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We develop an exact generalized Bogoliubov transformation for the spin 3/2 Hubbard model with large
anti-Hunds rule coupling near half filling. Since the transformation is unitary, we can employ standard ap-
proximate mean-field theory methods in the full Hilbert space to analyze the doped Mott insulator, in contrast
to a conventional approach based on truncated Hilbert spaces complemented with hard core constraints. The
ground state at exactly half filling is an insulatingsMottd singlet, and according to our analysis an order
parameterD, usually associated with extendeds-wave superconductivity, will appear self-consistently as soon
as a finite densityn of holes is introduced. This is a consequence of the nonlinear nature of the unitary
transformation mapping the Mott singlet state to a Fock vacuum which introduces anomalous terms such asDn
in the effective Hamiltonian. Our analysis uses an approach that generalizes readily to multiband Hubbard
models and could provide a mechanism whereby a superconducting order parameter proportional to density
develops in Mott insulators with locally entangled ground states. For more complicated systems, such an order
parameter could coexist naturally with a variety of other order parameters.
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I. INTRODUCTION

A Mott transition is expected to occur when the overlap
between atomic orbitals in an insulator becomes large
enough for the hopping energy to overcome the energy asso-
ciated with charge fluctuations. To properly describe this
transition is very difficult, and a variety of techniques have
been used, with dynamic mean-field theory being an impor-
tant recent contribution.1–7 In this work we develop an ap-
proach, more in the spirit of BCS theory, for doped Mott
insulators where the parent state has an even number of elec-
trons, and thus integer spin, at each site. Examples of such
models are two-band Hubbard models considered in the con-
text of ruthenate alloys,8 and multiband Hubbard models for
doped C60.

2,3,6,9,10We present evidence for superconducting
behavior in these systems even for weak doping. We focus
on the simplest system to which our conclusions apply,
namely, the spin-3/2 Hubbard model on a square lattice with
anti-Hunds rule couplings.8–13 This model neatly illustrates
our core idea, namely, that a nonlinear canonical transforma-
tion can be used to attack the Mott transition. We do not
believe that this method initially should be tested through
direct comparison with experiment but rather by other inde-
pendent calculations and simulations on the same theoretical
model.

We define the particle density bynr =oscs,r
† cs,r and the

spin density bySr =oscs,r
† Ss,s8cs8,r, where −3

2 øsø
3
2 andSs,s8

are the generators of spin-3/2 rotations. Furthermore, we
define the operatorP2,m

† srd which creates anl =2, lz=m state
with two fermions12 P2,m

† srd=oa,bk 3
2

3
2ab u 3

2
3
2 ;2 ,mlca,r

† cb,r
†

and the SUs2d invariant Pr
2;omP2,m

† srdP2,msrd. The Hamil-
tonian containing the maximal number of SUs2d invariant
onsite terms is

H = − t o
kr,r8l,d

scs,r
† cs,r+d + H.c.d + o

r

fUnrsnr − 2d + JPr
2g,

s1d

where the chemical potential is absorbed inU andkr ,r8l are
all pairs of nearest neigbors counted once.20 We will consider
the caseJ@U@ t, which makes the singlet state heavily fa-
vored nearn=2. The reason for this restriction will be ex-
plained in Sec. II.

The single site spectrum consists of sixteen states: an
empty site, four equivalent spin 3/2 singly charged states, a
singlet and five spin-2 doubly charged sites, four spin-3/2
charge three states and a charge four singlet. The energy
Egsnd of the atomic ground state forn particles isEgs0d
=Egs2d=0, Egs1d=−U, Egs3d=5J+3U, Egs4d=10J+8U and
the quintet state has energy 2J. The lowest energy states
obeyEgsn+1d+Egsn−1d−2EgsndùU@0 so there is no ten-
dency for superconducting pair formation from any of the
local interactions.

With our choice of parameters, standard arguments imply
that the ground state forn=2 and smallt should be a spin
singlet. For small doping near zero filling, the ground state
will most likely be a normal Fermi liquid, at least for smallU
andJ. If U and/orJ are sufficiently large, a spin-symmetry
breaking state may appear according to the Stoner criterion.
Whether or not this happens depends on the density of states,
which at least in the case of two dimensions remains finite
even down ton=0. Numerical simulations indicate that the
tendency towards spin ordering is grossly exaggerated in
mean-field theory.14 In any case, a deeper discussion of this
point is not within the scope of the present article, which is
to investigate the analog of a Fermi liquid near half filling.
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The Mott singletuFssrdl=D†
ru0l at siter is created from

the vacuum by the operatorD†
r given by

D†
r =

1

2Î2
o

s

eipss+1/2dcs,r
† c−s,r

† . s2d

A natural first attempt to understand the system for small
hole doping is to try the same method as for the nearly half-
filled spin-1/2 Hubbard model, i.e., to make a particle-hole
transformationĉs,r

† = ĉ−s,r, where ĉs,r
† and ĉs,r are new local

fermionic creation and destruction operators. In contrast to
the case of the filled spin-1/2 Hubbard model, however, this
canonical transformation fails a number of criteria if the
Mott singlet is to act as a vacuum for the new operators. In
particular, we see that

ĉs,ruFssrdl Þ 0, s3d

kFssrduĉs,rĉs,r
† uFssrdl Þ 1. s4d

The first inequality is perhaps not so severe; after all the
operatorĉs,r, being fundamentally a fermion creation opera-
tor creates a state with three fermions on siter, and we could
argue that we could ignore this problem by suitably project-
ing onto states with at most two particles. This is in fact the
approach usually taken in attempts to perturbatively con-
struct a new vacuum nearn=2. The second inequality is
much worse; it is a consequence of the singlet being en-
tangled, i.e., it cannot be written as a product state in any
one-particle basis. As a result, the putative creation operator
does not generate a normalized state from the vacuum. The
entanglement property implies that the destruction operator
on the created state does not recreate the ground state—not
even in the two-particle space since it projects into theS
=2 two-particle states.

II. CANONICAL TRANSFORMATION TO THE MOTT
SINGLET VACUUM

We now show how to systematically construct creation
and annihilation operators with correct local properties by a
canonical transformation that fulfills the following criteria:
sad it mapsuFssrdl to u0l and sbd it maps the singly charged
states to themselves. Due to our choice of interaction param-
eters, whereJ.U, we also expect that the state composed of
two holes will play the same role in the hole doped Mott
insulator nearn=2, as the doubly charged singlet does for
small filling. The canonical transformation that we desire
should therefore interchange the Mott singlet and the
vacuum, leaving all other states invariant. TheS=2 doubly
charged states will have the same charge as the Mott singlet.
However, due to the constraints imposed by a canonical
transformation utilizing only the spin-3/2 fermion operators,
these doubly charged states must be obtained by two appli-
cations of the new creation operator, while the singlet created
by another double combination of these creation operators
forms a state with relative charge minus 2. These consider-
ations force the canonical transformation to be charge non-
conserving.

The canonical transformation that accomplishes this and
similar mappings can be systematically obtained through the

method in Ref. 15. However, we can get it without much
formalism as follows. Our desired operator is “almost”Dr

†.
The problem is that this operator generates unwanted side
effects in then=1 andn=2 particle subspaces by mapping
these to new states withn=3 andn=4. We get rid of these
unwanted overlaps by using a projection operator, defining
Qr

†=D†
rs1−nds1−n/2d. It is straightforward to check that

Qr
†u0l= uFssrdl, QruFssrdl= u0l, and thatQr andQr

† annihilate
all other states. A canonical transformation that rotates the
statesu0l and uFssrdl at each siter into each other without
affecting the other states is provided by the unitary operator

Usf̃rd ; eiGsf̃rd = p
r

Ursf̃rd, s5d

where

Ursf̃rd ; eiGrsf̃rd = eisf̃rQr
†+f̃r

!Qrd s6d

with f̃r ;fre
ixr sfr andxr are reald. On u0l and uFssrdl the

transformation becomes

uUrsf̃rdu0,F = cosfr + i sinfrseixrQr
† + e−ixrQrd, s7d

whereas it is unity on all other states. Choosingfr =p /2, for
all r, we obtain the canonical transformation that fulfills our
criteria, i.e., it interchanges the empty state and the Mott
state at each site without affecting the other states.

Applying the unitary transformation Eq.s5d, with fr
=p /2, to the vacuum stateu0l, the phase factorseixr enter the
obtained Mott stateuFsl only as an overall phaseorxr, and
can be neglected. In general, however, it is obvious from Eq.
s5d that the unitary transformation gives a state where the
phase factors enter in a nontrivial way. In particular, this is
the case for the slightly doped Mott insulator, which we will
consider below. This will be mapped onto a state near the
true vacuum state, which can then be analyzed with standard
methods. Note that the phase factorseixr are crucial to retain
local gauge symmetry in the same way as the complex
phases introduced into the Bogoliubov transformations are
necessary to restore gauge invariance in BCS theory.

III. GENERALIZATIONS

Our analysis in this article assumes 0,U!J. As a con-
sequence the ground state for the on-site terms in Eq.s1d at
n=2 is nondegenerate—the Mott state is a simple product of
local spin singlets. Remember that even though in this case
the ground state atn=2 is trivial, this is no more true as soon
as the Mott insulator is doped son=2−d,2. Here we find,
using mean field theory, a highly nontrivial result, namely a
superconducting order parameter proportional tod. In the
physically more interesting case whenJ,0 or 0,J,U, the
state atn=2 is more complicated and the analysis in this
article needs modification—we briefly discuss this below.
However, we believe that it is important to first establish
what the method predicts in the simpler but still very non-
trivial case studied here.

A. The degenerate case:J,0

When J,0, the problem cannot be addressed with the
method presented above, since there is no unique ground
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state atn=2 to map to an equivalentn=0 problem. Let us,
however, suggest a generalization of our strategy: Using a
mapping similar to the one in Eq.s5d we can map an arbi-
trary state in then=2, L=2 ground-state multiplet to then
=0 state. The arbitrariness of this choice can then be coded
in a non-Abeliansgauged potential in much the same way the
arbitrary local phasexr was introduced in Eq.s7d above. Our
hope is that the resulting gauge theory will be more tractable
than the original degenerate Mott problem.21

B. The case 0,J,U

For this case, then=2 ground state is still unique and the
mapping using Eq.s5d is well defined and meaningful when
the hopping vanishes. Our mean field treatment of the result-
ing dopedn=2 system when hopping is introduced is, how-
ever, not to be trusted for the following reason. Under the
mapping given by Eq.s5d, the density operatorn transforms
as

n → 2 − n + P2 − nsn − 1dsn − 2d/6, s8d

where P2 is the operator defined above Eq.s1d. When the
two-particle singlet has the same free energy as the singly
occupied sites, the chemical potential obeysm<U. Reintro-
ducing m in Eq. s1d and using Eq.s8d shows that thatJ
→Jeff=J−U under the transformation. Thus forJ,U we
find that the effective Hamiltonian after the transformation
will have Jeff,0, and we have the same situation as in Sec.
III A.

These generalizations of the model, although of legitimate
interest, take us outside what we are able to handle without
introducing additional approximations and uncertainties. For
that reason they will not be further considered in this paper.

IV. A VARIATIONAL ANSATZ

We now turn to a systematic variational analysis of the
slightly doped Mott insulator using the canonical transforma-
tion in Eq.s5d. In analogy with ordinary Fermi-liquid theory,
as well as the BCS theory of superconductivity, we search
for a variational state with particle number given byn=2
−d that is obtained from the vacuum by a canonical transfor-
mation eiGu depending on a set of parametersu. We define
the functionsEsud andNsud by

Esud = k0ue−iGuHeiGuu0l, s9d

Nsud = k0ue−iGuNeiGuu0l. s10d

The valueshuj which minimizeEsud define our variational
ground stateeiGuu0l with particle numberNsud. We have seen
that for n=2, the transformationGu is simply Gfsp /2deixrg
;G0sxrd given by Eq.s5d. We hence expect that near the
Mott insulator, the relevant transformation will be given by a
further transformation close to the identity. We therefore

make the ansatzeiGu=eiG0sxrdeiGu8;U0U8.
Note that since we can continuously rotate the Mott state

at n=2 to the true vacuum by lettingf go fromp /2 to zero,
we can generate a Mott singlet on a site either by having

Ur8=1 andfr =p /2, or by havingUr8=Ursp /2d andfr =0. In
general, we can make a coherent superposition of empty and
doubly occupied singlet sites, both by lettingf vary and by
adding an onsites-wave order parameter. As could be ex-
pected, this indeterminacy leads to a numerical instability in
the variational equations which we resolve by simply taking
fr =p /2 for all r, and not further exploiting these variational
parameters.

In order to construct an ansatz foreiGu8 we first work out
e−iG0sxrdHeiG0sxrd. This operator is obtained by replacing each
occurence of the fermion operatorcr,s

† by e−iG0sxrdcr,s
† eiG0sxrd

and similarly forcs,r. This expression is complicated, but it
can nonetheless be worked out exactly in terms of polyno-
mials of cs,r and cs,r

† , since the fermion algebra at a site is
closed. The exact expression, written here for reference only,
is given by

cs,r
† → cs,r

† HfD†e−2ixs1 − nd − e2ixDg + S :S2:

3
+ n +

:n3:

6
DJ

+ s− 1dss+1/2de2ix2−1/2F− 1 +e−2ixD†

+ S :S2:

3
+ n +

:n2:

4
DGc−s,r , s11d

where the subscripts are dropped on the right-hand side. The
notation:O: indicates a normal ordered operator, i.e., strings
of fermion operators where all creation operators are anti-
commuted to the left and annihilation operators to the right
taking only into account the sign of the permutation. In this
case, :n2

ªn2−n and :S2
ªS2−15n/4.

The onsite interaction is zero in the vacuum and two par-
ticle singlet subspace. Since these are the only two states
affected by the canonical transformation, this interaction re-
mains invariant, while the chemical potential transforms ac-
cording to

n → 2 −Sn −
5:n2:

4
−

:S2:

3
+

:n3:

6
D . s12d

Anticipating a mean-field calculation under the assump-
tion of no spontaneously broken global symmetries, we do a
Wick decomposition of the onsite term, and calculate the
expectation value according to

kUnsn − 2d + JP2l = − n̂U + n̂2S5J

8
+

3U

4
D + 2D̂2U,

s13d

where a hat indicates the expectation value of an operator
composed of ordinary fermion operators evaluated in the
stateU8u0l near the physical vacuum. Similarly, the expecta-
tion values for the density ands-wave order parameterD†

r
become exactly

kD†l =
sD̂*d2

2
e−ix − D̂e2ixS1 +

uD̂u2

2
−

n̂

2
+

n̂2

16
D

− D̂*SuD̂u2 −
n̂

2
+

n̂2

8
D , s14d
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knl = n̂ + 2S1 −
n̂

4
D2S1 −

n̂

2
D −

n̂uD̂ru2

2
. s15d

We now derive a similar expansion of the hopping operator.
In this case the expressions become a terrible mess—far too
complicated to write down in their entirety. It is, however,
possible to construct a systematic expansion in the number of
fermion operators, which is appropriate for small doping. To
this respect, we take the entire expression, and rewrite it as a
sum of normal ordered terms. We then truncate this expres-
sion at fourth order in fermion operators and keep expecta-
tion values of on-site and nearest neighbor s-wave pairing
amplitudes, ordinary hopping and density operators. Defin-
ing

Dr,r8
† = os

s− 1dss+1/2d

2Î2
cs,r

† c−s,r8
† , s16d

hr,r8 = os
cs,r

† cs,r8, s17d

where r ,r8 are nearest neighbors, we find that the hopping
operator, truncated at fourth order in fermion operators, be-
comes

− tkhr,r8l = −
5t

4
n̂se2ixrD̂r,r8 + e−2ixr8D̂r,r8

* d +
t

2
e2isxr−xr8d

3s1 − n̂dĥr8,r − tse−2ixrD̂r
* − e2ixrD̂rde−2ixr8D̂r,r8

*

+ tse−2ixr8D̂r8
* − e2ixr8D̂r8de

2ixrD̂r,r8 + ¯ . s18d

Decomposing the expectation values as

D̂r,r8 = e−ishr,r8+xr+xr8dD̃r,r8,

D̂r = e−i2shr+xrdD̃r ,

ĥr8,r = e−isjr8,r+xr−xr8dh̃r8,r , s19d

whereD̃r,r8, D̃r, and h̃r8,r are real and non-negative, and the
phaseshr, hr,r8, and jr8,r are invariant under local gauge
transformationsfas can be seen from Eqs.s6d and s19dg, we
obtain

− tkhr,r8l = teisxr−xr8dF−
5

2
n̂D̃r,r8 coshr,r8 +

1

2
s1 − n̂dh̃r8,re

−ijr8,r

− 2iD̃rD̃r,r8e
ihr,r8 sin 2hr

+ 2iD̃r8D̃r,r8e
−ihr,r8 sin 2hr8G + ¯ . s20d

fNote that what enters the energy is the real termkhr,r8l
+khr8,rl=2 Rekhr,r8l.g Written in this way, the invariance un-
der local gauge transformations is manifest provided that the
original hopping term is supplemented with the usual elec-

tromagnetic phase factor expfi2eer
r8drW9 ·AW srW9dg=ei2eAr,r8.

Since the phaseshr, hr,r8, and jr8,r are gauge invariant,
they are genuine physical quantitiessthe overall phase is

fixed sincen̂r is reald. We first discuss the gauge invariant
phases and later return toxr. In our search for self-consistent
mean-field solutions that is described in Sec. IV below, we
have only explored homogeneous time-reversal invariant so-
lutions corresponding tohr =hr,r8=0, jr,r8=p and 2hr =
−hr,r8=p /2, jr,r8=p. These solutions amount to keeping

n̂D̃r,r8 or D̃rD̃r,r8 in Eq. s20d, respectively. For largeU, D̃r is

very small and the first solution, keeping the terms,n̂D̃r,r8
and,s1−n̂dh̃r,r8, is energetically favored. In the mean-field
approach the energy to minimize, subject to total particle
number given by Eq.s15d, is thus given by the sum of the
onsite energy Eq.s13d and the hopping energy

− tkhrr8l = −
t

2
h̃r,r8s1 − n̂d −

5t

2
D̃r,r8n̂ + ¯ −

t

16
D̃rh̃n̂2.

s21d

For future reference we have also included the lowest higher

order term which couples linearly toD̃r.
This resulting effective Hamiltonian looks very similar to

an ordinary BCS Hamiltonian, corresponding to Eq.s1d, but
with one dramatic difference, namely the presence of a term

proportional toD̃r,r8n̂, as well as a higher order term which

couples linearly to thes-wave pairing operatorD̃r. Nonzero
doping implies, according to Eq.s15d, that n̂.0. The hop-
ping energys21d then leads to nonvanishing superconducting

order parametersD̃r, D̃r,r8 as will be further discussed below.
The set of nontrivial variational parameters arexr, which

characterize the transformationU0, together with a set of

parametershuj that characterizeU8=eiGu8. In the self-
consistent mean-field calculation presented below, we make
the simplest natural choice for theu’s namely the quantities

n̂, D̃r,r8, D̃r, andh̃r,r8, which appear in Eqs.s13d ands20d for
the energy. A more complicatedvariational ansatz is of course
possible, but that would not in general allow for a self-
consistent mean-field solution.

Anticipating that we have found a self-consistent solution,
we now address the question of stability of this solution to
fluctuations. First notice thatxr only enters as aslatticed
derivativexr −xr8, so for the homogeneous solution we can
always putxr =0 by a global gauge transformation. Concern-
ing the gauge invariant phases, we only studied the time-
reversal invariant solutions corresponding to real effective
Hamiltonians. Thus, we have, for instance, not excluded the
possibility of a magnetized mean-field state with lower en-
ergy nor have we explored the possibility of nonzero terms
,sin 2hr in Eq. s19d which may or may not lead to time
reversal symmetry breaking. Clearly the presence of such a
state close to the nonmagnetic Mott state at half filling would
in itself be very interesting and would not violate the main
conclusions of this paper.

Finally, to study the stability against local fluctuations in
the phasesxr, we expand Eq.s20d to quadratic order in the
differencexr −xr8. In the continuum limit and to leading or-
der in a gradient expansion we have the following effective
Hamiltonian for the phase variable:
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Hx = Fth̃r,r8s1 − n̂d + 5tD̃r,r8n̂ + ¯ +
t

8
D̃rh̃n̂2Gs¹W x − 2eAW d2,

s22d

where we also introduced the external electromagnetic vector

potential AW . The expression in the parenthesis is positive
since it is minus the negative condensation energy Eq.s21d
due to the hopping term. Thus our solution is stable against
local xr fluctuations, and it follows that we have phase co-
herence in a charge 2e field, and thus superconductivity.

V. MEAN-FIELD ANALYSIS

The mean-field Hamiltonian can be analyzed by several
equivalent methods. In the spirit of what was just developed,
we could, e.g., make a Bogoliubov-Valatin canonical trans-
formation and minimize the energy of the retransformed
vacuum. This variational procedure would precisely corre-

spond to the canonical transformationeiGu8 alluded to earlier.
The method we actually use generalizes easily to finite tem-
peratures and arbitrary large number of terms in the polyno-
mial expansion of the mean-field Hamiltonian. It uses that
the density matrixr=ebfVsT,md−sH−mNdg minimizes the free en-
ergy F=kH−mNlr−kTkSlr for all values ofr se−bV is the
partition function andS the entropyd. We can then taker to

be the exponential of an expression linear inn̂r, D̂rr8, D̂r, and
hr,r8, where the prefactors are varied to minimizeF. This
method yields the ordinary BCS theory when applied to a
Hamiltonian of the form in Eq.s1d and gives a more com-
plicated self-consistent calculation when more terms are
kept.

We have performed the mean-field analysis numerically,
both using the truncated expressions given explicitly above
and the full mean-field theory containing polynomials to sev-
enth order. Since we construct an effective Hamiltonian, we
define the hatted operators whose expectation values give the

values D̂r
† in Eq. s18d. The corresponding operators

D̂r
†,D̂r,r8

† ,ĥ are therefore formallyD̂r
†=e−iGuDr

†eiGu, etc. but in
the calculation this involves simply reinterpreting the origi-
nal operator in Eq.s16d in terms of quasiparticle fermion
operators. For the density matrixr~e−bHeff we choose the
HamiltonianH=Heff as

Heff = o
r,r8

st8hrr8 + 23/2gDrr8
† d − o

r

sm8nr + 23/2g2Dr
†d + sCCd.

s23d

Our approximation is reasonable for small doping, and we
confine the mean-field analysis to this regime. We letek
=s2−coskx−coskyd in two dimensions with a similar ex-
pression forD=3. With m8=Dt8+dm and g2=Dg+dg we
define ek= t8ek+dm, dk=gek+dg, and Ek=Îek

2+dk
2. The en-

ergy gapD is the minimum inEk, and it is easy to verify that
for small doping an excellent approximation is given byD
= ugdm−dgt8u /Îg2+st8d2. We define the momentum space

sums asfskd˜ =okfut8ufskd /Ekg. Taking into account that there
are four spin values we find the following expression for the

doping d< n̂, where expectation values of operators are
dropped when the context is clear,

n̂ = 4 3
1

2
E S1 −

ek

E kDd2k = 2 − 2ek̃/ut8u. s24d

The expressions fort8 andg can be read off to lowest order
from Eq. s21d

t8 = −
1

2
ts1 − n̂d, s25d

g = −
5n̂t

4Î2
, s26d

while the definition of the on-sites-wave-order parameters
can be read off from Eq.s13d

Dg − dg = 2Î2UkDrl. s27d

In writing Eq. s23d, we neglected the nonlocal repulsive in-
teractions of typenrnr8 that will certainly be present in any
realistic model with screened Coulomb interaction. Assum-
ing a nearest-neighbor termU1nrnr8 and using the identity

knrnr8l=1+1
2D̂r,r8D̂r,r8

† − 1
4hr,r8hr8,r −2sn̂r +nr8d+ 5

4snr
2+nr8

2 d
+nrnr8, Eq. s26d would change to

g = −
5n̂t

4Î2
+ Î2U1D̃r,r8

† . s28d

Below we argue that this would not qualitatively change our
conclusions.

As usual, self-consistency implies a gap equation which
reads

kDrl = −
1

Î2t8
dk̃. s29d

After expanding to lowest order ind and doing some algebra
this can be recast as

t

4US D

Î2t
−

5Dd

8 D =
5d

8
−

D

tÎ2
1̃, s30d

which is a closed equation that can be used to find the physi-
cal gapD as a function ofd.

Using the self-consistent equations, we can find expres-
sions for the extended and onsites-wave pairing amplitudes

ktDr,r8l < Î2Ds1̃ − 1/Dd,

kDrl <
1

2US D

Î2
−

5Ddt

8 D . s31d

Thus, not surprisingly we find that the onsites-wave compo-
nent is reduced by a factort /U relative to the extended com-
ponent.

We can now understand what would be the qualitative
effect of adding extra repulsive interactions corresponding to
the redefinitions28d of the variational parameterg. For large

U1, g will effectively be put to zero corresponding toD̃r,r8
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,st8 /U1dn̂, rather thanD̃r,r8,d. We see that the scale of

D̃r,r8 changes but it is still nonzero for arbitrary small doping.

A. Asymptotic behavior of the gap in D=2

In two dimensions, the expressions24d can be approxi-
mated by

n̂ = <
1

put8u
sdm + Îdm

2 + D2d. s32d

The expression for 1˜ is logarithmically singular but can be
approximated by

1̃ <
− 1

2p
lnS− dm + Îdm

2 + D2

32ut8u
D =

1

2p
lnS32n̂pst8d2

D2 D ,

s33d

where Eq.s32d was used. In spite of the logarithmic singu-
larity, the self-consistent equations30d can be solved in
closed form. Definingq=D / stdd the sinversed equation is

d <
8p

q2 epf4q−5Î2s1+2U/tdg/8qU/t. s34d

By plotting the pairssd ,qdd according to the above for-
mula as a function ofq, we find the gap as a function ofd,

shown for values ofU=s` ,10,5,1d in Fig. 1. We can see an
almost linear behavior of the gap as a function of doping that
is quite insensitive to the value ofU. For all values ofd and
U the approximationD< td is surprisingly good. A compa-
rision with the numerical solution of the self-consistent equa-
tions is shown in Fig. 2.

B. Asymptotic solution for D=3 and small doping

In the caseD=3, the vanishing density of states neark

=0 makes the integral 1˜ converge. In this case the self-

consistent equation is Eq.s30d with D=3, and constant 1˜.
However, due to the vanishing density of states, even rela-
tively small values of density lead to quite substantial values
of m and d so the asymptotic value of this equation is far
from being reached even for doping as low as 0.01. The

corrections to 1˜ are rather slowly varying, so the linear de-
pendence of the gap upon doping is obtained for theD=3
case as well, as shown in Fig. 2.

VI. EFFECTIVE THEORY FOR SMALL d

After applying a transformation that rigorously preserves
the full Fock space, we have obtained a superconducting
behavior for the doped spin 3/2 Mott insulator by using

FIG. 1. Values ofD / t as a function of doping
d for U=s` ,10,5,1d for dø0.1, with the gap
decreasing monotone with increasingU at given
d.

FIG. 2. Values ofD / t as a function of doping
d for U / t=10 for d,0.05. The upper curve is for
D=3 and the lower data points forD=2. The
solid line is the fit to the 2D asymptotic curve
according to Eq.s34d. The 3D fits with no visible
error to the curveD / t=1.4848d corresponding to

1̃=.6137.
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standard mean-field theory methods. Here we contrast this to
an effective theory for the Hamiltonian in Eq.s1d, derived in
the limit of small dopingd!1 and small hoppingt!U ,J,
using the more conventional approach of projection on a
low-energy subspace. Ignoring hoppingt=0, this low-energy
sector consists of states where each site is occupied by either
a Mott singletuFsl, which we choose as the Fock vacuum
uFsl→ u0l or by a single chargeusl=cs

†u0l with spin 3/2 ss
= ±1/2, ±3/2d—all other states are separated from these by
a gap of orderX,U ,J. Restricting to this low-energy sector
and including the hopping in perturbation theory gives to
order t2/X, the effective Hamiltonian

Heff = − t̃o
r,d,s

csr
† cs,r+d + o

r,d,a,a8,b,b8

J̃aa8bb8ca,r
† ca8rcbr+d

† cb8,r+d

s35d

subject to the constraintoscsr
† csrø1 fJ̃aa8bb8 are SUs2d sca-

larsg. This t-J-type model describes four species of fermions
with nearest-neighbor hoppingst̃, td, nearest-neighbor ex-

change couplingssJ̃, t2/Xd, and with the hard-core con-
straint that no two fermions occupy the same site. Second-
order perturbation theory guarantees a finite, albeit weak,
attraction which opens the possibility of having a supercon-
ducting phase even for small doping. From this approach,
however, we would expect such a phase to be destroyed by a
nearest-neighbor repulsion that is normally present in a real-
istic model. Thus, our previous mean-field calculation is at
odds with this approach. If the former turns out to be valid, it
suggests that there are nonperturbative effects due to the
hard-core constraints that are not easily accounted for in the
conventional formulation. If, on the other hand, the hard-core
constraints are not very important and the naive picture of
four different species of weakly interacting fermions is es-
sentially correct, it would suggest that our mean-field treat-
ment of the phase phase fluctuations does not capture the
correct physics.

VII. DISCUSSION AND SUMMARY

A. The anomalous termDr,r8nr

We see from Eq.s15d that in order to have a nonzero
dopingd=2−knl, wemusthaven̂.0, in factn̂<d to lowest

order ind. Energetically we will also haveĥÞ0 for finite d.

According to Eq.s20d the extendeds-wave pairing fieldD̂r,r8
cannot vanish and in fact will be proportional to doping. This

in turn generates asmuch smallerd on-site pairingD̂r through
the self-consistent equations. Note that this pairing field can
never completely vanish because of the linear coupling to
higher order terms. At finite temperature the mean-field
theory will presumably eventually break down via anxy
transition due to phase fluctuations that we have not taken
into account. This has been discussed in a series of recent
papers where the term “gossamer superconductivity”16–18has
been used to describe a similar scenario.

It is admittedly not easy to understand the physical origin
of these new anomalous terms of the typeDr,r8nr. On a tech-

nical level, they are forced by the fermion statistics which
constrains the form of the canonical transformation neces-
sary to map a local Mott ground state to the vacuum. In our
case, this transformation must besad nonlinear in fermion
operators andsbd charge nonconserving. Propertysad yields
an effective interaction from the hopping term near a charged
ground state and propertysbd makes this interaction non-
gauge invariant. Propertysad is a necessary consequence of
mapping a locally entangled state to the vacuum and prop-
erty sbd is a consequence of mapping a charged state to the
vaccum which breaks gauge symmetry. Very general argu-
ments relying on long-range phase coherence and a finite
range gap function then predict that the system should be a
superconductor.19 Our mean-field calculation, which sug-
gests a superconducting ground state, supports this picture,
given our assumptions about phase coherence.

We already pointed out the contradiction between our
main result and what would be expected based on a conven-
tional analysis of the type leading to Eq.s35d, but also
stressed the difficulties related to the hard core constraints
inherent in the latter approach. Here we should note that
more elaborate schemes for dealing with these nonholonomic
hard core constraints face severe difficulties related to phase
fluctuations. For example, in the spin-1/2 Hubbard model at
half filling, one can turn the no double occupancy constraint
into a holonomic gauge constraint by introducing spinons
and holons. The resulting phase depends crucially on the
fluctuations in the related gauge fields. By working in the full
Hilbert space, we avoid these difficulties, but nevertheless
our conclusions are still dependent on certain assumtions
about phase coherence. Without a more sophisticated analy-
sis of the phase fluctuations, we cannot rule out that these
will be important and, e.g., destroy the superconduting state
at low doping.

B. Range of validity and applicability

We now assume that our analysis is correct at low doping,
and discuss its range of validity and applicability. At suffi-
ciently large value of doping, the theory will yield a free
energy which is unfavorable compared to that of a dopedn
=1 Mott insulator. The mean-field picture suggests there will
be a coexistence region where a slightly hole dopedn=2
Mott insulator will coexist with a hole dopedn=1 Mott in-
sulator. Then=1 Mott insulator will presumably have some
sort of magnetic order at low temperature that breaks the
large spin degeneracy of the uncorrelated odd filling Mott
insulator. If a coexistence region really exists, or whether an
intermediate phase which breaks translational invariance
may exist, is beyond the scope of the present analysis. Our
calculation thus makes assumptions aboutU which leave
open the question if this behavior could really be seen in a
physical system. On the one hand,U must be large enough
sandJ even largerd so that a Mott insulating state occurs at
n=2 and furthermore triply occupied sites are effectively ab-
sent. On the other hand,U must be small enough so that the
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correlated state will have lower energy than a mixed state
with an n=1 Mott insulator and ann=2 Mott insulator. The
caseJ,0 or J,U is briefly addressed in Sec. III.

Finally, it is relevant to ask whether the transformation
used for the spin-3/2 case could be applied to the spin-1/2
systems. First consider the canonical transformation which
maps between these then=0 and n=2 states. This is the
ordinary particle-hole transformation which is not charge
conserving. However, the doubly occupied singlet is created
by c↑,r

† c↓,r
† u0l and hence is factorizable in fermion operators.

The canonical transformation is therefore linear and no new
interaction terms are introduced in the transformation. The
physical properties of the system are symmetric under charge
conjugation, which is sufficient for the particle-hole transfor-
mation not to generate any new behavior and the present
analysis is uninteresting. In the case of the half-filled Hub-
bard model, the Mott ground state corresponds to one elec-
tron per site. This cannot be mapped to the vacuum through
a canonical transformation without violating the Fermi anti-
commutation relations.15

C. Summary

We have presented a new type of canonical transforma-
tion for the half-filled spin-3/2 Hubbard model that maps the
Mott insulator at half filling to the vacuum. This canonical
transformation is straighforward to generalize to multiband
Hubbard models with a local spin singlet Mott insulating
ground state. At finite doping, a self-consistent mean-field
theory for such a system results in a phase with long-range
phase coherence. An order parameter that is usually identi-
fied with extendeds-wave superconductivity appears and is
proportional to doping. We note that the resulting picture
resembles the “gossamer superconductor” scenario that has
been recently introduced by Laughlin and co-workers. Our
approach appears to be in contradiction to other methods of
attacking these kinds of problems, and we pointed out the
difficulties with both approaches. Although we have only
explored a specific spin-3/2 Hubbard model at half filling,
we believe that our method could be useful for a variety of
similar models with locally entangled Mott insulating ground
states.
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