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Anomalous low-field magnetoresistance inp-type strained quantum wells is studied. It is experimentally
shown that the Bychkov-Rashba mechanism leads to the cubic in quasimomentum spin-orbit splitting of the
hole energy spectrum and the antilocalization behavior of low-field magnetoresistance is well described by the
Hikami-Larkin-Nagaoka expression.
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The combination of quantum coherence and spin rotation
produces a number of interesting transport properties. Nu-
merous proposals for electronic devices that use spin-orbit
coupling have appeared in the last few years, including gate-
controlled sources and detectors of spin-polarized current.1–3

Spin-orbit coupling results in the spin splitting of the energy
spectrum when an inversion symmetry is lifted. The lack of
inversion symmetry of the original crystal results in the split-
ting of the energy spectrum, which is linear and cubic in
in-plane quasi-momentum,k. This splitting is described by
terms known as the Dresselhaus terms.4 In low-dimensional
systems an additional mechanism of spin splitting is caused
by the asymmetry of the confining potentialsso called the
Bychkov-Rashba term5 d. In two-dimensionals2Dd semicon-
ductor systems this asymmetry arises from asymmetry of the
smooth electrostatic potential in the perpendicular to the 2D
plane direction, from Schottky barrier potential, from asym-
metry in doping layer dispositions, and the composition gra-
dient along the growth direction. It is very important that this
asymmetry can be controlled by gate voltage. For electron
2D states, the Bychkov-Rashba term is linear ink. For 2D
hole systems, the situation becomes more complicated be-
cause of fourfold degeneracy of the topmost valence bandG8
of the parent material. Theoretical considerations of this
problem and experimental studies show that the splitting is
cubic in k in this case.6–9

The measurements of interference-induced low-field mag-
netoresistance are the powerful tool for studies of the spin-
splitting, spin-, and phase-relaxation mechanisms. At
present, there are numerous studies ofn-type 2D
systems,2,10–16whereas the more complicatedp-type systems
are studied noticeably less17–21 sfor more references see the
review article by Zawadzki and Pfeffer22d. As for the strained
quantum well, the antilocalization and spin relaxation in the
2D hole gas are practically not investigated in these systems.

In this paper, we present the results of an experimental
study of the low-field magnetoresistance caused by weak an-
tilocalization in p-type strained GaAs/ InxGa1−xAs/GaAs

quantum well structures. It has been found that the magne-
toresistance shape is well described by the Hikami-Larkin-
NagaokasHLNd expression,23 which means that the leading
term in the spectrum splitting is cubic in quasimomentum.
We show that in contrast ton-type systems, where such a
finding implies that the Dresselhaus spin-splitting mecha-
nism is the main, the Bychkov-Rashba mechanism is respon-
sible for the spin splitting of the hole energy spectrum in the
strained quantum wells under investigation.

The GaAs/ InxGa1−xAs/GaAs heterostructures were
grown by metal-organic vapor phase epitaxy on semi-
insulator GaAs substrate. The quantum well was biaxially
compressed due to the lattice mismatch between InxGa1−xAs
and GaAs. Two types of heterostructures were studied. The
structures of the first type, 3855, 3856, and 3857, consist of
a 250 nm thick undoped GaAs buffer layer, a carbond-layer,
a 7 nm spacer of undoped GaAs, an 8 nm In0.2Ga0.8As well,
a 7 nm spacer of undoped GaAs, a carbond-layer, and
200 nm cap layer of undoped GaAsssee Fig. 1d. The struc-
ture of the second type, 3951, was analogous, the only dif-
ference was the wider spacer, 15 nm, and hence the higher
mobility. The structures within the first group differ by car-
bon density ind-layers. The parameters of the structures are
presented in Table I. The samples were mesa etched into
standard Hall bars and then an Al gate electrode was depos-
ited by thermal evaporation onto the cap layer through a
mask. Varying the gate voltageVg from −1 to +3 V, we
changed the hole density in the quantum well from
131012 to 331011 cm−2. The analysis of the temperature
dependence of the Shubnikov–de Haas oscillations showed
that the hole effective mass was equal tos0.160±0.005dm0

and did not depend on the hole density.
Figure 2 shows the low-field magnetoconductivity,

DssBd=rxx
−1sBd−rxx

−1s0d, measured atT=0.44 K for structure
3857 as a function of a normalized magnetic fieldb=B/Btr,
whereBtr =" / s2el2d with l as the mean free path. The antilo-
calization maximum atB=0 in the conductivity-versus-
magnetic field curves decreases with lowering hole density
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and disappears atVg=2.75 V, whenp.3.831011 cm−2. In
the structure 3951 with the higher hole mobility, the disap-
pearance happens atp.331011 cm−2.

Theoretically, the low-field anomalous magnetoresistance
was studied in Refs. 11, 23, and 25. It was shown that when
the spin splitting is cubic ink, the magnetoconductivity
curve should be described by the Hikami-Larkin-Nagaoka
sHLNd expression
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Here,G0=e2/ s2p2"d, tf andts are the phase and spin relax-
ation times, respectively,csxd is the digamma function, and
tn, n=1, is the transport relaxation time,

1

tn
=E Wsuds1 − cosnuddu, s2d

whereWsud stands for the probability of the scattering by an
angleu.

For the Dyakonov-Perel spin-relaxation mechanism,24

which is dominant at low temperatures, the value ofts is
determined by the spin-orbit splitting of the energy spectrum,
"V3~k3, as

1

ts
= 2V3

2t3, s3d

wheret3 is defined by Eq.s2d.
Taking into account both the cubic and linear terms leads

to more complicated expressionssee Ref. 25d. The following
two parameters describing the spin relaxation arise in this
case

1

ts8
= 2V1

2t1 s4d

and

1

ts
= 2sV1

2t1 + V3
2t3d, s5d

where"V1 is the linear ink, "V1~k, spin-orbit splitting.
Comparison of the experimental data with theoretical ex-

pressions for two limiting cases, when only the cubic or lin-
ear term is taken into account, is shown in Fig. 3. To span the
characteristic minimuma inDs-versus-B curves, the fitting
interval has been chosen as −0.3Btr ,B,0.3Btr. Strictly
speaking, the boundaries of this interval do not satisfy the
diffusion approximationB!Btr in which framework the
formulas23,25 for magnetoconductance have been derived.
Nevertheless, one can see that taking into account only the
linear term does not allow us to describe satisfactorily the
magnetoconductivity shape within the fitting interval while
the HLN expression gives a good agreement. Beyond the
diffusion regime, the HLN theory was generalized by Zdun-

FIG. 2. The magnetoconductivity plotted against the reduced
magnetic field for different gate voltages, structure 3857, andT
=0.44 K.

FIG. 1. The cross section of structure 3857 and its energy
diagram.

TABLE I. The parameters of structures investigated.

Structure N1 scm−2da N2 scm−2da p scm−2d m fcm2 sV sd−1g

3855 431011 331011 4.731011 4800

3856 831011 631011 7.531011 5700

3857 1.231012 831011 9.531011 8000

3951 1.231012 831011 5.431011 13100

aN1 and N2 are the carbon density in outer and innerd-layers, re-
spectively.
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iak et al.13 However, the final expressions are very compli-
cated and inconvenient to use in the fitting procedure. Be-
cause of this, we used the simulation approach described in
our paper, Ref. 26. To take into account the spin-relaxation
processes, Eq.s20d from this paper was modified as de-
scribed in the Appendix. As Fig. 3 illustrates, with the use of
Eq. sA1d we obtain a nice coincidence of calculated and
measured curves over the whole magnetic field range. Al-
though the theory beyond the diffusion approximation de-
scribes the magnetoresistance curve better, the fitting param-
eterst1/tf andt1/ts are found to be close to those obtained
with the help of Eq.s1d ssee Table IId. Therefore, it seems
natural to analyze the experimental results with the use of the
more simple HLN expression.

Further indication that just the cubic ink splitting is re-
sponsible for the spin relaxation is reasonable behavior of the
fitting parameters obtained from Eq.s1d with the temperature
change. As seen from Fig. 4 the parametertf exhibits the
behavior close toT−1-law that corresponds to the phase re-
laxation caused by inelasticity of electron-electron
interaction.27 The parameterts is temperature independent as
should be for degenerated electron gas. Such analysis has
been carried out for all the structures investigated and the
results are collected in Fig. 5 as a plot of the spin relaxation
time ts against the hole density controlled by the gate volt-
age.

For the first sight the fact that the magnetoconductance
curves are well described by the HLN expression means that

the Dresselhaus cubic term gives the main contribution to the
spin splitting in the structure investigated. Whether or not it
is so, one can understand analyzing the hole density depen-
dence of spin-orbital splitting,"V3spd. For the Dresselhaus
mechanism, the splitting should be proportional top3/2 be-
causeV3=gk3/4, whereg is the constant depending only on
the band parameters of the parent materialssee Appendix A
in Ref. 11 for detailsd. Experimentally, the value of spin-orbit
splitting "V3 can be found from Eq.s3d using ts obtained
above andt3. How the quantityt3 has been obtained is con-
sidered below.

As seen from Eq.s2d the relaxation timet3 is determined
by the scattering anisotropy via the functionWsud. Just the
same function determines the relationship between the quan-
tum and transport relaxation times,t0 and t1, respectively.
Therefore, we estimatet3 using the experimental value for
t0,

FIG. 3. The magnetoconductivity as a function of the normal-
ized magnetic field measured on the structure 3857 atT=0.44 K for
the two gate voltages:Vg=1.5 V sp=831011 cm−2, t1=5.4
310−13 sd and Vg=2.25 V sp=5.831011 cm−2, t1=3.9310−13 sd.
Symbols are the experimental data. The dotted lines are the best fit
by Eq.s13d from Ref. 25 when the only linear ink term is taken into
account. Dashed lines are the best fit by the HLN expression, Eq.
s1d. Solid lines are the results of the simulation proceduressee the
Appendixd which is valid beyond the diffusion approximation. The
fit has been done within the magnetic field range −0.3Btr ,B
,0.3Btr. The fitting parameters are given in Table II.

TABLE II. The parameters of the best fit for the data presented
in Fig. 3 as obtained taking into account only the linear ink term
sRef. 25d, only the cubic ink term in the diffusion approximation
sRef. 23d, and the cubic ink term beyond the diffusion approxima-
tion ssee the Appendixd.

Vg sVd Theory t1/tf t1/ts

1.5 Ref. 25 0.020 0.178

Ref. 23 0.016 0.051

Appendix 0.014 0.040

2.25 Ref. 25 0.034 0.142

Ref. 23 0.017 0.032

Appendix 0.013 0.025

FIG. 4. The temperature dependence of the phase and spin re-
laxation time as obtained from the fit of the experimental data by
Eq. s1d for structure 3857 atVg=1.5 V. Solid line is theT−1-law.
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t3 = t0E WsudduYE Wsuds1 − cos 3uddu, s6d

and conceiving the physically reasonable angle dependence
for Wsud so that the ratio

K01 =E Wsuds1 − cosuddu/YE Wsuddu s7d

is equal to the experimental quantityt0/t1. The value oft0
has been obtained from the analysis of the magnetic field
dependence of the amplitude of the Shubnikov–de Haas os-
cillations, whilet1 has been found from the mobility value,
t1=mm/e. The experimental hole density dependences oft0
andt1, presented in Fig. 6, show that the scattering is really
anisotropic in all the structures and thet0 to t1 ratio lies in
the interval from 0.2 to 0.5. This seemingly points to the fact
that the scattering is mainly determined by ionized impurities
and Wsud can be chosen in the form obtained, e.g., in Ref.
29. However, our estimation shows that the electron mobility
in this case should be one to two orders of magnitude higher
than that observed experimentally. We suppose that the
roughness of the quantum well interfaces restricts the mobil-
ity in our structures. This mechanism is theoretically studied
in Ref. 30, where the explicit form forWsud is derived and it
is shown that the scattering anisotropy strongly depends on
the parameterL characterizing the fluctuations of the quan-
tum well width due to interfaces roughness. Using the form
for Wsud from this paper we have chosen such a value of
parameterL which satisfies the equality between the experi-
mental value oft0/t1 and the calculated from Eq.s7d value
of K01. Then, with thisL value we have calculated thet3-to-
t0 ratio. Doing so we have found thatt3=s0.7, . . . ,0.8dt0

when K01 lies within actual for our case range,K01
=0.2, . . . ,0.5. Note, the close results,t3.t0, are obtained if

one usesWsud corresponding to scattering by remote ionized
impurities.29

Finally, we arrive at the key figure of the paper, Fig. 7,
where the value of spin splitting"V3=" /Î2t3ts is plotted as
a function of the hole density. One can see thatsid we do not
observe the characteristic for the cubic ink spin-orbit split-
ting p3/2 dependence of"V3 and sii d the different structures
have significantly different values of the splitting for a given
hole density. Both these facts unambiguously show that the

FIG. 5. The spin relaxation time as a function of hole density
controlled by the gate voltage for all structures investigated,T
=0.44 K.

FIG. 6. The hole density dependence oft0 sopen symbolsd and
t1 ssolid symbolsd. Solid lines are provided as a guide for the eye.

FIG. 7. The hole density dependence of the spin-orbital splitting
for different samples. Symbols are the experimental data obtained
as"V3=" /Î2t3ts, solid lines are calculation resultsssee textd, and
dashed lines showp3/2-law for structures 3856 and 3951. In brack-
ets, the values of the fitting parameterS for each structure are
shown.
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Dresselhaus mechanism is not responsible for the cubic ink
spin-orbit splitting of the hole spectrum.

Let us now discuss specific features of the Bychkov-
Rashba effect for holes in strained quantum well heterostruc-
tures. In general, this effect in hole 2D systems is considered
in Refs. 6–9. It has been qualitatively shown that the states
of the heavy inz-direction holes forming the ground 2D
subband do not have the linear ink term in spin-orbit split-
ting. This phenomenon can be understood as follows.31

Terms of first order in the wave vector components can
couple only those states which differ in projection of the
angular momentum by one. The heavy hole states in af001g
QW have the angular momentum projection to the growth
axis equal to ±3/2. Therefore the spin-orbit Hamiltonian
mixing these states should contain third degrees of the wave
vector componentssin the axial approximationd. This situa-
tion is opposite to the electronic case where two spin states
±1/2 differ in spin projection by one, allowing fork-linear
spin splitting.

Below we write out only the main expressions which help
us to describe the experimental results quantitatively. We re-
strict our consideration by the case when only three hole
bands are taken into account. They are the heavy- and light-
hole G8 bands and theG7 hole band split off by spin-orbit
interaction. In this case, the energy spectrum is described by
the 636 Luttinger-Kohn Hamiltonian32 which includes the
terms responsible for the strain.33 As shown in Ref. 34, the
636 Hamiltonian can be decoupled into two independent
333 matrices of the form

H = 1 A+ C 7 iB Î2 ± iB/Î2

C ± iB A− F 7 iÎ3/2B

Î2 7 iB/Î2 F ± iÎ3/2B D
2 s8d

where

A± = − sg1 7 2g2dkz
2 − sg1 ± g2dk2 + EG8

szd + Vszd ± S,

B = 2Î3g3kkz,

C = Î3k2sg2
2 cos2 2u + g3

2 sin2 2ud1/2,

D = − g1skz
2 + k2d + EG7

szd + Vszd,

F = 2g2sÎ2kz
2 − k2/Î2d.

Here, gi stand for"2gi
L / s2m0d, wheregi

L are the Luttinger
parameters,kz is the wave vector along thef001g growth
direction, k2=kx

2+ky
2, u is the angle between the in-plane

wave vector and thef100g direction,Vszd is the macroscopic
electric potential in the heterostructure,EG8

andEG7
are the

energies of edges of corresponding bands, and

S= bSs + 1

s − 1
DDa

a
s9d

is the splitting of theG8 band due to strain caused by the
lattice mismatch between GaAs and InxGa1−xAs. In Eq.s9d, b
stands for the axial deformation potential of the valence

band, s is the Poisson’s ratio,Da is the lattice mismatch
between materials of the quantum well and barrier, anda is
the lattice constant of the quantum well material. Let us es-
timate characteristic energies for the case of
GaAs/ In0.2Ga0.8As heterostructure. The value ofDa/a is
about 1.4%,s is approximately equal to 1/3, andb is about
−1.7 eV so that the value of strain-induced splitting 2uSu is
approximately equal to 90 meV. This value is five to ten
times greater than the Fermi energy in our case. We find the
Bychkov-Rashba splitting of the hole energy spectrum using
the ratioEF / s2Sd as a small parameter. The band parameters
gi andD=EG7

−EG8
are supposed independent of thez coor-

dinate. Then, in isotropic approximation,g2=g3=g, the en-
ergy spectrum of the upper split off band for our case can be
written as follows:

E± . E ± "V3 s10d

with

"V3 = 6g2k3E dzucu2
d

dzS 1

E − EG8
szd − S− Vszd

−
1

E − EG8
szd − D − VszdD , s11d

wherec andE are solutions of the Schrödinger equation

A+c = Ec. s12d

It is clearly seen from Eq.s11d that the Bychkov-Rashba
splitting for all 2D subbands formed from the upper hole
band is cubic ink in contrast to the electron energy spectrum
where it is linear ink.

Now we are in position to compare the experimental
"V3-vs-p dependences with those calculated from Eqs.s11d
ands12d. To find the electric potentialVszd, the Schrödinger
equation has been self-consistently solved with the Poisson
equation. We have used the band parameters for In0.2Ga0.8As,
which are obtained by the linear interpolation from the val-
ues of GaAs and InAs:g1

L=−9.5,gL=−3.5,D=0.35 eVsthe
signs of the Luttinger parameters correspond to the increas-
ing of energy into the valence bandd, and dEv=EG8

sGaAsd
−EG8

sIn0.2Ga0.8Asd=75 meV. As an example, the energy
profile and the wave function for structure 3857,Vg=0, is
shown in Fig. 1. To describe the experimentalV3-vs-p de-
pendence for each structure, the parameterS has been used
as a fitting one. One can see from Fig. 7 that we are able to
describe well the experimental results obtained for different
samples in our model varying theS-value from one to the
other structure only slightly. The different value of strain-
induced splitting for different samples seems to be natural. It
can result, for instance, from deviation of In-content from its
nominal value. As for the value of the strain-induced split-
ting, 2uSu.75–90 meV, it corresponds to the lattice mis-
match and In-content laying within the intervals 1.2–1.4%
and 17–20%, respectively. Let us direct attention to the in-
teresting detail. The"V3-vs-p dependence exhibits behavior
corresponding to Eq.s11d, "V3~p3/2, only at low hole den-
sity, p,231011 cm−2. At higher hole density this depen-
dence has a maximum and sign changesnot shown in figured.
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This feature is caused by the fact that the hole density is
varied by means of variation of the gate voltage. Applying
the gate voltage, we change not only the value of the Fermi
quasimomentum but the energy profile of the quantum well
as well. In this case the integral in Eq.s11d is not constant
any more and gives additionalp dependence inV3. Vanish-
ing of spin-orbit splitting at some hole density means that the
quantum well in this point becomes effectively symmetric.
We realize that the approximations of large strain-induced
splitting andz independence ofgi parameters made above
are crude enough. Moreover, the well boundaries can be
smooth and different, and the In-content can vary across the
quantum well. These factors being taken into account could,
in principle, change the value ofS obtained from the fit.
However, this should not change our interpretation in the
large case.

In summary, we have shown that the Bychkov-Rashba
mechanism results in the cubic ink spin-orbit splitting of the
hole energy spectrum in strained heterostructures. The mag-
netoresistance curve in this case is well described by the
HLN expression, which allows us to find the spin splitting as
a function of the hole density. We have found that this de-
pendence is nonmonotonic at relatively high hole density due
to the sensitivity of the quantum well profile to the gate
voltage.

The authors are grateful to L. E. Golub for interesting
discussions and valuable comments. This work was sup-
ported in part by the RFBRsGrant Nos. 01-02-16441, 03-02-
16150, and 04-02-16626d, the CRDF sGrant Nos. EK-
005-X1 and Y1-P-05-11d, the INTASsGrant No. 1B290d and
the Russian ProgramPhysics of Solid State Nanostructures.

APPENDIX: NUMERICAL SIMULATION
OF ANTILOCALIZATION

The weak localization phenomenon for a spinless particle
using the numerical simulation of a particle motion over the

plane with randomly distributed scatterers is studied both
within and beyond diffusion regime in Ref. 26. It has been
shown that obtaining from the simulation procedure the pa-
rameters of closed paths, one can calculate the quantum in-
terference correction to the conductivity and its magnetic
field dependencefsee Eq.s20d in the paper citedg. Taking
into account the spin relaxation processes leads to the fol-
lowing expression for the interference quantum correction
sthis generalization will be considered in more detail
elsewhered:28

dssbd = −
2pG0

Isd
o

i

cossbSidexps− l igfd

3S−
1

2
+ exps− l igsd +

1

2
exps− 2l igsdD , sA1d

whereIs is the total number of paths;d is the diameter of the
area from which the particle starts to walk and in which it
returns;l i andSi are the length and algebraic aria of theith
closed path;gf andgs are the phenomenological parameters
describing the phase and spin relaxation and corresponding
in real systems to ratiost1/tf and t1/ts, respectively; the
lengths and areas in this expression are measured in units of
mean free path and squared mean free path, respectively; and
summation runs over all closed paths. In order to treat the
experimental results presented in this paper, we have first
collected the parameters of closed pathsl i andSi simulating
the motion of particle as described in Ref. 26, and, then, we
have used Eq.sA1d to fit the experimental curves withgf

andgs as the fitting parameters.
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