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We study magnetoelectric properties of single-electron traps in metal-oxide-semiconductor field-effect tran-
sistors. Using a microscopic description of the system based on the single-site Anderson-Holstein model, we
derive an effective low-energy action for the system. The behavior of the system is characterized by simulta-
neous polaron tunnelingscorresponding to the charging and discharging of the trapd and Kondo screening of
the trap spin in the singly occupied state. Hence, the obtained state of the system is a hybrid between the
Kondo regime, typically associated with single-electron occupancy, and the mixed-valence regime, associated
with large charge fluctuations. In the presence of a strong magnetic field, we demonstrate that the system is
equivalent to a two-level system coupled to an ohmic bath, with a bias controlled by the applied magnetic field.
Due to the Kondo screening, the effect of the magnetic field is significantly suppressed in the singly occupied
state. We claim that this suppression can be responsible for the experimentally observed anomalous magnetic-
field dependence of the average trap occupancy in SiuSiO2 field effect transistors.
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I. INTRODUCTION

Experimental techniques probing dynamics of a few state
quantum systems have been of great interest recently as they
may provide prospects for the development of electronics
and computing. Examples of such systems and techniques in
solid state include quantum dots,1 superconducting qubits,2

magnetic resonant force microscopy,3 and single-electron
traps in a metal-oxide-semiconductor field-effect transistor
sMOSFETd.4–8

This latter system, which is a subject of this work, con-
sists of a defect located near the oxide-semiconductor inter-
face of a MOSFETfFig. 1sadg. The tunneling between the
defect and the two-dimensional electron gass2DEGd in a
MOSFET inversion layer manifests itself as a random tele-
graph signalsRTSd in the transport current through the
MOSFET. When a certain trap energy levelswhose energy
can be controlled by the gate voltaged crosses the chemical
potential of the 2DEG, electrons can hop between the level
and the conduction channel, thus charging and discharging
the trap. For a sufficiently small MOSFET this leads to the
sudden switching in the resistivity of the conduction channel
and hence to RTS in the transport current.

The charge dynamics of the trap exhibits a number of
features consistent with dynamics of a two-level system
sTLSd coupled to an ohmic environment.5 In particular, the
experimental dependence of tunnel rates on the TLS bias
scontrolled by the gate voltaged and external temperature was
found to agree with those calculated for the spin-boson
Hamiltonian.9 However there are a number of RTS properties
that cannot be explained based on the TLS phenomenology.

First of all, the RTS is observed to occur on a relatively
large, millisecond-to-second time scale, which seems to in-
dicate that the observed traps are positioned sufficiently far,
at distances 20–25 Å from the 2DEG. At the same time, the
direct electrostatic measurements of trap positions indicate
that this is usually not the case—the traps are located only a
few angstroms from the inversion layer.8

Another aspect that clearly lies outside the scope of TLS
phenomenology has recently been revealed in the experi-

ments by Xiaoet al.,7 where the dependence of the RTS on
an applied magnetic field was studied. In these experiments,
from the gate voltage and the magnetic-field dependence of
RTS, it was determined that the most likely origin of RTS
was the random switching betweensspin-12, neutrald and
sspin-0, negatively chargedd states of the trap. In particular,
at sufficiently high temperaturessabove several degrees
Kelvind, the relative probability of the empty state of the trap
to the filled state was rapidly increasing with the applied
magnetic field, consistent with the simple model expectation
P1/P2~expsgmBB/2Td.7 However, at lower temperatures
significant deviations from the simple paramagnetic behavior
was observed, possibly indicating quenching of trap’s mag-
netic moment.7 Such magnetic behavior appears to be con-
sistent with the Kondo effect.

However, it is well known that the Kondo screening is
only effective for sufficiently strong hybridization of the lo-
calized state with the continuum. Given the extremely slow
observed tunnel rate, one should conclude that the Kondo
temperature should be negligibly small, thus ruling out the
possibility of the Kondo effect explanation.

The purpose of this work is to show that the slow charge
dynamics and the Kondo effect are, in fact,not mutually
exclusive, if we take into account the strong electron-optical
phonon coupling in the oxide layer of a Si MOSFET. In our
previous work10 we have proposed that this coupling is the
likely origin of exponential renormalization in RTS time-
scales and can explain the inconsistency between expected
and observed positions of traps. In the present work, starting
from the microscopic description of the system based on the
Anderson-Holstein model, we derive an effective low-energy
action for the chargeand spindynamics of the trap. We find
that the low-temperature behavior of the system is character-
ized by simultaneous polaron tunnelingscorresponding to the
charging and discharging of the trapd and Kondo screening of
the trap spin in the singly occupied state. It is crucial that the
Kondo temperature need not be small as it is controlled by
the bare hybridization matrix element between the localized
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and conduction electrons, i.e., it is not affected by the po-
laronic slowdown. The simple explanation is related to the
fact that although the real charge tunneling is suppressed by
the polaronic effect, the virtual tunneling processes that lead
to the local moment-conduction electron spin-exchange in-
teraction need not be affected by this renormalization. In
particular, if the on-site Coulomb interactionswhich essen-
tially determines the inverse timescale for the virtual pro-
cessesd is larger than the phonon frequency, the lattice does
not have time to react to these processes. As a result, the spin
transitions in the trap are not affected by the presence of the
oscillator and thus the Kondo timescale depends on the bare
tunneling rategT

0 rather then the renormalized onegT.
In the presence of a strong magnetic field, we map our

system onto a two level-level systemsTLSd strongly coupled
to an ohmic bath, with a bias controlled by the applied mag-
netic field. Due to the Kondo screening, the bias introduced
by the magnetic field is significantly suppressed compared to
the bare Zeeman energy. We claim that this suppression can
be responsible for the experimentally observed7 anomalous
magnetic-field dependence of the average trap occupancy in
SiuSiO2 field-effect transistors.

Similar polaronic renormalizations have been considered
earlier in the context of molecular crystals11 and magnetic
dielectrics.12 More recently, related Hubbard-Holstein mod-
els have been applied to heavy fermion compounds to study
electron-lattice effects, including valence instabilities.13,14

II. MODEL

To describe the electronic part of the trap-channel system
we use the Anderson-Hamiltonian

HA = o
ks

Ekcks
† cks + o

s

E0ds
†ds + Un↑n↓

+ o
ks

Tcdscks
† ds + ds

†cksd, s1d

wherecks
† scksd and ds

†sdsd are creationsannihilationd opera-
tors of electrons in the conduction band and at the localized
defect orbitals, respectively,ns=ds

†ds ss= ↑ , ↓ d. U and Tcd

are the on-site Coulomb energy and the hybridization matrix
element, respectively. The coupling strength between the lo-
calized states and the 2DEG can be characterized byG
=pnTcd

2 , wheren is the density of states in the 2DEG. The

single particle level of the trap is assumed to be positioned
deep below the chemical potential of 2DEG,E0,m, as
shown in Fig. 1sbd. For simplicity we will assume that the
conduction band is symmetric and setm=0.

Another interaction that we include in our model is due to
optical phonons in the Si MOSFET oxide layer. SiO2 is a
polar crystal and known to exhibit strong electron-optical
phonon coupling leading to formation of polaronic states. We
incorporate this electron-phonon coupling in our model as

H = HA + lSo
s

ns − 1Dx̂ +
p̂2

2m
+

mv0
2x̂2

2
. s2d

Herex andp are displacement and conjugate momentum of
local optical phonon of frequencyv0 sv0,50 meV at
SiuSiO2 interfaced, m is the phonon effective masssof the
order of SiO2 crystal unit cell massd, andl is the coupling
constant between the excess charge in the trap and the pho-
non. We assume the trap state with one electron is neutral
and, therefore, introduce the off-setting −1 term in the
electron-phonon interaction in Eq.s2d. The strength of the
electron-phonon coupling has been estimated in Ref. 10 and
can be expressed in terms of the polaronic shiftEp
=l2/2mv0

2,1 eV. In the following we will assume thatU
ùEp@G.v0.

III. EFFECTIVE ACTION

We analyze low-temperature partition function of the sys-
tem Z=Trfexp−bHg, whereH is given by Eq.s2d and b−1

is smaller than any energy scale in the system. It is conve-
nient to decouple theU term in Hamiltonians1d by means
of the Hubbard-Stratanovich transformation by writing
the spin-spin interaction asUn↑n↓=−sU /2dsn↑−n↓d2

+sU /2dsn↑+n↓d.15 The partition function can be then cast in
the functional integral form as

Z =E DXDY exp −E
0

b

dtFMẊ2

2
+

sX − Dd2

4Ep
+

Y2

2U
G

3 kTe−e0
bdtH↑fXstd+YstdglkTe−e0

bdtH↓fXstd−Ystdgl, s3d

where HsfZstdg=Zstdds
†stddsstd and D=E0+sU /2d+2Ep.

Here the explicit “time” dependence ofds
†sdsd is defined by

the interaction representation with respect to kinetic plus tun-
neling terms in the Hamiltonians1d. In Eq. s3d we have in-
troducedX=lx+E0+sU /2d as a coordinate of the oscillator
in units of energy andM =m/l2 as the oscillator’s mass in
the corresponding units. The scalar fieldY is conjugate to the
spin of the trap,T stands for time ordering, and the angular
brackets denote averaging with respect to electronic degrees
of freedom. The averaging of the ordered exponents in Eq.
s3d can be done by following the prescription of Refs. 16 and
17 based on the theory of singular integral equations. Here
we provide the result: the functional integral in Eq.s3d can
be cast in the formZ=eDfX,Ygexpf−e0

bdtsV+Kdg, where
functionalsV andK represent potential and kinetic energy of
a particle moving in a two-dimensionalsX,Yd plane

FIG. 1. sad Schematics of traps in MOSFETs andsbd a diagram
for the trap energy levels. Coupling to optical phonons shifts the
twice-occupied level.
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V =
sX − Dd2

4Ep
+

Y2

2U
+ VsX + Yd + VsX − Yd,

VsZd =
Z

2
−

Z

p
tan−1SZ

G
D +

G

2p
logF1 +SZ

G
D2G; s4ad

K =
MẊ2

2
+ KsX + Yd + KsX − Yd,

KsZd =
1

p2E
0

t

dt8 logst − t8d
dZst8d

dt8

d

dt

3 F Zstd
Z2std − Z2st8d

log
G2 + Z2std
G2 + Z2st8d

G . s4bd

The potential energy of the “particle” is presented in Fig.
2sad. It has four local minima. The two minima on theX-axis
sat X2=D−4Ep andX0=D for U ,Ep@Gd correspond to dif-
ferent charge occupations of the trap, i.e., by two and by zero
electrons. Up to an additive constantfwhich we have
dropped in Eq.s3dg potential energies of these minima are
V2=2E0+U−Ep and V0=−Ep. The two minima off the
X-axis sat X↑=D−2Ep, Y↑=U, andX↓=D−2Ep, Y↓=−Ud are
degenerate in the absence of external magnetic field with
V↑=V↓=E0 and obviously correspond to the occupation of
the trap by one electron with up- and down-spin, respec-
tively. As can be seen directly from Hamiltonianss1d ands2d,

the minima can be interpreted as zero-temperature free ener-
gies of the trap occupied by two, zero, and one electrons in
the limit of vanishingly smallG. In the RTS experiments the
traps are filled with either one or two electrons,7 and there-
fore we assume thatV↑.V↓.V2,V0 sor E0.2E0+U−Ep
,−Epd.

IV. EVALUATION OF FUNCTIONAL

The kinetic part of the energy in Eq.s4d will force the
particle to tunnel between the minima. Because the energy of
the empty statefdenoted by the blank circle in Fig. 2sadg is
greater than that for the other three statessthe shaded minima
in Fig. 2d, it will be effectively decoupled from those states.
fTransition amplitudes to the empty state will contain expo-
nentially small prefactors exp−bsV0−V2d!1.g An example
of the “classical” trajectory for a transition between the two-
electron state and spin-up state is presented in Fig. 2sbd. Let
us first write down explicitly the transition amplitude that
corresponds to the first diagram in Fig. 2sbd. In doing so we
must, in principle, determine the classical trajectory for the
effective action given by Eq.s4d between the two local
minima corresponding to the singlet and spin-up states. Solv-
ing the resulting classical equation of motion, however, is
difficult. Instead we approximate the classical path by a
piecewise linear kink trajectory, as shown in Fig. 2sbd.16,17

Duration of each “charge” kinksi.e., transition between the
two-electron state and a one-electron stated, which we denote
by tc, can be determined by minimizing the effective action
for a single linear kink trajectory with respect totc. Upon
substitution of such linearized trajectory in Eq.s4d the tran-
sition amplitude of interest can be written as

jc
2E

0

b dt2
c

tc E
0

t2
c dt1

c

tc edcst1
c−t2

cd−ac logfst2
c−t1

cd/tcg, s5d

where parametersjc, ac, andtc are

ac = S 2

p
tan−1 U

G
D2

, s6ad

jc = S G

U
D1/2

expS−
2Ep

tcv0
2D , s6bd

tc .
Î6

v0
. s6cd

In the above expression for the transition amplitude the kinks
at time momentst1

c andt2
c interact logarithmically andac is

the dimensionless coupling strength. The fugacityjc, which
is essentially the probability for a kink to occur at a given
time, is suppressed by an exponentially small quantity in Eq.
s6bd as a consequence of the oscillator having a finite mass.
This suppression of charge tunneling is in agreement with
the our previous result,10 where we argued that the inconsis-
tency between the observed and expected tunnel rates in the
RTS systems is due to the presence of a local phonon
strongly coupled to the trap charge. The quantitydc in the
above equation is a bias between one- and two-electron
states,dc=V2−V↑,↓=E0+U−Ep.

FIG. 2. sad Local minima for the effective potential in Eq.s4bd;
sbd a classical path contributing to the transition amplitude between
a two-electron and a spin-up electron state; andscd example of a
path containing a spin-kink “monopole.” Such trajectories do not
contribute to the transition amplitudes;sdd trajectory that involves
multiple charge-kinks.
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Next let us look at the transition amplitude that involves
spin transitions. In Fig. 2sbd this amplitude can be singled
out as an effective self-energy part of the diagrams that in-
volve 2n sn=0,1, . . .d kinks and antikinks. Applying the
same procedure, i.e., assuming that all the trajectories are
piecewise linear, evaluating their contribution to the effective
action in Eq.s4d, and minimizing the action with respect to
the width of the spin kinksts, we obtain that the spin-
transition amplitude,ZK

s in Fig. 2sbd, is given by

ZK
sst2

c − t1
cd = o

n

js
2nE

t1
c

t2
c dt2n

s

ts ¯ E
t1
c

t3
s dt2

s

ts E
t1
c

t2
s dt1

s

ts

3expF− sdso
i

s− 1diti
s +

sdsb

2 G
3expFaso

j.k

2n

s− 1d j−k log
t j

s − tk
s

ts G s7d

as = 2S 2

p
tan−1 U

G
D2

, s8ad

js =
G

U
, s8bd

ts .
3as

U
.

6

U
. s8cd

Here,ds=gmBB is the energy splitting between the bare spin-
down and spin-up states because of the applied magnetic
field B.18 The transition amplitudeZK

s in Eq. s7d is of the
same form as the grand partition function of a Coulomb gas
of plus or minus kinks positioned along a straight line of
length kt2

c−t1
cl interacting logarithmically with the coupling

strengthas and chemical potential defined as e−m=js.
19 In

order to evaluate the full transition amplitude in Fig. 2sbd we
must, in principle, take into account that the charge kinks at
the ends of the interval, i.e., at “positions”t1

c andt2
c, interact

falso logarithmically, as can be seen from the effective action
in Eq. s4dg with the spin kinks at positionst j

s. One can see,
however, that this interaction is effectively weak. Indeed,
kinks att j

s are coupled strongly with each other and tend to
form close pairssdipolesd of average effective “size” of the
order d,ts/ s2−asd,1/G, whereas the dipoles are sepa-
rated, on average, by distances of the order ofl ,ts/js

2

,U /G2.19 The kinks atti
c are separated from those att j

s by a
distancestimed at least of the ordertc,1/v0, which physi-
cally represents the time needed for the formation of the
dressed electron-phonon state in the trap. Thus, the interac-
tion energy for a kink att1

c with a dipole att1
c+t is of the

orderd/t. Summing over the dipolesswith the closest dipole
located at distance of the ordertc from the charge kink att1

c

and the farthest dipole roughly att2
cd one finds that the

charge kink-dipole interaction energy for the transition

amplitude in Fig. 2sbd is ,sd/ lde
tc
t2
c−t1

c

dt /t,sG /Udlogfst2
c

−t1
cd /tcg. This interaction is of the same long-range form as

that between the kinks att1
c andt1

c fe.g., Eq.s5dg, however,

parametrically it is much weaker,ac,1@ sG /Ud. Therefore,
interaction between the charge kinks and the spin kinks can
be neglected. Also, we do not need to consider configurations
with an odd number of spin kinks between the charge kinks
fe.g., Fig. 2scdg. That is because the energy of an unpaired
kink diverges logarithmically withkt2

c−t1
cl, and hence its

formation is not favorable. Thus the transition amplitude that
contains two charge kinks att1,2

c can be written as

jc
2E

0

b dt2
c

tc E
0

t2
c dt2

c

tc ZKst2
c − t1

cdedcst1
c−t2

cd−ac logfst2
c−t1

cd/tcg,

whereZK=ZK
↑ +ZK

↓ .
We are now ready to extend this expression to a higher-

order amplitudes. One such amplitude with four charge kinks
at t j

c is shown in Fig. 2sdd. We note that only charge kinks
connecting the singlet state with thesamespin state interact.
Hence, we assign superscripts to distinguish between dif-
ferent types of charge kinks,t j

c→t j
s j. Using the same ener-

getic arguments as before, we can show that the interaction
between the spin kinks in different domains, as well as the
interaction between any charge kinks and spin kinks, is neg-
ligible. Therefore, the transition amplitude can be written as

Z = o
n,s2j=s2j−1=±1

jc
2nE

0

b dt2n
s2n

tc ¯ E
0

t2
s2 dt1

s1

tc

3p
j=1

n

ZK
s2jst2j

s2j − t2j−1
s2j dexpF− dco

j=1

2n

s− 1d jt j
s jG

3expFaco
j.k

2n

s− 1d j−kds j,sk
log

t j
s j − tk

sk

tc G . s9d

In zero magnetic fieldsds=0d, the spin partition function
ZK

↑ st−t8d=ZK
↓ st−t8d,expf−st−t8dF0g, whereF0 is the free

energy per unit length for the Coulomb gas described by the
classical partition function of Eq.s7d. In this regime, the full
partition function of Eq.s9d corresponds to a gas of charges
of two flavors, with charges at pointst2j andt2j−1 having the
same flavor and opposite charge, and only charges of the
same flavor interacting with each other. In the presence of
applied magnetic field, the symmetry between the two fla-
vors is broken.

V. MAGNETIC-FIELD DEPENDENCE

To evaluate the effect of magnetic field on partition func-
tion Eq. s9d, we first determine the dependence ofZK

s on
magnetic field. For that we use the scaling procedure for the
Coulomb gas due to Andersonet al.19 The renormalization
group equations read

das

d log ts = − 4asjs
2 + Osjs

3d, s10ad

djs

d log ts =
1

2
jss2 − asd + Osjs

4d, s10bd

dsdst
sd

d log ts = s1 − 2js
2ddst

s + Osjs
4d, s10cd
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ZKfsb/tsd,js,asg = expsbDFdZKfsb/t̃sd,j̃s,ãsg. s10dd

where DF=ets
t̃s

d log ts8js
2/ts8. For sufficiently strong mag-

netic field, sds.TK=ts−1 expf−1/jsgd, the scaling should be

terminated whend̃st̃
s,1. At this point the magnetic field

becomes very strongson the renormalized energy scaled,
whereas the long-range coupling constantas decreases and
so the system moves away from the quantum phase transition
point atas=2 into the disordered phase.19 In the symmetric
cases2−as=4jsd relevant here, the scaling Eqs.s10bd and
s10cd coincide sup to quadratic terms injs and 2−asd and
can be easily solved analytically. Forjs!1 the resulting

renormalizedd̃s and j̃s are

d̃s = ds expf− s1/2dlog−1sds/TKd + Osjsdg, s11ad

j̃s = log−1sds/TKd + Oflog−3sds/TKdg. s11bd

It is easy to see that in the rescaled system the long-range
coupling becomes irrelevant. A simple perturbative estimate

for the average size of a dipole ist̃s/ sd̃st̃
sd2, t̃s and there-

fore both intra- and interdipole interactions are negligible.
ZK can then be readily summed by means of Laplace
transform10 with a simple result

ZK
↑ std = exp„thF08 + d̃s + Oflog−3sds/TKdgj…,

ZK
↓ std < js

2 exphtfF08 + d̃sgj + exphtfF08 − d̃sgj, s12d

whereF08 is magnetic-field-independent free energy andd̃s is
given by Eq.s11d. In the long-timeslow-temperatured limit
that we are interested in,ZK

↓ is negligible compared toZK
↑ .

Hence, in the partition functionfEq. s9dg only the kinks that
correspond to the transition between the singlet and the
dressedspin-up states survive. The partition function be-
comes then equivalent to the one for a two-level system
coupled to an ohmic bath.9 Equations12d together with Eq.
s9d indicates that an external magnetic field introduces an
effective bias for the TLS. This bias, however, is signifi-
cantly reducedfsee Eq.s11dg as compared to the bare Zee-
man energy of a paramagnetic spin. This suppression results
from the interaction between the spin kinks in partition func-
tion Eq. s7d and corresponds to the Kondo effect.19,9 Indeed,
the magnetization in the singly occupied state can be easily

computed asM <]d̃s/]sgmBBd= 1
2(1−1/f2 logsgmBB/TKdg),

consistent with the Bethe ansatz result of Andreiet al.20

It is important that the Kondo energy scaleTK is not de-
termined by the extremely slow charge tunneling ratesof the
order ofjc

2/tcd. Rather, the fugacityjs, which determinesTK
in Eq. s12d, is because of virtual transitions between Fermi
sea and the localized orbital. In the language of the effective
action in Eq.s4d these virtual transitions correspond to tun-
neling of theY field, which, unlike theX field, is massless.
Therefore, as can be seen from Eq.s7d, the fugacityjs does
not contain the exponentially small quasiclassical suppres-
sion factor corresponding to the “penetration under the bar-
rier,” which strongly reduces the charge fugacityjc fEq. s6dg.
As a result the Kondo temperatures,expf−1/jsgd can be

quite large leading to significant renormalization of the
magnetic-field-induced TLS bias.

VI. DISCUSSION AND CONCLUSIONS

In this work we considered an interplay between magne-
tism and the lattice effects in for a single Anderson impurity
coupled to a continuum. We have found that even for ex-
tremely slow electron tunneling between the continuum and
the localized orbitals, a significant exchange interaction be-
tween the conduction and the impurity electrons may exist.
This is unusual since in the standard Anderson impurity case
the exchange interaction is proportional to the localized level
width. That is because only the real charge tunneling pro-
cesses are affected by the polaronic renormalization, but the
fast virtual processes that cause the exchange interaction are
not.

The effective action for the model that we find is equiva-
lent to the well-known Kondosor s-dd model for the single
defect occupancy, but with additional tunneling terms that
connect the single occupancy sector to the otherszero or
doubled occupancy sectors. Indeed, this connection can be
formally established by integrating out the phonon degrees
of freedomssee the Appendixd. It was earlier found that such
a generalized Anderson model can exhibit both spin and
charge Kondo effects.21 In the regime of weak residual hy-
bridization that we considered here, only the spin-Kondo ef-
fect is relevant.

Based on the above presented arguments, we argue that
the anomalously weak magnetic-field dependence of the in-
terface trap occupancy observed in the low-temperature ex-
periments of Xiaoet al. can be explained by the Kondo
screening of the local moment in the singly occupied state of
the trap, assuming that the Kondo temperature isTK,1 K.
Then, for low temperatures,T,TK, we expect that the ratio
of the probabilities corresponding to single and double occu-

pancies of the trap should scale asP1/P2~expsgmBB̃/2Td,
where the effective magnetic fieldB̃ is related to the applied

magnetic field B as B̃=B exps−1/f2 logsgmBB/TKdgd for
gmBB.TK.

Further detailed experimental study is necessary to test
out the theoretical picture for the Kondo effect in the electri-
cally active defectsstrapsd in Si field-effect transistors. It is
worth noting, however, that similar physics, i.e., simulta-
neous slow charge dynamics and the Kondo effect, is ex-
pected to occur in any other system that has defects located
at the interface between a strongly polar insulator and a con-
ductor. One possible way to detect the Kondo effect is to
look for low-temperature anomalies in the FET channel re-
sistivity. Another approach is to look for spectral features
sKondo peakd by direct tunneling through a defect at the
SiO2-Si interface.

In summary, we have derived an effective action for the
charge dynamics in a single electron trap in a Si MOSFET
and have shown that in the limit of a strong magnetic field
sgmBB.TKd it is equivalent to a two-level system strongly
coupled to an ohmic environment. The effective bias of the
TLS can be controlled by an external magnetic field. How-
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ever, the magnetic-field dependence of the trap spin at low
temperatures is suppressed because of the Kondo effect.
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APPENDIX: DERIVATION OF THE
EFFECTIVE HAMILTONIAN

In this Appendix we derive an effective low-energy
Hamiltonian that corresponds to our model of the trapfEq.
s2dg by integrating out the phonon degree of freedom. This
can be done for sufficiently large phonon frequency, such
that the phonon always remains in its ground state.

For convenience, we first perform a similarity

s“polaronic”d transformation, H̃=U−1HU, where U
=expfiplsosns−1d / smv0

2dg,

H̃ = H0 + HT sA1d

H0 = o
ks

Ekcks
† cks + o

s

sE0 + EPdds
†ds + sU − 2EPdn↑n↓

+ v0b
†b, sA2d

HT = Tcdo
ks

cks
† dsel̃sb−b†d + ds

†ckse−l̃sb−b†d. sA3d

In the transformed Hamiltonian, the on-site energy and inter-
action are renormalized, and the electron-phonon interaction
now only appears in the tunneling part of the Hamiltonian
HT. Here, we have rewritten the phonon Hamiltonian in the
second quantized form, withb† the phonon creation operator,

and we introduced a parameterl̃=ÎEP/v0.
To find the effective Hamiltonian we utilize the smallness

of the tunneling matrix elementTcd relative to the other en-
ergy scales in the problem. Hence the quantum-mechanical
evolution operatorSs+` ,−`d=exps−ie−`

+`dtHd can be ex-
panded as

Ss+ `,− `d = e−ie−`
+`dtH0Tee−`

+`dtĤTstd sA4d

=ee−`
+`dtH0F1 − iE

−`

+`

dtĤTstdG sA5d

F +E
−`

+`

dtE
−`

t

dt8ĤTstdĤTst8d + . . .G , sA6d

in terms of the tunneling in the interaction representation,

ĤTstd=eiH0tHTe−iH0t.
The electronic part of the evolution operator can be ob-

tained by taking the expectation value over the phonon
ground state,

Seff = kC0sxduSuC0sxdl. sA7d

To perform the phonon averaging, we use the identity

el̃sb†−bd = e−l̃2/2el̃b†
e−l̃b = e−l̃2/2o

m,n

sl̃b†dns− l̃bdm

n!m!
.

sA8d

For the linear expansion termfEq. sA5dg only the n=m=0
term of the sum in Eq.sA8d remains. This leads to renormal-
ization of the tunneling matrix element in the effective elec-

tronic Hamiltonian by the factore−l̃2/2,

HT
eff = kC0sxduHTuC0sxdl = Tcde

−l̃2/2o
ks

cks
† ds + ds

†cks.

sA9d

In the second-order terms, Eq.sA6d, there is, however, a
possibility of virtually creating multiple phonon excitations,
with the number of phonons created byHst8d equal to the
number of phonons destroyed byHstd. It is easy to see that
the terms that do not change the occupancy of thed-level are
modified one way, e.g.,

kC0sxdufcks
† dsel̃sb−b†dgtfds

†ckse−l̃sb−b†dgt8uC0sxdl

= fcks
† dsgtfds8

† ck8s8gt8e
−l̃2o

n

l̃2neinv0st8−td

n!
, sA10d

while the terms that do involve the change in the occupancy
spair tunnelingd become, e.g.,

fds
†cksgtfds8

† ck8s8gt8e
−l̃2o

n

sil̃d2neinv0st8−td

n!
. sA11d

Clearly, then=0 elements of the sums in Eqs.sA10d and
sA11d, which correspond to second-order processeswithout
creation of virtual phonons, can be interpreted as the second-
order terms generated by an expansion of the evolution op-
erator Seff in terms of the effective tunneling Hamiltonian
HT

eff. The rest of the sumssnÞ0d in Eqs. sA10d and sA11d
form additional contributions to the effective Hamiltonian,
HJ andHpair, respectively.

By applying the interaction representation for the opera-
tors at timet8, Ost8d=eiH0st8−tdOstde−iH0st8−td, and integrating
over t8, in the singled-level occupancy subspace,

HJ = −
J

2 o
k,k8,s,s8

ds8
† dscks

† ck8s8 sA12d

J = Tcd
2 e−l̃2o

n=1

`
l̃2n

n! F 1

Ek8 − E0 − EP + nv0

+
1

E0 + U − Ek8 − EP + nv0
G . sA13d

In the single-occupancy subspace, HamiltonianHJ is equiva-
lent to the standard exchange Hamiltonian −JSd·skk8. The
first term in the square brackets in Eq.sA13d came from
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fds
†cksgtfck8s8

† ds8gt8, and the second fromfcks
† dsgtfds8

† ck8s8gt8.
The sum overn can be transformed into an integral,12 and for
the case of the symmetric Anderson model,Ek8−E0< =E0
+U−Ek8<U /2, we find

J = 2Tcd
2 E

0

`

dxe−sU/2−EPdx−l̃2f1−exps−v0xdg −
4Tcd

2 e−l̃2

U − 2EP

sA14d

This is very similar to the expression obtained in Refs. 11
and 12 for the Holstein-Hubbard model, except for the last

term sn=0d that needs to be subtracted out to avoid double
counting. In the limitsU /2−EPd@v0 we easily find thatJ
=4Tcd

2 /U, which is bare exchange-interaction strength, isnot
renormalized by the interaction with the phonons. Neverthe-
less, the effective hybridization in this regime may be dra-
matically suppressed according to Eq.sA9d. In the opposite
limit we find J=0.

Similarly the pair tunneling amplitude can be obtained.
Finally, the effective evolution operator is

Seff = exp −iE
−`

+`

dtsH0 + HT
eff + HJ + Hpaird. sA15d
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