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Electronic spectrum of a two-dimensional quantum dot array in the presence of electric
and magnetic fields in the Hall configuration
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We report calculations of the electronic spectrum of a two-dimensional lattice of coupled quantum dots,
subject to external electric and magnetic fields in the Hall configuration. The quantum dots array was modeled
by a periodic superposition of truncated, parabolic potential wells. By adopting the Landau gauge, a single-
particle Hamiltonian was formulated, and its eigenfunctions were obtained as appropriately symmetrized,
magnetic field-dependent Bloch functions. The magnetic field was consistently included in the corresponding
Wannier functions, which were approximated by the eigenvectors of an isolated quantum dot in the presence of
the external magnetic field, and multiplied by the Peierls’s phase.
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[. INTRODUCTION split into subbands. A Harper's equation is then also
achieved, to relate Fourier coefficients of the wave function
The motion of electrons in two-dimensional systems, un4n the reciprocal space. The effect of Landau level coupling
der the influence of both a periodic potential and an externahas also been studiéfi,and it was shown to drastically
perpendicular magnetic field, has been of interest to theoristisiodify the butterfly symmetries. Some experimental
and experimentalists since the early stages of solid-statevidencé®?® supports the existence of a butterfly-type en-
quantum physic$.The fascinating features of these systemsergy spectrum in the high magnetic field regime.
proceeds from the competition of two characteristic length There seems to be a certain gap in the literature concern-
scales: the lattice constadt which determines the periodic- ing to the intermediate regime, where both the lattice con-
ity of the lattice potential, and the Landau radigs which  stantd and the Landau radiug are comparable in magni-
characterizes the semiclassical electronic orbits. tude. We believe that the reason is due to the completely
The first theoretical approach to the problem is due tadifferent criteria used to choose the appropriate basis func-
Peierlst It is based on the formulation of an effective single- tions in both regimes, which are strongly localized crystal-
band Hamiltonian, arising from a tight-binding dispersionWannier functions on one limit, versus extended Landau lev-
relation E(k), through the substitutiof[k +(e/Ac)A]. This  els on the other. It has been already remarked by Wakhier,
approximation, which assumes that the magnetic field doesnder general group-theoretical arguments, that the Bloch-
not alter the original Bloch-band structure of the lattice, hasband Wannier functions do not provide an exact basis for the
been discussed and extended in many classical p&pérs. problem, even at weak magnetic fields. Indeed, he shows that
When combined to a semiclassical pictitel>the effective  the Bloch-band concept can be rigorously extended to this
Hamiltonian theory leads to the notion of quantized magneticase, provided that a slightly modified manifold is defined,
orbits, which can be commensurable with the lattice periodby incorporating the magnetic field into a new set of
Within the framework of the effective single-band Hamil- magnetic-consistent Wannier functions. In the present work,
tonian theory, further investigatiotfs'’ lead to butterflylike — we applied this idea to a two-dimensional lattice of quantum
patterns for the energy spectrum. In a classical papedots, under the presence of a perpendicular magnetic field.
Hofstadtet® achieved Harper’s equatidf,whose spectrum, By choosing the Landau gauge, after a general study of the
as a function of the magnetic field, shows a fractal structureranslational symmetries involved in the Hamiltonian, we
commonly referred to as the Hofstadter butterfly. The patterwonstructed appropriately symmetrized Bloch-like wave
reflects, as a consequence of Harper’s equation, the splittiniginctions. The Wannier functions in this linear combination,
of the single Bloch-band into magnetic subbands, accordingvere approximated by the eigenfunctions of a single dot un-
to the number of magnetic flux quanta piercing the unit cellder the presence of an external magnetic field. Following the
of the lattice. This picture is generally believed to representriginal argument of Wannié# this basis is consistent with
the weak magnetic field regime, whete15,1%?9despite the  the presence of the external magnetic field, through the defi-
fact that no experimental evidence has been presented yefition of effective energy levels. Those levels are character-
Indeed, its extension to higher field intensities has been sézed by an effective frequend®, which is a combination of
verely criticized! under the basis of group theoretical argu- both the quantum dot geometric frequeneyand the cyclo-
ments. tronic frequencyw.. We calculated the electronic spectrum
In the high magnetic field regime, whelge<d, the lattice  corresponding to the lowest energy level in this system, ne-
potential is considered to be a perturbation over the free elegjlecting interband coupling and adopting the tight-binding
tron Landau levels. It has been sha®#® that due to the approximation, and compared our results with Hofstadter’s
presence of the periodic potential, a single Landau level igffective-Hamiltonian theory.
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The effect of an external electric field on this system,frequency associated with the planar geometric confinement
what is called the Hall configuration, is also of physical in-of the quantum dots, which is characterized by the length
terest, in particular since the discovery of the quantum Halkcalel 4= vA/m ». When external and static electficand
effect?” A characteristic electric field-dependent magnitude,magnetic B fields are applied, the corresponding two-
known as the Stark perid;*' comes into scene, interacting dimensional, single-particle Hamiltonian for the quantum dot
with the already present lattice constant and Landau radiugyray is
This subject has been previously studied, particularly in the

high magnetic fieléP?223regime. In the present work, we +Ea 2

considered the inclusion of an external electric field oriented Py c (p)

along one of the symmetry directions of the quantum dot Hi(p) = T om + Vei(p—d,) +eFx.  (3)
n

lattice. By choosing the Landau gauge as before, we per-
formed calculations for the electronic spectrum, under a
single magnetic-band approximation. We expect these Ca|CLHir
lations to be valid in the regime of weak electric field, where
interband coupling can be neglected.

The electric field is applied along one of the symmetry
ections of the lattice, namelf=XF. The magnetic field,
normal to the plane of the arrag=2B, will be included
through the vector potential in the Landau gaudép)
Il. THEORY =yxB. In this gauge, the Hamiltonian preserves the transla-

Semiconductor heterostructures constitute, at the atomiéi—Onal symmetry of the peri_odi_c potential, along the direction
tic level, complex many-body systems. In particular, a quanPerPendicular to the electric field. P
tum dof? has an internal crystalline structure which, despite Let us assume for a moment that the electnc field IS
the relatively small size of the dot, presents electronic energ med off. In that case, it can be shown that the magnetic

bands related to its semiconductor properties. Therefor ,ranslat|on operator defined by

only a relatively small amount of charge carriéis-100, id, e
either conduction-band electrons or valence-band holes, can Ta(dy) =exp - 7(Pp+ EA)
be considered to be effectively trapped by a quantum dot. To

give a reasonable description of the physical properties ofommutes with the Hamiltonian. This property is evident for
such a system, at the nanoscale level, simplifications need tbe kinetic term, but the potential term requires some further
be made. Following the common practice, we adopt ardiscussion. First notice that in the gauge chosen, a direct
effective-mass approximation, to take into account the efealculation yields[pi,Aj]:O for i,j=1,2. Therefore, the
fects of the crystalline atomic structure over the charge carmagnetic translation operator can be written as

riers. Those will be assumed to be negative charges .

(conduction-band electropsas, for instance, in GaAs/InAs Ta(d,) = exp[— LU 'dn:|Td , (5)
self-assembled quantum dot systethés our interest, in fic "

this preliminary study, is to investigate the main Symmetries&mherernzexp{—(idn/ﬁ) p,] is a normal translation opera-

involved in the electronic spectrum of the system, we will ; . . .
formulate a single-particle Hamiltonian, whose eigenfunc—tor' For an arbltrary functiof(p), the combme.d a_ct|on of the .
agnetic translation operator and the periodic potential is

tions can be later implemented in more realistic many-bod)}n.
calculations. We will neglect the Zeeman splitting and spin-g'ven by
orbit interactions, which are very small for GaAs systéfs. ie

By keeping in mind the previous statements, we modeled Ta(dn)V(p)f(p) = eXF{— %A 'dn:| V(p—-dy)f(p—dy)
the two-dimensional lattice of cylindrical quantum dots, by a

three-dimensional potential, periodic over the plane of the _ _ e B
array =ex ﬁCA 'dn V(P)f(P dn)

V(p,2) =V(p +d,,2), (1) =V(p)Ta(d,)f(p). (6)

with p=(x,y) and d,=(n,d,n,d). We will assume that the As f(p) is arbitrary, it follows that the magnetic translation

electrons in the dot are confined by a very narrow quantungperator commutes with the periodic potential, and therefore
well along thez direction. Therefore, the-dependent de-

grees of freedom can be integrated, obtaining a periodic ef- [Ta(dn),H(F=0)]=0. (7
fective po.tential, d_epending only on the coordinatgs over therhis property allows the use of group thedhby introduc-
plane. This potential has been modeled by a periodic supefpg the group of magnetic translations. This is in fact a ray

positior_w of truncated parabolic wells, centered at each site Ocjroup, because the product of two elements of the group
the lattice yields another element, multiplied by a constant phase

1. - . i )
Vei(p—dn) = >, =M o?(@-n,d)?> for|a-n,d < g Ta(dpTa(dp) = e (€% A(p)lee ('emc)dzA(p>Td2

a=x,y

(4)

- —(ie/hc)dl-A(p)e—(ie/ﬁc)dz-A(p—dl)lesz

2

. . _ =TA(d, +d.,)e (ehodaAldy) 8
and equal to zero otherwise. In this expression, corre- aldy +dy) (8)
sponds to the effective mass over the plane, ant the  As a consequence of E(B), we have
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Ta(d)Ta(dy) = Ta(dy) Ta(dy)e (eO02AED, (9)  discrete magnetic translations along thelirection. There-
. . ) fore, a restricted form of the Bloch’s theorem can be still
Notice that the magnetic phase in E@), for the gauge pgjied to find the eigenfunctions of the Hamiltonian, pro-

chosen, is given by vided that we restrict the full ray group of magnetic transla-
e Bd, ,d, B2 tion operators to its subgroup of magnetic translations along
%dz -A(dy) =27 c = =2mn,ny,——  (10)  they direction.
— %o Taking into account the translational symmetry involved,
€ and applying the Bloch’s theorem, the eigenfunctions of the

JdHamiltonian given by Eq(3) can be constructed by the fol-

which is proportional to the ratio between the total magneti ! a0
lowing prescription:

flux Bd? piercing the unit cell, and the magnetic flux quanta
¢o=hcle. Itis then possible, for a finite lattice of dimensions W, (p) =X, (p). (16)
N,d=L, and N,d=L,, to generalize the Born—-von Karman Yy Yy

boundary conditions, by restricting the eigenfunctions to be The function u, (p) satisfies the periodicity condition
periodic under magnetic translations corresponding to th@long they direction

full lattice size

TAGND¢(p) = TAOND @(p) = o(p).  (11) . , |
Assuming thatp is an eigenfunctiong.=Ta(d. )¢ are also ar;d) it can be expressed in terms of Wannier functidfig

eigenfunctions. If we apply a full lattice translation over any_ n
one of those functions s p( [ e
R R , . u(p) =2, C, exp —i| k,+ —A/d,) [(y—n,d) ]W(p—d,).
TA(RN) ¢ = TARN,D T (d) o = €SO ImAGND g R ERTR
(12) (18)

where the property9) has been applied. If we demand that Therefore, the wave functions in E(L6) can be written as
all those functions satisfy the Born—von Karman periodic

boundary conditions, the constant phase in @) must be _ ik, n,d _. € o _

Ui (p+ 9) = U (p) (17

(19

Notice that a magnetic field-dependent phase multiplies

This condition can be fulfilled each time the number of mag-€ach VYannier function. This phase was first suggested by
netic flux quanta which traverses the unit cell is a rationalPeierls, and later discussed by WanniérThe coefficients

e . Bd?
%dm : A(XNXd) = ZWWNX% = 271-q. (13)

number Cn,_ in the expansion, must be obtained by solving the eigen-
value problem for the Hamiltonia(8).

N, = ﬁz . (14) Given that the Wannier functions are strongly localized on

¢ do MmN, the lattice sites, the standard choice is to build them from

thus imposing a commensurability relation between the maglinear combinations of “atomic orbitals.” In this work, we
T . . . . . . “IchooseW(p) as eigenfunctions of a single-dot Hamiltonian,
netic field intensity and the lattice size. A detailed analysis oF (p) g 9

the representations of the group of magnetic translations hrijsnder the presence of the external magnetic field

been reported by Brow#. He showed that, when periodic eB \2

Born—von Karman boundary conditions can be applied, a (pp+§/—x) x

generalization of the Bloch’s theorem leads to the definition H9%p) = —C + ﬂw2p2_ (20)
of magnetic reciprocal lattice vectors 2m 2

e This choice has the advantage that the magnetic field needs

K—k+-A, (15 not to be treated as a perturbation, but it is consistently in-

cluded in the basis. The eigenfunctions of this operator, in
wherek is a normal reciprocal lattice vector at zero magneticwhich the vector potential is in the same gauge as stated in
field. This formulation defines modified Bloch functions asthe Hamiltonian(3), can be obtained from the well known
eigenvectors of the Hamiltonian, which can be formally ex-eigenfunctions of the Fock-Darwin Hamiltoni#r®
panded in the corresponding magnetic Wannier functions. )
After this brief preamble on the magnetic translation ( € )
s . . p,+ —BXp .

group, let us go back to the original case, in which the elec- D\ P 2c m .,
tric field is turned on, and pointing along thedirection. H™(p) = om +?‘” p (21)
Despite the translation symmetry along this direction is de-
stroyed by the presence of the electric field, the symmetrppy means of a gauge transformation. The Landau gauge is
along they direction is preserved. It follows then that related to the symmetric gauge in the Fock-Darwin Hamil-
[Ta(Yyd),H,(p)]=0, whereTA(yd) denotes the operator of tonian, by the transformation
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1 B 2 2
9XB:§BXp+ V(Exy>, (22 [pp+§/h<ky+ %qu,) +§A(p):|
ot + 2 Verlp — do)

such that the eigenfunctions of E(R0) are given by the
eigenfunctions of Eq(21), modified by a magnetic field- XU (p+%qd) = E Uy (p+%qd). (28)
dependent phase Y S
From the rationality condition assumed for the magnetic
q)dot(p): \/2 / nt! (B)ml field, we havek +(2mq/d)Ny=ky, wherek, =k +2mp/d. As
e 15V (e +[m)!\ g a consequence of the translational symmetry alongyttie
2 eB 2 rection, and based on the preliminary discussion about the
Xexp[— p_2 - i—xy} |_|nm(p—2>_ (23) magnetic translation group and the generalized Bloch’s theo-
2he "\ g = .
rem, we conclude that botk, andk, are associated to the

In this definition,L/™ are the Laguerre polynomials. The cor- S8me magnetic Bloch function, except for a constant phase.
N As in the standard Bloch’s theorem, this associated to the
responding eigenvalues are ’ —

periodicity in the energy spectrurﬁky:Eky, for ky,=k,

_ 1 +2mp/d. Taking into account the previous statements, Eq.
e(nm =AaQn+1) - zﬁ“’cm’ (24) (28) can be expressed as
where n=0,1, ..., is theprincipal quantum numbem= ..— € 2
-n,-n+2,... n is the azimuthal quantum number, and pp+yhky+EA(p) i
=(n-|m|)/2 is the radial quantum number. o + 2 Veit(p = dy) U (p+Xqd)
The effective frequenc{), as defined in Eq24), is given n
by the expressiof)=\w?+w?/4. The effective length scale = E;uky(pﬂ“(qd), (29
which characterizes these functions is given Iy Y _ _
=g/ ¥1+40?/ w?, wherelg=\fic/eBis the Landau radius. By comparing Eq(29) with Eq. (26), we conclude that
Uy (p +Xqd) = €U (p), 30
IIl. ZERO ELECTRIC FIELD P+ Xad) 5(P) (30

In the absence of an external electric field, the eigenvalud’hereaq is a constant phase, as a consequence of the non-

equation for the Bloch functiof6) is degeneracy of the energy spectrum. In other words, despite
not being explicit in our construction of the magnetic Bloch
e 2 functions, at zero electric field the magnetic translational
{pp + 'A(P)} symmetry exists along thedirection, in agreement with the
Tom + >, Ver(p = dp) lI'ky(p) = Eky\Ifky(p). preliminary discussion about the magnetic translations
n

group. Its effect can be intuitively pictured as to “enlarge”
(25) the effective lattice period, along thedirection, by a factor
g. As shown in Appendix A, this symmetry property imposes

By ?nserti_ng Eq.(16) into E_q. (25), we obtair_1 the COIe- 3 necessary condition, to be satisfied by the coefficients in
sponding eigenvalue equation for the periodic functionye expansiongl8) and(19)

Uky(P)3 '
( . 5 Choq= e'“anX. (32
+ ik, + —A )
Pp YKy c () +EV (p-d.) ue (0) = Ex Ui () Therefore, under the presence of a rational magnetic field,
om ~ Vel ™l 1B P By TP the space of solutions to the eigenvalue equati) is re-

ducible, and its reduction leads to exactjysubspaces, for
(26) N,=p/qg. As a consequence, we expect in that case for the

Let us assume that the ratio between the magnetic flugNergy spectrum to be composed of exagtiyubbands.

through a unit cell, and the quantum of flgg=hcle, is a After this preliminary discussion of the general symmetry
rational number, for instance, properties involved, we will adopt the basis defined by the
eigenfunctions of the single-dot Hamiltonian of Eg0), and
B p we will approximate the Wannier functions by the lowest
¢~ ?O - a (27) energy eigenstatévgm, which is
with p an integer prime ta. Provided that this condition is DY p) = 1 exp(— L ie—Bxy> (32)
satisfied, let us apply the translation operafgsy over the 0 N 0 2|(2) 2hc )’

eigenvalue equatiof26). Notice that, in the Landau gauge,

A(p+Xqd)=A(p)+yqdB. Therefore, after the translation is Therefore, according to Eq19), the wave functions are
applied, Eq.(26) becomes given by the linear combinations
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‘l’ky(P) = E C, e kynydg=(ie/fic)A(dp)-(p~ dn><pd0t(p d,).

(33
Substituting Eq(33) into Eq. (25), we obtain

2 _—
e >
{pp + CA(P)] 2
ikynyd q) - =
dzn Cnxe' vy o + % Veff(p d,) Eky 5
. ]
X e—(le/sz)A(dn)-(p—dn)q)got(p _ dn) =0. (34) Lﬁ

It is straightforward to show that the magnetic phase fac-
tor can be transferred to the left of the Hamiltonian operator,
by means of a translation in the argument of the vector po-
tential, such that we have

5 3 2 -1 0 1 2 3
e
{pp+A(p—dn)} kd
2 C, e kyNydg(ie/A0)A(dy)-(p=dy) c _
2m FIG. 1. Energy spectrum for the system, in the absence of ex-
ternal fields.d=100 A, I4,;=30 A.
=2 Ve(p=dp) = Ey, |Polp—dn) =0. (35 E= [Ex,— i~ EIW. (41)
n

.The analytical expressions of the parametétsand Ex are

We can write the expression inside the parentheses 'Blven in Appendix B. Equatiori40), which determines the

terms of the single-dot Hamiltonigdd9°t centered on the lat-

tice sited,, nondimensional energy spectrufy is Harper’s equatiotf
> C, e'kynyde (ielhe)A @) (p=dn)[HA p — dl,) ~ By, A. Results
dot We present results for a two-dimensional array of quan-
+AV(p = dy) Py (p - dy) =0, (36)  tum dots with radiuslg,=30 A and lattice constand

where =100 A. For the effective mass, we assumed-0.067, cor-
responding to conduction electrons in GaAs.
B ) ) As a control test for the model, we calculate the energy
AV(p=dy) = 2 Ver(p = dy) - o (p=dp®. (37 spectrum when neither external magnetic nor electric fields
dn are applied. For this purpose, we considered a finite size
Since®3%(p) is an eigenfunction oH%! with eigenvalue ~ system with periodic boundary conditions, and the corre-
#Q, we have sponding energy spectrum as a functionkpfis shown in
_ Fig. 1, showing the projection of the superlattice first Bril-
> Cnxe'ky”yd[hﬂ— Eky+AV(p—dn)]<p|dn>:O, (38) louin zone over they axis. The band center is located at
122.7 meV, which corresponds to the “atomic” energy,
P : thus recovering the expected results for a standard single-
\i\Ih_e(iL?ﬁc)AYX?.(p_da? Ofoﬁed_ the  Dirac's  notation(p|dy) band tight-binding model. Clearly, in this last case the whole
€ ey (p=d). bidimensional ener face is a functi -
gy surface is a function of #tyecompo
nent as well, of the form E(k,,k)=Aw+V cogk.d)
+V codk,d). However, as the model presented in this work
does not involve explicitly thé&, component, its effect can
be appreciated in the projected spectrum as the width of the
band for a fixed value ok, which corresponds to\2
(39 =30 meV, and the total band width which i¥/460 meV.

The analytical expressions for the matrix elements appearing When an external magnetic field is applied over the sys-

To determine the coefficients, from Eq.(38), we take
the internal product with the functiofd, | p)

> Co @O~ B )(divldo) + (dw[AV(p - dy)|d)] = 0.
dn

in Eq. (39) are presented in Appendix A. tem, its dimensions are chosen such that commensurability
In the tight-binding approximation, Eq39) adopts the With the number of magnetic flux quanta traversing the unit
following expression: cell N,=p/q is satisfied, i.e.L.,=L,=mqd According to our

previous analysis, when the number of magnetic flux quanta
2 cog2mNyny, + kd)Cp +Cp 41 +Cy 1= NECn (40)  traversing the unit cell is a rational numkeg=p/q, a split-
X X X X ting of the single band spectrum intp minibands is ex-
with pected. In agreement with this theoretical prediction, Fig. 2
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150

Energy (meV)
B

110 4

0 0.2 0.4 0.6 0.8 1
Number of Magnetic Flux Quanta per Unit Cell
100 . . r r r .

3 2 - 0 L 2 3 FIG. 4. Energy spectrum, as a function of the magnetic field
kyd intensity.d=100 A, I;,,=30 A.

OIpersion relation for the energy band in the absence of the
external field. This assumption might be justified if the mag-
netic field is weak, but its validity is questionable at higher

} intensities. In particular, as seen in Fig. 3, the butterfly is
shows the energy spectrum as a fuqctlonkgf when an  qummetric with respect to the axié,=3. In fact, the whole
external magnetic field equivalenth,=3 has been applied. strycture is periodic in the magnetic field, with peridy,

By comparing with Fig. 1, one can appreciate that the s_lngle_-l, as can be trivially inferred from Harper’s equation. This

band spectrum has been split into exac#y8 subbands. Itis  symmetry is a characteristic of Hofstadter’s approach, where

also interesting that the effective first Brillouin zone has beeng energy spectrum is scaled by a constant, that is, the en-
reduced to% of its original size, as a consequence of theergy bandwidth of the crystal at zero magnetic field.

already discussed magnetic translational invariance, which The energy spectrum, as predicted by our model, is dis-

enlarges the effective size of the unit cell in the array by dlayed in Fig. 4. It shows a qualitative similarity with

factor of g. Hofstadter’s butterfly, but it does not have the magnetic field
The nondimensional energy spectrum, which arises as thgeriodicity that the former possesses. This characteristic is

solution of Eq.(28), is depicted in Fig. 3, as a function of the due to the magnetic field dependence of the energy param-

number of magnetic flux quanta which traverses the unit cellgters\w, Eq, and, in particular, of the single quantum dot

It is the well known Hofstadter’s butterﬂy, a fractal structure energyﬁQ_ From F|g 4, it can be observed that the effective

whose mathematical properties have been widely stufied. hand width diminishes as the magnetic field increases, with a

The main assumption involved in Hofstadter’s picture, is thakjight continuous shift in the center of the band. On purely

the original band structure of the crystal is preserved, despitghysical grounds, we argue that this behavior is qualitatively

the presence of the external field. Therefore, he does t%rrect’ due to the Competence between the “geometric" con-
substitutionE(k) — E[k +(e/Aic)A], where E(k) is the dis-  finement, characterized by the “atomic” enedgy, and the
magnetic confinement, characterized by the enér@y. In
N ' ' ' ' ' this sense, as the magnetic field intensity increases, the Lan-
B dau radiudg, which characterizes the electronic semiclassic
orbit length scale, decreases. Therefore, the effective con-
finement length scalk becomes smaller than the pure geo-
metric one, imposed by the dot radilig, This effect de-
creases the overlap and hopping between nearest-neighbor
wave functions, and consequently the total bandwidth is ex-
pected to diminish as the magnetic field intensity increases,
according to the results shown in Fig. 4. In the limit case of
an extremely high magnetic field intensity, the dot confining
energyfiw is expected to be a small perturbation, as com-
pared to the magnetic enerdyo.. Therefore, in this limit,
the energy spectrum is expected to be well represented by
40 —_— L """3?1 Landau levels instead of dot eigenfunctions. Under this ar-
* Number of Flux Quanta per Unit Cell gument, one should expect for the single-band energy spec-

trum to continuously converge into a single Landau level,

FIG. 3. Dimensionless energy spectrum, as a function of thevith nearly zero bandwidth, with the corresponding approxi-
external magnetic field intensity. mately linear dependence of the energy on the magnetic field

FIG. 2. Energy spectrum for the system, for a magnetic fiel
corresponding tiN,=%. d=100 A, 13,=30 A.

Dimensionless Energy
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intensity. By means of a comparative analysis between Hof- e — ]
stadter’'s model and the one presented in this work, we con-  2g0 -M
clude that the results originated by the latter show the prope! \‘./\_‘\/
physical behavior within the approximations adopted. We = —— ]
emphasize that the main advantage of the wave function tha T — p Sy
we propose, is that it is constructed with appropriately sym-< 150'#
metrized combinations of “atomic” eigenfunctions of a @ e — ]
single quantum doin the presencef the external magnetic E T —
field. Therefore, the field is not treated as a perturbation, butg; M
e . . . . . = 100 ‘v"’/
it is included consistently in the basis as part of the solution, o e T — o]
such that the “atomic” energy is characterized by an effectiveln M
frequency which combines both the geometric and magnetic \//—\“\/::
confinement effectd )=\ w?+ w?/4. B — ]
\/
IV. NONZERO ELECTRIC FIELD —_—— T
I i I ' T T T ' T T T T I
The effect of an external electric field, applied alongxhe 3 2 -1 0 1 2 3
direction, will be considered in what follows. As was previ- kd
ously stated, due to the Landau gauge chosen, the Hamil- Y
tonian preserves the translational symmetry alongyttu- FIG. 5. Energy spectrum for the system, for a magnetic field

rection, even when the electric field is present. This property.orresponding t¢\|¢=%, when an electric field oE=10 KV/cm is
allows us to preserve the general structure of the basis funedso appliedd=100 A, 14,=30 A.
tions previously introduced, showing the advantage of the
gauge chosen to solve the general problem. The translation
symmetry along thex direction is evidently broken by the
presence of the external electric field. However, by consi
ering discrete translations along tkelirection, an interest- A= ; b
ing periodicity property of the energy density of states, re-which is preserved even in t_he presence of '_che electric field.
lated to the Stark period, can be shown as follows. ThereforeE, =E, , and the eigenvalue equati¢fd) can be

As translational invariance along thedirection is pre- Written as
served, the wave-vector compondgtis still a good quan- — e 2
tum number for the system, such that eigenfunctions and {pp+§/ﬁky+—A(p)}
energy eigenstates are still characterized by fixed valuks of ¢

| , — .
ger, for instanceN,=p/q, thenk, =k +(27q/d)N, is asso-
gCiated to the same magnetic Bloch functionkgsas a con-
sequence of the translational symmetry alongytlorection,

+ 2 Veri(p —dp) + €FX
n

2m’
Hi(p) Wy (p) = B Wi (p). (42) ) .
The corresponding eigenvalue equation for the periodic func- Xuky(p +xad) = (EEV quG)uky(p vxad. (49
tion U, is The conclusion is that, i, is an eigenvalue belonging to
o 5 the electronic spectrum, theEky—qud is another eigen-
<pp + Yk, + —A(p)) value corresponding to the same vaIuekprotice_ thz_it this
result states that the presence of the magnetic field, com-

* % Veir(p = dn) + €FX Uy (p) bined with the electric field, modifies the Stark period by a

factor g, for rational magnetic fields whemd,=p/q.
=B Ui (p)- (43 Under the same assumptions which lead to @4), the

Let us apply a discrete translatioRy to the previous presence of the external electric field modifies the finite dif-
bply qd P ferences equation for the coefficients in the form

equation. The resulting expression, after a slight rearrange-

2m’

ment is [2 cog2mNyn, + kyd) = NFIC, +Cp 4y + Cy 1 = ECy
N 27 e 2
<pp+yﬁ<ky+ TNJ)) +EA(p)) (46)
o whereF=eFd/W andE is defined as before.
A. Results

+ 2 Veri(p = dy) + €Fx Ug (p +%qa) The effect of an external field &=10 KV/cm, produces

n a rich structure in the energy spectrum of the quantum dots
- (Eky—qud)Uky(P’ff(qd)- (44) lattice, as shown in Fig. 5. Fd{,=p/q rational, the spec-

trum is periodic in a multipley of the Stark energgFd, for
As was previously pointed out, if the number of flux a fixed wave numbek,. In the system represented by Fig. 5,
quanta which traverses the lattice unit cell is a rational num¢=3 and the energy period for a fixégdis 30 meV, which is

165301-7
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band calculations, to be valid for a wide range of electric and
magnetic field intensities. Coulomb interactions may be also
included in the model, in particular to calculate the excitonic
spectrum of the system.
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If the conditionN,=p/q is satisfied, the term associated

FIG. 6. Energy spectrum, as a function of the external magneti¢® the vector magnetic potential in the phase of ELf)
field intensity, when an external electric figfd=10 KV/cm is also ~ adopts the form
applied.d=100 A, 14,,=30 A.
E y(dn) = 2772 L = %Tan-
exactly three times the Stark energlyd=10 meV. It is also d
found that for each energy value associated to one particulalow, consider a translation of the periodic functi¢hg)
ky, there exists another energy value in the spectrum, whichlong thex direction, in a lattice vectod —xmxd
|s associated tkty—k -Gy, with Gy=27/qd, which is shifted
by the normal Stark penodFd

The energy spectrum as a function of the number of mag-
netic flux quanta traversing the unit cell, when an electric

g+ ) =S S exf =ik, + %”gn] (v- nyd))

n ny

field of F=10 KV/cm is applied over the system, is depicted XCy W(p +dp —dp)

in Fig. 6, for a fixed value ok,=0. An expanded region near r o

the center of the band is shown in detail. The modified Stark =2 > exp —i| k+ —E(ﬁx+ mx)}
period, as before, can be appreciated in the spectrum for nony L daq

rational values of the number of magnetic flux quanta pierc-

ing the unit cell. X(y - nyd)> C; +mxW(p dn).

In the former equation, im,=q, then they component of
the quasimomentunk, appearing in the phase can be re-

In summary, we have studied the energy spectrum of elegslaced byk,=k,+(2/d)p, which is a consequence of the

trons in a two-dimensional lattice of quantum dots, subject tcfranslatlonal symmetry along the direction However k.
. Ky

a perpendicular magnetic field and an electric field in the < qeofine the same magnetic Bloch functiorkasexcept
plane, applied along one of the symmetry directions of th%r a possible constant phase

array. We introduced a method to construct appropriately
symmetrized, Bloch-like wave functions, which includes the Uky(p+ dg) = ei“qu;(p)
magnetic field in the “atomic” orbitals. Therefore, the mag-
netic field is not treated as a perturbation to the band strugProvided that the conditiofr .,=€*C; is satisfied.
ture, but it is included in the spectrum calculations in a self-
consistent way. Within a single—band approximation, we APPENDIX B
compared our results at zero electric field with the classical , o .
Hofstadter’s model, and show that our method leads to the '€ Matrix elements appearing in H§9) are given by
appropriate physical behavior. (dyrldy) = 2N+ o
The external electric field is not included in the wave M = s
functions, so its effects are calculated by direct diagonalizagng
tion of the Hamiltonian. As we adopted a single-band ap- 20/
proximation, our results are expected to be valid for weak RE2 (ot | i2aN (' +92)r
electric field intensities, when no interband coupling occurs. {dw[AV(p—dy)ldo) = < lo ) ANINTSIIA, o
Despite the approximations involved in this preliminary
work, i.e., tight-binding and single-band “atomic” orbitals, X[Brs=1-Drgl,
the proposed method for constructing magnetic Bloch- |lk9wherer—n —n , s=n,—n, and
wave functions in the Landau gauge is fairly general. There-
fore, it is straightforward to generalize it to perform multi- A =€l 2+S)/4(d9) >+ (1Nl o/d)?],

V. CONCLUSIONS

165301-8



ELECTRONIC SPECTRUM OF A TWO-DIMENSIONAL.
B = —<82/4><7N¢Ic/d>25<s>(2 M)
, 4.

+ e—(r2/4)(7rN¢IOId)ZE(r)<I_, W_I\‘dsbl_05> ,
0

e (Rl

The functionZ"(x,y) is given by

E0(x,y)
(m+1/2)x

12
> du(u-mx?e ™" cosyu, | even,
m J (m-1/2)x

mx
> f du[u- (m- 1/2)x]%e* cosyu, 1 odd.

m J (m-1)x

PHYSICAL REVIEW B 71, 165301(2005

The matrix elements corresponding to the electric field
contribution are given by

(dyy|eFXd,) = (eFd)e2mMNanx+s/2r
s aNyr(l)?
XAr,s|:nx+ E + |_4('b_<ao) :| .

The parameter®V and Eg are defined as

A [ |
W:—( 9

4
5 |_> A1dB10~ 1-Dygl,
dot

rQ [ 1 \*
Er= _<_0) [Boo—1].
2 Idot
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