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We report calculations of the electronic spectrum of a two-dimensional lattice of coupled quantum dots,
subject to external electric and magnetic fields in the Hall configuration. The quantum dots array was modeled
by a periodic superposition of truncated, parabolic potential wells. By adopting the Landau gauge, a single-
particle Hamiltonian was formulated, and its eigenfunctions were obtained as appropriately symmetrized,
magnetic field-dependent Bloch functions. The magnetic field was consistently included in the corresponding
Wannier functions, which were approximated by the eigenvectors of an isolated quantum dot in the presence of
the external magnetic field, and multiplied by the Peierls’s phase.
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I. INTRODUCTION

The motion of electrons in two-dimensional systems, un-
der the influence of both a periodic potential and an external
perpendicular magnetic field, has been of interest to theorists
and experimentalists since the early stages of solid-state
quantum physics.1 The fascinating features of these systems
proceeds from the competition of two characteristic length
scales: the lattice constantd, which determines the periodic-
ity of the lattice potential, and the Landau radiuslB, which
characterizes the semiclassical electronic orbits.

The first theoretical approach to the problem is due to
Peierls.1 It is based on the formulation of an effective single-
band Hamiltonian, arising from a tight-binding dispersion
relation Eskd, through the substitutionEfk +se/"cdAg. This
approximation, which assumes that the magnetic field does
not alter the original Bloch-band structure of the lattice, has
been discussed and extended in many classical papers.2–10

When combined to a semiclassical picture,11–15 the effective
Hamiltonian theory leads to the notion of quantized magnetic
orbits, which can be commensurable with the lattice period.
Within the framework of the effective single-band Hamil-
tonian theory, further investigations16,17 lead to butterflylike
patterns for the energy spectrum. In a classical paper,
Hofstadter16 achieved Harper’s equation,18 whose spectrum,
as a function of the magnetic field, shows a fractal structure
commonly referred to as the Hofstadter butterfly. The pattern
reflects, as a consequence of Harper’s equation, the splitting
of the single Bloch-band into magnetic subbands, according
to the number of magnetic flux quanta piercing the unit cell
of the lattice. This picture is generally believed to represent
the weak magnetic field regime, whered! lB,19,20despite the
fact that no experimental evidence has been presented yet.
Indeed, its extension to higher field intensities has been se-
verely criticized21 under the basis of group theoretical argu-
ments.

In the high magnetic field regime, wherelB!d, the lattice
potential is considered to be a perturbation over the free elec-
tron Landau levels. It has been shown22,23 that due to the
presence of the periodic potential, a single Landau level is

split into subbands. A Harper’s equation is then also
achieved, to relate Fourier coefficients of the wave function
in the reciprocal space. The effect of Landau level coupling
has also been studied,24 and it was shown to drastically
modify the butterfly symmetries. Some experimental
evidence25,26 supports the existence of a butterfly-type en-
ergy spectrum in the high magnetic field regime.

There seems to be a certain gap in the literature concern-
ing to the intermediate regime, where both the lattice con-
stantd and the Landau radiuslB are comparable in magni-
tude. We believe that the reason is due to the completely
different criteria used to choose the appropriate basis func-
tions in both regimes, which are strongly localized crystal-
Wannier functions on one limit, versus extended Landau lev-
els on the other. It has been already remarked by Wannier,13

under general group-theoretical arguments, that the Bloch-
band Wannier functions do not provide an exact basis for the
problem, even at weak magnetic fields. Indeed, he shows that
the Bloch-band concept can be rigorously extended to this
case, provided that a slightly modified manifold is defined,
by incorporating the magnetic field into a new set of
magnetic-consistent Wannier functions. In the present work,
we applied this idea to a two-dimensional lattice of quantum
dots, under the presence of a perpendicular magnetic field.
By choosing the Landau gauge, after a general study of the
translational symmetries involved in the Hamiltonian, we
constructed appropriately symmetrized Bloch-like wave
functions. The Wannier functions in this linear combination,
were approximated by the eigenfunctions of a single dot un-
der the presence of an external magnetic field. Following the
original argument of Wannier,13 this basis is consistent with
the presence of the external magnetic field, through the defi-
nition of effective energy levels. Those levels are character-
ized by an effective frequencyV, which is a combination of
both the quantum dot geometric frequencyv and the cyclo-
tronic frequencyvc. We calculated the electronic spectrum
corresponding to the lowest energy level in this system, ne-
glecting interband coupling and adopting the tight-binding
approximation, and compared our results with Hofstadter’s
effective-Hamiltonian theory.
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The effect of an external electric field on this system,
what is called the Hall configuration, is also of physical in-
terest, in particular since the discovery of the quantum Hall
effect.27 A characteristic electric field-dependent magnitude,
known as the Stark period,28–31comes into scene, interacting
with the already present lattice constant and Landau radius.
This subject has been previously studied, particularly in the
high magnetic field20,22,23 regime. In the present work, we
considered the inclusion of an external electric field oriented
along one of the symmetry directions of the quantum dot
lattice. By choosing the Landau gauge as before, we per-
formed calculations for the electronic spectrum, under a
single magnetic-band approximation. We expect these calcu-
lations to be valid in the regime of weak electric field, where
interband coupling can be neglected.

II. THEORY

Semiconductor heterostructures constitute, at the atomis-
tic level, complex many-body systems. In particular, a quan-
tum dot32 has an internal crystalline structure which, despite
the relatively small size of the dot, presents electronic energy
bands related to its semiconductor properties. Therefore,
only a relatively small amount of charge carrierss1–100d,
either conduction-band electrons or valence-band holes, can
be considered to be effectively trapped by a quantum dot. To
give a reasonable description of the physical properties of
such a system, at the nanoscale level, simplifications need to
be made. Following the common practice, we adopt an
effective-mass approximation, to take into account the ef-
fects of the crystalline atomic structure over the charge car-
riers. Those will be assumed to be negative charges
sconduction-band electronsd, as, for instance, in GaAs/ InAs
self-assembled quantum dot systems.32 As our interest, in
this preliminary study, is to investigate the main symmetries
involved in the electronic spectrum of the system, we will
formulate a single-particle Hamiltonian, whose eigenfunc-
tions can be later implemented in more realistic many-body
calculations. We will neglect the Zeeman splitting and spin-
orbit interactions, which are very small for GaAs systems.32

By keeping in mind the previous statements, we modeled
the two-dimensional lattice of cylindrical quantum dots, by a
three-dimensional potential, periodic over the plane of the
array

Vsr,zd = Vsr + dn,zd, s1d

with r=sx,yd and dn=snxd,nydd. We will assume that the
electrons in the dot are confined by a very narrow quantum
well along thez direction. Therefore, thez-dependent de-
grees of freedom can be integrated, obtaining a periodic ef-
fective potential, depending only on the coordinates over the
plane. This potential has been modeled by a periodic super-
position of truncated parabolic wells, centered at each site of
the lattice

Veffsr − dnd = o
a=x,y

1

2
m*v2sa − nadd2 for ua − nadu ø

d

2

s2d

and equal to zero otherwise. In this expression,m* corre-
sponds to the effective mass over the plane, andv is the

frequency associated with the planar geometric confinement
of the quantum dots, which is characterized by the length
scaleldot=Î" /m*v. When external and static electricF and
magnetic B fields are applied, the corresponding two-
dimensional, single-particle Hamiltonian for the quantum dot
array is

Hisrd =
Fpr +

e

c
AsrdG2

2m* + o
n

Veffsr − dnd + eFx. s3d

The electric field is applied along one of the symmetry
directions of the lattice, namely,F= x̂F. The magnetic field,
normal to the plane of the arrayB= ẑB, will be included
through the vector potential in the Landau gaugeAsrd
= ŷxB. In this gauge, the Hamiltonian preserves the transla-
tional symmetry of the periodic potential, along the direction
perpendicular to the electric field.

Let us assume for a moment that the electric field is
turned off. In that case, it can be shown that the magnetic
translation operator defined by

TAsdnd = expF−
idn

"
Spr +

e

c
ADG s4d

commutes with the Hamiltonian. This property is evident for
the kinetic term, but the potential term requires some further
discussion. First notice that in the gauge chosen, a direct
calculation yieldsfpi ,Ajg=0 for i , j =1,2. Therefore, the
magnetic translation operator can be written as

TAsdnd = expF−
ie

"c
A ·dnGTdn

, s5d

whereTdn
=expf−sidn/"d ·prg is a normal translation opera-

tor. For an arbitrary functionfsrd, the combined action of the
magnetic translation operator and the periodic potential is
given by

TAsdndVsrdfsrd = expF−
ie

"c
A ·dnGVsr − dndfsr − dnd

= expF−
ie

"c
A ·dnGVsrdfsr − dnd

= VsrdTAsdndfsrd. s6d

As fsrd is arbitrary, it follows that the magnetic translation
operator commutes with the periodic potential, and therefore

fTAsdnd,HisF = 0dg = 0. s7d

This property allows the use of group theory,33 by introduc-
ing the group of magnetic translations. This is in fact a ray
group, because the product of two elements of the group
yields another element, multiplied by a constant phase

TAsd1dTAsd2d = e−sie/"cdd1·AsrdTd1
e−sie/"cdd2·AsrdTd2

= e−sie/"cdd1·Asrde−sie/"cdd2·Asr−d1dTd1
Td2

= TAsd1 + d2de−sie/"cdd2·Asd1d. s8d

As a consequence of Eq.s8d, we have
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TAsd1dTAsd2d = TAsd2dTAsd1de−sie/"cdd2·Asd1d. s9d

Notice that the magnetic phase in Eq.s8d, for the gauge
chosen, is given by

e

"c
d2 ·Asd1d = 2p

Bd1,xd2,y

hc

e

= 2pnx,1ny,2
Bd2

f0
s10d

which is proportional to the ratio between the total magnetic
flux Bd2 piercing the unit cell, and the magnetic flux quanta
f0=hc/e. It is then possible, for a finite lattice of dimensions
Nxd=Lx and Nyd=Ly, to generalize the Born–von Karman
boundary conditions, by restricting the eigenfunctions to be
periodic under magnetic translations corresponding to the
full lattice size

TAsx̂Nxddwsrd = TAsŷNyddwsrd = wsrd. s11d

Assuming thatw is an eigenfunction,wm=TAsdmdw are also
eigenfunctions. If we apply a full lattice translation over any
one of those functions

TAsx̂Nxddwm = TAsx̂NxddTAsdmdw = e−sie/"cddm·Asx̂Nxddwm,

s12d

where the propertys9d has been applied. If we demand that
all those functions satisfy the Born–von Karman periodic
boundary conditions, the constant phase in Eq.s12d must be
a multiple of 2p:

e

"c
dm ·Asx̂Nxdd = 2pmyNx

Bd2

f0
= 2pq. s13d

This condition can be fulfilled each time the number of mag-
netic flux quanta which traverses the unit cell is a rational
number

Nf =
Bd2

f0
=

q

myNx
s14d

thus imposing a commensurability relation between the mag-
netic field intensity and the lattice size. A detailed analysis of
the representations of the group of magnetic translations has
been reported by Brown.33 He showed that, when periodic
Born–von Karman boundary conditions can be applied, a
generalization of the Bloch’s theorem leads to the definition
of magnetic reciprocal lattice vectors

k → k +
e

"c
A , s15d

wherek is a normal reciprocal lattice vector at zero magnetic
field. This formulation defines modified Bloch functions as
eigenvectors of the Hamiltonian, which can be formally ex-
panded in the corresponding magnetic Wannier functions.

After this brief preamble on the magnetic translation
group, let us go back to the original case, in which the elec-
tric field is turned on, and pointing along thex direction.
Despite the translation symmetry along this direction is de-
stroyed by the presence of the electric field, the symmetry
along the y direction is preserved. It follows then that
fTAsŷdd ,Hisrdg=0, whereTAsŷdd denotes the operator of

discrete magnetic translations along they direction. There-
fore, a restricted form of the Bloch’s theorem can be still
applied to find the eigenfunctions of the Hamiltonian, pro-
vided that we restrict the full ray group of magnetic transla-
tion operators to its subgroup of magnetic translations along
the y direction.

Taking into account the translational symmetry involved,
and applying the Bloch’s theorem, the eigenfunctions of the
Hamiltonian given by Eq.s3d can be constructed by the fol-
lowing prescription:

Cky
srd = eikyyuky

srd. s16d

The function uky
srd satisfies the periodicity condition

along they direction

uky
sr + dŷd = uky

srd s17d

and it can be expressed in terms of Wannier functionsWsr
−dnd,

uky
srd = o

dn

Cnx
expS− iFky +

e

"c
AysdndGsy − nyddDWsr − dnd.

s18d

Therefore, the wave functions in Eq.s16d can be written as

Cky
srd = o

dn

Cnx
eikynyd expF− i

e

"c
Asdnd · sr − dndGWsr − dnd.

s19d

Notice that a magnetic field-dependent phase multiplies
each Wannier function. This phase was first suggested by
Peierls,1 and later discussed by Wannier.13 The coefficients
Cnx

in the expansion, must be obtained by solving the eigen-
value problem for the Hamiltonians3d.

Given that the Wannier functions are strongly localized on
the lattice sites, the standard choice is to build them from
linear combinations of “atomic orbitals.” In this work, we
chooseWsrd as eigenfunctions of a single-dot Hamiltonian,
under the presence of the external magnetic field

Hdotsrd =
Spr + ŷ

eB

c
xD2

2m* +
m*

2
v2r2. s20d

This choice has the advantage that the magnetic field needs
not to be treated as a perturbation, but it is consistently in-
cluded in the basis. The eigenfunctions of this operator, in
which the vector potential is in the same gauge as stated in
the Hamiltonians3d, can be obtained from the well known
eigenfunctions of the Fock-Darwin Hamiltonian34,35

HFDsrd =
Spr +

e

2c
B 3 rD2

2m* +
m*

2
v2r2 s21d

by means of a gauge transformation. The Landau gauge is
related to the symmetric gauge in the Fock-Darwin Hamil-
tonian, by the transformation
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ŷxB=
1

2
B 3 r + ¹ SB

2
xyD , s22d

such that the eigenfunctions of Eq.s20d are given by the
eigenfunctions of Eq.s21d, modified by a magnetic field-
dependent phase

Fnrm
dot srd =Î2

l0
2Î nr!

snr + umud!
S r

l0
Dumu

3expF−
r2

2l0
2 − i

eB

2"c
xyGLnr

umuSr2

l0
2 D . s23d

In this definition,Lnr

umu are the Laguerre polynomials. The cor-
responding eigenvalues are

«sn,md = "Vsn + 1d −
1

2
"vcm, s24d

where n=0,1, . . . , is theprincipal quantum number,m=
−n,−n+2, . . . ,n is the azimuthal quantum number, andnr
=sn− umud /2 is the radial quantum number.

The effective frequencyV, as defined in Eq.s24d, is given
by the expressionV=Îv2+vc

2/4. The effective length scale
which characterizes these functions is given byl0
= lB/Î41+4v2/vc

2, wherelB=Î"c/eB is the Landau radius.

III. ZERO ELECTRIC FIELD

In the absence of an external electric field, the eigenvalue
equation for the Bloch functions16d is

3Fpr +
e

c
AsrdG2

2m* + o
n

Veffsr − dnd4Cky
srd = Eky

Cky
srd.

s25d

By inserting Eq.s16d into Eq. s25d, we obtain the corre-
sponding eigenvalue equation for the periodic function
uky

srd:

3Spr + ŷ"ky +
e

c
AsrdD2

2m* + o
n

Veffsr − dnd4uky
srd = Eky

uky
srd.

s26d

Let us assume that the ratio between the magnetic flux
through a unit cell, and the quantum of fluxf0=hc/e, is a
rational number, for instance,

Nf =
Bd2

f0
=

p

q
s27d

with p an integer prime toq. Provided that this condition is
satisfied, let us apply the translation operatorTx̂qd over the
eigenvalue equations26d. Notice that, in the Landau gauge,
Asr+ x̂qdd=Asrd+ ŷqdB. Therefore, after the translation is
applied, Eq.s26d becomes

3Fpr + ŷ"Sky +
2pq

d
NfD +

e

c
AsrdG2

2m* + o
n

Veffsr − dnd4
3uky

sr + x̂qdd = Eky
uky

sr + x̂qdd. s28d

From the rationality condition assumed for the magnetic

field, we haveky+s2pq/ddNf= k̄y, wherek̄y=ky+2pp/d. As
a consequence of the translational symmetry along they di-
rection, and based on the preliminary discussion about the
magnetic translation group and the generalized Bloch’s theo-

rem, we conclude that bothky and k̄y are associated to the
same magnetic Bloch function, except for a constant phase.
As in the standard Bloch’s theorem, this associated to the

periodicity in the energy spectrumEk̄y
=Eky

, for k̄y=ky

+2pp/d. Taking into account the previous statements, Eq.
s28d can be expressed as

3Fpr + ŷ"k̄y +
e

c
AsrdG2

2m* + o
n

Veffsr − dnd4uky
sr + x̂qdd

= Ek̄y
uky

sr + x̂qdd. s29d

By comparing Eq.s29d with Eq. s26d, we conclude that

uky
sr + x̂qdd = eiaquk̄y

srd, s30d

whereaq is a constant phase, as a consequence of the non-
degeneracy of the energy spectrum. In other words, despite
not being explicit in our construction of the magnetic Bloch
functions, at zero electric field the magnetic translational
symmetry exists along thex direction, in agreement with the
preliminary discussion about the magnetic translations
group. Its effect can be intuitively pictured as to “enlarge”
the effective lattice period, along thex direction, by a factor
q. As shown in Appendix A, this symmetry property imposes
a necessary condition, to be satisfied by the coefficients in
the expansionss18d and s19d

Cnx+q = eiaqCnx
. s31d

Therefore, under the presence of a rational magnetic field,
the space of solutions to the eigenvalue equations25d is re-
ducible, and its reduction leads to exactlyq subspaces, for
Nf=p/q. As a consequence, we expect in that case for the
energy spectrum to be composed of exactlyq subbands.

After this preliminary discussion of the general symmetry
properties involved, we will adopt the basis defined by the
eigenfunctions of the single-dot Hamiltonian of Eq.s20d, and
we will approximate the Wannier functions by the lowest
energy eigenstateF0

dot, which is

F0
dotsrd =

1
Îpl0

expS−
r2

2l0
2 − i

eB

2"c
xyD . s32d

Therefore, according to Eq.s19d, the wave functions are
given by the linear combinations
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Cky
srd = o

dn

Cnx
eikynyde−sie/"cdAsdnd·sr−dndF0

dotsr − dnd.

s33d

Substituting Eq.s33d into Eq. s25d, we obtain

o
dn

Cnx
eikynyd3Fpr +

e

c
AsrdG2

2m* + o
n

Veffsr − dnd − Eky4
3e−sie/"cdAsdnd·sr−dndF0

dotsr − dnd = 0. s34d

It is straightforward to show that the magnetic phase fac-
tor can be transferred to the left of the Hamiltonian operator,
by means of a translation in the argument of the vector po-
tential, such that we have

o
dn

Cnx
eikynyde−sie/"cdAsdnd·sr−dnd3Fpr +

e

c
Asr − dndG2

2m*

− o
n

Veffsr − dnd − Eky4F0sr − dnd = 0. s35d

We can write the expression inside the parentheses in
terms of the single-dot HamiltonianHdot centered on the lat-
tice sitedn

o
dn

Cnx
eikynyde−sie/"cdAsdndsr−dndfHdotsr − dnd − Eky

+ DVsr − dndgF0
dotsr − dnd = 0, s36d

where

DVsr − dnd ; o
dn

Veffsr − dnd −
m*

2
v2sr − dnd2. s37d

SinceF0
dotsrd is an eigenfunction ofHdot with eigenvalue

"V, we have

o
dn

Cnx
eikynydf"V − Eky

+ DVsr − dndgkrudnl = 0, s38d

where we adopted the Dirac’s notationkr udnl
=e−sie/"cdAsdnd·sr−dndF0

dotsr−dnd.
To determine the coefficientsCnx

from Eq. s38d, we take
the internal product with the functionkdn8 url

o
dn

Cnx
eikynydfs"V − Eky

dkdn8udnl + kdn8uDVsr − dndudnlg = 0.

s39d

The analytical expressions for the matrix elements appearing
in Eq. s39d are presented in Appendix A.

In the tight-binding approximation, Eq.s39d adopts the
following expression:

2 coss2pNfnx + kyddCnx
+ Cnx+1 + Cnx−1 = ẼCnx

s40d

with

Ẽ = fEky
− "V − EFg/W. s41d

The analytical expressions of the parametersW and EF are
given in Appendix B. Equations40d, which determines the

nondimensional energy spectrumẼ, is Harper’s equation.18

A. Results

We present results for a two-dimensional array of quan-
tum dots with radiusldot=30 Å and lattice constantd
=100 Å. For the effective mass, we assumedm* =0.067, cor-
responding to conduction electrons in GaAs.

As a control test for the model, we calculate the energy
spectrum when neither external magnetic nor electric fields
are applied. For this purpose, we considered a finite size
system with periodic boundary conditions, and the corre-
sponding energy spectrum as a function ofky is shown in
Fig. 1, showing the projection of the superlattice first Bril-
louin zone over they axis. The band center is located at
122.7 meV, which corresponds to the “atomic” energy"v,
thus recovering the expected results for a standard single-
band tight-binding model. Clearly, in this last case the whole
bidimensional energy surface is a function of thekx compo-
nent as well, of the form Eskx,kyd="v+V cosskxdd
+V cosskydd. However, as the model presented in this work
does not involve explicitly thekx component, its effect can
be appreciated in the projected spectrum as the width of the
band for a fixed value ofky, which corresponds to 2V
=30 meV, and the total band width which is 4V=60 meV.

When an external magnetic field is applied over the sys-
tem, its dimensions are chosen such that commensurability
with the number of magnetic flux quanta traversing the unit
cell Nf=p/q is satisfied, i.e.,Lx=Ly=mqd. According to our
previous analysis, when the number of magnetic flux quanta
traversing the unit cell is a rational numberNf=p/q, a split-
ting of the single band spectrum intoq minibands is ex-
pected. In agreement with this theoretical prediction, Fig. 2

FIG. 1. Energy spectrum for the system, in the absence of ex-
ternal fields.d=100 Å, ldot=30 Å.
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shows the energy spectrum as a function ofky, when an
external magnetic field equivalent toNf= 1

3 has been applied.
By comparing with Fig. 1, one can appreciate that the single
band spectrum has been split into exactlyq=3 subbands. It is
also interesting that the effective first Brillouin zone has been
reduced to1

3 of its original size, as a consequence of the
already discussed magnetic translational invariance, which
enlarges the effective size of the unit cell in the array by a
factor of q.

The nondimensional energy spectrum, which arises as the
solution of Eq.s28d, is depicted in Fig. 3, as a function of the
number of magnetic flux quanta which traverses the unit cell.
It is the well known Hofstadter’s butterfly, a fractal structure
whose mathematical properties have been widely studied.16

The main assumption involved in Hofstadter’s picture, is that
the original band structure of the crystal is preserved, despite
the presence of the external field. Therefore, he does the
substitutionEskd→Efk +se/"cdAg, where Eskd is the dis-

persion relation for the energy band in the absence of the
external field. This assumption might be justified if the mag-
netic field is weak, but its validity is questionable at higher
intensities. In particular, as seen in Fig. 3, the butterfly is
symmetric with respect to the axisNf= 1

2. In fact, the whole
structure is periodic in the magnetic field, with periodNf

=1, as can be trivially inferred from Harper’s equation. This
symmetry is a characteristic of Hofstadter’s approach, where
the energy spectrum is scaled by a constant, that is, the en-
ergy bandwidth of the crystal at zero magnetic field.

The energy spectrum, as predicted by our model, is dis-
played in Fig. 4. It shows a qualitative similarity with
Hofstadter’s butterfly, but it does not have the magnetic field
periodicity that the former possesses. This characteristic is
due to the magnetic field dependence of the energy param-
etersW, EF, and, in particular, of the single quantum dot
energy"V. From Fig. 4, it can be observed that the effective
band width diminishes as the magnetic field increases, with a
slight continuous shift in the center of the band. On purely
physical grounds, we argue that this behavior is qualitatively
correct, due to the competence between the “geometric” con-
finement, characterized by the “atomic” energy"v, and the
magnetic confinement, characterized by the energy"vc. In
this sense, as the magnetic field intensity increases, the Lan-
dau radiuslB, which characterizes the electronic semiclassic
orbit length scale, decreases. Therefore, the effective con-
finement length scalel0 becomes smaller than the pure geo-
metric one, imposed by the dot radiusldot. This effect de-
creases the overlap and hopping between nearest-neighbor
wave functions, and consequently the total bandwidth is ex-
pected to diminish as the magnetic field intensity increases,
according to the results shown in Fig. 4. In the limit case of
an extremely high magnetic field intensity, the dot confining
energy"v is expected to be a small perturbation, as com-
pared to the magnetic energy"vc. Therefore, in this limit,
the energy spectrum is expected to be well represented by
Landau levels instead of dot eigenfunctions. Under this ar-
gument, one should expect for the single-band energy spec-
trum to continuously converge into a single Landau level,
with nearly zero bandwidth, with the corresponding approxi-
mately linear dependence of the energy on the magnetic field

FIG. 2. Energy spectrum for the system, for a magnetic field
corresponding toNf= 1

3. d=100 Å, ldot=30 Å.

FIG. 3. Dimensionless energy spectrum, as a function of the
external magnetic field intensity.

FIG. 4. Energy spectrum, as a function of the magnetic field
intensity.d=100 Å, ldot=30 Å.
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intensity. By means of a comparative analysis between Hof-
stadter’s model and the one presented in this work, we con-
clude that the results originated by the latter show the proper
physical behavior within the approximations adopted. We
emphasize that the main advantage of the wave function that
we propose, is that it is constructed with appropriately sym-
metrized combinations of “atomic” eigenfunctions of a
single quantum dot,in the presenceof the external magnetic
field. Therefore, the field is not treated as a perturbation, but
it is included consistently in the basis as part of the solution,
such that the “atomic” energy is characterized by an effective
frequency which combines both the geometric and magnetic
confinement effects"V=Îv2+vc

2/4.

IV. NONZERO ELECTRIC FIELD

The effect of an external electric field, applied along thex
direction, will be considered in what follows. As was previ-
ously stated, due to the Landau gauge chosen, the Hamil-
tonian preserves the translational symmetry along they di-
rection, even when the electric field is present. This property
allows us to preserve the general structure of the basis func-
tions previously introduced, showing the advantage of the
gauge chosen to solve the general problem. The translational
symmetry along thex direction is evidently broken by the
presence of the external electric field. However, by consid-
ering discrete translations along thex direction, an interest-
ing periodicity property of the energy density of states, re-
lated to the Stark period, can be shown as follows.

As translational invariance along they direction is pre-
served, the wave-vector componentky is still a good quan-
tum number for the system, such that eigenfunctions and
energy eigenstates are still characterized by fixed values ofky

HisrdCky
srd = Eky

Cky
srd. s42d

The corresponding eigenvalue equation for the periodic func-
tion uky

is

3Spr + ŷ"ky +
e

c
AsrdD2

2m* + o
n

Veffsr − dnd + eFx4uky
srd

= Eky
uky

srd. s43d

Let us apply a discrete translationTx̂qd to the previous
equation. The resulting expression, after a slight rearrange-
ment is

3Spr + ŷ"Sky +
2pq

d
NfD +

e

c
AsrdD2

2m*

+ o
n

Veffsr − dnd + eFx4uky
sr + x̂qdd

= sEky
− qeFdduky

sr + x̂qdd. s44d

As was previously pointed out, if the number of flux
quanta which traverses the lattice unit cell is a rational num-

ber, for instance,Nf=p/q, then k̄y=ky+s2pq/ddNf is asso-
ciated to the same magnetic Bloch function asky, as a con-
sequence of the translational symmetry along they direction,
which is preserved even in the presence of the electric field.
ThereforeEk̄y

=Eky
, and the eigenvalue equations44d can be

written as

3Fpr + ŷ"k̄y +
e

c
AsrdG2

2m* + o
n

Veffsr − dnd + eFx4
3uky

sr + x̂qdd = sEk̄y
− qeFdduky

sr + x̂qdd. s45d

The conclusion is that, ifEky
is an eigenvalue belonging to

the electronic spectrum, thenEky
−qeFd is another eigen-

value corresponding to the same value ofky. Notice that this
result states that the presence of the magnetic field, com-
bined with the electric field, modifies the Stark period by a
factor q, for rational magnetic fields whereNf=p/q.

Under the same assumptions which lead to Eq.s40d, the
presence of the external electric field modifies the finite dif-
ferences equation for the coefficients in the form

f2 coss2pNfnx + kydd − nxF̃gCnx
+ Cnx+1 + Cnx−1 = ẼCnx

,

s46d

whereF̃=eFd/W and Ẽ is defined as before.

A. Results

The effect of an external field ofF=10 KV/cm, produces
a rich structure in the energy spectrum of the quantum dots
lattice, as shown in Fig. 5. ForNf=p/q rational, the spec-
trum is periodic in a multipleq of the Stark energyeFd, for
a fixed wave numberky. In the system represented by Fig. 5,
q=3 and the energy period for a fixedky is 30 meV, which is

FIG. 5. Energy spectrum for the system, for a magnetic field
corresponding toNf= 1

3, when an electric field ofF=10 KV/cm is
also applied.d=100 Å, ldot=30 Å.
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exactly three times the Stark energyeFd=10 meV. It is also
found that for each energy value associated to one particular
ky, there exists another energy value in the spectrum, which
is associated toky8=ky−Gy, with Gy=2p /qd, which is shifted
by the normal Stark periodeFd.

The energy spectrum as a function of the number of mag-
netic flux quanta traversing the unit cell, when an electric
field of F=10 KV/cm is applied over the system, is depicted
in Fig. 6, for a fixed value ofky=0. An expanded region near
the center of the band is shown in detail. The modified Stark
period, as before, can be appreciated in the spectrum for
rational values of the number of magnetic flux quanta pierc-
ing the unit cell.

V. CONCLUSIONS

In summary, we have studied the energy spectrum of elec-
trons in a two-dimensional lattice of quantum dots, subject to
a perpendicular magnetic field and an electric field in the
plane, applied along one of the symmetry directions of the
array. We introduced a method to construct appropriately
symmetrized, Bloch-like wave functions, which includes the
magnetic field in the “atomic” orbitals. Therefore, the mag-
netic field is not treated as a perturbation to the band struc-
ture, but it is included in the spectrum calculations in a self-
consistent way. Within a single–band approximation, we
compared our results at zero electric field with the classical
Hofstadter’s model, and show that our method leads to the
appropriate physical behavior.

The external electric field is not included in the wave
functions, so its effects are calculated by direct diagonaliza-
tion of the Hamiltonian. As we adopted a single-band ap-
proximation, our results are expected to be valid for weak
electric field intensities, when no interband coupling occurs.

Despite the approximations involved in this preliminary
work, i.e., tight-binding and single-band “atomic” orbitals,
the proposed method for constructing magnetic Bloch-like
wave functions in the Landau gauge is fairly general. There-
fore, it is straightforward to generalize it to perform multi-

band calculations, to be valid for a wide range of electric and
magnetic field intensities. Coulomb interactions may be also
included in the model, in particular to calculate the excitonic
spectrum of the system.
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APPENDIX A

If the conditionNf=p/q is satisfied, the term associated
to the vector magnetic potential in the phase of Eq.s18d
adopts the form

e

"c
Aysdnd =

2pNfnx

d
=

2p

d
nx

p

q
.

Now, consider a translation of the periodic functions18d
along thex direction, in a lattice vectordmx

= x̂mxd:

uky
sr + dmx

d = o
nx

o
ny

expS− iFky +
2p

d

p

q
nxGsy − nyddD

3Cnx
Wsr + dmx

− dnd

= o
n̄x

o
ny

expS− iFky +
2p

d

p

q
sn̄x + mxdG

3sy − nyddDCn̄x+mx
Wsr − dn̄d.

In the former equation, ifmx=q, then they component of
the quasimomentumky appearing in the phase can be re-

placed byk̄y=ky+s2p /ddp, which is a consequence of the

translational symmetry along they direction. However,k̄y
must define the same magnetic Bloch function asky, except
for a possible constant phase

uky
sr + dqd = eiaquk̄y

srd

provided that the conditionCn̄x+q=eiaqCn̄x
is satisfied.

APPENDIX B

The matrix elements appearing in Eq.s39d are given by

kdn8udnl = ei2pNfsnx8+s/2drAr,s

and

kdn8uDVsr − dndudnl =
"V

2
S ldot

l0
D4

ei2pNfsnx8+s/2drAr,s

3fBr,s − 1 −Dr,sg,

wherer =ny−ny8, s=nx−nx8 and

Ar,s = e−sr2+s2d/4fsd/l0d2+spNfl0/dd2g,

FIG. 6. Energy spectrum, as a function of the external magnetic
field intensity, when an external electric fieldF=10 KV/cm is also
applied.d=100 Å, ldot=30 Å.
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Br,s = e−ss2/4dspNfl0/dd2JssdS d

l0
,
pNfl0r

d
D

+ e−sr2/4dspNfl0/dd2JsrdS d

l0
,
pNfl0s

d
D ,

Dr,s =
r2 + s2

4
FS d

l0
D2

− SpNfl0
d

D2G .

The functionJsıdsx,yd is given by

Jsıdsx,yd

=5o
m
E

sm−1/2dx

sm+1/2dx

dusu − mxd2e−u2
cosyu, ı even,

o
m
E

sm−1dx

mx

dufu − sm− 1/2dxg2e−u2
cosyu, ı odd. 6

The matrix elements corresponding to the electric field
contribution are given by

kdn8ueFxudnl = seFddei2pNfsnx+s/2dr

3Ar,sFnx +
s

2
+ i

pNfr

4
S l0

d
D2G .

The parametersW andEF are defined as

W=
"V

2
S l0

ldot
D4

A1,0fB1,0− 1 −D1,0g,

EF =
"V

2
S l0

ldot
D4

fB0,0− 1g.
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