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Many-body effects such as local fields and the core-hole interaction can be significant in x-ray absorption
spectra even several hundred eV above an absorption edge. The treatment of these effects requires theories
beyond the independent-particle approximation, e.g., the Bethe-Saltpeter equationsBSEd or the time-dependent
density-functional theorysTDDFTd. However the BSE is usually limited to low energies, while the TDDFT
often ignores the nonlocality of the core-hole interaction. Here we present a combined approach for the
calculations of the x-ray spectra that include both of these effects, together with inelastic losses and self-energy
shifts over a wide energy range. The approach is illustrated for a few materials, including metals and oxides.
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I. INTRODUCTION

The many-body effects beyond the independent-particle
approximation, in particular the core-hole photoelectron in-
teraction and local-field effects due to the screening of the
x-ray field, lead to systematic differences between the one-
electron calculations of x-ray absorption spectrasXASd and
the experiment. However, the development of an efficient,
yet quantitative approach for general calculations that in-
cludes these effects remains a challenge. These two-particle
interactions can be treated using the Bethe-Saltpeter equation
sBSEd,1–4 but this approach is computationally demanding. A
more efficient method is based on the time-dependent
density-functional theorysTDDFTd.5–7 This approach typi-
cally employs a local exchange-correlation functional, but
nonlocality is sometimes crucial.8 The core-hole interaction
can also be treated approximately in independent-particle
calculations based on thefinal-state rulesFSRd, where the
final states are calculated in the presence of a fully screened
core hole, and other many-body effects are lumped into the
photoelectron self-energy.9 For deep-core excitations the
treatment of the core hole using the FSR can yield results
comparable to those from the BSE.10 The moread hoc Z
+1 approximation11 and transition-state12 approaches have
also been used in practice.

However, none of these approaches is fully satisfactory, as
illustrated in Fig. 1 for theM-edge XAS of tungsten. For this
material the independent particle approximationsdashesd
overestimates the magnitude of the XAS and the material
decays more rapidly with energy than it does in the experi-
ment sthick solidd. Adding a screened core hole within the
FSR does not significantly change the results for this system,
which, as shown below, is dominated by local-field effects.
Eliminating such discrepancies can be of practical impor-
tance, since the amplitude of the edge jump is used, e.g., to
measure the thickness of the interconnects in integrated
circuits.13 Clearly both the BSEsdotsd and the TDDFT
ssolidd roughly account for the discrepancy close to the edge.
However, numerical basis-set limitations generally restrict
the BSE to relatively low energies, typically below about
200 eV of threshold. Also, the lack of sufficiently accurate

exchange-correlation functionals or the neglect of their non-
locality can limit the applicability of TDDFT close to the
absorption edges. Thus a number of attempts have been
made to improve on the TDDFT.4 This paper is another at-
tempt, which succeeds in combining the TDDFT and BSE
methods.

Formally the XAS cross section can be expressed in terms
of the fully interacting response function as,5

ssvd = − 4p
v

c
Im E drdr 8d†sr dxsr ,r 8,vddsr d, s1d

wheredsr d= ê ·r is the dipole operator coupling to the exter-
nal x-ray field, and the two-point response function is ob-
tained by contracting the four-point responsexsr ,r 8 ,vd

FIG. 1. Absolute measurements and calculations of the mass-
absorption coefficientm in cm2/g near theM5 edge of tungsten:
experimentsRef. 13d sthick solidd vs calculations based on the
independent-particle approximationsdashesd, on the TDDFT ap-
proach with only local-field effectsssolidd, and on our projection
approach to the BSEsRef. 14d sdotsd. The experimental uncertainty
is approximately 100+0.03m cm2/g sRef. 13d, which is compa-
rable to the discrepancy between the TDDFT approach and the
experiment.

PHYSICAL REVIEW B 71, 165110s2005d

1098-0121/2005/71s16d/165110s8d/$23.00 ©2005 The American Physical Society165110-1



=4xsr ,r 8 ,r 8 ,r ,vd. Below we will omit the superscript 4, un-
less it is needed for clarity. The core-hole and local-field
interactions are both incorporated in the kernelK of the in-
tegral equation for the response function,

xsvd = x0svd + x0svdKxsvd, s2d

where here and elsewhere the matrix indices are also sup-
pressed, unless they are needed for clarity. In Eq.s2d x0svd is
the independent particle-response function and

K = KX + KD, s3d

is the kernel, whereKD and KX denote the directsi.e.,
particle-hole interactiond and exchange terms, respectively.
These terms are of opposite signs, and hence they tend to
cancel. Their relative importance reflects the different com-
ponents of the response functionx, and hence one or the
other can dominate, depending on the system. As discussed
below,KX typically reflects thep-wave response to the dipole
coupling, whileKD reflects thes-wave character of the core
hole.

Within the BSE the direct termKD is usually taken to be
the adiabatically screened Coulomb interaction,4

KD < Wsr ,r 8d = e−1vsr ,r 8d, s4d

where e−1 is the static-dielectric function, as calculated
within the random-phase approximationsRPAd and vsr ,r 8d
=1/ur −r 8u is the bare Coulomb interaction. However, the
difficulty of calculating bothWsr ,r 8d and the four-point BSE
response function poses severe numerical complications, of-
ten requiring large particle-hole-basis sets. Consequently the
calculations become progressively more time-consuming and
eventually impractical as the photoelectron energy is in-
creased. For example, the BSE calculations based on our
local-projection-operator method14 sFig. 1, dotsd already re-
quire the inversion of order 1003100 matrices at each en-
ergy point with a double-basis setci

*c j, including four final-
state f-orbitals. As a result, this limited-basis set loses
accuracy and becomes inadequate about 200 eV above the
edge.

The replacement ofKD by a local-density approximation
in the TDDFT approach of Zangwill and Soven5 sZSd greatly
simplifies the calculations. In their approach the expansion in
double-basis sets is circumvented, and the calculations of
XAS are equivalently carried out using a Fermi1, “golden
rule” expression in which the coupling to the x-ray field is

replaced by a screened local fieldd̃. Unfortunately local ker-
nels have been found to be unsatisfactory for many systems,
particularly for molecules and insulators, as stressed by sev-
eral authors.8 This drawback has provided an incentive for
this and other developments.4,10

The plan of this article is as follows. Section II outlines
our combined approach, Sec. III describes the treatment of
local-field effects, Sec. IV describes the BSE and nonlocal
core-hole interaction, and Sec. V relates our treatment of the
statically screened core-hole interaction. Finally Sec. VI con-
tains our results and Sec. VII contains a summary and con-
clusions.

II. COMBINED BSE AND TDDFT APPROACH

We now present an approach which combines the effi-
ciency of the TDDFT method at high energies with the ad-
vantages of a local double-basis BSE approach near the
edge. The approach makes it possible to treat the core-hole
interaction and local-field effects over a wide spectral range.
The full-response function is the main ingredient in the cal-
culations of XAS beyond the independent-particle approxi-
mation, and it is given by the solution to the integral equa-
tion in Eq. s2d,

x = x0f1 − Kx0g−1. s5d

The term in brackets in Eq.s5d,

e = f1 − Kx0g, s6d

is the dielectric matrix, and its inversee−1 is a key quantity
of interest here. The four-point representation of
x0s1,2,3,4,vd is formally given by

4x0svd = o
i j

sf i − f jd
ci

*s1dcis3dc j
*s2dc js4d

v + Ei − Ej + iG
, s7d

where 1; r 1, as in the notation of Onidaet al.,8 and the spin
indexes are suppressed for simplicity. Here the one-particle
statesci are eigenstates of the quasiparticle Hamiltonianh
=p2/2m+Vcoul+SsEd, whereSsEd is the self-energy andf i

are Fermi occupation numbers. In the examples of this paper
SsEd is calculated using the local GW plasmon-pole model
of Hedin and Lundqvist. This self-energy and other quanti-
ties needed in the calculations such as the scattering poten-
tials and phase shifts are obtained using the real-space
multiple-scattering approach, which has been extensively
tested for deep-core XAS.9,15

Next we separate the interaction kernel into local and
nonlocal parts labeledKL and KN, respectively, by adding
and subtracting a local exchange-correlation kernel, i.e.,

KLsr ,r 8,vd = vsr ,r 8d + fxcsr,r8,vd, s8d

KNsr ,r 8,vd = Wsr 8,r ,v8d − fxcsr ,r 8,vd. s9d

Their description aslocal or nonlocal kernels is based on
their behavior in the exchange integrals in response-function
calculations, as discussed below. Also,KL can be recognized
as the TDDFT kernel, whileKN contains the nonlocal,
screened, core-hole interaction. In general the exchange-
correlation kernel is nonlocal and frequency dependent, but
in practice the adiabatic local-density approximation
sALDA d is often used,8

fxc
ALDAsr ,r 8d = dsr − r 8d

dVxcfrsr dg
dr

, s10d

where Vxcfrg is the local-density approximation for the
ground-state exchange-correlation potential. In this work we
use the ground-state exchange correlation of von Barth and
Hedin.16

Our combined approach for the interacting problem then
consists of two steps:
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sId First, we apply the TDDFT method with a local kernel
KL yielding the local-density approximation to the TDDFT
response functionxL,

xL = x0f1 − KLx0g−1. s11d

If fxc is neglected inKL, the result is the RPA response func-
tion xL=xRPA. Our calculations of the local fields fromxL

follow a strategy similar to that of ZS, which we term the
local-field time-dependent density-function theorysLFTD-
DFTd approach. We find that the calculation of XAS with the
TDDFT response inxL is often adequate well above an edge
over a broad energy spectrum.

sII d Second, the full response, including an explicit treat-
ment of the screened core hole, is given by

x = xLf1 − KNxLg−1. s12d

This result for the total responsex is formally equivalent to
the BSE, since Eq.s12d implicitly includes the fullK, but
this step becomes increasingly difficult to implement as the
photoelectron energy is increased. Fortunately we only need
carry out this second step for energies within several eV of
the edge, where the nonlocality of the screened core-hole
interaction is most important. Our approach for this step is
based on our projection-operator method,14 which treats the
screening of the core-hole interaction at the atomic level and
is very efficient numerically. Here we will refer to this ap-
proach as the projection-operator method Bethe-Saltpeter
equationsPMBSEd.

III. LOCAL-FIELD EFFECTS

In this section we discuss stepsId of our combined ap-
proach. As noted above the TDDFT approach greatly simpli-
fies the calculations, since with local exchange, the response
function can be contracted to a two-point form. In particular
the cross section can then be expressed in terms of the Fermi

“golden rule,” with a screened dipole interactiond̃.5 That is,
the dipole matrix elements within the TDDFT become renor-
malized,

M̃ij =E drdsr df1 − KLx0g−1ci
*sr dc jsr d

=E dr d̃sr dci
*sr dc jsr d ; ki ud̃u jl. s13d

The LFTDDFT approach was originally used to calculate
the response for rare gas atoms using a Green’s function
method.5 However this approach cannot be directly applied
to extended systems. The reason is that the sum over a small
number of occupied states in atoms, e.g., the 3d states of a
transition metal element become an integral over the 3d va-
lence band in solids. Hence the original ZS strategy needs to
be modified. Our modifications for large molecules and sol-
ids are based on the real-space Green’s function approach, as
follows: sid use solid-state scattering potentials instead of
atomic potentials;sii d include multiple scattering contribu-
tions in the propagatorG to account for contributions from
atoms in the environment of the absorbing atom;siii d use a

complex self-energy instead of ground-state LDA exchange-
correlation potentials in the one-particlesquasiparticled
states; andsivd use matrix inversion in real space, instead of
an iterative solution for the local fields and the screened di-

pole coupling to the x-ray fieldd̃.
Since the response function in the core region, which

dominates the screening in deep-core excitations, can be as-
sumed to have rotational symmetry, it can be expanded lo-
cally in spherical harmonics,17

xsr ,r 8,vd = o
L

YLsr̂ dxlsr,r8,vdYL
* sr̂ 8d. s14d

Thus the radial part of the screened dipole fieldd̃

= d̃srdY10sr̂ d is determined by thel =1 component,

d̃srd =E dr8f1 − KLx0gl=1
−1 sr,r8ddsr8d. s15d

Heref1−KLx0gl=1
−1 sr ,r8d;el=1

−1 sr ,r8d defines thep-wave com-
ponent of the dielectric matrix anddsrd=r is the radial part
of the dipole operator. In our applications for deep-core XAS
we carry out matrix inversion explicitly in real space on the
logarithmic, radial atomic grid of Desclaux18 with a typical
matrix size of 2513251, using only the absorbing-atom con-
tribution to the response. Note that within the TDDFT with
local kernels, the form ofx0svd is reduced to a function of
only two space points, i.e.,x0sr ,r 8 ,vd=4x0sr ,r 8 ,r 8 ,r ,vd.
This contraction is only possible whenK is local. As in ZS,
a Green’s function representation ofx0 is used,

x0sr ,r 8,vd = o
i

f ici
*sr dcisr 8dGsr ,r 8,Ei + vd

+ o
i

f ici
*sr 8dcisr dGsr 8,r ,Ei − vd. s16d

HereG are retarded one-particle Green’s functions which are
formally given by

Gsr ,r 8,Ed = o
j

c jsr dc j
*sr 8d

E − Ej + iG
, s17d

where the summation runs overall of the eigenstatesj of the
quasiparticle Hamiltonian, andG accounts for lifetime broad-
ening. In the calculations reported here,GsEd is calculated
using our real-space multiple-scattering codes.9 The inclu-
sion of the secondnonresonantterm in Eq.s16d is essential
to forbid contributions between occupied and occupied or
unoccupied and unoccupied states. Ensuring this cancellation
requires considerable numerical care, but we have verified
that the condition is satisfied to high accuracy in our calcu-
lations.

Remarkably the XAS can be calculated equivalently, us-
ing either the full-response functionx or in terms of local
fields, as shown by ZS.5 The latter approach is preferable
here, since it requires only a modification of the transition
matrix elements and leaves the fine-structure matrixxL,L8sEd
unchanged. This is shown by Eq.s18d below with xL,L8 de-
fined in Eq.s19d. Thus this approach can be readily applied
to other spectroscopies, e.g., x-ray photoelectron spectros-
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copy, where by examining the energy loss of the outgoing
electron, one can see which core hole is left behind. It ap-
pears to be difficult to extract such partial quantities from the
full-response functionx, where these contributions are
mixed with the interactionsK. However, this separation can
be done straightforwardly in terms of the renormalized ma-

trix elementsM̃iL.
Within the real-space multiple-scattering theory used

here, the LFTDDFT approach yields an expression similar to
the Fermi “golden rule” for the XAS cross section,14

ssvd =
4pv

c
o

i,LL8

f iM̃iLsvdr̂L,L8sEdM̃iL8svd, s18d

whereE=v+Ei −EF. HereM̃iLsvd=kRLud̃uil are the screened
dipole matrix elements from Eq.s13d in a relativistic
angular-momentum basisL=sk ,md, and rsr ,r 8 ,Ed=
−s1/pdIm Gsr ,r 8 ,Ed is the unoccupied one-electron density
matrix, which in the real-space multiple-scattering formalism
is given by

rsr ,r 8,Ed ; o
i

f icisr dci
*sr 8ddsE − Eid

= o
L,L8

RLsr dRL8sr 8drL,L8sEd,

rL,L8sEd = fdL,L8 + xL,L8sEdgusE − EFd. s19d

Here RLsr d are normalized scattering states calculated with
only the absorbing-atom potential, andxL,L8sEd is the fine-
structure matrix in XAS due to scattering from the

environment.9 Note that by replacingd̃ with the bare external

x-ray field d= ê ·r , the screened dipole-matrix elementsM̃iL
become bare dipole-matrix elementsMiL =kRLuduil in Eq.
s18d, and one recovers the independent electron formula
given by Fermi golden rule. Core-hole contributions can be
included approximately in this expression in terms of the
FSR. However, the use of fully screened core-hole potentials
is not always satisfactory, as discussed in Sec. V below.

To illustrate the magnitude of the local fields, the ratio

Red̃srd /dsrd of the local field to the bare x-ray electric field

is shown in Fig. 2 for tungsten. The imaginary part ofd̃srd
snot shownd is also included in our calculations, but is sig-
nificantly smaller. Clearly the screening effect is negligible
in space beyond the extent of the initial 3d core orbitalssolid
curve in Fig. 2d, and it slowly reduces in magnitude with
increasing energy showing that our local approximation is
satisfactory.

IV. NONLOCAL CORE-HOLE INTERACTION

In this section we discuss partsII d of our combined pro-
cedure, in which the nonlocal interactions inKN are treated.
This step requires an explicit calculation of the screened
core-hole interaction given by Eq.s11d for x in terms ofxL.
Thus we must first evaluate the local-response functionxL

using

xL = x0 + x0KLxL = x0 + x0WLx0, s20d

whereWL defines the local screened-exchange interaction,

WL = f1 − KLx0g−1KL = eL
−1KL. s21d

Second we must calculate the full responsex from Eq. s12d.
The above relations are applicable both for two-point and
four-point forms of x. Here we need a four-point form,
which we calculate as in a previous work,14

4x0svd = o
i

f ici
*s1dcis3dE

EF

` dE

p
rs2,4,Ed

3 F 1

v − E + Ei + iG
+

1

v + E − Ei + iG
G . s22d

Next, we make use of the local atomic-projection operatorP̂
to approximate this local screened-dipole interaction,14 i.e.,

P̂=Snucnlkcnu. This operator projects a given function onto a
local basis set of atomiclike orbitals at the central absorbing
atom. Then the density matrix can be approximated by its

local contribution,r<rloc= P̂rP̂. This approximation can be
systematically improved by including a more complete set of
statesn. Consequently, the response function4x0 with our
projection method becomes

4x0svd = o
inn8

f ici
*s1dcn

*s2dxin,in8
0 svdcis3dcn8s4d,

xin,in8
0 svd =

− 2k

p
o
L,L8

E
EF

`

dE
kcnuRLlrL,L8kRL8ucn8l

v − E + Ei + iG
, s23d

wherek=Î2sv+Eid. Note that the localized part ofx0 does
not require a Kramers-Kronig transform at each space point,
since the localized part of the photoelectron wave function

FIG. 2. Local-field effect: the real part of the ratiod̃/d of the
local screened x-ray field to the bare x-ray electric field is shown for
photon energies above the tungstenM5 edge at 1850 eV by 20 eV
sdashesd, 200 eVslong dashesd, and 400 eVsdot-dashesd. Note that
the local fields are essentially restricted to the range of the initial-
core orbitalfrf3dsrdg ssolid lined, which for clarity is shifted verti-
cally by unity.
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can be separated into energy- and position-dependent parts.
Moreover, the overlap matrices decay quickly with energy,
so the Kramers-Kronig transform converges well. This sig-
nificantly simplifies the calculations and allows us to use a
fast-matrix formulation similar to that of Schwitalla and
Ebert.6 A similar expansion also can be applied to the local
sor RPAd response

4xLsvd = o
in,i8n8

f i f i8ci
*s1dcn

*s3dxin,i8n8
L svd 3 ci8s2dcn8s4d,

xin,i8n8
L = xin,i8n8

0 + xin,i1n1

0 Wi1n1,i2n2

L xi2n2,i8n8
0 , s24d

where the interactionWLsr ,r 8 ,vd is obtained from Eq.s9d,
and its matrix elementsWi1n1,i2n2

L are straightforward to cal-
culate, as discussed below.

The equations for the renormalized transition-matrix ele-
ments are similar to those with the projection-method ap-
proach introduced previously,14

M̃in = Min + Kin,i8n8
N

x̃i8n8,i9n9
L svdM̃i9n9, s25d

Kin,i8n8
N svd =E drdr 8cisr dcn

*sr d 3 KNsr ,r 8,vdcn8sr 8dci8
* sr 8d.

s26d

Here M̃in=kcnud̃uil; however, these matrices can be calcu-
lated directly by matrix inversion,

M̃ = M + KNxLM̃ = f1 − KNxLg−1M . s27d

Clearly this approximation mixes the various angular-
momentum channels and is responsible, for example, for the
deviation of theL3/L2 intensity ratio from the statistical
value of 2 in the one-electron approximation. The screened

transition-matrixM̃iL elements needed to calculate the cross
section are also given by Eqs.s25d and s26d, with the re-
placementcn→RLsEd for eachE.

As a consequence of the locality of the exchange-
correlation kernel fxcfrsr dg, the direct and exchange-
correlation contributions toKiL,i8n8svd satisfy the same selec-
tion rules and can all be calculated using the standard
relativistic formulas for the matrix elements of the electro-
static interaction.19

V. SCREENED CORE-HOLE INTERACTION

Finally we discuss our treatment of the screened core-hole
interactionW, which is needed in the direct kernelKN above.
An accurate treatment of the screening of the core-hole in-
teraction potential is usually essential in quantitative calcu-
lations of XAS. However, the extent of such screening is
material dependent, and variousad hocprescriptions, such as
the FSR or theZ+1 approximation, which are screened to all
orders, can give too much screening. In contrast, the ap-
proach adopted here provides a systematic approach for cal-
culating the screening effects within the RPA. In general the
screened matrix elements ofKN can be frequency dependent,
e.g.,

Kin,i8n8
N =E drdr 8cisr dci8

* sr dWsr ,r 8,vii8d 3 cn
*sr 8dcn8sr 8d,

s28d

where vii8= uEi −Ei8u. For deep core XAS the core hole is
highly localized near the nucleifcf. Fig. 2g, and thereforeW
is predominantly spherically symmetric. Thus it can couple
substantially only the states with the same total momentum
for the core-hole statejsid= jsi8d, and coupling fori Þ i8 can
be neglected. Then the screened core-hole interaction simpli-
fies, and a static approximation can be used,

Kin,i8n8
N < di,i8E dr8Ṽisr 8dcn

*sr 8dcn8sr 8d, s29d

Ṽisr d =E dr 8cisr 8dci
*sr 8dWsr 8,r d, s30d

where Wsr ,r 8d=Wsr ,r 8 ,v=0d, and Ṽisrd represents the
core-hole potential for core-leveli. BSE calculations usually
use a statically screened interactionW, as calculated with a
linear response using the RPA,8

W= v + vx0W= f1 − vx0g−1v. s31d

Calculations of the screened core-hole interaction sim-
plify in the static limit. Also due to the spherical symmetry
of deep core-hole states, only thes-wave sl =0d component
of the response function is needed. Again, using the formal-
ism of Stott and Zaremba,17 the s-wave component of the
response is calculated using

xl=0
0 sr,r8d = −

1

2p
Im EEF dv

p
o
l=0

`

sl + 1dGl
2sr,r8,vd.

s32d

Then Eq. s31d for W is evaluated by invertingf1
−vx0gl=0

−1 sr ,r8d in real space on a radial grid.
It is interesting to compare the RPA-screened core poten-

tials Ṽi with the fully screened potentials from the FSR.
These potentials can be viewed as a difference in total self-
consistent fieldsSCFd potentialssi.e., DSCF methodd with
and without the core-hole,

Ṽi
FSRsrd = Visrd − V0srd, s33d

where Vi8srd is the total SCF potential with a core hole in
level i, andV0srd is the ground-state potential.

As an illustration, Fig. 3 shows our calculations of the
screened core-hole potential for tungsten. Here the solid
curve is the bare, unscreened potential, which behaves as 1/r
at large distances. The dotted curve shows the screened core-
hole potential calculated by linear responsesi.e., the RPA
with KL=vd, and the dashes show the FSR potential. Both
core-hole potentials are comparable and the sensitivity of the
XAS to the core-hole potential is shown in Fig. 4.
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VI. RESULTS AND DISCUSSION

We have chosen a few examples to illustrate our approach
in different screening limits. In particular the case ofM-shell
XAS in W illustrates one limit, where the core-hole interac-
tion is weaksbeing strongly screenedd and local-field effects
dominate. The case ofK-edge XAS in MgO represents the
other limit, where the core-hole interaction dominates. The
case of theL3-edge XAS of Ni metal is intermediate, where
both effects are strong and tend to cancel.

Figure 1 shows the effect of including local-field effects
in the calculations forW. Note that calculations with only the
local TDDFT methodssolid lined do not treat the nonlocal
core-hole potential, while our PMBSE approachsdotted lined
loses accuracy at energies high above the edge. Also note
that the LFTDDFT and the PMBSE both reasonably account
for the corrections to the independent-electron approxima-
tion within the first 200 eV from the edge. The agreement
between these different approaches serves as a check on the
various numerical approximations in the calculations. Finally
note that our combined approach for the absolute cross sec-
tion, which has no adjustable parameters, agrees with the
experiment to within experimental uncertainty.

Figure 4 shows the effect of including the core-hole inter-
action in calculations for tungsten. Here the solid line is the
same as that in Fig. 1, and it corresponds to our LFTDDFT
approach with the neglect of the core-hole interaction. The
dotted curve shows our full TDDFT-BSE calculation with
the RPA-screened potential, while the dashed curve shows
the full calculation with the FSR core hole. For this case it is
clear that the local-field effect on the spectra is much stron-
ger than that of the core-hole interaction. A smaller effect
from the RPA-screened potential might have been expected,
since it is positive at higher distances, as discussed above.

Next Fig. 5 shows calculations for the Ni near theL3
edge. Here both the core-hole and local-field effects are im-
portant, despite the fact that the single-electron calculations
sdotsd gives a good agreement with the experiment. The rea-
son is that the two effects are of opposite sign and tend to

cancel. Thus RPA calculationssthin solidd show a significant
reduction of theL3 white line. However, the addition of the
FSR core-hole potential restores the intensity of theL3 white
line. For this case the results appear to be very sensitive to
the screening of the core-hole potential. Thus we find a best
agreement with the experiment if we use a mixed potential,
where about 80% of the core-hole interaction is taken from
the RPA-screened potential and 20% from bare core-hole
potential.

Finally Fig. 6 shows our results for theK edge of MgO.
This is the opposite limiting case, where the core-hole-
interaction effect is stronger than that from the local fields.
This is likely due to the generally weaker screening in insu-
lators than in metals. The standard real-space multiple-
scattering calculations based on theFEFF8 code,10 which in-
cludes a fully screened core-hole from the FSR, also give
good resultssFig. 6, dashesd, since the local-field effect is
small for MgO. The results obtained with the combined ap-

FIG. 3. Core-hole potential. The bare core-hole potential for the
M5 level of tungstenssolidd compared to the RPA screened potential
sdotsd, and the fully-screened FSR potentialsdashesd.

FIG. 4. Mass-absorption coefficientscm2/gd near theM5 edge
of tungsten. LFTDDFT calculationsssolidd compared to PMBSE
for two different core-hole potentials: RPA-screened potentialsdotsd
and FSR potentialsdashesd.

FIG. 5. Ni L3-edge andL2-edge absorption. The LFTDDFT cal-
culationsssolidd as compared to independent particle approximation
sdotsd and experimentsthick solidd. The dashes show calculations
with a fully-screened FSR core-hole potential.
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proach of this papersFig. 6, thin solid lined compare well
with the experiment.20 In particular, we find that the ratio of
the two largest peaks is very sensitive to the core-hole po-
tential Wsrd. Therefore the improvement of the intensity of
the second peak compared with that in the experiment is
mainly due to our improved calculation ofW with the Stott-
Zaremba method. For these MgO calculations we treat the
local-field effects via the LFTDDFT methodsId and include
the core-hole potential using the PMBSEsII d. For both I and
II, we setfxc=0, since this cancels in the sumKL+KN in Eqs.
s8d ands9d. Within II, we only use a single 3p-orbital for the
projection-method basis set.

VII. SUMMARY AND CONCLUSIONS

We have developed a combined TDDFT-BSE approach
for calculations of x-ray spectra beyond the independent-
particle approximation that includes the effects of local fields
from the screening of the x-ray field and a screened core-hole
interaction. In this combined approach, the response function
from the LFTDDFT approach is used in the subsequent cal-
culation of the full BSE response function to account for the
nonlocal, screened core-hole interaction. A key step in the
combined approach is the construction of the full four-point
response function, using results obtained from the two-point
response function, as calculated within TDDFT or the RPA.
Our treatment also includes inelastic losses and self-energy
shifts based on the quasiparticle approximation, as imple-

mented in our real-space multiple-scattering codes.9

Our combined approach has several practical advantages.
First, the LFTDDFT approach is very efficient, compared to
the BSE, and it is applicable over a wide spectral range
above the edge. Second, the precise form of the exchange-
correlation kernelfxcsrd appears not to be crucial away from
the edge, obviating the need for special or nonlocal kernels.
Third, the approach yields the full BSE response near the
edge, where nonlocal effects are most important. Moreover,
the method elucidates the nature of the screening, both of the
x-ray field and of the core hole in a system-dependent man-
ner, and thus explains why one or the other of these effects
can dominate in a calculation.

Our combined approach has been implemented using first
an extension of the LFTDDFT approach of ZS, which pro-
vides a practical generalization of their approach for molecu-
lar or condensed systems. The second part of our procedure
is an implementation of the BSE, which is applicable in the
near-edge region. For this part we use a local-projection
method,14 which has been extended here to treat the nonlocal
screened core-hole interaction. Since the two-particle inter-
action effectsKX and KD are of opposite signs and tend to
cancel, the results can be sensitive to the details of the core-
hole-potential construction and screening. Our calculations
make use of the adiabatic formalism of Stott and Zaremba17

to evaluate the screened core-hole interaction.
We find that our combined approach works well, both for

cases in which the local-field effect dominates, e.g., W, and
where the core-hole interaction dominates, e.g., MgO. In par-
ticular the calculations with no adjustable parameters agree
with the absolute measurements to within experimental un-
certainty. Thus this approach provides an efficient method
for general calculations of x-ray spectra and other optical
constants, over a broad spectrum from UV to x-ray
energies.21 Moreover, the ideas behind our combined ap-
proach are not restricted to the present application, and they
may be used to extend the utility of existing TDDFT and
BSE codes.
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