of this
paper to develop such theory.

The impact of heterostructures in our fundamental under-
standing of electron systems and in technology is enormous.
From a fundamental standpoint, superlattices have served as
the physical support for novel behavior. For example, in
magnetic-nonmagnetic superlattices, the electrical resistance
is found to vary by many orders of magnitude in the presence
of a magnetic field.6 In another example, superlattices of
superconductor-insulator layers have shown a crossover from
two to three-dimensional melting of the vortex lattice as a
function of the insulator layer thickness. From a technologi-
cal standpoint, heterostrucuressquantum wells, superlatticesd
have served as optical and electronic detectors and actuators
in optoelectronic applications since their inception in the
1970s.

On the other hand, one-dimensional electron systems are
being extensively studied to understand the behavior of Lut-
tinger liquids. In contrast to the behavior of electron system
in dimensions two and higher whose properties are well es-
tablished in the context of Landau’s theory, the Luttinger
liquid does not have stable quasiparticles, and its low energy
behavior is based on separated collective spin and charge
excitations.7–9 Although some aspects of the Luttinger liquid
theory have been tested in carbon nanotubes,10 other com-

parisons, mainly in quantum wires, are open to further
study.11

In addition, studies of the ground excited states of the
Hubbard model have been popular in recent times. The Hub-
bard model is of interest due to its simplicity. In addition,
there is evidence that it accounts for the prominent charac-
teristics of electron systems in a large variety of real materi-
als. In one dimension, these materials include TTF-TCNQ
and SrCuO2.

12,13Luttinger behavior is only observed above a
crossover energy range, even in strongly anisotropic materi-
als. However, the Luttinger spectrum can be consistently
mapped within the bandwidth onto separated spin and charge
excitation bands of the 1D Hubbard model away from
half-filling.14

With the recent experimental capabilities to create and
control nanowires, the number of technological nanowire-
based devices has grown tremendously in the area of nanos-
cale photonics and electronics. For a few years, people have
been making “quantum wires” by cleaved-edge overgrowth
in GaAs-basedsand otherd systems.15 Those systems have
been very useful to measure transport properties.16,17

More recently quantum wiressand patterns within themd
have been grown on nanotubes and atomic chains18 with ap-
plications for waveguides and photovoltaics.19

In Sec. II, we derive the equation that provides the ener-
gies of the system. In Sec. III, we apply the general result to
specific situations. Section IV presents conclusions.

II. ENERGY SPECTRUM

There are various rigorous results regarding density of
states for one-dimensional spin systems within the Hubbard
model sLieb-Mattis and Yamanaka-Oshikawa-Affleck theo-
rems, see Ref. 20 for detailsd. However, for the general Hub-
bard Hamiltonian it has not been possible to find explicit
formulas for the energy spectrum. In particular, superlattice-
type Hamiltonians have not been considered thus far.

We begin with the Hubbard Hamiltonian6

H = o
x,yPL

s

txycxs
† cys + o

xPL

s

Uxn̂x↓n̂x↑, s1d

wherecx
† is the creation operator at sitex, cy is the annihila-

tion operator at sitey, txy the hopping parameters,Ux the
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on-site parameters,n̂x is the number operatorcx
†cx, s repre-

sents the spin degree of freedom, andL the atomic chain. To
produce a general superlattice structure we write the nonva-
nishing parameters as

tnn = o
s=0

R−1HgB o
m=ssnB+nWd+1

ssnB+nWd+nB

dnm+ gW o
m=ssnB+nWd+nB+1

ss+1dsnB+nWd

dnmJ
s2d

and

tn,n+1 = tn+1,n = o
s=0

R−1HbB o
m=ssnB+nWd+1

ssnB+nWd+nB−1

dnm+ bBWdn,ssnB+nWd+nB

+ bBWdn,ssnB+nWd+nB+nW
+ bW o

m=ssnB+nWd+nB+1

ss+1dsnB+nWd−1

dnmJ ,

s3d

whereg are on site parameters andb are near neighbor in-
teractions. The subindexB labels the barrier regions, the sub-

index W labels the well region, and the subindexBW ac-
counts for inter barrier-well interactions. The symboldnm
stands for the standard definition of the Kronecker delta.R is
an integer equal to the total number of repetitions of the
barrier-well structure,nB andnW are thesintegerd size of the
barrier and well region, respectively.

Call DN=detsH -Ed the corresponding eigendeterminant,
where E are the sought energies, andN=RsnB+nWd is the
length of the nanowire.

To simplify the notation, we introduce the new variables

hB =
bB

bBW
, hW =

bW

bBW
, jB =

gB − E

bBW
, jW =

gW − E

bBW
,

andDN=bBW
N DN. We will build DN. Call Dm s1ømøNd any

upper-left subdeterminant ofH -E. Define dn s0ønønBd a

generic Dm when m falls within a barrier, andd̂n s0øn
ønWd a genericDm whenm falls within a well.

Consider only those determinantsFj =DsnB+nWd j and Gj

=DsnB+nWd j−1 s0ø j øRd. With this notation, our task reduces
to finding FR. These subdeterminants satisfy

5 d0 = Fj

d1 = jBFj − Gj

dn = jBdn−1 − hB
2dn−2 2 ø n ø nB

6 and5 d̂0 = dnB

d̂1 = jWdnB
− dnB−1

d
_

n = jWd̂n−1 − hW
2 d̂n−2 2 ø n ø nW.

6 s4d

In each set of equations, the first two equations are initial
conditions for the recurrence relations given in the third line.

Noticing that, by definition,Fj+1= d̂nW
and Gj+1= d̂nW−1,

the above relations provide an implicit link between
sFj+1,Gj+1d and sFj ,Gjd. This link can be made explicit no-
ticing that the solutions to the recurrence relations are
Chebyshev polynomials.21 Then,

SFj+1

Gj+1
D = shB

nBhW
nWGSFj

Gj
D , s5d

where

G =1 vnW,nB −
vnW,nB−1

hB

vnW−1,nB

hW
−

vnW−1,nB − 1

hWhB

2 ,

vnW,nB
=

1

s
FUnW

szWdUnB
szBd −

UnW−1szWdUnB−1szBd

hWhB
G ,

zi = ji /2hi , i =W,B,s is chosen so that the matrix above is
unitary, andUnszd is the Chebyshev polynomial of the sec-
ond kind.7

Applying the recurrence aboveR times, to account for the
total length of the system, and using thatF0=1 andG0=0,
this choice reproduces correctly the first two matrices as can
be checked by inspection,

SFR

GR
D = sshB

nBhW
nWdRGRS1

0
D . s6d

The matrixGR can be written asGR=UR−1szRdG−UR−1szRdI,
whereI is the identity matrix and

zR ;
1

2
TrsGd =

1

2
SvnW,nB

−
vnW−1,nB−1

hWhB
D .

Thus, the original eigenvalue equationDN=0, which is
equivalent toFR=0, reduces toUR−1szRdG11−UR−2szRd=0 or,
explicitly,

UR−1szRdvnW,nB
− UR−2szRd = 0 s7d

which constitutes the main result of this paper.

III. APPLICATIONS

We apply our results to the calculation of properties of
three systems: resonance position in a nanowire tunneling
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diode, angle-resolved photoemission spectroscopy, and
Si-Ge superlattice nanowire spectrum. The first calculation
will be compared with experiments, the second with other
theories, and the third is of predictive character.

A. Nanowire tunneling diode

The Nanometer Consortium has measured tunneling cur-
rent through InAs-InP nanowire diodes.22 Their system con-
sisted of an emitter, collector and dot made out of a 19 nm
InAs well, and two 9 nm barriers of InP. For the correspond-
ing lattice parameters23 aInAs=6.05 Å, aInP=5.86 Å, the bar-
riers are 9 nm/0.586 nm=15 atom thick, while the well is
19 nm/0.605 nm=31 atom thick. These arenB and nW, re-
spectively.

The Hubbard parameters are found from the correspond-
ing band gapsDEInAs=0.42 eV,DEInP=1.37 eV, grounding
the collectorsthat is the bottom of the band at the collector is
set to zerod, and the effective massesmInAs=0.024, mInP
=0.077. Their values aregW=8.70 eV, gB=3.49 eV, bW
=4.35 eV,bB=1.44 eV. In addition,nW=31, nB=15, andR
=2. The last value,R, was chosen as 2 to model only one
InAs between the two InP barriers.

Table I shows a comparison between our results and ex-
periment. Although the experimental and theoretical voltages
are similar, the agreement is not perfect since the energy and
lattice parameters correspond to the known values for three-
dimensional lattices. For one-dimensional structures, the pa-
rameters must be slightly different, but are unknown.

B. Angle-resolved photoemission spectroscopy

We use our results to calculate the angle-resolved photo-
emission spectrum for a system withnW=90, nB=0, R=1,
gW=4.9bW in order to compare with extant numerical calcu-
lations performed with those parameterssit is not a superlat-
tice, but an elemental nanowired. Specifically, we compute
the photoemission spectral function, which is the imaginary
part of the one-particle Green’s function

Ask,vd =
1

p
Imkc0uĉk,s

+ 1

H + v − E0 − ih
ĉk,suc0l.

Figure 1 shows both, the results of our calculations, and
those of the previous work.24 The dashed line corresponds to
the numerical results, and the solid line is from this work. We

find a good qualitative agreement between the two results.
The agreement is not perfect since the Hamiltonian used in
the two approaches differ by one term, namely in the numeri-
cal case there is an additional total number operator.

C. Si-Ge superlattice nanowire

As an illustration of application of the main formula of
this paper, we consider a Si-Ge SN with 4 repetitions of a
2-atom long Si and a 5-atom long Ge. The parameters chosen
for this example give the correct effective masses and elec-
tron affinities for Si and Ge.25,26 Low-dimensional param-
eters are likely to differ from those of bulk, and are
unknown.27 The roots of the equation are plotted in Fig. 2 vs
SN wave number. Three energy gaps are clearly seen, a con-
sequence of the quasiperiodicity of the system.

For this example, we apply our results to model superlat-
tices to discuss the influence of the parameters on the energy
spectrum. This study is motivated by the Cyrot-Lackman
theorem that relates the moments of the density of states
smean, width, etc.d with structural trends in molecules.28,29

Specifically, we allow forbBW to vary, and study its influence
on the energy spectrum. This parameter is particularly impor-
tant since it is the least known in practical applications due to
its strong Si-Ge-distance-dependence. We parametrize

bBW= bBWOx

with bBWO=1.35 eV, wherex represents the fractional devia-
tion from bBWO.

TABLE I. The energy levels are converted into voltage viaV
=2 sE-6 meVd. The 6 meV corresponds to the energy of the highest
occupied level of the emitter. The factor of 2 corresponds to the fact
that in an emitter-dot-collector, one must apply a voltageV=2E to
excite a state of energyE in the dot.

Level EnergysmeVd Voltage smVd
Experimental voltage

smVda

1 47.6 83.2 80

2 68.3 125 ,100

3 184 356

aReference 8.
FIG. 1. Spectral functionAsk=p /10,vd for an elemental wire

of length 90. In the horizontal axis,t;bW.

FIG. 2. Dispersion curve. Parameters used,gB=−2.09 eV,gW

=−0.66 eV,bB=0.96 eV,bW=1.74 eV,bBW=1.35 eV.
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Figure 3 shows the mean value of the energy spectrum as
a function of x. As x increases, the Hamiltonian becomes
increasingly dominated by the Si-Ge bond. In particular,
whenx→`, the Hamiltonian becomes proportional to a real
symmetric matrix with null diagonal and ones located every
nB andnW sites. This matrix has eigenvaluess±1,0d centered
on zero, which explains the asymptotic behavior.

Figure 4 shows the width of the energy spectrum as a
function of x. When x→` sSi-Ge dominated Hamiltoniand
and for a SN with 4 repetitions of a 2-atom long Si and a
5-atom long Ge, the standard deviation isÎ14/27<0.72,
which justifies the asymptotic behavior of the width-x curve.

IV. CONCLUSIONS

We obtained an analytical expression for a function whose
roots provide the energy spectrum of a generic SN. That
expression contains information of the model-independent
Hamiltonian parameters, atomic periodicity of the chain, and
the superimposed superlattice periodicity. In calculations in-

volving standard superlattices, it is common practice to sub-
stitute atomic potentials for average values of band edges. In
nanowires that approximation can typically break down as
there might not be enough atoms in a given region to pro-
duce an electron band. Our results show a solution that over-
comes that problem. We applied our results to three model
systems: nanowire tunneling diodes, angle-resolved photo-
emission spectroscopy, and Si-Ge superlattice nanowires. In
the first two cases we compared with extant experimental
and theoretical results. In the last case we studied the depen-
dence of DOS moments with the bond parameters in the
spirit of Cyrot-Lackman theorem. Finally, our results can
serve as the base to interpret STM spectroscopy data from
nanowires since it is known that the STM current-voltage
curve is a measure of the system’s density of states.30,31
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