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Properties of the doped spin% Mott insulator near half filling
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We develop an exact generalized Bogoliubov transformation for the spin 3/2 Hubbard model with large
anti-Hunds rule coupling near half filling. Since the transformation is unitary, we can employ standard ap-
proximate mean-field theory methods in the full Hilbert space to analyze the doped Mott insulator, in contrast
to a conventional approach based on truncated Hilbert spaces complemented with hard core constraints. The
ground state at exactly half filling is an insulatifiylott) singlet, and according to our analysis an order
parameter\, usually associated with extendedvave superconductivity, will appear self-consistently as soon
as a finite densityn of holes is introduced. This is a consequence of the nonlinear nature of the unitary
transformation mapping the Mott singlet state to a Fock vacuum which introduces anomalous termsAsuch as
in the effective Hamiltonian. Our analysis uses an approach that generalizes readily to multiband Hubbard
models and could provide a mechanism whereby a superconducting order parameter proportional to density
develops in Mott insulators with locally entangled ground states. For more complicated systems, such an order
parameter could coexist naturally with a variety of other order parameters.
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I. INTRODUCTION

A Mott transition is expected to occur when the overlap
between atomic orbitals in an insulator becomes large

PACS nunter74.20.Mn

H=-t X (cl cores+H.C)+ 2 [Uny(n, —2) +IP?],
rr’y,é r

1)

enough for the hopping energy to overcome the energy asso-

ciated with charge fluctuations. To properly describe thisvhere the chemical potential is absorbedlimnd(r,r’) are
transition is very difficult, and a variety of techniques haveg|| pairs of nearest neigbors counted oAt@/e will consider
been used, with dynamic mean-field theory being an importhe casel> U >t, which makes the singlet state heavily fa-

tant recent contributiofr” In this work we develop an ap- vored neam=2. The reason for this restriction will be ex-
proach, more in the spirit of BCS theory, for doped Mott pjained in Sec. II.

insulators where the parent state has an even number of elec- The single site spectrum consists of sixteen states: an
trons, and thus integer spin, at each site. Examples of sucénpty site, four equivalent spin 3/2 singly charged states, a
models are two-band Hubbard models considered in the comsinglet and five spin-2 doubly charged sites, four spin-3/2
text of ruthenate alloy%,and multiband Hubbard models for Charge three states and a Charge four sing|et_ The energy
doped Go***°We present evidence for superconductinge (n) of the atomic ground state fam particles isE4(0)
behavior in these systems even for weak doping. We focus Ey(2)=0, E4(1)=-U, E,(3)=5J+3U, E,(4)=100+8U and

on the simplest system to which our conclusions applyihe™ quintet state has energyl.2The lowest energy states

namely, the spin-3/2 Hubbard model on a square lattice wit

anti-Hunds rule coupling&:*®

' ) I2)beyEg(n+ 1)+E4(n—1)-2E4(n)=U>0 so there is no ten-
This model neatly illustrates yoncy for superconducting pair formation from any of the

our core idea, namely, that a nonlinear canonical transformag .o ‘interactions

tion can be used to attack the Mott transition. We do not

With our choice of parameters, standard arguments imply

believe that this method initially should be tested throughp 4t the ground state far=2 and smalt should be a spin

direct comparison with experiment but rather by other inde

singlet. For small doping near zero filling, the ground state

pendent calculations and simulations on the same theoreticgl " most likely be a normal Fermi liquid, at least for sméll

model.
We define the particle density bvyrr:Esc;r‘,cSr and the
spin density byS,=ESc;r%s,cs/,,, where —g ss<; andSy

andJ. If U and/orJ are sufficiently large, a spin-symmetry
breaking state may appear according to the Stoner criterion.
Whether or not this happens depends on the density of states,

are the generators of spin-3/2 rotations. Furthermore, W@hich at least in the case of two dimensions remains finite

define the operath;m(r) which creates ah=2, |,=m state
with two_fermiond? P;rg(r):zafﬁ 22aB g%;z,m>c;rc};:r
and the SWR) invariant Py=2,P, (r)P,(r). The Hamil-
tonian containing the maximal number of &Y invariant
onsite terms is

even down ton=0. Numerical simulations indicate that the
tendency towards spin ordering is grossly exaggerated in
mean-field theory? In any case, a deeper discussion of this
point is not within the scope of the present article, which is
to investigate the analog of a Fermi liquid near half filling.
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The Mott singlet|<Ds(r)>:ATr|O> at siter is created from method in Ref. 15. However, we can get it without much

the vacuum by the operat(ztrTr given by formalism as follows. Our desired operator is “aImoAﬂ’.
The problem is that this operator generates unwanted side
ATr — L_E eiﬁ<s+1/2)clrcisr' ) effects in then=1 andn=2 particle subspaces by mapping
242°% o these to new states with=3 andn=4. We get rid of these

A natural first att ‘t derstand th tom § Iunwanted overlaps by using a projection operator, defining
natural Tirst attempt to understand the system lor smalgt= AT (1 -n)(1-n/2). It is straightforward to check that

hole doping is to try the same method as for the nearly halfor|O>:|<bs(r)), Q//d(r))=[0), and thatQ, andQ;r annihilate

I'”ed fspm-%_/ 2A|jr|u_bpard mr(])del,#.e., tg Amake a part'i')i’;}meall other states. A canonical transformation that rotates the
fermionic creation and destruction operators, In conirast 1512230 and[@4r) at each sita into each other without
the case of the filled spin-1/2 Hubbard model, however, this"’“’-fec'[Ing the other states If provided by the unitary operator
canonl_cal trgnsformatlon fails a number of criteria if the U(g,) = eiG(¢r):HUr(¢r)’ (5)
Mott singlet is to act as a vacuum for the new operators. In p

particular, we see that

Csr|P(n) # 0, 3

where
U, () = &%) = d(6:Q/+47Qn (6)

(DG s D) # 1. (4 with §,= ¢,€X (¢, and y, are real. On |0) and |d(r)) the

The first inequality is perhaps not so severe; after all thdransformation becomes
operatorc, ,, being fundamentally a fermion creation opera- ~ _ . vt
tor createséra state with three fermions on sjtand we could Ui(@)low = cosdy +ising (e¥Qr+e™Q),  (7)
argue that we could ignore this problem by suitably projectwhereas it is unity on all other states. Choosifg /2, for
ing onto states with at most two particles. This is in fact theall r, we obtain the canonical transformation that fulfills our
approach usually taken in attempts to perturbatively coneriteria, i.e., it interchanges the empty state and the Mott
struct a new vacuum near=2. The second inequality is state at each site without affecting the other states.
much worse; it is a consequence of the singlet being en- Applying the unitary transformation Eq5), with ¢,
tangled, i.e., it cannot be written as a product state in any /2, to the vacuum staté), the phase factorgX enter the
one-particle basis. As a result, the putative creation operatasbtained Mott statédy) only as an overall phasg,y,, and
does not generate a normalized state from the vacuum. Thgn be neglected. In general, however, it is obvious from Eq.
entanglement property implies that the destruction operatofs) that the unitary transformation gives a state where the
on the created state does not recreate the ground state—IsHase factors enter in a nontrivial way. In particular, this is
even in the two-particle space since it projects into $1e the case for the slightly doped Mott insulator, which we will
=2 two-particle states. consider below. This will be mapped onto a state near the
true vacuum state, which can then be analyzed with standard
methods. Note that the phase factes are crucial to retain
local gauge symmetry in the same way as the complex

We now show how to systematically construct creationphases introduced into the Bogoliubov transformations are
and annihilation operators with correct local properties by enecessary to restore gauge invariance in BCS theory.
canonical transformation that fulfills the following criteria:
(@) it maps|®(r)) to |0) and (b) it maps the singly charged
states to themselves. Due to our choice of interaction param- Our analysis in this article assumes:@ <J. As a con-
eters, wherd>U, we also expect that the state composed ofsequence the ground state for the on-site terms in(Bcat
two holes will play the same role in the hole doped Mottn=2 is nondegenerate—the Mott state is a simple product of
insulator neam=2, as the doubly charged singlet does forlocal spin singlets. Remember that even though in this case
small filling. The canonical transformation that we desirethe ground state at=2 is trivial, this is no more true as soon
should therefore interchange the Mott singlet and theas the Mott insulator is doped $5=-2-5< 2. Here we find,
vacuum, leaving all other states invariant. T&e2 doubly  using mean field theory, a highly nontrivial result, namely a
charged states will have the same charge as the Mott singletuperconducting order parameter proportionalstan the
However, due to the constraints imposed by a canonicgbhysically more interesting case whés 0 or 0<J<U, the
transformation utilizing only the spin-3/2 fermion operators, state atn=2 is more complicated and the analysis in this
these doubly charged states must be obtained by two applarticle needs modification—we briefly discuss this below.
cations of the new creation operator, while the singlet createtiowever, we believe that it is important to first establish
by another double combination of these creation operator&hat the method predicts in the simpler but still very non-
forms a state with relative charge minus 2. These considetivial case studied here.
ations force the canonical transformation to be charge non-
conserving.

The canonical transformation that accomplishes this and When J<0, the problem cannot be addressed with the
similar mappings can be systematically obtained through thenethod presented above, since there is no unique ground

IIl. CANONICAL TRANSFORMATION TO THE MOTT
SINGLET VACUUM

IIl. GENERALIZATIONS

A. The degenerate case]J<0
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state aln=2 to map to an equivalem=0 problem. Let us, U;=1 and¢,==/2, or by havingl;=U,(7/2) and¢,=0. In
however, suggest a generalization of our strategy: Using general, we can make a coherent superposition of empty and
mapping similar to the one in E@5) we can map an arbi- doubly occupied singlet sites, both by lettiggvary and by
trary state in then=2, L=2 ground-state multiplet to the  adding an onsitesswave order parameter. As could be ex-
=0 state. The arbitrariness of this choice can then be codegkected, this indeterminacy leads to a numerical instability in
in a non-Abelianlgauge potential in much the same way the the variational equations which we resolve by simply taking
arbitrary local phasg, was introduced in E¢(7) above. Our ¢, =/2 for all r, and not further exploiting these variational
hope is that the resulting gauge theory will be more tractabl@arameters.

than the original degenerate Mott probléi. In order to construct an ansatz fefu we first work out
e 'Golx)HeGolx) This operator is obtained by replacing each
B. The case G<J<U occurence of the fermion operatof by e Cox)c! gColx)

and similarly forcg,. This expression is complicated, but it
can nonetheless be worked out exactly in terms of polyno-

mials of c;, and cl’,, since the fermion algebra at a site is

For this case, the=2 ground state is still unique and the
mapping using Eq(5) is well defined and meaningful when
f[he hopping vanishes. Our mean f!eld_tre_atment of t_he reSUI{Slosed. The exact expression, written here for reference only,
ing dopedn=2 system when hopping is introduced is, how- is given by
ever, not to be trusted for the following reason. Under the @ ,

. ) ; ‘ . S n:
;nsappmg given by Eq(5), the density operatar transforms ;r ~ c;r’,{[ATe‘z'X(l _n) - PXA]+ (_ tn+ _)}

n—2-n+P?-nn-1(n-2)6, ® e 1)(s+1/2)ezixz_m{_ Lt

where P? is the operator defined above Ed). When the
two-particle singlet has the same free energy as the singly .2 -2
occupied sites, the chemical potential obgys U. Reintro- + <? +n+ T)}C'S’r’
ducing 1 in Eq. (1) and using Eq.(8) shows that thatl
—Jer=J—U under the transformation. Thus fdr<U we  where the subscripts are dropped on the right-hand side. The
find that the effective Hamiltonian after the transformationnotation:O: indicates a normal ordered operator, i.e., strings
will have J.4<0, and we have the same situation as in Secof fermion operators where all creation operators are anti-
A, commuted to the left and annihilation operators to the right

These generalizations of the model, although of legitimateaking only into account the sign of the permutation. In this
interest, take us outside what we are able to handle withowase, n?:=n?-n and S:=%-15n/4.
introducing additional approximations and uncertainties. For The onsite interaction is zero in the vacuum and two par-
that reason they will not be further considered in this paperiicle singlet subspace. Since these are the only two states
affected by the canonical transformation, this interaction re-
mains invariant, while the chemical potential transforms ac-
cording to

(11

IV. A VARIATIONAL ANSATZ

We now turn to a systematic variational analysis of the 52 <P 'n3'>
H S S | (12)

slightly doped Mott insulator using the canonical transforma- n—2- (n -+ —.
tion in Eq.(5). In analogy with ordinary Fermi-liquid theory, 4 3 6
as well as the BCS theory of superconductivity, we search anticipating a mean-field calculation under the assump-

for a variational state with particle number given b¥2  on of no spontaneously broken global symmetries, we do a
—dthat is obtained from the vacuum by a canonical transforyyick decomposition of the onsite term, and calculate the
mation €9 depending on a set of parametersWe define expectation value according to

the functionsE(u) and N(u) by
-Gy G <Un(n—2)+JP2>——ﬁU+ﬁ2<—5J +—3U) +2A2U
E(u) =(0|e""“uHe“u|0), (9) = 8 2 ;

(13

where a hat indicates the expectation value of an operator
composed of ordinary fermion operators evaluated in the
stateU’|0) near the physical vacuum. Similarly, the expecta-
tion values for the density anstwave order parametex',
become exactly

N(u) = (0|e"'9uN€“u|0). (10)

The values{u} which minimize E(u) define our variational

ground stateg%|0) with particle numbeN(u). We have seen

that for n=2, the transformatiors, is simply G[(#/2)€X]

=Gy(x;) given by Eq.(5). We hence expect that near the

Mott insulator, the relevant transformation will be given by a

further transformation close to the identity. We therefore (A*)Z e |A|2 A "2

make the ansate%=eCog%u=U,U’ (Ah=—e™-Ae 1+ -+
= u=UgU". 2 2 2 16

Note that since we can continuously rotate the Mott state
atn=2 to the true vacuum by letting go from /2 to zero, _ A*(
we can generate a Mott singlet on a site either by having

~, N P
AZ——+—>, 14
| > % (14
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a2 A ﬁ|A 2 fixed sincef, is rea). We first discuss the gauge invariant
(ny=n+ 2(1 - Z) (1 - 5) - 2r (15) phases and later return }g. In our search for self-consistent

mean-field solutions that is described in Sec. IV below, we

We now derive a similar expansion of the hopping operatorhave only explored homogeneous time-reversal invariant so-
In this case the expressions become a terrible mess—far tdtions corresponding toy =7, =0, &, =m and 2=
complicated to write down in their entirety. It is, however, ~7r=7/2, & =m. These solutions amount to keeping
possible to construct a systematic expansion in the number @A, ,, or A A, in Eq. (20), respectively. For larg®, A, is
fe_rmion operators, which is f_;lppropriate_for small doping. Tovery small and the first solution, keeping the termaA
this respect, we take the entire expression, and rewrite it as a

sum of normal ordered terms. We then truncate this expres"’lnd ~(1=Php, is energetlc_:allly. favored_. In the mean-f|e.ld
sion at fourth order in fermion operators and keep expecta@ppro"leh the energy to minimize, subject to total particle
umber given by Eq(15), is thus given by the sum of the

tion values of on-site and nearest neighbor s-wave pairing Ea13 and the hooi
amplitudes, ordinary hopping and density operators. Defin- nsite energy Eq(13) and the hopping energy

ing

r,r’

t~ 5t~ t~~
_ ~ ~ A2
(- 1)(s+112 -th,)=-zh (1 -R) - —A, A+ - = —AhR°.
A:rr = ES I~ C;rcis o (16) 2 2 16
' 2v2 ’ (21)
he = Esc;"rcslr,, (17 For future reference we have also included the lowest higher

h , iahb find that the hopoi order term which couples linearly t&r.
wherer,r’ are nearest neighbors, we find that the hopping g resulting effective Hamiltonian looks very similar to

operator, truncated at fourth order in fermion operators, beén ordinary BCS Hamiltonian, corresponding to EB, but
comes with one dramatic difference, namely the presence of a term
proportional toA, /fi, as well as a higher order term which

couples linearly to the-wave pairing operatol,. Nonzero
A iy 2% A doping implies, according to Eq15), thatin>0. The hop-
X(1=A)hy  —t(€ AL — NA e XA ping energy(21) then leads to nonvanishing superconducting

5t - o
- t<hr,rr> = - Zn(eZIXFAr,r’ + e—ZIXr/Ar’r,) + Ee2|()(r—)(r/)

+t(e‘2‘Xr’A*, B eZ‘Xr’A,,)eZ‘XrAr e (18) order parameterA,,.A.”, as.W|_II be further discussed bglow.
r : The set of nontrivial variational parameters arewhich
Decomposing the expectation values as characterize the transformatidd,, together with a set of
. _ _ parameters{u} that characterizeU’=€%. In the self-
A= et consistent mean-field calculation presented below, we make
the simplest natural choice for thes namely the quantities
Ar - e—iz(rzrﬂ(r)Z“ n, A;,, A, andh, ./, which appear in Eq$13) and(20) for
the energy. A more complicatedvariational ansatz is of course
ﬁr,r:e“(fr’vr")(r‘)(r’)ﬁr, ) (19 possible, but that would not in general allow for a self-

consistent mean-field solution.

Anticipating that we have found a self-consistent solution,
we now address the question of stability of this solution to
fluctuations. First notice thag, only enters as dlattice)
derivative x,— x;, so for the homogeneous solution we can
always puty, =0 by a global gauge transformation. Concern-

_ 5 ~ 1 L~ . ing the gauge invariant phases, we only studied the time-
‘t<hr,r'>=te'(xr_xr'){‘ EnAr,r' COS 7 pr + 5(1_n)hr’,re_|§r"r reversal invariant solutions corresponding to real effective
Hamiltonians. Thus, we have, for instance, not excluded the
- ZinZr,rrei””’ sin 27, possibility of a magnetized mean-field state with lower en-
ergy nor have we explored the possibility of nonzero terms
+2in,Zr,,e“”rvr’ sin 2%} — (20) ~sin 2y, in Eq. (19 whic_h may or may not lead to time
’ reversal symmetry breaking. Clearly the presence of such a

Note that what ent th is th [t state close to the nonmagnetic Mott state at half filling would
[Note that what enters the energy is the real tefm.) in itself be very interesting and would not violate the main

+(hy ) =2 Reh, +).] Written in this way, the invariance un- ~nclusions of this paper.

der local gauge transformations is manifest provided that the Finally, to study the stability against local fluctuations in

original hopping term is supplemented with the usual electhe phases,, we expand Eq(20) to quadratic order in the

tromagnetic phase factor gxpef; di”-A(f")]=€2eA.", differencey, - x;-. In the continuum limit and to leading or-
Since the phases,, 7/, and &, are gauge invariant, der in a gradient expansion we have the following effective

they are genuine physical quantitiéthe overall phase is Hamiltonian for the phase variable:

Wherezmr, Z,, andﬁ,,,, are real and non-negative, and the
phasess, 7, and &, are invariant under local gauge
transformationgas can be seen from Eq$) and (19)], we
obtain

165121-4
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~ ol = ~ doping =N, where expectation values of operators are
AhA®|(Vx—2eA  dropped when the context is clear,

(22

where we also introduced the external electromagnetic vector

potential A. The expression in the parenthesis is positiveThe expressions far andy can be read off to lowest order
since it is minus the negative condensation energy(Et).  from Eq. (21)

due to the hopping term. Thus our solution is stable against

local y, fluctuations, and it follows that we have phase co- t=— }t(l ~f), (25)
herence in a chargeedield, and thus superconductivity. 2

Hy= | the, (L —7) +5tA, A+ - +

oo | —~+

ﬁ:4><%J(l—%‘k>d2k:2—2§k/|t’|. (24)

V. MEAN-FIELD ANALYSIS y=- m (26)

—
42
The mean-field Hamiltonian can be analyzed by several o _
equivalent methods. In the spirit of what was just developedWwhile the definition of the on-site-wave-order parameters
we could, e.g., make a Bogoliubov-Valatin canonical transan be read off from Eq(13)
formation and minimize the energy of the retransformed R
vacuum. This variational procedure would precisely corre- Dy = 6,=2V2U(A,). (27)

spond to the canonical transformatigfiv alluded to earlier.  In writing Eq. (23), we neglected the nonlocal repulsive in-
The method we actually use generalizes easily to finite temteractions of typen;n,, that will certainly be present in any
peratures and arbitrary large number of terms in the polynorealistic model with screened Coulomb interaction. Assum-
mial expansion of the mean-field Hamiltonian. It uses thaing a nearest-neighbor tertd,nn,» and using the identity
the density matriyp=eATw-(H-sN] minimizes the free en-  (nn )=1+2A, A" -1h  h. —2(A +n)+2(n2+n?)

=(H- - ~BQ s th 270 =yt 47T renr 4\ r’
ergy F-(H ,u.N>p kTS, for all values ofp (7% is the +n.n,, Eq. (26) would change to
partition function ands the entropy. We can then take to
A A 5nt

be the exponential of an expression lineafjinA,, ., A,, and y=——=+ V2u AT (28)
. R . [ 1=y

h: ., where the prefactors are varied to minimige This 442 '

method yields the ordinary BCS theory when applied to

Hamiltonian of the form in Eq(1) and gives a more com-

plicated self-consistent calculation when more terms ar

%Below we argue that this would not qualitatively change our
gonclusions.

kept As usual, self-consistency implies a gap equation which
We have performed the mean-field analysis numerically,reads

both using the truncated expressions given explicitly above 1 ~

and the full mean-field theory containing polynomials to sev- Ap=- _\e“Et’ dy. (29

enth order. Since we construct an effective Hamiltonian, we
define the hatted operators whose expectation values give ti#gter expanding to lowest order iéiand doing some algebra

values AT in Eq. (18. The corresponding operators this can be recast as

Al.AT.. h are therefore formall\f=e%ATe%, etc. but in t [ A 5D\ 55 A~
the calculation this involves simply reinterpreting the origi- m( ) = e t\_El (30
nal operator in Eq(16) in terms of quasiparticle fermion
operators. For the density matrjxxePHeft we choose the which is a closed equation that can be used to find the physi-
HamiltonianH =Hg; as cal gapA as a function ofé.

Using the self-consistent equations, we can find expres-
Het = 2 (U + 2%29AT ) = 3 (', + 292y,A1) + (CC).  sions for the extended and onsisvave pairing amplitudes

r

rr’

\s"2t 8

(23) (tA; ) =~ V2A(1 - 1/D),
Our approximation is reasonable for small doping, and we 1/A 5D&
confine the mean-field analysis to this regime. We det (A,) = _(_r__) (31)
=(2-cosk,—cosk,) in two dimensions with a similar ex- 2U\ 2 8

pre.ssion forD=3. With u'=Dt'+4, a”d};Z_:[;?’J' 8y We  Thus, not surprisingly we find that the onsgevave compo-
define e.=t' -+, d=ve+ 6, and E,=Ve+di. The en-  npentis reduced by a factofU relative to the extended com-
ergy gapA is the minimum ing,, and it is easy to verify that ponent.

for small dopirwrgiexcellent approximation is given by We can now understand what would be the qualitative
=|ys,= S’ |1y +(t')% We define the momentum space effect of adding extra repulsive interactions corresponding to

sums as‘(~k):2k[|t’|f(k)/Ek]. Taking into account that there the redefinition(28) of the variational parametey. For I~arge
are four spin values we find the following expression for theU,, y will effectively be put to zero corresponding 1%
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FIG. 1. Values ofA/t as a function of doping
S for U=(,10,5,1 for §<0.1, with the gap
decreasing monotone with increasibigat given
é.

0.02

0.04

0.06

~(t'/UpA, rather thanA,, ~ 8. We see that the scale of Shown forvalues obl=(=,10,5,3 in Fig. 1. We can see an

A rr» Changes but it is still nonzero for arbitrary small doping.

A. Asymptotic behavior of the gap inD=2
In two dimensions, the expressig@4) can be approxi-

mated by
1
A=~ ——(
]

The expression for 1s logarithmically singular but can be

approximated by

I~—"1n
2 320t'|

where EQq.(32) was used. In spite of the logarithmic singu-
larity, the self-consistent equatiof80) can be solved in
closed form. Definingy=A/(td) the (inverse equation is

5 BT 877 ol

By plotting the pairs(8,q6) according to the above for-
mula as a function of], we find the gap as a function &

0.07}F

0.06

0.05f

= 0.04f

0.03F

0.02F

S, +\'é‘2 +A?).

5/2(1+2U/))/8qUIt

A/t vs & for Uit=10

-1 (—5M+\"62+A2>_i| <3mw(t’)2
2w A2

D=3 .

almost linear behavior of the gap as a function of doping that
is quite insensitive to the value &f. For all values ofé and

U the approximatiom\ =t¢ is surprisingly good. A compa-
rision with the numerical solution of the self-consistent equa-
tions is shown in Fig. 2.

B. Asymptotic solution for D=3 and small doping

In the caseD=3, the vanishing density of states ndar
=0 makes the integral Tonverge. In this case the self-

consistent equation is E¢30) with D=3, and constant.1
However, due to the vanishing density of states, even rela-
tively small values of density lead to quite substantial values
of u and § so the asymptotic value of this equation is far
from being reached even for doping as low as 0.01. The

corrections to lare rather slowly varying, so the linear de-
pendence of the gap upon doping is obtained for Bhe3
case as well, as shown in Fig. 2.

VI. EFFECTIVE THEORY FOR SMALL &

After applying a transformation that rigorously preserves
the full Fock space, we have obtained a superconducting
behavior for the doped spin 3/2 Mott insulator by using

FIG. 2. Values ofA/t as a function of doping
6 for U/t=10 for §<0.05. The upper curve is for
D=3 and the lower data points fdb=2. The
solid line is the fit to the B asymptotic curve
according to Eq(34). The 3D fits with no visible
error to the curve\/t=1.4848 corresponding to

1=.6137.
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standard mean-field theory methods. Here we contrast this taical level, they are forced by the fermion statistics which
an effective theory for the Hamiltonian in E(.), derived in  constrains the form of the canonical transformation neces-
the limit of small dopingé<1 and small hopping<U,J, sary to map a local Mott ground state to the vacuum. In our
using the more conventional approach of projection on &ase, this transformation must @ nonlinear in fermion
low-energy subspace. Ignoring hoppitg0, this low-energy  operators andb) charge nonconserving. Propeiig) yields
sector consists of states where each site is occupied by eithgp, effective interaction from the hopping term near a charged
a Mott singlet|®g), which we chooss as the Fock vacuum ground state and propert) makes this interaction non-
|®9— |0) or by a single charges)=cg|0) with spin 3/2(s  gauge invariant. Propertg) is a necessary consequence of
=+1/2,+3/2—all other stafteg are separated from these b¥napping a locally entangled state to the vacuum and prop-
a gap of ordeX~U, J. Restricting to this low-energy sector gty (b) is a consequence of mapping a charged state to the
and |n2clud|ng the hpppmg in pgrturbatlon theory gives t0,,5ccum which breaks gauge symmetry. Very general argu-
ordert*/X, the effective Hamiltonian ments relying on long-range phase coherence and a finite
range gap function then predict that the system should be a
superconducto Our mean-field calculation, which sug-
gests a superconducting ground state, supports this picture,
(35) given our assumptions about phase coherence.

We already pointed out the contradiction between our
main result and what would be expected based on a conven-
tional analysis of the type leading to E5), but also

—_7 T 3 T T
Heff - tz CsiCsr+st E ‘]aa’BB/Ca,rCa’rCBH&cB/,r+5
res r.éaa BB

subject to the constrairﬁsc;csrsl [3M, pp are SU2) sca-
lars]. This t-J-type model describes four species of fermions

with nearest-neighbor hoppind ~t), nearest-neighbor ex- e .

h i g~ ) ppin@ ), h the h 9 stressed the difficulties related to the hard core constraints
change couplingsJ~t*/X), and with the hard-core con- ,nerent in the latter approach. Here we should note that
straint that no two fermions occupy the same site. Seconds,q e glanorate schemes for dealing with these nonholonomic

order perturpaﬂon theory guara}n.tges a f'n'.te’ albeit Wealﬁﬁard core constraints face severe difficulties related to phase
attraction which opens the possibility of having a SUPEICONy  tuations. For example, in the spin-1/2 Hubbard model at

ducting phase even for small doping. From this approach . .
however, we would expect such a phase to be destroyed byh&i’“f filling, one can turn the no double occupancy constraint

nearest-neighbor repulsion that is normally present in a reaf—mO a holonomic gauge constraint by mtroducmg spinons
istic model. Thus, our previous mean-field calculation is atand ho_lons._ The resulting phasg depends cr_uua}IIy on the
odds with this approach. If the former turns out to be valid, itfuctuations in the related gauge fields. By working in the full
suggests that there are nonperturbative effects due to tptdilbert space, we av0|q these difficulties, but. neverthelgss
hard-core constraints that are not easily accounted for in th@Ur conclusions are still dependent on certain assumtions
conventional formulation. If, on the other hand, the hard-coreé2bout phase coherence. Without a more sophisticated analy-
constraints are not very important and the naive picture ofis of the phase fluctuations, we cannot rule out that these
four different species of weakly interacting fermions is es-Will be important and, e.g., destroy the superconduting state
sentially correct, it would suggest that our mean-field treat-at low doping.

ment of the phase phase fluctuations does not capture the

correct physics.

B. Range of validity and applicability

VII. DISCUSSION AND SUMMARY L .
We now assume that our analysis is correct at low doping,

A. The anomalous termA, /n, and discuss its range of validity and applicability. At suffi-

We see from Eq(15) that in order to have a nonzero ciently large value of doping, the theory will yield a free

doping §=2—(n), we musthavef>0, in facti~ sto lowest  €nergy which is unfavorable compared to that of a doped
=1 Mott insulator. The mean-field picture suggests there will

order |r_16. Energetically we will also havla#_o_ for _f|n|tAe 6. be a coexistence region where a slightly hole doped®
According to Eq/(20) the extended-wave pairing fieldA; .. Mott insulator will coexist with a hole doped=1 Mott in-
cannot vanish and in fact will be proportional to doping. Thissy|ator. Then=1 Mott insulator will presumably have some
in turn generates @anuch smaller on-site pairingA, through  sort of magnetic order at low temperature that breaks the
the self-consistent equations. Note that this pairing field cafarge spin degeneracy of the uncorrelated odd filling Mott
never completely vanish because of the linear coupling tansulator. If a coexistence region really exists, or whether an
higher order terms. At finite temperature the mean-fieldntermediate phase which breaks translational invariance
theory will presumably eventually break down via ag  may exist, is beyond the scope of the present analysis. Our
transition due to phase fluctuations that we have not takenalculation thus makes assumptions abbutwhich leave
into account. This has been discussed in a series of receapen the question if this behavior could really be seen in a
papers where the term “gossamer superconductifiti?has  physical system. On the one hand,must be large enough
been used to describe a similar scenario. (and J even larger so that a Mott insulating state occurs at
It is admittedly not easy to understand the physical originn=2 and furthermore triply occupied sites are effectively ab-
of these new anomalous terms of the type/n,. On atech- sent. On the other hant, must be small enough so that the
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correlated state will have lower energy than a mixed state C. Summary
with ann=1 Mott insulator and am=2 Mott insulator. The We have presented a new type of canonical transforma-
caseJ<0 orJ<U is briefly addressed in Sec. IIl. tion for the half-filled spin-3/2 Hubbard model that maps the

Finally, it is relevant to ask whether the transformationott insulator at half filling to the vacuum. This canonical
used for the spin-3/2 case could be applied to the spin-1/%ansformation is straighforward to generalize to multiband
systems. First consider the canonical transformation whiclHubbard models with a local spin singlet Mott insulating
maps between these tme=0 andn=2 states. This is the ground state. At finite doping, a self-consistent mean-field
ordinary particle-hole transformation which is not chargetheory for such a system results in a phase with long-range
conserving. However, the doubly occupied singlet is creategghase coherence. An order parameter that is usually identi-
by c}r‘,cjr|0> and hence is factorizable in fermion operators.fied with extendeds-wave superconductivity appears and is
The canonical transformation is therefore linear and no nevproportional to doping. We note that the resulting picture
interaction terms are introduced in the transformation. Theesembles the “gossamer superconductor” scenario that has
physical properties of the system are symmetric under chargeeen recently introduced by Laughlin and co-workers. Our
conjugation, which is sufficient for the particle-hole transfor- approach appears to be in contradiction to other methods of
mation not to generate any new behavior and the presemittacking these kinds of problems, and we pointed out the
analysis is uninteresting. In the case of the half-filled Hub-difficulties with both approaches. Although we have only
bard model, the Mott ground state corresponds to one ele@xplored a specific spin-3/2 Hubbard model at half filling,
tron per site. This cannot be mapped to the vacuum througtve believe that our method could be useful for a variety of
a canonical transformation without violating the Fermi anti- similar models with locally entangled Mott insulating ground

commutation relation$ states.
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