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The design of a three-terminal resonance quantum switch is suggested in the form of a network consisting
of a circular quantum well with four semi-infinite single-mode quantum wires attached to it. In the resonance
case, when the Fermi level in the wires is close to an energy level in the well, the magnitude of the governing
electric field on the well may be specified such that the switching effect is obtained; the quantum current across
the switch from the incoming wire to the outgoing wiressterminalsd is controlled via rotation of the orthogonal
projection of the field onto the plane of the device. Using an approximate formula for the scattering matrix we
define essential details of the design and the parameter regime of the switch depending on the desired working
temperature, the Fermi level in the wires, and the effective mass of an electron.
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I. INTRODUCTION

The basic problems of quantum conductance were related
to scattering processes long ago1–3 and the role of scattering
in the mathematical design of quantum electronic devices
was clearly understood by the beginning of the 1990s.4–6

Modern experimental techniques already permit observation
of resonance effects caused by details in the shape of the
resonance wave functions.7–11We propose using these effects
as efficient tools for manipulation of the transport properties
of the three-terminal quantum switch.

The idea of resonance manipulation of thesingle-mode
quantum current is based on the following observation from
Ref. 12: “The resonance transmission across the quantum
system caused by attachment of incoming and outgoing
channels is proportional to the products of some local char-
acteristics of the corresponding resonance eigenfunction of
the system at the places where the channels are attached.”

In this paper we suggest a method for an approximate
description of the resonance transport in a quantum network,
considering the basic example, the resonance quantum
switch13 formed on the surfaceR2 of a semiconductor as a
union V=øs=0

4 Vs of the quantum wellV0 and four equiva-
lent quantum wiresV1, V2, V3, V4, of equal widthd at-
tached to it. See Fig. 1. In this paper the basic quantum well
V0 is a disk. Similar analysis can be developed for the ring,
but in that case the resonance manipulation of the quantum
current is more difficult because of instability of lines of
zeroes of the resonance eigenfunction. The role of the Hamil-
tonian of the relevant quantum system is played by the one-
electron Schrödinger operatorl. See below in Sec. II. The
corresponding potential is constantVsxd=V` in the wires,
linear sfor the macroscopic electric fieldd on the well, and
zero on the complementR2\VªV8 of the network. We as-
sume that the Fermi level in the wires with respect to the
potential on the complement of the network is deep enough.
See the estimates below in the beginning of Sec. II. Then one
can replace the matching boundary conditions on the com-
mon boundary of the network and the complementary do-

main by the homogeneous Dirichlet conditions, at least for
electrons with energy close to the Fermi level. We do not
assume that the wires are thinssee the discussion below in
Secs. II B and II Cd or that the connection of the wires to the
quantum well is weak. But we assume that the dynamics of
the electrons in the wires is single mode and ballistic on
large intervals of the wires, compared with the size of the
geometric details of the constructionsthe width of the wire
or the size of the contactsd. Imposing certain weak condi-
tions, see Secs. II B and II C below, on geometrical details of
the networkV, we derive an approximate formula for the
corresponding scattering matrix which is used for optimiza-
tion of transport properties of the switch.

In this paper we replace the transport problem for the
quantum switch by the one-body scattering problem, assum-
ing that quantum current is weak and few-body effects are

FIG. 1. Resonance quantum switch. The circular quantum well
V0 with wires V j, j =1,2,3,4attached. The wires are enumerated
in a counterclockwise direction, beginning from the horizontal wire

V1 on the left of the well. The modified wellṼ0 is obtained as the
complement of the wires in the circular wellV.
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suppressed by scattering by impurities, which is also ne-
glected in this paper. A more realistic analysis of conduc-
tance requires estimation of decoherence and taking into ac-
count many-body effects, for instance as in Ref. 14. This
analysis will be developed in the forthcoming paper.

Solution of the one-particle spectral problem for the
Schrödinger equation on the two-dimensional network obvi-
ously can’t be obtained in explicit form. One usually believes
that the explicit formulas can be substituted by the solution
of a one-dimensional Schrödinger equation on the corre-
sponding graph. See for instance Refs. 20 and 19. In math-
ematical papers15–17based on Ref. 18 the authors noticed that
the sdiscreted spectrum of the Laplacian on a system of finite
length shrinking waveguides of widthd attached to the
shrinking vertex domain of diameterR=R1da, 0,a,1
tends to the spectrum of the Laplacian on the corresponding
one-dimensional graph, but with different boundary condi-
tions at the vertices, depending on the “speed”a of shrink-
ing. Unlike the papers in Refs. 15–17, our approach to the
Schrödinger equation on the “fattened graph” with semi-
infinite wires is based on an analysis of the resonance trans-
mission through the quantum well. Assuming that the Fermi
level is situated on the first spectral band in the wires, we
impose additional “chopping off” boundary conditions on the
bottom sectionsg j of the semi-infinite wires. See Fig. 1
above. These conditions split the original Schrödinger opera-
tor into the orthogonal sum,l → hos=1

4 ls
rj % l0

r of the trivial part
hon=1

4 ls
rj in the open channels and the nontrivial partl0

r which
plays the role of an “intermediate operator.” The spectrum of
the intermediate operator consists of an absolutely continu-
ous part of varying multiplicity which begins from the sec-
ond threshold in the wires. See Sec. II A, and a sequence of
eigenvaluesll

r which can accumulate at infinity. The eigen-
values that are sitting on the first spectral band generically
give rise to resonances of the scattering problem on the net-
work and hence define the resonance conductance. Our main
tool is the following formula for the scattering matrix:

Ssld =
ipsldI + Lr

ipsldI − Lr , s1d

where ipsld is, in the simplest case, an exponent from the
bounded modese±ipsldxes in the open channels, spanned by
the corresponding cross section eigenfunctiones, and Lr is
the Dirichlet-to-Neumann map of the intermediate operator
l0
r . See Sec. II B and the Appendix.

For low temperatures the summation and integration over
the spectrumhlj of the intermediate operator may be re-
duced, see for instance Ref. 21, to the essential interval of
energy u"2/2m0l−EFu,kBT. In our case this gives an ap-
proximate scattering matrix. In the most interesting case,
when only one resonance eigenvaluel0

r is sitting on the es-
sential spectral interval, the above formulas1d gives an im-
portant “one-pole approximation” which is used below for
the estimation of the parameter regime of the switch.

Here is the plan of our paper. In Sec. II we derive an
explicit formulas12d for the scattering matrix in terms of the
spectral characteristics of the intermediate operator and de-
scribe the geometrical and physical limitations which allow

us to replace, in Sec. II B, the exact formulas1d for the
scattering matrix by the approximate formulas27d. This ap-
proximate formula is interpreted as a scattering matrix for a
solvable model. In Sec. III we find positions of resonances,
and in Sec. IV we optimize the conductance of the switch
based on Eq.s27d. Useful mathematical facts concerning the
Dirichlet-to-Neumann map of the intermediate operator and
the analytic perturbation procedure for calculation of the cor-
responding spectral data are collected in the Appendixes A
and B.

II. THE SCHRÖDINGER EQUATION AND THE
HAMILTONIAN OF THE SWITCH

Conductance of the network constructed on the surface of
the crystallized medium depends on the geometry of the net-
work and on the correspondence between the crystal struc-
ture and the form and positions of the wires with respect to
the crystal’s lattice. For networks of quantum wires and
quantum wells formed on the surface of GaAs, InAs, and the
narrow-gap semiconductors CdHgTe, and InSb the tensor of
effective mass is isotropic, and the value of the effective
mass is small,mi=m'=m* !m0, see Refs. 22 and 23 and
Table I in Sec. IV C. If the Fermi level is deep compared
with the radius of the well,

2m*s0 − EFd
"2 R2 = 0.3136s0 − EfdR2 @ 1

fR is measured in Å and the depth of the Fermi levels0–EFd
in eVg, then for the values of the energyE near to the Fermi
level EF the spectral problem

−
"2

2m* Du + Vsxdu = Eu s2d

on the whole plane can be reduced to the spectral problem
for the corresponding Schrödinger operator on the network
VªV0øV1øV2øV3øV4 with zero sDirichlet homoge-
neousd boundary condition:uuu]V0

=0.
We assume that the potentialVsxd on the quantum well is

defined by the macroscopic “governing” electric fieldEn
which is constant inside the well,Vsxd=Eekx,nl+V0, where
e is the electron charge and the unit vectorn shows the
direction of the field. The magnitude of the field is specified
in Sec. IV to optimize the switching effect for a circular
quantum well of a certain radius. In the wiresVs: −l ,xs
,`, 0,y,ds the potential is piecewise constant, possibly
with a barrier height"2H2/2m* at the beginning,

Vssx,yd = 5V` +
"2H2

2m* if − l , x , 0

V` if x . 0,
6

or constant,Vssxd=V`, if l =0. The first case corresponds to
the presence of a split gate on the initial part −l ,x,0 of the
wire. In the second case the split gate is absent or switched
off. In the case of the ring-shaped well, see for instance Ref.
7, when the resonance manipulation is unstable, the electron
current can be manipulated with the help of a split gate. In
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this paper we focus on the resonance manipulation of the
electron current.

We assume that the role of the one-electron Hamiltonian
on the network is played by the Schrödinger operator,

l = −
"2

2m* D + Vsxd, s3d

with the potential and the tensor of effective mass specified
as described above. It is convenient to use the “geometric”
form of the corresponding Schrödinger equation with the
renormalized spectral parameterl=ps

2=s2m* /"2dfE−V`

−s"2/2m*dsp2/ds
2dg, and the corresponding effective wave

numberp=Îl. Furthermore, we assume that the width of all
wires is ds=d. This allows us to introduce the universal
renormalized spectral parameterl=p2.

We use the spectral parameterl in the Schrödinger equa-
tion on the well, after substraction of appropriate correcting
terms from the potential,

−
1

m* Dxusxd +
2

"2FVsxd − V` −
"2

2m*

p2

d2Gu

=
2

"2FE − V` −
"2

2m*

p2

d2Gusxd =
1

m* lu, uxu , R. s4d

A nondimensional form of the above Schrödinger equation
on the well is obtained via change of the space variablex
→j=sj1,j2d=x/R,

−
1

m* DjusRjd +
2R2

"2 FVsRjd − V` −
"2

2m*

p2

d2GusRjd

=
2R2

"2 FE − V` −
"2

2m*

p2

d2GusRjd

= R2 l

m* usRjd ª R2 p2

m* u, uju , 1. s5d

The corresponding change of variables on each wire,x→j
=x/R along the wire andy→h=y/R across the wire, 0,y
,d, x.−l gives the equations39d, see below. We will use,
furthermore, both geometric and dimensionless forms of the
Schrödinger equation in the wires and on the well assuming
that each time the appropriate change of variables is also
done for the functionu. The roles of the dimensionless spec-

tral parameters are played byR2l= l̂ andRp= p̂.

A. The intermediate operator and the scattering matrix

In Sec. II A we derive the formula for the scattering ma-
trix based on the Dirichlet-to-Neumann map for the interme-
diate operator. The corresponding elementary calculation is
postponed to the Appendix. We use the “geometric form” of
the Schrödinger equation on the network, replacing the stan-
dard Schrödinger equations, Eq.s5d on the wellV0 by

−
1

m* Du +
1

m* V0sxdu =
1

m* lu, s6d

and on the wiresVs by

−
1

m* uxx −
1

m* uyy +
1

m* Vssxdu =
1

m* lu. s7d

If the Fermi level in the wires sits on the first spectral band,
we use split operatorl r defined by the above Schrödinger
differential expressions on the whole network with special
boundary conditions on the common boundaryG=øs=1

4 gs of
the well and the wires. In the first open channel the standard
matching boundary condition is replaced by thepartial Di-
richlet boundary condition,chopping the first channel off.
We denote byE+ the four-dimensionalentrance subspaceof
the open channel, spanned by the first-order eigenfunctions
e1

s, s=1,2,3,4, on thebottom sectionsgs, s=1,2, . . . of the
wires, e1=Î2/d sinpy/d , . . ., and byP+, the corresponding
orthogonal projection inE=L2sGd. We present the partial
chopping-offboundary condition as

uP+uuG = 0, orE
0

d

sin
py

d
ussyddy= 0, s= 1,2,3,4,

s8d

both for functionsus from the domain of the corresponding
split operator in the wire and in the well. The partial match-
ing condition in all uppersclosedd channels,l .1, with the
entrance subspaceE−=L2sGd * E+ and the corresponding
complementary projectionP−= IG * P+ in L2sGd=E is pre-
sented as

uP−fus − u0guG = 0, UP−F 1

m*

]us

]n
−

1

m*

]u0

]n
GU

G

= 0. s9d

The split operatorl r defined by the above differential expres-
sions fEqs. s6d and s7dg and the boundary conditionsfEqs.
s8d and s9dg can be presented as an orthogonal sum of the
trivial part

o
s=1

4

ls
r

of the one-dimensional Schrödinger operatorsls, s
=1,2,3,4

lsus = −
1

m*

d2us

dx2 =
1

m* lus,

on the open channel with zero boundary conditions at the
bottom sections, and thenontrivial part l0

r defined in the
orthogonal complement in the Hilbert space of all square-
integrable functions on the networkl r =os=1

4 ls
r

% l0
r . The non-

trivial part l0
r of the split operatorl r plays a role of aninter-

mediate operator. We will present the intermediate operator
in geometric form introduced above, see Eqs.s4d ands5d and
use for it the geometrical spectral parameterl=p2. The con-
tinuous spectrumsc

r of l0
r fills the semiaxisflmin

r ,`d, with
lmin

r =3p2d−2. The multiplicity jumps up by four units at the
thresholdssl2−1dp2/d2, l =2,3, . . ..There is a finite number
of eigenvaluesls

r of the intermediate operator on each finite
interval and possibly the accumulation point at +`. We as-
sume that “the resonance eigenvalue”l0

r sits close to the
scaled Fermi level,
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lF =
2m*

"2 FEF − V` −
"2

2m*

p2

d2G .

For the detailed spectral analysis of the intermediate operator
see Ref. 26.

The split spectral problem for the operatorl r can be con-
verted back into the original spectral problem for the opera-
tor l via replacement of the partial zero boundary condition
fEq. s8dg in the first channel by the corresponding partial
matching condition with solutionsus of the homogeneous
problem in the first channel of the wires,

uP+fus − u0guGs
= 0, UP+F 1

m*

]us

]n
−

1

m*

]u0

]n
GU

Gs

= 0.

s10d

The perturbation caused by this one-dimensional change of
the boundary conditions8d to s10d transforms the separated
branch of the continuous spectrum in the first channel 0
,l,` into the branch of the continuous spectrum of the
original spectral problem. The componentshu1sjs

4=u1 of the
scattered waves in the first channel,l =1, are combined of
Jost solutions,f±=e±ipx, x.0, of the Schrödinger equation
with the compactly supported potential which is trivial on the
wire

fVssxd − V`g = 0,

for x.0, and may havesif l Þ0d a barrier ssplit gated on
s−l ,0d,

fVssxd − V`g = H2 "2

2m* , − l , x , 0.

Then the solutionu1=hu11,u12,u13,u14j of the homogeneous
equation in the first channel in the wires can be found in
form of the scattered wave,

−
d2u1

dx2 +
2m*

"2 fV1sxd − V`gu1 = p2u1,

u1sxd = e−ipxe+ eipxS1e, x . 0, s11d

with any vectorePE+. Components of the scattered wave in
the upper channelsl .1 are exponentially decreasing on the
first spectral band,

ulsxd = expF−ÎSp2l2

d2 −
p2

d2D − p2xGSle, x . 0, l . 1.

Here S1—the scattering matrix—and the amplitudesSl, l
.1, in upper channels, are defined from the matching con-
dition s10d of u1 to the solutions of the corresponding homo-
geneous equation inside the well. To calculate the scattering
matrix using the conventional matching technique one
should compare the solution of the Schrödinger equation on
the well with the solutions in allsopen and closedd channels
in the wires. See Appendix A. This requires the solution of
an infinite linear system. The partial matching procedures9d
requires comparing the solutions of the homogeneous inter-
mediate equations with the oscillating solutionsin open
channels of the wires only, thus replacing the infinite alge-

braic system by the finite one. The mathematical conve-
nience of this approach lies in the replacement of the un-
bounded DN mapL by the finite matrixLr =P+LrP+. Using
partial matching gives the following explicit formula for the
scattering matrix in the general case, when the split gate is
present,l Þ0,

Sspd = −

ip
tanhÎsH2 − p2dl

ÎH2 − p2
+ 1

− ip
tanhÎsH2 − p2dl

sÎsH2 − p2d + 1d

P+LrP+ − P+Ql

P+LrP+ − P+Q̄l

, s12d

where the first factor is scalar, the denominator is preceding
the numerator in the second factor,

Ql =
− ip − ÎsH2 − p2d tanhÎsH2 − p2dl

iÎp
tanhÎsH2 − p2dl

ÎsH2 − p2d
+ 1

,

Q̄l is the complex conjugate ofQl andLr is the Dirichlet-to-
Neumann mapsDN mapd of the intermediate operatorl r. See
Appendix A and Refs. 24–26. The corresponding formula,
for the case when the split gate is absent is obtained by
replacing in s12d the width l of the barrier by zero,Q1
→Q0=−ip.

B. Geometrical and physical limitations

Resonance properties of the scattering matrixs12d are re-
vealed when substituting in it the spectral representation for
the Lr =P+LrP+ in the form of the sum and/or integral over
the spectrumhlsjøsc

r of the intermediate operator,

Lr = o
ls

KP+
]ws

r

]n
LKP+

]ws
r

]n

l − ls
r

+E
s.3p2/d2

KP+
]w2

r ssd
]n

LKP+
]w2

r ssd
]n

l − s
ds

+E
s.8p2/d2

KP+
]w3

r ssd
]n

LKP+
]w3

r ssd
]n

l − s
ds + ¯ .

s13d

The corresponding eigenstatesws
r minimize the Rayleigh ra-

tio ku,ul−1kl0
r u,ul of the intermediate operatorl0

r .

1. Comparison of spectral data of the intermediate operator
and the operator on the well

It is shown in Appendix A that the DN map of the inter-
mediate operator is connected with the conventional DN map
of the Schrödinger operator on the quantum well. See Eq.
sA7d. In fact, the “renormalized” eigenvalueslr of the inter-
mediate operator that sit on the first spectral band in the
wires, between the first and second thresholds, are obtained
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by minor shiftsDs of the eigenvaluesls of the Schrödinger
operator on the quantum well with a zero boundary condition
on the whole boundary,

ls → ls
r = ls + Ds.

The deviations of the eigenvalues of the dimensionless inter-
mediate operator from the eigenvalues of the corresponding
Schrödinger operator on the well with zero boundary condi-
tions are estimated theoretically in Ref. 27, discussed in the
following Sec. II C, and verified numerically in Appendix B
for the most interesting case of the circular well. It is shown
there that the “resonance entrance vectors”P+u]wl /]nuG com-
bined of eigenfunctionswl of the intermediate operator on
the bottom sections of the wires, coincide, in the first order
of the analytic perturbation procedure, with the correspond-
ing data of eigenfunctions of the Schrödinger operator on the
quantum well with zero boundary conditions. See Appendix
B. In particular in the remaining part of this section we may
neglect the difference between spectral datals

r,ws
r,Lr of the

intermediate operator and the corresponding spectral data of
the Schrödinger operator on the well with zero boundary
conditions. We assume further in this section that split gates
are absent, or switched off,l =0.

2. Temperature

We assumed that the total number of electrons participat-
ing in conductance is rather small, so that many-body effects
are suppressed by scattering on impurities and decoherence,
which are also neglected in this paper. We take into account
only the statistics of electrons, assuming, similar to Ref. 21,
that observable values of dynamical variables are obtained
via averaging of the corresponding theoretical data on a
Fermi-Dirac distribution. Practically we take into account
only an essential interval of energy length 2kBT centered at
the Fermi level. We say thatthe radius R of the quantum well
is relatively small, for the given temperature, if the spacing
rsEFd=minsÞ0uEs−E0u of energy levels of the intermediate
operator at the resonance energy levelE0<EF is large com-
pared with the temperature,

kBT ,
1

2
infEsÞEF

uEF − Esu = rsE0d. s14d

Generally, there may be several eigenvalues

ls
r =

2m*

"2 FEs − V` −
"2

2m*

p2

d2G
of the intermediate operatorsor the Schrödinger operator on
the welld situated on the essential interval of energyfEF

−kBT,EF+kBTg,

EF − kBT ø Es ø EF + kBT. s15d

Appropriate domination conditions can be formulated also
for the resonance groupLapprox

r of terms inLr, if the spacing
rD between the resonance group and the remaining part of
the discrete spectrum is greater than thekBT. Under these
conditions the nonresonance terms, which correspond to ei-
genvalues outside the essential interval, can be neglected to-

gether with the contribution to DN map from the continuous
spectrum, if it does not overlap with the essential spectral
interval,

m2
3p2"2

2m*d2 . kBT. s16d

3. Leading terms of the DN map

Assume that the essential spectral interval centered at the
Fermi level does not overlap with the continuous spectrum of
the intermediate operator and neglects the contribution from
the continuous spectrum in the expressions13d. The contri-
bution tos13d from the nonresonance terms withls

r Þl0
r will

be estimated.
Denote byrrsl0

r d the spacing on the resonance levell

=l0
r and byCR=ĈR3 the square norm of the operator,

KP+
]ws

r

]n
LKP+

]ws
r

]n
L .

We estimate the contribution toLr fsee Eq.s13dg from the
nonresonance polar term,sÞ0,

(KP+
]ws

r

]n
LKP+

]ws
r

]n

l0
r − ls

r ( =
CR

ul0
r − lsu

ø
ĈR3

rrsl0
r d

. s17d

The dimensionless constantĈ in the case of a circular quan-

tum well ssee the example in Sec. II Cd is estimated asĈ
,10. We assume that the whole nonresonance contribution
to the DN map is dominated by the contribution from the
nearest tol0

r nonresonance eigenvalue and estimated as

ĈR3/rrsl0
r d again, withĈø10. In Sec. III we will show that

the most interesting case isl =0 sthe split gates opend. Then
the numerator of the scattering matrix is presented as

KP+
]w0

r

]n
LKP+

]w0
r

]n

l − l0
r + OS C

rrsl0
r d
D + iP+p, s18d

where the whole nonresonance contribution is denoted by

OS C

rrsl0
r d
D =

1

R
OS ĈR3

rrsl0
r d
D .

Leading terms in the numerator near the resonance eigen-
valuel0

r of the intermediate operator are the polar term

KP+
]w0

r

]n
LKP+

]w0
r

]n

l − l0
r

and the last termiP+p containing the effective wave number
p. Both of them are homogeneous functions of degree −1 of
the space variable. The middle term defining the nonreso-
nance contributionOsC/rrsl0

r dd is also a homogeneous
operator-function degree −1 and can be neglected if the con-
dition s24d below is fulfilled. On the other hand, one can also
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develop a perturbation technique for the calculation of the
zeros of the numerator of the scattering matrix using the
small parameter, which is chosen below. See Eq.s22d. The
small parameter is estimated numerically in the example in
Sec. II C. To introduce the small parameter, let us neglect the
contribution to the DN map from the nonresonance terms
and upper branches of the absolutely continuous spectrum.
This results in the resonance term only,

Lrsld <
KP+

]w0
r

]n
LKP+

]w0
r

]n

l − l0
r ª Lappr

r .

Then we separate the group of leading terms in Eq.s18d as

KP+
]w0

r

]n
LKP+

]w0
r

]n

l − l0
r + iP+pª D. s19d

The operatorD is invertible, hence the numerator of the scat-
tering matrix can be factorized as a product,

KP+
]w0

r

]n
LKP+

]w0
r

]n

l − l0
r + OS C

rrsl0
r d
D + iP+p

= DFI + D−1OS C

rrsl0
r d
DG . s20d

The termLappr
r gives a convenient “one-pole” approximation

for the DN map of the intermediate operator. The corre-
sponding one-pole approximation for the scattering matrix in
the case when the split gates are opensor absentd can be
obtained via neglecting the second term in square brackets

Ssld = − FI + fD+g−1OS C

rrsl0
r d
DG−1

fD+g−1D

3FI + D−1OS C

rrsl0
r d
DG < − fD+g−1D ª Sapproxsld.

s21d

The approximations21d is quantitatively consistent if the
contribution from the nonresonance terms is dominated by
the group of leading termsD. See the discussion in Secs. II B
and II C. In that casefD+g−1 OsC/rrsl0

r dd can play the role of
the small parameter,

ID−1OS C

rrsl0
r d
DI ! 1, IfD+g−1OS C

rrsl0
r d
DI ! 1.

s22d

If similar weaker conditions likeiD−1OsC/rrsl0
r ddi,1 are

fulfilled, then an analytic perturbation procedure can be de-
veloped for the calculation of the scattering matrix, begin-
ning from the one-pole approximationSapproxsld=−fD+g−1 D.
We will suggest below, sees24d–s26d, some practical condi-
tions for the dominations22d.

Assume that the Fermi levelEF is situated on the first
spectral band,

F "2

2m*

p2

d2 + V`,
"2

2m*

4p2

d2 + V`G ,

in the wires dividing it in the ratiom1:m2,m1+m2=1,

m1:m2 = FEF − V` −
"2p2

2m* G:FV` + 4
"2p2

2m* − EFG . s23d

Then one can estimate the distances of the Fermi level to the
first s"2p2/2m*d2d+V` and the seconds4"2p2/2m*d2d+V`

thresholds in the wires, respectively, asm1,23s"2p2/2m*d2d
and the “effective wave number” on the Fermi level aspF

=Î3m1p2sd2d−1.
We say that the width of the wires isrelatively small

compared with the radius R of the quantum well, if the non-
resonance contribution to the DN map is dominated on the
Fermi level by the effective wave number. This condition can
be presented as the domination of the inverse “renormalized”
spacing on Fermi level by the dimensionless, effective wave
numberpF=Rp,

Ĉ

r̂0sl0
r d

=
"2Ĉ

2m*R2rrsEFd
! RÎ2m*fEF − V`g

"2 −
pF

2

d2 ª
Îm1pF

=
pR

d
Îm13. s24d

Here the renormalized spacingr̂0ª"22m*R2r0 is actually
equal to the spacing on resonance levelE0,

"2

2m*R2l̂0 = E0 − V0 −
"2p2

2m*d2 < EF − V0 −
"2p2

2m*d2

of the corresponding dimensionless Schrödinger equation on
the well. The domination conditionfEq. s24dg implies the
estimates for the leading terms in the numerator and the de-
nominator of the scattering matrix from below or the corre-
sponding inverse from above,

iD−1i ø Sp
R

d
Î3m1D−1

, ifD+g−1i ø Sp
R

d
Î3m1D−1

.

s25d

Together with the previous estimate for the nonresonance
terms,

IOS Ĉ

r̂rsl0
r d
DI <

10

r̂rsl0
r d

this implies estimates for the “small parameters” in the for-
mulass21d ands22d. A dimensionless version of the estimate
is, for instance,

ID−1OS Ĉ

r̂rsl0
r d
DI ø

10

r̂rsl0
r d
Sp

R

d
Î3m1D−1

. s26d

A similar condition of domination can be formulated if some
“resonance group” of several polar terms in the DN mapLr

is included in the “leading group.” See the corresponding
discussion in Sec. IV. The role of spacing in that case is
played by the minimal distance between the eigenvalues of
the selected resonance group and the rest of the spectrum.
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4. One-pole and few-pole approximations

Assuming that the above domination conditions are satis-
fied, we can neglect in the formula for the scattering matrix
the contribution to the DN map from the nonresonance ei-
genvalues. This way we obtain the convenientone-pole ap-
proximationsfor expressions in the numerator and denomi-
nator of the scattering matrix which take into account only
the leading terms. Assuming that the split gates are open,l
=0, we consider an approximate expression for the scattering
matrix s21d, a combination of the leading termss19d of the
numerator and denominator only,

Ssld < − fD+g−1D = −

KP+
]w0

r

]n
LKP+

]w0
r

]n

l − l0
+ ipI

KP+
]w0

r

]n
LKP+

]w0
r

]n

l − l0
− ipI

ª Sapproxsld. s27d

The corresponding dimensionless formula has the same
form. Here and in following sections we denote the dimen-

sionless variablesl̂ , p̂ just byl ,p. Note that the zeros of the
function Sapproxsld can be found from an elementary alge-
braic equation. See the next section. Their deviations from
the zeros of the scattering matrix can be estimated rigorously
due to the presence of the small parameters and the operator
version of Rouche’s theorem. See Ref. 28. One can use the
aboveone-pole approximations27d of the scattering matrix
for the approximate description of the electron transport
across a quantum well, if the conditionss14d and s24d are
fulfilled. The above one-pole approximations27d and even
similar “few-poles” approximationss1d of the scattering ma-
trix of the switch,

ipI + Lapprox
r

ipI − Lapprox
r ª Sapproxsld, s28d

with rational “essential DN map,”

Lapprox
r sld = o

l=1

NT KP+
]wl

]n
LKP+

]wl

]n

l − ll
, ll P DT, s29d

constructed as a sum of terms with polesll , l =1,2, . . . ,NT
on the essential interval

DT = SlF −
2m*R2

"2 kBT,lF +
2m*R2

"2 kBTD
can be interpreted as scattering matrices for solvable models.
Construction of the solvable model of the switch is a partial
case of the solvable model of the general quantum network
which is described in Ref. 26. Note that these solvable mod-
els allow appropriate fitting of all free parameters.

C. Example

In Sec. II C we apply the analysis of geometrical limita-
tions developed above in a general case to the most interest-

ing example of a switch, based on a circular quantum well
with quantum wires of widthd=R/2. If the shift potentialV0
in the well is selected such thatV0−V`−"2/2m*d2=0, then
the potential of the corresponding dimensionless Schrödinger
equation on the well is just proportional tokj ,nlu. We also
assume that the renormalized electric field is selected ase
=18.86, which corresponds to the appropriate shape of the
resonance eigenfunction. See Sec. IV A. The resonance
eigenfunction of the dimensionless Schrödinger operator on
the quantum well satisfies the equation

− Dju − ekj,nlu = R2p2u, uuu]V0
= 0,

which correspondsssee Sec. IV Ad to the sdimensionlessd
resonance eigenvalue,

l̂0 =
2m*R2

"2 FEF − V0 −
"2p2

2m*d2G = R2l0 = 14.62.

It appeared that the eigenfunctions and eigenvalues of the
Schrödinger operatorl0 on the quantum well with zero
boundary conditions are very close to the eigenfunctions and
eigenvalues of the intermediate operator. See Appendix B.
Hence, the spectral datal0 can be used in the above approxi-
mate formulas for the DN map and the scattering matrix. An
alternative direct calculation of the dimensionless eigenval-
ues of the intermediate operator was done29 for d=R/2. The

deviationD0=−0.07 of the resonance eigenvaluel̂0
r from the

corresponding eigenvaluel̂0=14.62 of the Schrödinger op-
erator on the well is small and is dominated by the nonper-
turbed spacing 2.30—the distance to the nearest nonreso-
nance eigenvalue 12.32 on the well. The estimation of the
deviation via analytic perturbation procedure is given in Ap-
pendix B. The above conditions24d is verified for the
Schrödinger operator on the well. See Eqs.s30d and s31d
below. It remains valid for the intermediate operator, too.

Small parameter

If the Fermi level divides the first spectral band in ratio
m1:m2, then the one-pole approximation is applicable to the
switch with “relatively narrow” wires if conditions24d is
fulfilled. In the actual case of a switch based on a circular
quantum well this condition takes the form

10

2.3
,

R

d
pÎ3m1. s30d

It obviously holds if the widthd of the wires does not exceed
R/2, and the Fermi level sits in the middle of the first spec-
tral bandm1=m2=1/2. It may bereduced in this case to

10! 20, s31d

which is not restrictive. Moreover, this reveals the “natural”
small parameter 1/2,

iD−1i ø F8.63
R

d
G−1

, ID−1OS C

rrsl0
r d
DI ø

1

2
, s32d

if døR/2. This small parameter shows the “degree of domi-
nation” of the nonresonance contribution to the DN map.
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According to Eqs.s22d and s21d this gives an estimation for
the approximation rateuSapprox−Su in the example considered
and allows us to develop the perturbation procedure for the
scattering matrix. Ford /R=10 the analog of the above esti-
mates32d has 1/10 in the right side.

For the wires of width 2 nm this condition estimates the
temperature in K asT,312Km2, which means that the nitro-
gen temperature 77 K is low enough to allow us to neglect in
the approximate formula for the scattering matrix the contri-
bution from the upper branches of the continuous spectrum,
if the Fermi level divides the first spectral band in ratio
m1:m2=2:1. For wires of width 3 nm one can neglect the
contribution from the upper branches of the continuous spec-
trum of the intermediate operator for the nitrogen tempera-
ture if the Fermi level is situated in the middle of the first
spectral band.

We do not estimate here admissible nonaccuracies of geo-
metrical details of the construction which would not affect
the transport properties of the switch. This important ques-
tion is postponed to the following publication, as well as
discussion of the important case of the ring-shaped quantum
well. Here we just mention that the geometrical details can
be already controlled to a precision of 2 nm,8 which is less
than 10% of the diameter of the well for most prospective
materials. See the discussion in Sec. IV.

In Sec. IV we will discuss the geometrical limitations in
connection with the high-temperature regime of the switch
and the choice of materials for manufacturing of the switch.

III. CALCULATION OF RESONANCES

The 434 scattering matrixs12d in the first channel is an
analytic matrix function in the complex plane of the dimen-
sionless effective wave numberp and may have zeros—
resonanceshpsj—in the upper half plane and complex-
conjugate poles in the lower half plane. In particular, when
the split gate is absent,l =0, the resonances can be found as
vector zeros of the dimensionless numerators18d,

KP+
]w0

r

]n
LKP+

]w0
r

]n
,e

l − l0
r + OS C

rrsl0
r d
De+ ipe= 0, s33d

with a normalized vector ePE+. The contribution
OsC/rrsl0

r dd from the nonresonance terms of the DN map is
estimated as 10frrsl0

r dg−1. Multiplying by the orthogonal pro-
jection P0=kf0luf0u−2 kf0l onto the “resonance entrance
vector,”

f0
r
ª P+

]w0
r

]n
ª f0 = hf0

1,f0
2,f0

3,f0
4j,

we may reduce the equation to the pair of equations,

uf0u2

l − lr
0 +KP0OS C

rrsl0
r d
D,eL + ip = 0,

− ipsP+ − P0de= sP+ − P0dOS C

rrsl0
r d
De.

The first equation is used to estimate the position of the
resonancep. See Sec. II B, and the second can be used to
estimate the deviation of the corresponding zero vectore
from the direction of the resonance entrance vectore0
= uf0u−1f0. For a given resonancep and the corresponding
null-vector e the resonance solutionu0 of the Schrödinger
equation exists, with exponential asymptotic in the wires,

u0sxd = he1,e2,e3,e4je−ipx.

The corresponding solution of the nonstationary dimensional
Schrödinger equation,

"

i

]u

]t
+

"2

2m* Du − Vsxdu,

usx,td = eis"/2m* dp2tu0sxd ª e−t/reis"/2m*R2d Re p2tu0sxd,

s34d

is exponentially decreasing with the exponent, 1 /t
=s" /2m*dImp2. The inverse exponentt is called the lifetime
of the resonance. The lifetime is defined similarly for a
closed split gate as zeros of the numerator of the expression
s12d. Note that for the dynamics associated with the wave
equationssee Ref. 30d, the lifetime of the resonance is usu-
ally measured by the inverse imaginary part of the resonance
in the planep of the wave number. The lifetime estimates the
duration of transition processes defined by the geometry of
the switch.

We calculate the resonances and estimate the correspond-
ing lifetime approximately, neglecting the nonresonance
terms, in cases when the split gates are absentsor switched
offd and the wires are attached straight to the quantum well.
We assume that the radius of the well is 230 Å and the width
of the wires is 20 Å. The dimensionless spacing on the reso-
nance level is 2.3 and the corresponding dimensionless coef-
ficient in front of the maximal nonresonance term is esti-
mated asC,10. In this case the equation for the resonances
may be presented in dimensionless form as

HF kf0lkf0

l − l0
r + OS C

rsl0
r d
DG + iRpJe= 0,

or, with numerical data inserted, as

0 =
ufu2

l − l0
r + Os4.3d + i 3 2303 0.372.

The contribution to the DN map from the neighboring non-
resonance eigenvalues is dominated by the wave number

uOs4.3du!23030.372=86. The dimensionless resonancel̂
is calculated from the one-pole approximation of DN map as

l = l0
r −

ufu2

4.3 + 86i
= l0

r − 5.53 10−3 + i0.11,

and the lifetime of the resonance is found forR=230 Å as
t=s2m* /"dsR2/ Imld. This gives for InSbt<0.13 ps. In
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cases when the split gates are present, with the same material
and geometry of the switch and the height of the barrier over
the Fermi level 1 eV, the lifetime is much longert=10−4 s.
See the relevant calculation in Ref. 27.

IV. TRANSPORT PROPERTIES OF THE SWITCH

A. The shape of the resonance eigenfunction and the switching
effect

One can see from Eq.s27d that the transmission from the
input wireV1 to the terminalVs is blocked if the component
egs

s]w0
r /]ndsydsinspy/dddy of the resonance entrance vector

f0
r =P+s]w0

r /]nd in the entrance subspace of the open chan-
nel in the wireVs vanishes. It is true if the zero of the normal
derivative of the resonance eigenfunction sits near to the
middle pointas of the bottom cross sectiongs. This state-
ment is in full agreement with the observationsRef. 12d that
the single-mode transmission of an electron across the quan-
tum systemsthe quantum well in our cased is implemented
via excitation of the resonance modew0

r inside the quantum
well V0.

It was noticed in Refs. 31 and 32 that the design of a
network and the magnitude of the constant field inside the
basic domain may be selected so that the zeros of the normal
derivative of the resonance eigenfunction are sitting at the
entrances of the two wires simultaneously, leaving the in-
coming wire and only one of the outgoing wiressterminalsd
nonblocked. One can show that the resonance entrance vec-
tor f0

r =P+s]w0
r /]nd produced from the resonance eigenfunc-

tion of the intermediate operatorswith the first channel
“chopped off”d coincides with the corresponding portion
f0=P+s]w0/]nd of the eigenfunctionw0 of the Dirichlet
problem in the quantum well. See Appendix B. In this sec-
tion again we do not distinguish the resonance entrance vec-
tors obtained from the eigenfunctions of the intermediate op-
erator from ones calculated based on eigenfunctions of the
inner Dirichlet problem on the well. Our calculations with
the Dirichlet problem in Ref. 31 show that for the special
choice of the magnitudeE of the macroscopic electric field
Eekn ,xl inside the quantum well, such thate
=s2m*R3e/"2dE=18.86, the eigenfunctionw0 corresponding
to the dimensionlessresonanceeigenvaluel0=14.62 inside
the well has two zeros of its normal derivative on the unit
circle at the points forming angles±p /3 with the direction of
the unit vectorn. This eigenfunction is even with respect to
reflection in the line spanned by the vectorn. The nearest
eigenvalues in the well for the corresponding linear potential
sit at 12.32 and 25.82. Hence, the dimensionless spacing on
the resonance level is 2.3, which corresponds to the data in
the above example found in Sec. III. The resonance eigen-
function on the quantum well rotates by an angle ±p /3 when
the direction vectorn is rotated by this angle in the plane
parallel to the device. This observation allows usto block
alternatively any two of three outgoing wiresfor electrons
with energy close to the resonance eigenvalue—to the Fermi
level.

B. Transmission coefficients

The dimensionless resonance entrance vectorf0 com-
puted with the use of the normalized eigenfunctionw0 of the

dimensionless intermediate operatorsor Schrödinger opera-
tor on the welld with the potential defined by the vectorn
directed to the pointa1 sto the entrance of the input wired has
the componentssRef. 33d

f0 = s1,0.1,3,0.1d. s35d

Hence,if0i2=C<10. Then the transmission coefficients can
be calculated from the one-pole approximationfEq. s27dg as

uS12u = uS14u = 0.02, uS13u = 0.6.

Really, using the one-pole approximation for the scattering
matrix presented as a function of the geometric spectral pa-
rameterl=p2 near to resonancel0,

Ssld < −

kf0lkf0

l − l0
+ ip

kf0lkf0

l − l0
− ip

= I − 2
kf0lkf0

uf0u2
1

1 + i
psl0 − ld

uf0u2

,

gives the transmission coefficients as nondiagonal elements
of the scattering matrix and implies the announced result at
l=l0. This allows us to calculate the ratio of the amplitudes
of the signal in the closed and open wires as 1:30 and calcu-
late the conductance from the input wire to the open wireV3
just from the Landauer formulassee Ref. 1d since other wires
V2,4 are closed,

s13 <
e2

h

S13
2

1 − S13
2 =

e2

h

0.36

0.64
. s36d

This result holds for zero absolute temperature. The trans-
mission coefficient at the resonance energy for nonzero ab-
solute temperature should be obtained via averaging over the
Fermi distribution on the essential interval of energysEF

−kBT,EF+kBTd, similarly to Ref. 21, and may give a result
close to the previous ones36d, or close to zero in the two
limiting cases,

kBT!
"

t
or kBT@

"

t
, s37d

respectively.
The above formulas show that in a certain range of tem-

peratures the transmission is proportional to the product of
componentsk]w0/]ns,esl of the resonance entrance vector
on the bottom sections of the corresponding wires, in com-
plete agreement with the basic observation in Ref. 12 quoted
in the Introduction. A similar fact for the switch based on the
quantum well with Neumann boundary conditions was no-
ticed in Ref. 31. An analog of it remains true for scattering
on the quantum ring. See the corresponding solvable model
in Ref. 34.

One can design atriadic sthree-terminald switch sRQS-3d
based on selection of the magnitude of the governing electric
field as suggested above. The corresponding resonance
eigenfunction has the two zeros of the normal derivative that
divide the boundary of the well in the ratio 1:2. Taking into
account that the zeros on the boundary of the well rotate by
the same angle together with the rotation of the vectorn, one
can see that the resonance transmission is manipulated via
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the rotation of the electric fieldE which defines the corre-
sponding rotation of the resonance eigenfunction. Directing
the vectorn opposite to the contact pointas shifts the zeroes
of the normal derivative to the complementary contact points
and thus blocks the corresponding open channels.

Design of adyadic sone input and two terminalsd reso-
nance quantum switch, based on the above observation, does
not require any special selection of the magnitude of the
electric field.

C. Parameter regime of the triadic resonance quantum switch

The quantum dynamics in the triadic resonance quantum
switch is defined by several geometrical and physical param-
eters: the radiusR of the well, the widthd of the wires, the
effective mass of the electron, the magnitude of the basic
shift potentialsV0, V` on the well and in the wires, the mag-
nitude of the classical electric fieldE, the positions of con-
tacts, and the temperatureT and the Fermi level in the wires.
The switching effect described above is observed only in
cases when all these parameters are properly selected. The
working point T, EF, E, hasj1

4V0, V`, m* , R, d of the triadic
resonance quantum switchsRQSd has to be chosen in the
multidimensional space of the parameters. It cannot be done
via straightforward experimental scanning, and it is very
time consuming to obtain via direct computations. The above
approximate formulas1d for the scattering matrix allows us
to reduce the region of the search in the space of parameters
and optimize the switching effect not only in the case of a
single resonance eigenvalue, but also in the more general
case when the resonance group of eigenvalues of the inter-
mediate operator is selected.

In this section we will estimate the parameter regime of
the triadic resonance quantum switch via the reduction of the
transport problem for the switch to the scattering problem for
the dimensionless Schrödinger operator on the well,

− Dju0 + ekj,nlu0 +
2m*

"2 FV0 − V` −
"2

2m*

p2

d2G = l̂u0 = p2u0,

s38d

and on the wires,

−
d2us

dj2 − Fd2us

dh2 −
p2

d2G = p2us. s39d

We consider the quantum network as consisting of three ter-
minals Vs, s=2,3,4 ofwidth d /R attached to the quantum
well of radius 1 at the points with azimuthas=s2p /3dss
−2d, and one incoming wireV1 attached at the azimutha1

=p. sSee Fig. 1.d We assume here that the split gates are
switched off or absent. As before, we substitute the spectral
data for the intermediate operator for the corresponding spec-
tral data for the Dirichlet problem on the well.sSee Sec.
II B.d

To apply already developed theory one should verify the
following basic conditions formulated above:

s1d The Fermi level in the wires divides the first spectral
band in the wires in ratiom1:m2. fSee Eq.s23d.g

s2d The basic potentialsV0, V` on the well and in the
wires should be adjusted such that the potential in the corre-

sponding dimensionless equation on the well,

− Dju +
2m*eER3

"2 kj,nlu +
2m*R2

"2 FV0 − V` −
"2

2m* Sp

d
D2Gu

= p2 = lu s40d

is purely linear, without the constant termV0−V`

−s"2/2m*dsp /dd2=0.
s3d The resonance eigenvalue 14.62 of the Dirichlet prob-

lem on the well radius 1 corresponds to the Fermi level in the
wires,

EF − V` −
"2

2m* Sp

d
D2

= 14.62
"2

2m*R2 . s41d

s4d The temperature is small compared with the spacing
on the resonance level of the intermediate operator,

2kBT , 2.3
"2

2m*R2 . s42d

s5d The domination condition in either formfEqs. s24d,
s26d, s31d, ands32dg should be fulfilled.

s6d Combining conditions1d with Eqs. s41d and s42d we
also obtain

3
"2

2m* Sp

d
D2

. EF − V` −
"2

2m* Sp

d
D2

= 14.62
"2

2m*R2 .
2kBT

2.3
.

s43d

This means, in particular, thatR, d should satisfy the condi-
tion

R2

d2 .
14.62

3p2 . s44d

The roles of the above conditionss1d–s6d were discussed
previously. Now we will estimate the stability of the regime
of the switch. We assume that the parameter regime is stable
at the resonance energy if the bound states in the well corre-
sponding to the neighboring nonresonance eigenvalues are
not excited at the temperatureT. See Eq.s42d. This condition

may be formulated in terms of thescaled temperature Tˆ

=s"2d−22m*R2T as

kBT̂ ,
r̂0

2
=

2.3

2
. s45d

The temperature which fulfills the above condition we call
low temperature, for the given device. If the radiusR of the
corresponding quantum well is small enough, then the con-
dition s45d can be fulfilled for somesabsolutelyd high tem-
perature, which corresponds to the relativelow scaled tem-
perature. For instance, the effective massm0 of electronin
the wellsfor a narrow-gap semiconductord may be small. See
Refs. 35 and 36. Even room temperature may be “low”
enough for the appropriate construction of the device.

The importance of developing technologies for manufac-
turing devices of small size with rather high potential barri-
ers is systematically underlined when discussing the pros-
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pects of nanoelectronics.sSee, for instance, Ref. 37.d Use of
narrow-gap materials may open a way to room-temperature
devices of relatively large size.

We assume that the Fermi level sits in the middle of the
first spectral bandm1=m2= 1

2. Then we obtain the following
estimate for the radiusR of the domain and the width of the
wires from s42d,

R2 ø
2.3

2kBT

"2

2m* , d ,
R

2
. s46d

Assuming thatEF−V`=1 eV, we derive from conditions3d
that R andd are connected as

2m*fEF − V`g
"2 =

14.62

R2 + p2 1

d2 . s47d

Then we obtain

R2 = 14.62F2m*fEF − V`g
"2 −

p2

d2G .

OnceR is chosen, this equation allows us to selectd satis-
fying domination conditions6d. For givenEF−V` the basic
shift potentialV0 in the well is found from conditions2d.
Finally, the electric fieldE is found from the condition

e = 18.86 =eE2m*R3

"2 ,

where e is the absolute value of the electron charge. The
electric field obtained from this condition is strong enough to
guarantee the proper shape of the resonance wave function,
but not yet destructive for standard semiconductors.sSee
Table I.d

One can see from the above calculations that switches
manufactured of appropriate materials will work at room
temperature, if the radiusR of the quantum well is small
enough and the geometric details are exact. We postpone to a
forthcoming publication the important questions on the rela-
tive magnitude of admissible inaccuracy in the manufactur-
ing of the geometrical details of the switch.

The calculation of the radius of the quantum well for dif-
ferent materials based on the average effective mass gives
the results found in Table IsRefs. 22 and 23d. The De-
Broglie wavelengths of the materials for nitrogen tempera-
ture are 1300, 970, 730, and 430 Å, respectively.

V. CONCLUSION

Working parameters of the switch were estimated based
on the one-pole approximation of the scattering matrix which
coincides with an exact scattering matrix for some solvable
models of the quantum switch. The developed approach,
based on the observation from Ref. 12 quoted in the Intro-
duction, can be used not only for devices designed to ma-
nipulate the current, but also for analysis of the correspond-
ing nonstationary problems, like quantum pumpingssee
Refs. 38–40d and even for spin-filteringsRef. 41d, based on
the Rashba spin-orbital HamiltoniansRefs. 42 and 43d. Con-
sidering the details of the shape of the wave function en-
coded in the corresponding Dirichlet-to-Neumann map,
rather than just the “overlapping integrals,” may help us to
better understand the mechanism of conductance in synthetic
metals.

Use of the solvable model for the quantum switch men-
tioned above in Sec. II B and general solvable models con-
structed in Ref. 26 allows us to suggest a quantitatively con-
sistent description of transport phenomena on quantum
networks, substituting the corresponding two-dimensional
Schrödinger equation for the appropriate ordinary differential
equation on the quantum graphs with the resonance nodes.
We anticipate that an appropriate fitting would allow one to
extend the field of applications of thequalitative results for
zero-range models obtained in Refs. 16, 19, 20, 44–53, and
56–61, transforming them into efficient tools ofquantitative
analysis of quantum systems.
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sÅd
R77 K

sÅd
E300 K

sV/M d
E77 K

sV/M d

Cd0.15Hg0.85Te 0.0069 160 310 1.753105 2.413104

InSb 0.013 110 230 5.43105 5.893104

InAs 0.023 90 170 9.863105 1.463105
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APPENDIX A: DN MAP AND SCATTERING MATRIX

In this section we collected some mathematical facts
which were used in the main text of the paper. We quote
them in a standard mathematical form.

1. Standard DN map

The Dirichlet-to-Neumann map for the Schrödinger equa-
tion presented in geometric form is a map of the boundary
valuesuG of the solution,

− Du + Vu = lu, uuu]V = uG,

into the boundary values of its normal derivative,

L:uG → U ]u

]n
U

]V

.

In electrodynamicsswith V =0d L defines the connection of
the potential on the boundary with the normal current. De-
tailed description of general features of the DN map and its
relations to the scattering matrix may be found in Refs. 24
and 25, respectively. We will review here only the basic fea-
tures of the standard DN map.

We denote byL the self-adjoint operators defined in
L2sVd by the above differential expressionLu=−Du+Vu
with homogeneous Dirichlet. The corresponding Green func-
tions Gsx,y,ld and the Poisson kernel,

Plsx,sd = −
]Gsx,s,ld

]ns
, sP ]V,

exist if l is not an eigenvalue ofL sis “regular”d. Solution of
the Dirichlet boundary problem is represented for regularl
by the renormalized double-layer potential,

usxd =E
G

PDsx,s,lduGssddG. sA1d

Generally the standard DN map is represented for regular
pointsl of LD as a generalized integral operator with a sin-
gular kernel,

fLslduGgsxGd = U ]

]n
U

x=xG

E
]V

PDsx,s,lduGdG, sA2d

and exists as an operator in the appropriate Sobolev classes.
sSee Ref. 54.d In particular for operators defined onW2

2sVd it
acts fromW2

3/2sGd to W2
1/2sGd. See, for instance, Refs. 24 and

25. One can see from the straightforward integration by parts
that the DN map is an analytic function of the spectral pa-
rameterl with a negative imaginary partsfor an interior
problem, with an outer positive normal on the boundaryd.
The DN map can be presented as a formal integral operator
in L2sGd with the generalized kernel,

Lsx,x8,ld = −
]G

]nx]nx8
sx,x8,ld = o

ls

K ]ws
r

]n
sxdLK ]ws

r

]n
sx8d

l − ls
r

+E
s.3p2/d2

KP+
]w2

r ss,xd
]n

LKP+
]w2

r ss,x8d
]n

l − s
ds

+ ¯ . sA3d

The corresponding spectral series and/or integral is diver-
gent, but can be regularized.sSee Ref. 25.d

The standard DN map permits us to formalize the proce-
dure of matching solutions of the partial differentials equa-
tion on the inner boundaryøs=0

4 Gs of the composite domain
øs=0

4 Vs. In the text below we distinguish again the dimen-

sional l , p, x and dimensionlessl̂ , p̂, x̂ variables intro-
duced in Sec. II. We denote byE+ the 4-dimensional sub-
space in EªL2sGd spanned by the cross section eigenvectors
es

1, s=1,2,3,4, of theopen channel, 0,p2, s3p2/d2d. The
orthogonal complement of itE* E+=E− is the entrance sub-
space of the closed channels. On the first spectral band 0
ølø3p2/d2 there are two bounded exponential modes of
the first order based on the cross section eigenfunctiones

1

=Î2/d sinpy/d in the wireVs with exponentials defined by
the dimensional effective wave numberp,

fs
±sx,yd = es

1e±ipx if x . 0,

and only one bounded exponential mode orderl in upper
channels,l .1,

fs
l sx,yd = es

l e−Îfp2sl2−1d/d2g−p2x if x . 0.

The corresponding scattering Ansatz in the wiresVs is com-
bined as

Cssxd = ds1f1s
− + f1s

+ Ss1
1 + o

l=2

`

Ss1
l fs1

l , sA4d

with coefficientsSs1
l to be defined from the matching of the

scattering ansatz to the corresponding solution of the above
Schrödinger equation inside the quantum wellV0. We find
them from the conditions10d of continuation of the scatter-
ing ansatz inside the domain,

]Cg

]ng

=
]C0

]ng

= L0Cg. sA5d

We denote byK+, K̄+, K− the operators inE+ which com-
pute the components of the normal derivatives of the expo-
nential modes on the bottom sections of the wiresVs in the
open and closed channels,

K+ = ipI, K̄+ = − ipI, Kl
− =Îsl2 − 1dp2

d2 − p2I ,

l = 2,3, . . . , K− = diaghKl
−jl=2

` ,

with a positive square root, and byP± the orthogonal projec-
tions onto the subspacesE± ,E. HereK+ is a 434 matrix
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proportional to the unit matrix, since the potentials on the
wires are equivalent. Then the above Eq.sA5d may be pre-
sented as a matrix equation with respect to the components
Cs

± of the above decomposition ofE=E+ % E−. Elements
of the subspaceE+ belong to the Sobolev classW2

3/2−«sGd,
for each positive «. Hence, the operatorsP+L0P+,
P+L0P−, P−L0P+, P−L0P− constructed via framing of the
standard DN mapL0 of the Schrödinger operator on the well
by projections onto the entrance subspaces of open and
closed channels exist as operators in the appropriate Sobolev
classes. We denote them byL++

0 , L+−
0 , L−+

0 , L−−
0 , respec-

tively, and byS1, the 434 matrix with elementsSst
1 and set

sCs
+ds=1

4 s0d=C+,sCs
−ds=1

4 s0d=ol=2
` SlC+.

Theorem A1. The scattering matrix on the whole network
V0øV1øV2øV3øV4 may be presented in terms of the
Dirichlet-to-Neumann-mapL0 of the quantum wellV0 as

Ssld = −

L++
0 − L+−

0 I

K− + L−−
0 L−+

0 − K̄+

L++
0 − L+−

0 I

K− + L−−
0 L−+

0 − K+

. sA6d

The proof is obtained based on an orthogonal decomposition
of the whole spaceL2sGd into the orthogonal sum of open
and closed channels, followed by a straightforward calcula-
tion. sSee Ref. 26.d

2. DN map of the intermediate operator

The DN map of the intermediate operator, associated with
the partG of the boundary for regularl, is an operator trans-
forming the boundary datauG from E+ into the projection of
the normal derivative of the corresponding square-integrable
solution u of the Schrödinger equation −Du+Vu=lu onto
E+. To obtain the formula for DN map of the intermediate
operator associated with theE+ one should consider for regu-
lar l the square-integrable solution of the Schrödinger equa-
tion lu=lu with the boundary datauGPE+ on G presented
via the corresponding Poisson integral,usxd=−eGs]Gr /
]nydsx,yduGsyddy, and calculateu]u/]nuG. The projection of
the normal derivative of the solution of the Dirichlet problem
on G onto E+ gives the DN map as an integral transform
Lr :E+→E+, with the kernel:

LrsxG,xG8,ld = − P+
]2Gr

]nx]nx8
P+, sA7d

which is equivalent to the formula in Eq.s13d. This gives the
DN map Lr in terms of appropriate eigenfunctions and ei-
genvalueswl

r , ll
r. Though there is no standard software for

calculation of eigenfunctions and eigenvalues of the interme-
diate operator, one can present the DN map of the interme-
diate operator as the Schur complementssee Ref. 55d, of the
DN map L0 of the Schrödinger operatorl0 on the well. In-
deed, the scattering matrixsA6d contains a special combina-

tion of matrix elements of the DN mapL̂0 of the quantum
well,

L++
0 − L+−

0 I

K− + L−−
0 L−+

0 . sA8d

This function has negative imaginary part in upper half-plane
Il.0 and singularities at the vector zeros of the denomina-
tor sK−+L−−

0 d e=0. sSee Appendix B.d The following theo-
rem ssee Ref. 27d gives an interpretation of this function in
terms of the intermediate operator.

Theorem A2. The split operatorl r = l0
r

% os=1
4 ls

r defined in
L2sVd by the Schrödinger differential expressions4d and the
boundary conditionss9d ands8d is self-adjoint. The continu-
ous spectrum of the nontrivial partl0

r of it in the orthogonal
complement of the open channelsLV * os=1

4 L2sVsd consists
of the branchlù3p2/d2 with a countable sequence of
thresholds. The eigenvalues ofl0

r below the threshold 3p2/d2

coincide with the vector—zerosls
r of the denominatorsK−

+L−−
0 d. The DN map of the operatorl0

r on the whole network
with a chopped-off first channel coincides with the operator-
function Eq.sA8d.

This statement is verified in Ref. 26. Note that the DN
map of the intermediate operator is actually a 434 matrix.

3. Scattering matrix via partial DN map

To calculate the scattering matrix in terms of the partial
DN map of the intermediate operator we should match the
restriction of the scattering anzatz onto the sumG=øs=1

4 Gs of
the bottom sections in the entrance subspaceE+ of the open
channelsonly,

Cs = ds1Fin,s + Fout,sSs1
1 , s= 1,2,3,4,

C = hCs
+js=1

4 = Fine1 + FoutSe1,

with the Jost matricesFin,out, to the solutionC0 of the inter-
mediate homogeneous equation,

P+C0 = C,
]C0

]ns
=

]Cs

]ns
= sLrCds, s= 1,2,3,4.

sA9d

We use further the above expressionsA7d for the partial DN
map. The Jost matrices are proportional to the unit matrix in
open channels, since all wires are equivalent. Then we obtain
the following equation for the scattering matrix:

LrFin − Fin8 = − sLrFout − Fout8 dS,

and the solution of it

S= −
Fin

Fout

Lr −
Fin8

Fin

Lr −
Fout8

Fout

,

where the denominator is preceding the numerator, and the
fractions
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Fin

Fout
= P+

Fin

Fout
,

Fin8

Fin
= P+

Fin8

Fin
and

Fout8

Fout
= P+

Fout8

Fout
,

are proportional to the unit matrix inE+. Substituting here
the explicit expression for the Jost solutions in the open
channel we obtain the expressions12d for the scattering ma-
trix in terms of DN map of the intermediate operator. Note
that the scattered waves constructed with use of the partial
DN map of the intermediate operator automatically satisfy
the matching conditions in closed channels.

APPENDIX B: SPECTRAL DATA OF THE INTERMEDIATE
OPERATOR VIA ANALYTIC PERTURBATION

PROCEDURE

Zeros and poles of the scattering matrix sit near the reso-
nance eigenvalues of the intermediate operator, and they are
shifted with respect to the corresponding eigenvalues of the
Schrödinger operator with Dirichlet boundary conditions on
the boundary of the well. The shift generically is small and
can be estimated via the analytical perturbation procedure
which is developed in this subsection. This important fact
was used previously in Secs. II B and II C. It is based on the
following statement.

Theorem A3. The polel0 of the DN mapL0 of the quan-
tum well, which is the singularity of the first addendumL++
of Eq. sA8d, is compensated by the pole of the second ad-
dendum and disappears as a singularity of the whole function
Lr, so that the whole expressionsA8d is, generically, regular
at the pointl0. A new pole appears as a zero of the denomi-
nator K−+L−−

0 and coincides with the eigenvalue of the in-
termediate operator. The corresponding residue is a combi-
nation of the root vectors which correspond to this new pole
and coincide, in the first order of the perturbation procedure,
with the resonance entrance vectorP+]w0/]n=f0 of the Di-
richlet problem on the quantum wellV0.

The proof is presented in Ref. 27. Here we will verify the
corresponding dimensionless statement numerically for the
special case of a switch based on a circular quantum well.
We use the above representationfEq. sA8dg for the dimen-
sionless DN map,

L̂r = L̂++
0 − L̂+−

0 I

K̂− + L̂−−
0

L̂−+
0 .

Assuming thatR/2.d denotes the projections of the normal
derivatives of the resonance eigenfunctions onto subspaces
E± on the sumG of the bottom sections of the wires as

f̂s
± = P±

]ŵs

]n
,

and separate the resonance term in the DN map framed by
projections ontoE±,

P+L̂P+ =
kf̂0

+lkf̂0
+

l̂ − l̂0

+ o
sÞ0

kf̂s
+lkf̂s

+

l̂ − l̂s

ª

kf̂0
+lkf̂0

+

l̂ − l̂0

+ K̂++,

P+L̂P− =
kf̂0

+lkf̂0
−

l̂ − l̂0

+ o
sÞ0

kf̂s
+lkf̂s

−

l̂ − l̂s

ª

kf̂0
+lkf̂0

−

l̂ − l̂0

+ K̂+−,

P−L̂P+ =
kf̂0

−lkf̂0
+

l̂ − l̂0

+ K̂−+, K̂−+ = sK̂+−d+,

P−L̂P− =
kf̂0

−lkf̂0
−

l̂ − l̂0

+ o
sÞ0

kf̂s
−lkf̂s

−

l̂ − l̂s

ª

kf̂0
−lkf̂0

−

l̂ − l̂0

+ K̂−−.

Then, dimensionless expressionfEq. sA8dg may be presented
as

RLr = L̂r =
kf̂0

+lkf̂0
+

l̂ − l̂0

+ K̂+− − F kf̂0
+lkf̂0

−

l̂ − l̂0

+ K̂+−G
3

I

kf̂0
−lkf̂0

−

l̂ − l̂0

+ K̂−− + RK−

F kf̂0
−lkf̂0

+

l̂ − l̂0

+ K̂−+G .

sB1d

Assume, that the Fermi level is situated in the middle of the
first spectral band in the wires,m1=m2=1/2.Then the effec-
tive wave numberp at the Fermi level is equal toÎ3

2sp2/d2d
and the corresponding dimensionless wave numberp̂=Rp is
estimated as

p̂ = Rp= p
R

d
Î3

2
< 4

R

d
, sB2d

since m0/m'=5.2 sfor Sid. Recall ssee Sec. II Cd that the

term −K̂+̄ in the dimensionless expression for the scattering
matrix may be estimated as

− K̂+̄ = iRpI = ip
R

d
Î3/2I < i4sR/ddI .

It contains a “large” parameter compared with dimensionless

inverse spacing ul̂0− l̂1u−1=1/2.3 already for R.d /2:
10/2.3=4.3!8. Note that forR=10d the corresponding in-
equality is 4.3!40.

Similarly, the operatorRK−=K̂− for the selected value of
energy is positive and may be estimated from below by the
dimensionless distance from the Fermi level to the second
threshold withsdimensionlessd coefficientR/d,

K̂− ùÎ3

2

R

d
pI . 8I .

Then, estimating the contributionK from the nonresonance

terms to DN map asiK̂iø Ĉ/rsl̂0d, we conclude that, in
agreement with Eq.s32d,

ifK̂−g−1K̂i øÎ2

3

Ĉ

pr̂sl̂0d

d

R
= 1.1

d

R
. sB3d

Assuming thatĈ=10, r̂sl̂0d=2.3, d=2 nm, R=10 nm, we
obtain in the right side of Eq.sB3d the small dimensionless
parameterdsRd−1<0.22. Then we can calculate the inverse

sK̂−−+K̂−d−1
ªksd ,Rdªk via the perturbation series and ob-

tain the estimate,
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iki ø
d

R

1

p
Î2

3
,

1

1 − 1/4
< 0.16

d

R
.

This gives an explicit expression for the inverse operator,

F kf̂0
−lkf̂0

−

l̂ − l̂0

+ K̂−− + K̂−G−1

in the form

u = F kf̂0
−lkf̂0

−

l̂ − l̂0

+ K̂−− + K̂−G−1

f =Kkf −
1

Dkf̂0
−Lkf̂0

−,kfl,

where D= l̂− l̂0+kf̂0
−,kf̂0

−l. Substituting that expression

into Eq. sB1d, we notice that all terms containingsl̂− l̂0d in
the denominator are cancelled and we obtain

L̂r =
kf̂0

r lkf̂0
r

l̂ − l̂0
r

=
kf̂0

+lkf̂0
+

D ,

with the residue of the DN map proportional tokf̂0
+lkf̂0

+l, as

announced. The dimensionless eigenvaluesl̂r of the interme-

diate operatorl̂0
r can be obtained from the equationDsl̂rd

=0. Due toiF̂0
−i<1 using Eq.s31d we obtain ford=R/2, in

the first order of the perturbation procedure,ul̂0
r − l̂0u,0.08

!2.3. It is in full agreement with the corresponding direct

calculation27 ul̂0
r − l̂0u=0.07 used above in Secs. II–IV. Actu-

ally the above calculation gives an analytical foundation for
substitution, in practical calculations with the scattering ma-
trix, of the leading terms of the DN map of the intermediate
operator with the leading terms of the DN map of the corre-
sponding Schrödinger operator on the quantum well.
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