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Parameter regime of a resonance quantum switch
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The design of a three-terminal resonance quantum switch is suggested in the form of a network consisting
of a circular quantum well with four semi-infinite single-mode quantum wires attached to it. In the resonance
case, when the Fermi level in the wires is close to an energy level in the well, the magnitude of the governing
electric field on the well may be specified such that the switching effect is obtained; the quantum current across
the switch from the incoming wire to the outgoing wilésrminalg is controlled via rotation of the orthogonal
projection of the field onto the plane of the device. Using an approximate formula for the scattering matrix we
define essential details of the design and the parameter regime of the switch depending on the desired working
temperature, the Fermi level in the wires, and the effective mass of an electron.
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I. INTRODUCTION main by the homogeneous Dirichlet conditions, at least for
electrons with energy close to the Fermi level. We do not

The basic problems of quantum conductance were relatedssume that the wires are thisee the discussion below in
to scattering processes long agtand the role of scattering Secs. Il B and 1l § or that the connection of the wires to the
in the mathematical design of quantum electronic deviceguantum well is weak. But we assume that the dynamics of
was clearly understood by the beginning of the 1996s. the electrons in the wires is single mode and ballistic on
Modern experimental techniques already permit observatiotarge intervals of the wires, compared with the size of the
of resonance effects caused by details in the shape of ttgeometric details of the constructigthe width of the wire
resonance wave functioist! We propose using these effects or the size of the contadtsimposing certain weak condi-
as efficient tools for manipulation of the transport propertiesions, see Secs. Il B and Il C below, on geometrical details of
of the three-terminal quantum switch. the network(), we derive an approximate formula for the

The idea of resonance manipulation of tsieagle-mode corresponding scattering matrix which is used for optimiza-
guantum current is based on the following observation frontion of transport properties of the switch.

Ref. 12: “The resonance transmission across the quantum In this paper we replace the transport problem for the
system caused by attachment of incoming and outgoinguantum switch by the one-body scattering problem, assum-
channels is proportional to the products of some local charing that quantum current is weak and few-body effects are
acteristics of the corresponding resonance eigenfunction of
the system at the places where the channels are attached.”

In this paper we suggest a method for an approximate
description of the resonance transport in a quantum network,
considering the basic example, the resonance quantum
switcht® formed on the surfac®, of a semiconductor as a
union Qzu‘;oﬂs of the quantum welk}, and four equiva-
lent quantum wired)q, Q,, Qs, Q,, of equal widthés at-
tached to it. See Fig. 1. In this paper the basic quantum well o
Qg is a disk. Similar analysis can be developed for the ring,
but in that case the resonance manipulation of the quantum
current is more difficult because of instability of lines of ~
zeroes of the resonance eigenfunction. The role of the Hamil-
tonian of the relevant quantum system is played by the one-
electron Schrodinger operatbr See below in Sec. Il. The
corresponding potential is constav{x)=V., in the wires,
linear (for the macroscopic electric fieldbn the well, and
zero on the complemem,\(:=Q’ of the network. We as-
sume that the Fermi level in the wires with respect to the FIG. 1. Resonance quantum switch. The circular quantum well
potential on the complement of the network is deep enoughl, with wires Q;, j=1,2,3, 4attached. The wires are enumerated
See the estimates below in the beginning of Sec. II. Then onia a counterclockwise direction, beginning from the horizontal wire
can replace the matching boundary conditions on the coma, on the left of the well. The modified wefd, is obtained as the
mon boundary of the network and the complementary doeomplement of the wires in the circular we.
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suppressed by scattering by impurities, which is also neus to replace, in Sec. Il B, the exact formuld for the
glected in this paper. A more realistic analysis of conduc-scattering matrix by the approximate formy@v). This ap-
tance requires estimation of decoherence and taking into aproximate formula is interpreted as a scattering matrix for a
count many-body effects, for instance as in Ref. 14. Thissolvable model. In Sec. Il we find positions of resonances,
analysis will be developed in the forthcoming paper. and in Sec. IV we optimize the conductance of the switch
Solution of the one-particle spectral problem for thebased on Eq(27). Useful mathematical facts concerning the
Schrédinger equation on the two-dimensional network obviDirichlet-to-Neumann map of the intermediate operator and
ously can’t be obtained in explicit form. One usually believesthe analytic perturbation procedure for calculation of the cor-
that the explicit formulas can be substituted by the solutiorresponding spectral data are collected in the Appendixes A
of a one-dimensional Schrédinger equation on the correand B.
sponding graph. See for instance Refs. 20 and 19. In math-
ematical papef$—1"based on Ref. 18 the authors noticed that
the (discrete spectrum of the Laplacian on a system of finite
length shrinking waveguides of widtlé attached to the

shrinking vertex domain of diameteR=R;5", 0<a<1 Conductance of the network constructed on the surface of
tends to the spectrum of the Laplacian on the correspondinge crystallized medium depends on the geometry of the net-
one-dimensional graph, but with different boundary condi-work and on the correspondence between the crystal struc-
tions at the vertices, depending on the “speeddf shrink-  tyre and the form and positions of the wires with respect to
ing. Unlike the papers in Refs. 15-17, our approach to thehe crystal's lattice. For networks of quantum wires and
Schrddinger equation on the “fattened graph” with semi-quantum wells formed on the surface of GaAs, InAs, and the
infinite wires is based on an analySiS of the resonance tranﬁ'arrow_gap semiconductors CngTe, and InSb the tensor of
mission through the quantum well. Assuming that the Fermiffective mass is isotropic, and the value of the effective
level is situated on the first spectral band in the wires, wenass is smallm'=m*=m"<m,, see Refs. 22 and 23 and

impose additional “chopping off” boundary conditions on the Taple | in Sec. IV C. If the Fermi level is deep compared
bottom sectionsy; of the semi-infinite wires. See Fig. 1 jith the radius of the well,

above. These conditions split the original Schrédinger opera- .
tor into the orthogonal sunh—{=2 15} & If, of the trivial part 2m (0 - Eg) R2
{=r_,13 in the open channels and the nontrivial g§nvhich h?

plays the role of an “intermediate operator.” The spectrum of _ . . .
the intermediate operator consists of an absolutely contin Ris measured in A and the depth of the Fermi le\@+E¢) i
in eV], then for the values of the ener@ynear to the Fermi

ous part of varying multiplicity which begins from the sec-
ond threshold in the wires. See Sec. Il A, and a sequence ¢fVe! Er the spectral problem
eigenvalues\| which can accumulate at infinity. The eigen- 2
values that are sitting on the first spectral band generically T om
give rise to resonances of the scattering problem on the net-
work and hence define the resonance conductance. Our madm the whole plane can be reduced to the spectral problem
tool is the following formula for the scattering matrix: for the corresponding Schrodinger operator on the network
0:=0,U0Q,U0,UQ3UQ, with zero (Dirichlet homoge-
_ip(V)E+ AT 1 neous boundary condition ul o =0.
ip(\)I = A"’ We assume that the potenth(x) on the quantum well is
defined by the macroscopic “governing” electric fiefar
whereip()) is, in_the simplest case, an exponent from theyhich is constant inside the weN,(x)=Ee(x, v)+V,, where
bounded mOde_ﬁ‘t'p(Wes in the open channels, spanned by ¢ js the electron charge and the unit vectorshows the
the cqr_respondmg cross section ageqfunchagnand A"is  direction of the field. The magnitude of the field is specified
the Dirichlet-to-Neumann map of the intermediate operatof sec. |V to optimize the switching effect for a circular
lo- See Sec. Il B and the Appendix. quantum well of a certain radius. In the wir€k; -1 <xg
For low temperatures the summation and integration over o 0<y< & the potential is piecewise constant, possibly
the spectrum{\} of the intermediate operator may be re- with a barrier height:2H2/2m" at the beginning,
duced, see for instance Ref. 21, to the essential interval of

Il. THE SCHRODINGER EQUATION AND THE
HAMILTONIAN OF THE SWITCH

=0.31360 -E()R?> 1

Au+V(X)u=Eu (2

S(\)

energy|A2/2my\ —Eg| < kgT. In our case this gives an ap- Vo + 2H?2 if — 1 <x<0
proximate scattering matrix. In the most interesting case, Vixy) =y~ 2m
when only one resonance eigenvahjgis sitting on the es- v if x>0

sential spectral interval, the above formdla gives an im-
portant “one-pole approximation” which is used below for or constantV¢(x)=V.., if I=0. The first case corresponds to
the estimation of the parameter regime of the switch. the presence of a split gate on the initial pdrt&x <0 of the
Here is the plan of our paper. In Sec. Il we derive anwire. In the second case the split gate is absent or switched
explicit formula(12) for the scattering matrix in terms of the off. In the case of the ring-shaped well, see for instance Ref.
spectral characteristics of the intermediate operator and d&- when the resonance manipulation is unstable, the electron
scribe the geometrical and physical limitations which allowcurrent can be manipulated with the help of a split gate. In
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this paper we focus on the resonance manipulation of th
electron current.
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We assume that the role of the one-electron Hamiltonian

on the network is played by the Schrédinger operator,

2

|=-—A+V(X), (3

2m’

If the Fermi level in the wires sits on the first spectral band,
we use split operatol” defined by the above Schrodinger
differential expressions on the whole network with special
boundary conditions on the common boundBryUZ , v, of

the well and the wires. In the first open channel the standard

with the potential and the tensor of effective mass specifieqlnatching boundary condition is replaced by thartial Di-
as described above. It is convenient to use the “geometriciichlet houndary conditionchopping the first channel off
form of the corresponding Schrodinger equation with théywe denote byE, the four-dimensionagntrance subspacef

renormalized spectral parametex=p2=(2m'/#?)[E-V.,
—(h?/2m") (7?1 )], and the corresponding effective wave
numberp=y\. Furthermore, we assume that the width of all
wires is §;=4. This allows us to introduce the universal
renormalized spectral parameter p?.

We use the spectral parametein the Schrédinger equa-

tion on the well, after substraction of appropriate correcting

terms from the potential,

V09 -V, -
T o

J

772}u(x) = i*)\u, X <R. (4)
m

1 2
- RAXU(X) + ﬁ_2|:

2

{E—V - f
“ 2m &

2
w2

the open channel, spanned by the first-order eigenfunctions
€], s=1,2,3,4, on thébottom sectionsy,, s=1,2,... of the
wires, elzv%sin myl é,..., and byP,, the corresponding
orthogonal projection inE=L,(I"). We present the partial
chopping-offooundary condition as

8

P.ulr=0, orJ

sin 7T—(;/us(y)dy: 0, s=1,2,3,4,
0

(8

both for functionsug from the domain of the corresponding
split operator in the wire and in the well. The partial match-
ing condition in all upper(closed channels] > 1, with the
entrance subspack_=L,(I')sE, and the corresponding

A nondimensional form of the above Schrodinger equatiorcomplementary projectiofP_=I© P, in Ly(I')=E is pre-

on the well is obtained via change of the space variable
—§&=(6,8&)=x/R,

1 2R? h? 72
—EAgu(Rg)Jf?[V(Rg)—Vm—R?]U(Ré)
2R? #2 7
=?{E'Vw‘ﬁ§]“m9
2
= RZ%U(Rg) = Rzr?fu, lg < 1. (5

The corresponding change of variables on each wire ¢
=x/R along the wire and/— »=Yy/R across the wire, &y
<, x>-I gives the equatio39), see below. We will use,

furthermore, both geometric and dimensionless forms of the
Schrddinger equation in the wires and on the well assuming
that each time the appropriate change of variables is also

done for the functionu. The roles of the dimensionless spec-
tral parameters are played R\ =\ and Rp=p.

A. The intermediate operator and the scattering matrix

In Sec. Il A we derive the formula for the scattering ma-
trix based on the Dirichlet-to-Neumann map for the interme
diate operator. The corresponding elementary calculation i
postponed to the Appendix. We use the “geometric form”
the Schrédinger equation on the network, replacing the stal
dard Schrodinger equations, E§) on the wellQ, by

1

*

(6)

1 1
Au+ —Vy(X)u=—Au,
m m

and on the wire<)g by

o:1ti_nuous spectrunuy, of I fills the semiaxis[A

sented as

1ous 1 dug
m on m on

=0. (9
T

|

The split operatol” defined by the above differential expres-
sions[Egs. (6) and (7)] and the boundary conditiof€gs.

(8) and (9)] can be presented as an orthogonal sum of the
trivial part

P_[us—Upllr=0, P—{

4
P
s=1
of the one-dimensional Schrodinger operatots s
=1,2,3,4
lu ——idzus—i)\u
ST md m Y

on the open channel with zero boundary conditions at the
bottom sections, and theontrivial part I defined in the
orthogonal complement in the Hilbert space of all square-
integrable functions on the netwolke=32 115, The non-
trivial part I of the split operatot” plays a role of arinter-
mediate operatarWe will present the intermediate operator

in geometric form introduced above, see Eg$.and(5) and
use for it the geometrical spectral parametep?. The con-
i), With
Ain=372872. The multiplicity jumps up by four units at the
thresholds(12-1)#2/ &%, 1=2,3,....There is a finite number
of eigenvalues\ of the intermediate operator on each finite
interval and possibly the accumulation point at.AWe as-
sume that “the resonance eigenvalug) sits close to the
scaled Fermi level,
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Ap= e om &2 nience of this approach lies in the replacement of the un-
bounded DN map\ by the finite matrixA"=P,A"P,. Using
For the detailed spectral analysis of the intermediate operatgartial matching gives the following explicit formula for the
see Ref. 26. scattering matrix in the general case, when the split gate is
The split spectral problem for the operatbican be con- present) # 0,
verted back into the original spectral problem for the opera-

_ 2m*{ v K2 ﬂl} braic system by the finite one. The mathematical conve-
F o T 5 9

tor | via replacement of the partial zero boundary condition : tanhy(H? - p) +
[Eq. (8)] in the first channel by the corresponding partial VHZ - p? P,A'P, - P,Q
matching condition with solutions; of the homogeneous S(p) =~ — ; —, (12
problem in the first channel of the wires, _ -pw P.A'P, - P,Q
1ou, 1 au (V(H*=p9) +1)
P.lus- u°]|Fs: 0, P, mon mon = where the first factor is scalar, the denominator is preceding
r .
s the numerator in the second factor,
(10) H / H2 2 h / H2 2 |
The perturbation caused by this one-dimensional change of Q= = P tanhy( P ,
the boundary conditioni8) to (10) transforms the separated _ tanhy/(H? - p?)
branch of the continuous spectrum in the first channel 0O I W

<A< into the branch of the continuous spectrum of the__
original spectral problem. The componel{vtgs};‘:ul of the  Q, is the complex conjugate @, andA' is the Dirichlet-to-
scattered waves in the first channkt,1l, are combined of Neumann magDN map of the intermediate operatti See
Jost solutionsf,=e*P*, x>0, of the Schradinger equation Appendix A and Refs. 24-26. The corresponding formula,
with the compactly supported potential which is trivial on thefor the case when the split gate is absent is obtained by

wire replacing in(12) the width | of the barrier by zeroQ;
— Qo=-ip.
[Vo() - V] =0, Qo=1p
Ior x)>0, and may havdif |#0) a barrier(split gatg on B. Geometrical and physical limitations
-1,0),

Resonance properties of the scattering mdtt® are re-
h led when substituting in it the spectral representation for
- “H2Y  _|<x<oO. vea | g p pr
[Vsx) - V=] =H 2m’’ I<x<0 the A'=P,A"P, in the form of the sum and/or integral over
the spectrun{\%} U o%, of the intermediate operator,

2

Then the solutionu; ={u44,U;5,U;3,Us4t Of the homogeneous

equation in the first channel in the wires can be found in Jpy depy
form of the scattered wave, P+E +E
* Ar = E
d2u1 2m 2 » A -\
o ?[Vl(x) = VaJuy = puy, s s
5 a<p5(cr)><P Ip5(0)
_ . +
ui(x) = ePe+ed™Se, x>0, (11) +f an T oan do
with any vectore e E,. Components of the scattered wave in >3558 Ao
the upper channels>1 are exponentially decreasing on the dps(o) dps(0)
first spectral band, P. n P, n
do+ -+
(77 = * f . :
u|(x):exp{— (?—? —p2x Se, x>0, 1>1. 0>8m2l & A-o
(13

Here S,—the scattering matrix—and the amplitud€s | the corresponding eigenstateSminimize the Rayleigh ra-
>1, in upper channels, are defined from the matching CONgg (y uy~XI%u, u) of the intermediate operatd.

dition (10) of u, to the solutions of the corresponding homo-
geneous equation inside the well. To calculate the scattering
matrix using the conventional matching technique one
should compare the solution of the Schrodinger equation on
the well with the solutions in allopen and closedchannels It is shown in Appendix A that the DN map of the inter-

in the wires. See Appendix A. This requires the solution ofmediate operator is connected with the conventional DN map
an infinite linear system. The partial matching proced@e of the Schrddinger operator on the quantum well. See Eq.
requires comparing the solutions of the homogeneous intefA7). In fact, the “renormalized” eigenvalua$ of the inter-
mediate equations with the oscillating solutioims open  mediate operator that sit on the first spectral band in the
channels of the wires onlyhus replacing the infinite alge- wires, between the first and second thresholds, are obtained

1. Comparison of spectral data of the intermediate operator
and the operator on the well
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by minor shiftsA4 of the eigenvalue&g of the Schrddinger gether with the contribution to DN map from the continuous
operator on the quantum well with a zero boundary conditiorspectrum, if it does not overlap with the essential spectral
on the whole boundary, interval,
P 2

As— A= N+ Aq. 37’k > T, 16)
The deviations of the eigenvalues of the dimensionless inter-
mediate operator from the eigenvalues of the corresponding
Schrédinger operator on the well with zero boundary condi-
tions are estimated theoretically in Ref. 27, discussed in the
following Sec. Il C, and verified numerically in Appendix B Assume that the essential spectral interval centered at the
for the most interesting case of the circular well. It is shownFermi level does not overlap with the continuous spectrum of
there that the “resonance entrance vect®sde,/dn|- com-  the intermediate operator and neglects the contribution from
bined of eigenfunctiongpy, of the intermediate operator on the continuous spectrum in the expressi@B). The contri-
the bottom sections of the wires, coincide, in the first ordemution to(13) from the nonresonance terms with+ \g will
of the analytic perturbation procedure, with the correspondbe estimated.
ing data of eigenfunctions of the Schrodinger operator on the Denote byp'(\j) the spacing on the resonance lewel

quantum well with zero boundary conditions. See Appendix:)\g and byCR=6R3 the square norm of the operator

3. Leading terms of the DN map

B. In particular in the remaining part of this section we may
neglect the difference between spectral deie,A" of the LA LA
intermediate operator and the corresponding spectral data of Ps an *an

the Schrodinger operator on the well with zero boundary ) o
conditions. We assume further in this section that split gate¥Ve estimate the contribution ta" [see Eq.(13)] from the

are absent, or switched off;=0. nonresonance polar terrss 0,
dp- dp-
2. Temperature P,— )\ P,—/
o an nli__Cr _ (17
We assumed that the total number of electrons participat- D=L N PN

ing in conductance is rather small, so that many-body effects

are suppressed by scattering on impurities and decoherencgne dimensionless consta@tin the case of a circular quan-
which are also neglected in this paper. We take into account el (see the example in Sec. I)Gs estimated ae

only the statistics of electrons, assuming, similar to Ref. .21< 10. We assume that the whole nonresonance contribution
that observable values of dynamical variables are obtalneg) the DN map is dominated by the contribution from the

via a_ver_aging_of_ the_ correqunding theoretic_al data on fearest to)!, nonresonance eigenvalue and estimated as
Fermi-Dirac distribution. Practically we take into account - 0

only an essential interval of energy lengtkgZ centered at CR?’/Pr()‘B_) again, withC=10. In Sec. Il we will show that
the Fermi level. We say th#he radius R of the quantum well the most interesting case lis O (the split gates openThen
is relatively small, for the given temperatuiié the spacing the numerator of the scattering matrix is presented as

p(Ep)=ming.o|[Es—Ey| of energy levels of the intermediate Jo! P
. %o %o
operator at the resonance energy ledgd E¢ is large com- P,— L
pared with the temperature, n an + O( C ) +iP.p, (18)
. A= Xo p"(\p)
kel <3 infe_+e.[Er — Ed = p(Ey). (14 where the whole nonresonance contribution is denoted by
Generally, there may be several eigenvalues ( C ) _1 < CR® )
VL PR P/ R\ N/
SToa2 T T om' &2 Leading terms in the numerator near the resonance eigen-
. . . value \j of the intermediate operator are the polar term
of the intermediate operatdor the Schroédinger operator on 0 P P
the wel) situated on the essential interval of enerds g e
- kgT,Ex+kgT], P+E o
Er — kgT < Eg=< E¢ + kgT. (15) A=)\p

Appropriate domination conditions can be formulated alscand the last terniP,p containing the effective wave number
for the resonance groupy,,,, of terms inA', if the spacing  p. Both of them are homogeneous functions of degree -1 of
pa between the resonance group and the remaining part éhe space variable. The middle term defining the nonreso-
the discrete spectrum is greater than id. Under these nance contributionO(C/p"(\p)) is also a homogeneous
conditions the nonresonance terms, which correspond to egperator-function degree —1 and can be neglected if the con-
genvalues outside the essential interval, can be neglected tdition (24) below is fulfilled. On the other hand, one can also
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develop a perturbation technique for the calculation of the [ 52 2 #h2 A?

zeros of the numerator of the scattering matrix using the _*?+V001_*?+Voc ,
S | 2m 2m

small parameter, which is chosen below. See @8). The

small parameter is estimated numerically in the example inn the wires dividing it in the ratiqu: o, ny+u,=1,

Sec. Il C. To introduce the small parameter, let us neglect the r 722 522
contribution to the DN map from the nonresonance terms Mo =| Eg =V, - - ];{vw+4—* - EF}, (23
and upper branches of the absolutely continuous spectrum. L 2m 2m

This results in the resonance term only, Then one can estimate the distances of the Fermi level to the
&go{)>< ot first (A2m2/2m" 8% +V., and the secon@42m2/2m" &%) +V..
P,— o thresholds in the wires, respectively, ag 3(h%m?/2m’" &%)
on on = Al and the “effective wave number” on the Fermi level@gs
N=1g o =B
We say that the width of the wires i®latively small
compared with the radius R of the quantum wilthe non-
ago{)>< g resonance contribution to the DN map is dominated on the
+

A'(N) =
Then we separate the group of leading terms in (£8) as

Py on on Fermi level by the effective wave number. This condition can

Y +iP,p:=D. (190  be presented as the domination of the inverse “renormalized”
0 spacing on Fermi level by the dimensionless, effective wave

The operatob is invertible, hence the numerator of the scat-numberp=Rp,

tering matrix can be factorized as a product, - 2n - >
C W _ \/Zm [Er-V.] =t oo
r r —~ = " < —— = =\u
p,2%0)( p 9%0 Po(Np)  2m Rep'(E) & &
on n . < ) +iP 7R
N =\§ p'(\p) P = gw"/vt13- (24
:D[I +D‘1O< — )} (20)  Here the renormalized spacirfg:=7%22m R?p, is actually
p'(N\o) equal to the spacing on resonance leigl
The termAgIpIDr gives a convenient “one-pole” approximation hZ . h2m? h2m?
for the DN map of the intermediate operator. The corre- TR Vom oS~ BemVo- o s

sponding one-pole approximation for the scattering matrix in
the case when the split gates are oggen absent can be of the corresponding dimensionless Schrodinger equation on
obtained via neglecting the second term in square brackets¢he well. The domination conditiofEq. (24)] implies the
_1 estimates for the leading terms in the numerator and the de-
)] [D*]"'D nominator of the scattering matrix from below or the corre-
sponding inverse from above,

N=-|1+[D* '10(
SV { +1D7] p"(\p)
-1

- C  _TF-1A -1 — B ,f>_l 17| = ( B r’—>
X[I +D lO( pr()\g)>:| ~~-[D"] D= Sapprm&)\)- ”D ” = (775\3,“1 ) ”[D ] ” = 775\‘3,“«1
(21 (25)

The approximation(21) is quantitatively consistent if the Together with the previous estimate for the nonresonance
contribution from the nonresonance terms is dominated byerms,

the group of leading terni3. See the discussion in Secs. |l B -
and Il C. In that casgD*]™ O(C/p'(\)) can play the role of O( C ) _ 10
the small parameter, p'(\p) p'(\p)
this implies estimates for the “small parameters” in the for-
D_lo( o ) <1, [D+]_1O< . ) <1. mulas(21) and(22). A dimensionless version of the estimate
P'(Ao) P'(No) is, for instance,

(22)

~ -1
If similar weaker conditions likdlD™*O(C/p"(\p))| <1 are D'10< ArCr ) < ArlOr (TrB\3TL1) . (26)
fulfilled, then an analytic perturbation procedure can be de- P'(No) Po) 0

veloped for the calculation of the scattering matrix, begin-A similar condition of domination can be formulated if some
ning from the one-pole approximati®,,o(\)=-[D*]"*D.  “resonance group” of several polar terms in the DN nadp
We will suggest below, se@4)—(26), some practical condi- is included in the “leading group.” See the corresponding

tions for the dominatiori22).

Assume that the Fermi leveéd; is situated on the first

spectral band,

discussion in Sec. IV. The role of spacing in that case is
played by the minimal distance between the eigenvalues of
the selected resonance group and the rest of the spectrum.

165308-6



PARAMETER REGIME OF A RESONANCE QUANTUM SWITCH PHYSICAL REVIEW B1, 165308(2005

4. One-pole and few-pole approximations ing example of a switch, based on a circular quantum well

Assuming that the above domination conditions are satisWith quantum wires of widtt5=R/2. If the shift potentialVy
fied, we can neglect in the formula for the scattering matrixin the well is selected such th-V..—#?/2m"6°=0, then
the contribution to the DN map from the nonresonance eithe potential of the corresponding dimensionless Schrodinger
genvalues. This way we obtain the conveniene-pole ap- equation on the well is just proportional {g, v)u. We also
proximationsfor expressions in the numerator and denomi-assume that the renormalized electric field is selected as
nator of the scattering matrix which take into account only=18.86, which corresponds to the appropriate shape of the
the leading terms. Assuming that the split gates are open,resonance eigenfunction. See Sec. IV A. The resonance
=0, we consider an approximate expression for the scatteri igenfunction of the dimensionless Schrédinger operator on
matrix (21), a combination of the leading terni&9) of the  the quantum well satisfies the equation
numerator and denominator only,

- Al - € MUu=RPpA, Ul =0,
gy e
P+%><P+% which correspondgsee Sec. IV A to the (dimensionless
n n +ipl resonance eigenvalue,
) A=\ K
Sh) = ~[DTD = o Roz 2R £ vy - IO | perg= 14.62
P%><Pa_¢s 0= T | Vo gy e | TR0 1462
+ +
on on —ipl It appeared that the eigenfunctions and eigenvalues of the
A=No Schrodinger operatol, on the quantum well with zero
= SapprofN) - (27) boundary conditions are very close to the eigenfunctions and

) , ) eigenvalues of the intermediate operator. See Appendix B.
The corresponding dimensionless formula has the sam@ence the spectral dakgcan be used in the above approxi-
form. Here and in following sections we denote the dimen-yate formulas for the DN map and the scattering matrix. An
sionless variables, p just by A, p. Note that the zeros of the alternative direct calculation of the dimensionless eigenval-
function S,pp0{N) can be found from an elementary alge- ues of the intermediate operator was d8rfer 6=R/2. The

braic equation. See the next section. Their deviations fro”&ieviationAo:—o.W of the resonance eigenvaﬁ{gfrom the

the zeros of the scattering matrix can be estimated rigorousl . . N .
due to the presence of the small parameters and the operai Oorrrespondlng eigenvalug,=14.62 of the Schrodinger op-

version of Rouche’s theorem. See Ref. 28. One can use ﬂ}eerator on the well is small and is dominated by the nonper-

aboveone-pole approximatiori27) of the scattering matrix urbed spacing 2.30—the distance to the hearest nonreso-
: e nance eigenvalue 12.32 on the well. The estimation of the
for the approximate description of the electron transport

across a quantum well, if the conditions4) and (24) are deviation via analytic perturbation procedure is given in Ap-

) L endix B. The above conditiori24) is verified for the
fulfilled. The above one-pole approximatig@7) and even pendix
similar “few-poles” approximationgl) of the scattering ma- Schrodinger operator on the well. See E(0) and (31)

trix of the switch. below. It remains valid for the intermediate operator, too.

ipl + Al
-p| Az:ggrox:: Sapprol\) (29) Small parameter
IP! = Aapprox If the Fermi level divides the first spectral band in ratio
with rational “essential DN map,” M s thfan the o_ne—pole approximatio_n is applicable to the
switch with “relatively narrow” wires if condition(24) is
N P 90 4] fulfilled. In the actual case of a switch based on a circular
T Ton T on quantum well this condition takes the form
A;pprmp\) = E , N elq, (29)
=1 AN 10 R —
] — < —m\3u,. (30
constructed as a sum of terms with polgs|=1,2,... N; 23 ¢

on the essential interval It obviously holds if the widths of the wires does not exceed

~ 2m' R? 2m'R? R/2, and the Fermi level sits in the middle of the first spec-
Ar={Ae- 52 AL 52 xgT tral bandu,=pu,=1/2. It may bereduced in this case to

can be interpreted as scattering matrices for solvable models. 10< 20, (31
Construction of the solvable model of the switch is a partia
case of the solvable model of the general quantum networ!V
which is described in Ref. 26. Note that these solvable mod-
els allow appropriate fitting of all free parameters.

hich is not restrictive. Moreover, this reveals the “natural”
mall parameter 1/2,

C

r
C. Example p'(\o)

In Sec. Il C we apply the analysis of geometrical limita- if 6<R/2. This small parameter shows the “degree of domi-
tions developed above in a general case to the most interestation” of the nonresonance contribution to the DN map.

R -1
||D-1||<{8.63:J, D‘lo<

1
)H $5, (32)
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According to Eqs(22) and(21) this gives an estimation for C
the approximation ratS,,.o,~ S in the example considered —ip(P, = Pge= (P, - Po)o( o )>
and allows us to develop the perturbation procedure for the 0
scattering matrix. Fos/R=10 the analog of the above esti- The first equation is used to estimate the position of the
mate(32) has 1/10 in the right side. resonancep. See Sec. Il B, and the second can be used to

For the wires of width 2 nm this condition estimates theestimate the deviation of the corresponding zero veetor
temperature in K a¥ <312 u,, which means that the nitro- from the direction of the resonance entrance veatgr
gen temperature 77 K is low enough to allow us to neglect in=|¢g| 1¢o. For a given resonance and the corresponding
the approximate formula for the scattering matrix the contri-null-vector e the resonance solution, of the Schrédinger
bution from the upper branches of the continuous spectrumequation exists, with exponential asymptotic in the wires,
if the Fermi level divides the first spectral band in ratio (ol @2 & P
w1 mp=2:1. Forwires of width 3 nm one can neglect the Up(x) ={e",&”,e”,e7je ™"
contribution from the upper branches of the continuous specfhe corresponding solution of the nonstationary dimensional
trum of the intermediate operator for the nitrogen temperaschrodinger equation,
ture if the Fermi level is situated in the middle of the first
spectral band. ﬁ@Jr h? A Nu-viou,

We do not estimate here admissible nonaccuracies of geo- i g 2m
metrical details of the construction which would not affect
t_he t_ransport properties of the §W|tch. T_hls'lmportant ques- u(x.f) = ei(h/zm*)p Ug(X) = € t,re(ﬁ,zm*Rz) ReszUO ),
tion is postponed to the following publication, as well as
discussion of the important case of the ring-shaped quantum (34)
well. Here we just mention that the geometrical details cal
be already controlled to a precision of 2 8mahich is less
than 10% of the diameter of the well for most prospective

materials. See the .dIS(.:USSIOI’] in Sec. V. . . . closed split gate as zeros of the numerator of the expression

In Se_c. v we will d_lscuss the geometrl_cal limitations n (12). Note that for the dynamics associated with the wave
connection \.N'th the hlgh-temperature regime of the SV\.”t ch equation(see Ref. 30 the lifetime of the resonance is usu-
and the choice of materials for manufacturing of the switch, ally measured by the inverse imaginary part of the resonance

in the planep of the wave number. The lifetime estimates the
IIl. CALCULATION OF RESONANCES duration of transition processes defined by the geometry of
the switch.

The 4X 4 scattering matriX12) in the first channel is an We calculate the resonances and estimate the correspond-
analytic matrix function in the complex plane of the dimen-ing lifetime approximately, neglecting the nonresonance
sionless effective wave numbegr and may have zeros— terms, in cases when the split gates are abganswitched
resonances(pg—in the upper half plane and complex- off) and the wires are attached straight to the quantum well.
conjugate poles in the lower half plane. In particular, whenWe assume that the radius of the well is 230 A and the width
the split gate is absenit=0, the resonances can be found asof the wires is 20 A. The dimensionless spacing on the reso-
vector zeros of the dimensionless numerdf@), nance level is 2.3 and the corresponding dimensionless coef-

ficient in front of the maximal nonresonance term is esti-

Ns exponentially decreasing with the exponent, 71/
=(h/2m")Imp?. The inverse exponentis called the lifetime
of the resonance. The lifetime is defined similarly for a

It P mated a<C<10. In this case the equation for the resonances
0 %o S .
P, o P+E’e c may be presented in dimensionless form as
+O( >e+ipe:0, (339
Y p'(ND) { ¢o><¢o+o( c )} +iRpre=0,
N=Xo p(\o)

with  a normalized vectoreeE,. The contribution . . .
._or, with numerical data inserted, as
O(C/p'(Np)) from the nonresonance terms of the DN map is

estimated as 1@'(\()]™. Multiplying by the orthogonal pro- | |2
jection Po= ¢o) ol % (¢ oOnNto the “resonance entrance 0= = )\O+O(4 3 +i X 230X 0.372.
vector,”
The contribution to the DN map from the neighboring non-
&QD resonance eigenvalues is dominated by the wave number
o= —0 = = {do, b5, b3 o) |O(4.3)|<230x0.372=86. The dimensionless resonaice
is calculated from the one-pole approximation of DN map as
we may reduce the equation to the pair of equations, 2 .
Y g P a A:AB—L:AB—S.SX 103+i0.11,
4.3 + 86i
2
ol —5t <Poo( rC ) e> +ip=0, and the lifetime of the resonance is found =230 A as
A=Ay (\o) =(2m’"/#)(R?/Im\). This gives for InSb7=~0.13 ps. In
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cases when the split gates are present, with the same materthinensionless intermediate operator Schrodinger opera-
and geometry of the switch and the height of the barrier ovetor on the wel) with the potential defined by the vecter
the Fermi level 1 eV, the lifetime is much longer104s.  directed to the poind, (to the entrance of the input wirbas
See the relevant calculation in Ref. 27. the component$Ref. 33

IV. TRANSPORT PROPERTIES OF THE SWITCH ¢0=1(1,0.1,3,0.1. (35

A. The shape of the resonance eigenfunction and the switching Hence|¢||?=C=~ 10. Then the transmission coefficients can
effect be calculated from the one-pole approximatj&m. (27)] as

One can see from E@27) that the transmission from the _ _ _

input wire Q; to the terrr(ﬂnans is blocked if the component 1S12 =814 =002, [S9=0.6.

(95! an)(y)sin(my/ §)dy of the resonance entrance vector Really, using the one-pole approximation for the scattering

¢o=P.(dgp/ n) in the entrance subspace of the open chanmatrix presented as a function of the geometric spectral pa-

nel in the wireQ)s vanishes. It is true if the zero of the normal rameter\ =p? near to resonanck,,

derivative of the resonance eigenfunction sits near to the

middle pointag of the bottom cross sectiog. This state- P00 +ip

ment is in full agreement with the observati@Ref. 12 that N—No bo){do 1

the single-mode transmission of an electron across the quan- SN = - b & =1-2 | o2 PNo—N\)

tum system(the quantum well in our cagés implemented AL o 1 +i°—2

via excitation of the resonance mogg inside the quantum A= ho |l

well Q. gives the transmission coefficients as nondiagonal elements

It was noticed in Refs. 31 and 32 that the design of aof the scattering matrix and implies the announced result at
network and the magnitude of the constant field inside the\=) . This allows us to calculate the ratio of the amplitudes
basic domain may be selected so that the zeros of the normgf the signal in the closed and open wires as 1:30 and calcu-
derivative of the resonance eigenfunction are sitting at theate the conductance from the input wire to the open Wige

entrances of the two wires simultaneously, leaving the injust from the Landauer formulee Ref. 1since other wires
coming wire and only one of the outgoing wir@erminals (), , are closed,

nonblocked. One can show that the resonance entrance vec-
tor ¢ =P, (d¢h/ an) produced from the resonance eigenfunc- e € S _ €°0.36 36)
tion of the intermediate operatdwith the first channel B 1-S; ho0.64
“chopped off) coincides with the corresponding portion
do=P.(dpy/ on) of the eigenfunctiong, of the Dirichlet
problem in the quantum well. See Appendix B. In this sec-
tion again we do not distinguish the resonance entrance ve LN S
tors obtained from the eigenfunctions of the intermediate op- ermi d's”'b”t'oﬂ on the essential interval of.ener@ﬁ
erator from ones calculated based on eigenfunctions of the 8! +Er*xsT), similarly to Ref. 21, and may give a result
inner Dirichlet problem on the well. Our calculations with C/0S€ to the previous on&86), or close to zero in the two
the Dirichlet problem in Ref. 31 show that for the specialiMiting cases,
choice of the magnitudé€ of the macroscopic electric field 3 3
£e&(v,x) inside the quantum well, such thate kgT<— or kgT>—, (37)
=(2m'R%/#?)£=18.86, the eigenfunctiop, corresponding 7 7
to the dimensionlesgesonanceeigenvalue\,=14.62 inside respectively.
the well has two zeros of its normal derivative on the unit  The above formulas show that in a certain range of tem-
circle at the points forming angless/3 with the direction of ~ peratures the transmission is proportional to the product of
the unit vectorr. This eigenfunction is even with respect to components(dey/ dng, ey of the resonance entrance vector
reflection in the line spanned by the vectarThe nearest on the bottom sections of the corresponding wires, in com-
eigenvalues in the well for the corresponding linear potentiaplete agreement with the basic observation in Ref. 12 quoted
sit at 12.32 and 25.82. Hence, the dimensionless spacing an the Introduction. A similar fact for the switch based on the
the resonance level is 2.3, which corresponds to the data iguantum well with Neumann boundary conditions was no-
the above example found in Sec. lll. The resonance eigerticed in Ref. 31. An analog of it remains true for scattering
function on the quantum well rotates by an angte/® when  on the quantum ring. See the corresponding solvable model
the direction vectow is rotated by this angle in the plane in Ref. 34.
parallel to the device. This observation allows tosblock One can design aiadic (three-termingl switch (RQS-3
alternatively any two of three outgoing wirdsr electrons based on selection of the magnitude of the governing electric
with energy close to the resonance eigenvalue—to the Fernfiield as suggested above. The corresponding resonance
level. eigenfunction has the two zeros of the normal derivative that
o o divide the boundary of the well in the ratio 1:2. Taking into
B. Transmission coefficients account that the zeros on the boundary of the well rotate by
The dimensionless resonance entrance vegiprcom-  the same angle together with the rotation of the veetame
puted with the use of the normalized eigenfunctigyof the  can see that the resonance transmission is manipulated via

This result holds for zero absolute temperature. The trans-
mission coefficient at the resonance energy for nonzero ab-
olute temperature should be obtained via averaging over the
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the rotation of the electric field which defines the corre- sponding dimensionless equation on the well,

sponding rotation of the resonance eigenfunction. Directing . - 5 5
the vectorv opposite to the contact poiat shifts the zeroes 2m’ eeR’® 2mR he
S AU+ (Evu+ Vo-V.— —
of the normal derivative to the complementary contact points #? #? 2m\ 8
and thus blocks the corresponding open channels. —p?=)u (40)

Design of adyadic (one input and two terminglgeso-
nance quantum switch, based on the above observation, dogs purely linear, without the constant ternvy-V.,
not require any special selection of the magnitude of the-(z2/2m")(#/5)2=0.

electric field. (3) The resonance eigenvalue 14.62 of the Dirichlet prob-
lem on the well radius 1 corresponds to the Fermi level in the

wires,
The quantum dynamics in the triadic resonance quantum

switch is defined by several geometrical and physical param-
eters: the radiuR of the well, the widthé of the wires, the
effective mass of the electron, the magnitude of the basic
shift potentialsVp, V.. on the well and in the wires, the mag- ~ (4) The temperature is small compared with the spacing
nitude of the classical electric fielfl the positions of con- ©n the resonance level of the intermediate operator,

C. Parameter regime of the triadic resonance quantum switch

72 ()2 #2
E--V,-—|—| =14.62—. 41
F 2m<5> 2m' R? (43

tacts, and the temperatufeand the Fermi level in the wires. 2
The switching effect described above is observed only in 2kpT < 2.3 5. (42
cases when all these parameters are properly selected. The 2mR
. . 4 * . .
working pointT, Eg, &, {ag1Vo, Ve, M, R, & of the triadic (5) The domination condition in either forfEqs. (24),

resonance quantum switdiRQS has to be chosen in the (2g) (31) and(32)] should be fulfilled.

multidimensional space of the parameters. It cannot be done (g) Combining condition(1) with Egs.(41) and (42) we
via straightforward experimental scanning, and it is verygiso obtain

time consuming to obtain via direct computations. The above
approximate formuld1) for the scattering matrix allows us %2 [ 7\2 72 [ ar\? h? 2T
to reduce the region of the search in the space of paramete%zﬁ s Br— V.- ot 5) = 14.62@ = 23"
and optimize the switching effect not only in the case of a
single resonance eigenvalue, but also in the more general (43)
case when the resonance group of eigenvalues of the intefis means. in particular, th&, & should satisfy the condi-
mediate operator is selected. tion ’ ’

In this section we will estimate the parameter regime of

the triadic resonance quantum switch via the reduction of the RZ 14.62
transport problem for the switch to the scattering problem for &£ > 372" (44)
the dimensionless Schrédinger operator on the well,

2m'
2

52 2 The roles of the above conditiond)—(6) were discussed
_A§UO+ €<§,V>Uo+ P

{Vo -V, - ——} = 7A\Uo = p2up, previously. Now we will estimate the stability of the regime
2m’ & of the switch. We assume that the parameter regime is stable
(38)  at the resonance energy if the bound states in the well corre-
. sponding to the neighboring nonresonance eigenvalues are
and on the wires, not excited at the temperatufe See Eq(42). This condition

Cdug [ dus A, 39 MY be formulated in terms of thecaled temperature T
a2 | &7 B9~ (2 22m'ReT as

We consider the quantum network as consisting of three ter- ~ po 2.3
minals Q, s=2,3,4 ofwidth §/R attached to the quantum kgl <5 =7 (45)
well of radius 1 at the points with azimuth=(27/3)(s
-2), and one incoming wiré), attached at the azimutdy The temperature which fulfills the above condition we call
=1. (See Fig. 1. We assume here that the split gates ardow temperaturefor the given device. If the radiuR of the
switched off or absent. As before, we substitute the spectratorresponding quantum well is small enough, then the con-
data for the intermediate operator for the corresponding spedlition (45) can be fulfilled for somdabsolutely high tem-
tral data for the Dirichlet problem on the wellSee Sec. perature, which corresponds to the relativer scaled tem-
I1B.) perature. For instance, the effective magsof electronin
To apply already developed theory one should verify thethe well(for a narrow-gap semiconducianay be small. See
following basic conditions formulated above: Refs. 35 and 36. Even room temperature may be “low”
(1) The Fermi level in the wires divides the first spectral enough for the appropriate construction of the device.
band in the wires in ratiqu;: u,. [See Eq(23).] The importance of developing technologies for manufac-
(2) The basic potential®/,, V., on the well and in the turing devices of small size with rather high potential barri-
wires should be adjusted such that the potential in the correers is systematically underlined when discussing the pros-
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TABLE I. Calculation of the radius of the quantum well for V. CONCLUSION
different materials based on the average effective mass.

Working parameters of the switch were estimated based
on the one-pole approximation of the scattering matrix which

Rsook Rrzk  Ea00 k Errk S X ; -
Material mimy (A A) (VIM) (VIM) coincides with an exact scattering matrix for some solvable
models of the quantum switch. The developed approach,
Cdy HgogsTe 0.0069 160 310 1.7810° 2.41x10* based on the observation from Ref. 12 quoted in the Intro-

InSh 0.013 110 230 5410° 5.89x10* duction, can be used not only for devices designed to ma-
InAs 0.023 90 170 9.8810° 1.46X 1CP nipulate the current, but also for analysis of the correspond-
GaAs 0067 50 100 5.7810F 7.2X10° ing nonstationary problems, like quantum pumpifgee

Refs. 38—4Dand even for spin-filteringRef. 41, based on
the Rashba spin-orbital HamiltonidRefs. 42 and 48 Con-
sidering the details of the shape of the wave function en-
narrow-gap materials may open a way to room-temperaturéded in the COffﬁspond'“g D!rlchlet-to;Neumann map,
devices of relatively large size. rather than just the overlappllng integrals,” may help us to_

We assume that the Fermi level sits in the middle of thebettelr understand the mechanism of conductance in synthetic
metals.

Use of the solvable model for the quantum switch men-
tioned above in Sec. Il B and general solvable models con-
structed in Ref. 26 allows us to suggest a quantitatively con-

23 32 R sistent description of transport phenomena on quantum
R < w5 0< . (46) networks, substituting the corresponding two-dimensional
2kgT 2m 2 Schrddinger equation for the appropriate ordinary differential
equation on the quantum graphs with the resonance nodes.
We anticipate that an appropriate fitting would allow one to
extend the field of applications of trgualitative results for
zero-range models obtained in Refs. 16, 19, 20, 44-53, and
(47)  56-61, transforming them into efficient tools qiiantitative

pects of nanoelectronic§See, for instance, Ref. 31Use of

first spectral bandq:,uzzi. Then we obtain the following
estimate for the radiuR of the domain and the width of the
wires from(42),

Assuming thattc-V,,=1 eV, we derive from conditior(3)
thatR and  are connected as

2m [Eg-V.] 14.62+ ,1

m 5.
h? R? & analysis of quantum systems.
Then we obtain ACKNOWLEDGMENTS
R2=14.6 2m[E-V.] = Professor G. Metakides and Dr. R. Compdiudustrial
' h? & Department of the European Commissidiormulated in

1998 the question on the mathematical possibility of design
OnceR is chosen, this equation allows us to selédatis-  of a triadic quantum switch. This problem appeared as a
fying domination condition(6). For givenEg-V., the basic  Work-Package in the EC project, joint with Solvay Institutes,
shift potentialV, in the well is found from condition2). Brussels, “New technologies for narrow-gap semiconduc-

Finally, the electric fieldS is found from the condition tors” (ESPRIT-28890 NTCONGS, 1998-199%.M., B.P,,
. L.P., and A.Y. are grateful to the European Commission for
c=18.86 :eme R formulating the challenging question and for their financial
' 2 support and they are also grateful to the Solvay Institute for

their fruitful collaboration. The authors are grateful to Pro-
where e is the absolute value of the electron charge. Thefessor P. Kuchment for inspiring discussion on quantum
electric field obtained from this condition is strong enough tographs and reprints of the papéRefs. 16 and 1j7 A.M. and
guarantee the proper shape of the resonance wave functioB,P. acknowledge support from the Russian Academy of Sci-
but not yet destructive for standard semiconductg¢8ee ences, Grant No. RFBR 03-01-00090. B.P. recognizes sup-
Table I) port from the staff research grant of the University of Auck-
One can see from the above calculations that switcheland in 2001 and 2004. A.Y. acknowledges support from the
manufactured of appropriate materials will work at room“Universities-of-Russia” Program of the Ministry of Higher
temperature, if the radiuR of the quantum well is small Education of Russia, Grant No. UR.06.01.015. B.P. is grate-
enough and the geometric details are exact. We postpone tofal for hospitality to the Solid State Computer Laboratory of
forthcoming publication the important questions on the rela-Aizu University, Japan, where he worked on the final version
tive magnitude of admissible inaccuracy in the manufacturof the paper with support from JSPS, and especially to the
ing of the geometrical details of the switch. head of the laboratory, Professor Victor Ryzhii, for fruitful
The calculation of the radius of the quantum well for dif- discussion and to Dr. Vladimir Vjurkov for important refer-
ferent materials based on the average effective mass givesices and the supply of printed materials, in particular for
the results found in Table (Refs. 22 and 28 The De- the reprint of the paper cited in Ref. 53. The authors are
Broglie wavelengths of the materials for nitrogen temperagrateful to Dr. Scott Parkins for attentive reading of the
ture are 1300, 970, 730, and 430 A, respectively. manuscript and detailed discussion of the results. The au-

165308-11



BAGRAEYV et al. PHYSICAL REVIEW B 71, 165308(2005

thors are also grateful to Dr. Michael Meylan and to Dr. Ip. ey
Colin Fox for useful advice and to Dr. Vladimir Olejnik and 9G E( ) %(X )
Kieran Robert for help in computin(see Refs. 29 and 33 A X' \) = - (XX, \) = > -
&nxanxr }\S )\ - )\S
APPENDIX A: DN MAP AND SCATTERING MATRIX 5 ago;(o,x)><P agh(a,x")
+ +

In this section we collected some mathematical facts +J an an do
which were used in the main text of the paper. We quote >332 2 N-o
them in a standard mathematical form.

+ o (A3)
1. Standard DN map The corresponding spectral series and/or integral is diver-

. . gent, but can be regularize(Gee Ref. 25.

_ The Dirichlet-to-Neumann map for the Schrodinger equa-" 1g standard DN map permits us to formalize the proce-
tion presented in geometric form is a map of the boundaryy,e of matching solutions of the partial differentials equa-
valuesur of the solution, tion on the inner boundary? I's of the composite domain
UL Qe In the text below we distinguish again the dimen-

—Au+Vu=2\u, Uz=ur, ' . . IS e .
sional \, p, X and dimensionlesa, p, X variables intro-

into the boundary values of its normal derivative, duced in Sec. Il. We denote Wy, the 4-dimensional sub-
space in E=L,(I") spanned by the cross section eigenvectors
Asup — I el, s=1,2,3,4, of theopen channel, & p?< (372/ &). The
N0 orthogonal complement of E© E,=E_ is the entrance sub-

space of the closed channels. On the first spectral band 0

In electrodynamicgwith V=0) A defines the connection of .
the potential on the boundary with the normal current. De-s)‘g.%z/&2 there are two bounded exponer_mal modes of
. - ~the first order based on the cross section eigenfunaton
tailed description of general features of the DN map and its_ 575 sinmv/ 8 in the wire 0. with exoonentials defined b
relations to the scattering matrix may be found in Refs. 24&12 d'menzyonal offective ; en mp ; y
and 25, respectively. We will review here only the basic fea- ! ! lve wave numbe,
tures of the standard DN map. fi(xy) = egeﬁipx if x>0,
We denote byL the self-adjoint operators defined in ] _
L,(Q) by the above differential expressidru=-Au+Vu  and only one bounded exponential mode ortien upper
with homogeneous Dirichlet. The corresponding Green funcéhannels|>1,

tions G(x,y,\) and the Poisson kernel, f's(x,y) _ e,se_\;—[ﬂz(lz_l),ﬁz]_pzx x>0,

_ IG(X,S,\) se 90 The corresponding scattering Ansatz in the wi¢ess com-

PAxs)= ang bined as

exist if A is not an eigenvalue df (is “regular”). Solution of o -
the Dirichlet boundary problem is represented for regular W) = dafis+ flsséll+ Z ilflsl' (A4)
by the renormalized double-layer potential, =2
with coefficientsS, to be defined from the matching of the
_ scattering ansatz to the corresponding solution of the above
u(x) = fr Pols.\ur(s)dr. (A1) Schrodinger equation inside the quantum wej. We find
them from the conditiorf10) of continuation of the scatter-
Generally the standard DN map is represented for regulang ansatz inside the domain,
points\ of Ly as a generalized integral operator with a sin- I aP
gular kernel, =0 £y
an, an, Y

(A5)

AN =

f Pox,s0urdl’,  (A2)  We denote byK*, K*, K~ the operators irE, which com-
X=Xy o pute the components of the normal derivatives of the expo-

and exists as an operator in the appropriate Sobolev classensentlal modes on the bottom sections of the wiiksin the

(See Ref. 54.In particular for operators defined Md%(ﬂ) it Open and closed channels,

acts fromW3'4(T") to WA'AT'). See, for instance, Refs. 24 and . — B -7
25. One can see from the straightforward integration by parts K =PI, K'=-ipl, K, = 2 P L,
that the DN map is an analytic function of the spectral pa-
rameter\ with a negative imaginary paiffor an interior =23 K™ = diagK )
problem, with an outer positive normal on the boundary e Hi=2

The DN map can be presented as a formal integral operatavith a positive square root, and B the orthogonal projec-
in L,(I") with the generalized kernel, tions onto the subspacés CE. HereK™ is a 4X 4 matrix

165308-12



PARAMETER REGIME OF A RESONANCE QUANTUM SWITCH PHYSICAL REVIEW B1, 165308(2005

proportional to the unit matrix, since the potentials on the 0 0 I 0
wires are equivalent. Then the above E&45) may be pre- Asi— A+—mA—+- (A8)
sented as a matrix equation with respect to the components -
¥g of the above decomposition dE=E,&E.. E'g[“e”ts This function has negative imaginary part in upper half-plane
of the subspac, belong to the Sobolev clas#5”™(T), 35> and singularities at the vector zeros of the denomina-
for each positive . Hence, the operatorsP,A%P,,  tor (K-+A° ) e=0. (See Appendix B.The following theo-
P.,A%_, P_AP,, P_A%_ constructed via framing of the rem (see Ref. 2V gives an interpretation of this function in
standard DN map\° of the Schrodinger operator on the well tarms of the intermediate operator.
by projections onto the entrance subspaces of open and Thegrem A2The split operatoi’ =l & =4I defined in
closed channels exist as operators gn the0 appgopriate Sobol@\é(m by the Schrédinger differential expressieh and the
classes. We df”Ote them W:_H A AL, A——l' reSPEC-  houndary condition9) and(8) is self-adjoint. The continu-
tively, and byS’, the 4x 4 matrix with elements; and set o5 spectrum of the nontrivial palff of it in the orthogonal
(V)0 =7, (W) (0) =2, SV, complement of the open channdlg e SLL,(Qy) consists
Theorem AlThe scattering matrix on the whole network ot he prancha =372/ with a countable sequence of
U0, U0Q,UN5U 10, may be presented in terms of the yyresholds. The eigenvaluesigbelow the threshold 8/ &2
Dirichlet-to-Neumann-map” of the quantum well), as coincide with the vector—zeros,, of the denominatofK-

+A%). The DN map of the operatdj on the whole network

A% = Al —— A, - K* with a chopped-off first channel coincides with the operator-
a KT+AZ_ AG function Eq.(A8).
S = - o o I 0 ' (AB) This statement is verified in Ref. 26. Note that the DN
ALi— A+-m/\_+ -K* map of the intermediate operator is actually & 4 matrix.
The proof is obtained based on an orthogonal decomposition 3. Scattering matrix via partial DN map

of the whole space.,(I') into the orthogonal sum of open g calculate the scattering matrix in terms of the partial
and closed channels, followed by a straightforward calculabN map of the intermediate operator we should match the
tion. (See Ref. 26. restriction of the scattering anzatz onto the StimuUZ I’ of

the bottom sections in the entrance subspacef the open

2. DN map of the intermediate operator channelsonly,

The DN map of the intermediate operator, associated with V= 0aFins* FousSu, $=1,2,3,4,
the partl” of the boundary for regulax, is an operator trans-
forming the boundary datar from E, into the projection of a
the normal derivative of the corresponding square-integrable W ={V¥}c1=Finer + FouSa,
solution u of the Schrédinger equationAu+Vu=\u onto
E,. To obtain the formula for DN map of the intermediate
operator associated with tiig one should consider for regu-
lar \ the square-integrable solution of the Schrédinger equa-

with the Jost matriceB;, o, t0 the solutioni¥, of the inter-
mediate homogeneous equation,

tion lu=Au with the boundary data € E, on I' presented PV, =W, o = s =(A"W), s=1,2,3,4.
via the corresponding Poisson integral(x)=—[r(dG"/ Ns  dng
any)(x,y)ur(y)dy, and calculate gu/n|r. The projection of (A9)

the normal derivative of the solution of the Dirichlet problem
on I' onto E, gives the DN map as an integral transform We use further the above expressi@¥) for the partial DN

A":E.— E,, with the kernel: map. The Jost matrices are proportional to the unit matrix in
open channels, since all wires are equivalent. Then we obtain
, PG the following equation for the scattering matrix:
A (Xp, X N) == Py -Ps, (A7)
anan,

Arl:in - I:i,n =- (ArFout_ Féut)s’

which is equivalent to the formula in E(L3). This gives the

) . ) . . and the solution of it
DN map A" in terms of appropriate eigenfunctions and ei-

genvaluesy|, \{. Though there is no standard software for =
calculation of eigenfunctions and eigenvalues of the interme- AF--1
diate operator, one can present the DN map of the interme- S= _Fin Fin
diate operator as the Schur compleme@ete Ref. 55 of the Fout , , Flut
DN map A° of the Schrédinger operatdg on the well. In- A= ;ut

deed, the scattering matr{A6) contains a special combina-

tion of matrix elements of the DN ma,fhO of the quantum where the denominator is preceding the numerator, and the
well, fractions
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Fi Fin Fi Fi F. F. . FNBE . .
= P. L, =t I:’+_In and —*'= P, OUt’ P_AP, = M +K_., Koi=(K)"
I:out I:out I:in I:in I:out I:out A — )\0

are proportional to the unit matrix i&,. Substituting here

the explicit expression for the Jost solutions in the open . (}5—><[ﬁ— a,—xa,— (‘]5—><(;5— .
channel we obtain the expressiti®) for the scattering ma- PAP.= 2243 0.2 000y
trix in terms of DN map of the intermediate operator. Note N=Ng s#0 A—Ag A= X

that the scattered waves constructed with use of the partiglhen dimensionless expressidEy. (A8)] may be presented
DN map of the intermediate operator automatically satisfy,q

the matching conditions in closed channels.

G $oX(do | -
APPENDIX B: SPECTRAL DATA OF THE INTERMEDIATE RA"=A"=—"F+K,.-| —— +K,_
OPERATOR VIA ANALYTIC PERTURBATION N—Ng N—Ng
PROCEDURE Nl
. o | $o)¢o | -
Zeros and poles of the scattering matrix sit near the reso- X~ Ao — Tt |.
nance eigenvalues of the intermediate operator, and they are P00 +K_+RK A =g
shifted with respect to the corresponding eigenvalues of the A - o

Schrédinger operator with Dirichlet boundary conditions on (B1)
the boundary of the well. The shift generically is small and

can be estimated via the analytical perturbation procedurdssume, that the Fermi level is situated in the middle of the
which is developed in this subsection. This important facffirst spectral band in the wireg,; =u,=1/2.Then the effec-
was used previously in Secs. II B and Il C. Itis based on th&jye wave numbep at the Fermi level is equal tdg(ﬂz/gz)

following statement. and the corresponding dimensionless wave nunpeRp is
Theorem A3The pole), of the DN mapA° of the quan- estimated as

tum well, which is the singularity of the first addendutm,
of Eqg. (A8), is compensated by the pole of the second ad- A" R\/§
dendum and disappears as a singularity of the whole function P=Rp= ms\ 2
A", so that the whole expressidA8) is, generically, regular )
at the pointho. A new pole appears as a zero of the denomi-Since My/m*=5.2 (for Si). Recall (see Sec. Il € that the
natorK™+A2_ and coincides with the eigenvalue of the in- term —* in the dimensionless expression for the scattering
termediate operator. The corresponding residue is a combinatrix may be estimated as
nation of the root vectors which correspond to this new pole o
and coincide, in the first order of the perturbation procgdure, —K*=iRpl= in\s’G_/ZI ~idRIS)I.
with the resonance entrance vecRg,/ In= ¢, of the Di- 1)
richlet problem on the quantum well,,. It tai " Y i d with di ionl
The proof is presented in Ref. 27. Here we will verify the | contains a .argeA parameter compared with dimensioniess
corresponding dimensionless statement numerically for théverse spacing|\o—\,[™*=1/2.3 already for R> 6/2:
special case of a switch based on a circular quantum well0/2.3=4.3<8. Note that forR=105 the corresponding in-
We use the above representatidy. (A8)] for the dimen-  equality is 4.3<40. .
sionless DN map, Similarly, the operatoRK™ =K~ for the selected value of
o A | A energy is positive and may be estimated from below by the
AT=A%, -A ——A°,. dimensionless distance from the Fermi level to the second
K+ A% threshold with(dimensionlesscoefficientR/ 6,

R
=~ 45, (B2)

Assuming thaR/2> § denotes the projections of the normal ~ 3R
ot ; : K = /-—=ml >8l.
derivatives of the resonance eigenfunctions onto subspaces

E. on the sunl" of the bottom sections of the wires as o o
Then, estimating the contributio from the nonresonance

{f)::pi&_@s, terms to DN map adK|<C/p(\y), we conclude that, in
an agreement with Eq32),
and separate the resonance term in the DN map framed by R R ) S
projections ontcE,, KK < \ﬁ ——=1.1_. (B3)
377'5( o)R R

ip, o BN 5 BN BN . A
NN oy S NN + Assuming thatC=10, p(Ay)=2.3, §=2 nm, R=10 nm, we
0 s 0 obtain in the right side of EqB3) the small dimensionless
a A n A N parameters(R)"1~0.22. Then we can calculate the inverse
P,AP_= ?Oxfﬁo + > ibsxfﬁs : ?°><A¢° +K,_, (K__+K")™1:=k(4,R) :=k via the perturbation series and ob-
N=Xp s*0 A —A\g N—=Xo tain the estimate,
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51 |2 1 S A ArAE A
||k||$__\/j, ~ 0.16_. A= P00 _ _$0X¢o
Rm V3 1-1/4 R }A\—)’;B D

This gives an explicit expression for the inverse operator, with the residue of the DN map proportional t&%)(% as

&5}(&5 Rk - announced. The dimensionless eigenvaﬁ]e:n‘ the interme-

;\_)“\0 - diate operatpll{) can be obtained from the equati@(\,)
=0. Due to||®y||~1 using Eq.(31) we obtain for6=R/2, in

in the form the first order of the perturbation procedub@{,—io|<0.08
;ﬁax;ﬁa R |t 1 .\ . <2.3. Itis in full agreement with the corresponding direct
~ o TR KT L f= k= ke ) (oK), calculatio” [\j—\¢|=0.07 used above in Secs. II-IV. Actu-
A= No ally the above calculation gives an analytical foundation for

L o . substitution, in practical calculations with the scattering ma-
where D=A=No+(dy,kep). Substituting that EXPIESSION iy, of the leading terms of the DN map of the intermediate
into Eq. (B1), we notice that all terms containir@ —\o) i operator with the leading terms of the DN map of the corre-

the denominator are cancelled and we obtain sponding Schrddinger operator on the quantum well.
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