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Combined Bethe-Saltpeter equations and time-dependent density-functional theory approach
for x-ray absorption calculations
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Many-body effects such as local fields and the core-hole interaction can be significant in x-ray absorption
spectra even several hundred eV above an absorption edge. The treatment of these effects requires theories
beyond the independent-particle approximation, e.g., the Bethe-Saltpeter eB&iHror the time-dependent
density-functional theoryTDDFT). However the BSE is usually limited to low energies, while the TDDFT
often ignores the nonlocality of the core-hole interaction. Here we present a combined approach for the
calculations of the x-ray spectra that include both of these effects, together with inelastic losses and self-energy
shifts over a wide energy range. The approach is illustrated for a few materials, including metals and oxides.
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[. INTRODUCTION exchange-correlation functionals or the neglect of their non-
locality can limit the applicability of TDDFT close to the
The many-body effects beyond the independent-particlebsorption edges. Thus a number of attempts have been
approximation, in particular the core-hole photoelectron in-made to improve on the TDDFTThis paper is another at-
teraction and local-field effects due to the screening of th@empt, which succeeds in combining the TDDFT and BSE
x-ray field, lead to systematic differences between the onemethods.
electron calculations of x-ray absorption spe¢%AS) and Formally the XAS cross section can be expressed in terms
the experiment. However, the development of an efficientof the fully interacting response function s,
yet quantitative approach for general calculations that in-
cludes these effects remains a challenge. These two-particle ®
interactions can be treated using the Bethe-Saltpeter equation ~ o) =—47—Im f drdr'd"(rx(r,r',@)d(r), (1)
(BSB),'*but this approach is computationally demanding. A ¢

more efficient method is based on the time-depende P : - :
density-functional theoryfTDDFT).5>~ This approach typi- r\}vher(_ed(r)fe ris the d|pole_op(_arator coupling to t_he e_xter i

. : nal x-ray field, and the two-point response function is ob
cally employs a local exchange-correlation functional, but

nonlocality is sometimes crucié&lThe core-hole interaction tained by contracting the four-point responger,r’, «)
can also be treated approximately in independent-particle
calculations based on th@al-state rule(FSR), where the
final states are calculated in the presence of a fully screenet
core hole, and other many-body effects are lumped into the
photoelectron self-enerdy.For deep-core excitations the
treatment of the core hole using the FSR can yield result
comparable to those from the BSEThe moread hoc Z
+1 approximatiok and transition-staté approaches have
also been used in practice. g
However, none of these approaches is fully satisfactory, ass 2000__
illustrated in Fig. 1 for theM-edge XAS of tungsten. For this g
material the independent particle approximati@ashey
overestimates the magnitude of the XAS and the material
decays more rapidly with energy than it does in the experi-
ment (thick solid. Adding a screened core hole within the
FSR does not significantly change the results for this system,
which, as shown below, is dominated by local-field effects. FIG. 1. Absolute measurements and calculations of the mass-

Eliminat?ng such disc_repancies can be_ of p_ractical impor'absorption coefficieni in cm?/g near theMs edge of tungsten:
tance, since the amplitude of the edge jump is used, e.g., periment(Ref. 13 (thick solid vs calculations based on the
measure the thickness of the interconnects in integrateglgependent-particle approximatiddashey on the TDDFT ap-
circuits®® Clearly both the BSE(doty and the TDDFT  proach with only local-field effectésolid), and on our projection
(solid) roughly account for the discrepancy close to the edgeapproach to the BSERef. 14 (dots. The experimental uncertainty
However, numerical basis-set limitations generally restricts approximately 100+0.0z cn?/g (Ref. 13, which is compa-
the BSE to relatively low energies, typically below aboutrable to the discrepancy between the TDDFT approach and the
200 eV of threshold. Also, the lack of sufficiently accurate experiment.
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=4x(r,r’,r',r, ). Below we will omit the superscript 4, un- Il. COMBINED BSE AND TDDFT APPROACH
less it is needed for clarity. The core-hole and local-field
interactions are both incorporated in the kerkebf the in-
tegral equation for the response function,

We now present an approach which combines the effi-
ciency of the TDDFT method at high energies with the ad-
vantages of a local double-basis BSE approach near the

Y() = %) + (@)K x(), ) _edge. T_he approach makes it possible to treat the core-hole
interaction and local-field effects over a wide spectral range.
where here and elsewhere the matrix indices are also sughe full-response function is the main ingredient in the cal-
pressed, unless they are needed for clarity. In(Bgy®(w) is  culations of XAS beyond the independent-particle approxi-
the independent particle-response function and mation, and it is given by the solution to the integral equa-
tion in Eq. (2),
K=KX+KP, (3)

) ) x=xT1-Kx°T™. (5

is the kernel, whereK® and K* denote the directii.e., . .
particle-hole interactionand exchange terms, respectively. The term in brackets in Eq5),
These terms are of opposite signs, and hence they tend to e=[1-Kx", (6)
cancel. Their relative importance reflects the different com- . . _ o . _
ponents of the response functign and hence one or the is the dielectric matrix, and its inverse™ is a key quantity
other can dominate, depending on the system. As discuss&g interest here. The four-point representation of
below, KX typically reflects thep-wave response to the dipole Xx'(1,2,3,4,0) is formally given by
coupling, whileKP reflects thes-wave character of the core « x
hole. 4)(0((0) — E (f- _ f-) ¢’| (1)‘14(3)1lfj (2)1[11(4)

Within the BSE the direct terk® is usually taken to be 7 e+E-E+il
the adiabatically screened Coulomb interaction,

()

where 1=r,, as in the notation of Onidat al.? and the spin

KP =~WI(r,r')=¢etu(r,r'), (4)  indexes are suppressed for simplicity. Here the one-particle

statesy; are eigenstates of the quasiparticle Hamiltonan

where € is the static-dielectric function, as calculated =p?/2m+V,y,+2(E), whereS(E) is the self-energy and,
within the random-phase approximati¢RPA) andv(r,r’) are Fermi occupation numbers. In the examples of this paper
=1/|r-r’| is the bare Coulomb interaction. However, the 3(E) is calculated using the local GW plasmon-pole model
difficulty of calculating bothM(r ,r’) and the four-point BSE  of Hedin and Lundqvist. This self-energy and other quanti-
response function poses severe numerical complications, ofies needed in the calculations such as the scattering poten-
ten requiring large particle-hole-basis sets. Consequently thigals and phase shifts are obtained using the real-space
calculations become progressively more time-consuming anthultiple-scattering approach, which has been extensively
eventually impractical as the photoelectron energy is intested for deep-core XA%Y
creased. For example, the BSE calculations based on our Next we separate the interaction kernel into local and
local-projection-operator meth&t(Fig. 1, dot$ already re- nonlocal parts labeletk- and KN, respectively, by adding
quire the inversion of order 100100 matrices at each en- and subtracting a local exchange-correlation kernel, i.e.,
ergy point with a double-basis s$i¢j, including four final-

state f-orbitals. As a result, this limited-basis set loses KHrr' @) =o(r,r) + fidrr', o), (8)
accuracy and becomes inadequate about 200 eV above the
edge. KN r',w) =W(r',r,0") = f,dr,r', o). 9)

The replacement k> by a local-density approximation Their description adocal or nonlocal kernels is based on
in the TDDFT approach of Zangwill and SoR4ZS) greatly rgheir behavior in the exchange integrals in response-function

simplifies the calculations. In their approach the expansion i lculations. as discussed below. Al&s. can be recoanized
double-basis sets is circumvented, and the calculations 5 i ' ' 9

N .
XAS are equvalety caied out using a Ffgoiden 2 1"¢ TDOFT lemel, Wbl contans the nonocal
rule” expression in which the coupling to the x-ray field is ! . ' 9 g

o~ correlation kernel is nonlocal and frequency dependent, but
replaced by a screened local fieldUnfortunately local ker- practice the adiabatic local-density approximation
nels have been found to be unsatisfactory for many system§A|_DA) is often used

particularly for molecules and insulators, as stressed by sev-

eral author$. This drawback has provided an incentive for ALD , ,

this and other developmertt4? e rr)=ar=r’)
The plan of this article is as follows. Section Il outlines

our combined approach, Sec. Ill describes the treatment ofhere V,Jp] is the local-density approximation for the

local-field effects, Sec. IV describes the BSE and nonlocafround-state exchange-correlation potential. In this work we

core-hole interaction, and Sec. V relates our treatment of thase the ground-state exchange correlation of von Barth and

statically screened core-hole interaction. Finally Sec. VI conHedin1®

tains our results and Sec. VII contains a summary and con- Our combined approach for the interacting problem then

clusions. consists of two steps:

N, dp(r)] (10)
s ,
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(I) First, we apply the TDDFT method with a local kernel complex self-energy instead of ground-state LDA exchange-
K' yielding the local-density approximation to the TDDFT correlation potentials in the one-particléquasiparticle
response function*, states; andiv) use matrix inversion in real space, instead of

L 0 L 011 an iterative solution for the local fields and the screened di-
x =xT11-K-x"T. (11) . o~
pole coupling to the x-ray field.
If f..is neglected irk", the result is the RPA response func-  Since the response function in the core region, which
tion x-=xRPA Our calculations of the local fields fropd-  dominates the screening in deep-core excitations, can be as-
follow a strategy similar to that of ZS, which we term the sumed to have rotational symmetry, it can be expanded lo-
local-field time-dependent density-function thediyFTD-  cally in spherical harmonics,
DFT) approach. We find that the calculation of XAS with the X
TDDFT response iny" is often adequate well above an edge X1 o) = 2 Y (O)x(rr )Y (). (14
over a broad energy spectrum. L

(Il Second, the full response, including an explicit treat-

ment of the screened core hole, is given by

x = X1 -KNYT (12)
This result for the total respongeis formally equivalent to d(r) :f dr'[1 =K T2 (r,r)d(r). (15)
the BSE, since Eq(12) implicitly includes the fullK, but
this step becomes increasingly difficult to implement as thedere[1-K x|/ 2 (r,r') = 24(r,r’) defines thep-wave com-
photoelectron energy is increased. Fortunately we only neegonent of the dielectric matrix andlr)=r is the radial part
carry out this second step for energies within several eV obf the dipole operator. In our applications for deep-core XAS
the edge, where the nonlocality of the screened core-holge carry out matrix inversion explicitly in real space on the
interaction is most important. Our approach for this step igogarithmic, radial atomic grid of Desclatfwith a typical
based on our projection-operator mettiéayhich treats the  matrix size of 251 251, using only the absorbing-atom con-
screening of the core-hole interaction at the atomic level angpution to the response. Note that within the TDDFT with
is very efficient numerically. Here we will refer to this ap- |gcal kernels, the form 0k°%w) is reduced to a function of
proach as the projection-operator method Bethe-Saltpetgjnly two space points, i.ex(r,r’, o)=4°(r,r',r',r, o).
equation(PMBSE). This contraction is only possible whefis local. As in ZS,

a Green’s function representation gt is used,

XA @)= 2 A (DG E + o)

Thus the radial part of the screened dipole fiedd
=d(r)Y,(f) is determined by thé=1 component,

Ill. LOCAL-FIELD EFFECTS

In this section we discuss stép of our combined ap-
proach. As noted above the TDDFT approach greatly simpli- + s / o
fies the calculations, since with local exchange, the response 2 figg (r) (G, rEi - o). (16)
function can be contracted to a two-point form. In particular ) ) .
the cross section can then be expressed in terms of the FerfiereG are retarded one-particle Green’s functions which are

“golden rule,” with a screened dipole interactid’ That is, formally given by

the dipole matrix elements within the TDDFT become renor- » lﬂj(r)l/;(r'
i G(r,r",E)= —, 17
malized, (rr'.B) . E-Ej+il (7
|\~/|ij = f drd(r)[1 - KLXO]‘llpi*(r),pj(r) where the summation runs ovalt of the eigenstatesof the

quasiparticle Hamiltonian, arld accounts for lifetime broad-
- . - ening. In the calculations reported hef&E) is calculated
:f drd(r) e (r)w;(r) = ildlj). (13 using our real-space multiple-scattering codi@he inclu-
sion of the secondionresonanterm in Eq.(16) is essential
The LFTDDFT approach was originally used to calculateto forbid contributions between occupied and occupied or
the response for rare gas atoms using a Green’s functiomnoccupied and unoccupied states. Ensuring this cancellation
method® However this approach cannot be directly appliedrequires considerable numerical care, but we have verified
to extended systems. The reason is that the sum over a smé#iiat the condition is satisfied to high accuracy in our calcu-
number of occupied states in atoms, e.g., thestates of a  lations.
transition metal element become an integral over the& Remarkably the XAS can be calculated equivalently, us-
lence band in solids. Hence the original ZS strategy needs tmg either the full-response functiog or in terms of local
be modified. Our modifications for large molecules and sol{ields, as shown by ZSThe latter approach is preferable
ids are based on the real-space Green’s function approach, laere, since it requires only a modification of the transition
follows: (i) use solid-state scattering potentials instead ofmatrix elements and leaves the fine-structure magrix (E)
atomic potentials{ii) include multiple scattering contribu- unchanged. This is shown by E(.8) below with x, . de-
tions in the propagatoG to account for contributions from fined in Eq.(19). Thus this approach can be readily applied
atoms in the environment of the absorbing atdiin) use a to other spectroscopies, e.g., x-ray photoelectron spectros-
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copy, where by examining the energy loss of the outgoing
electron, one can see which core hole is left behind. It ap-
pears to be difficult to extract such partial quantities from the !-3
full-response functiony, where these contributions are
mixed with the interaction&. However, this separation can

be done straightforwardly in terms of the renormalized ma-

trix elementsM;, .

Within the real-space multiple-scattering theory used !
here, the LFTDDFT approach yields an expression similar to
the Fermi “golden rule” for the XAS cross sectith,

()= 223 i (@p BV (@), (18)
i,LL’

whereE=w+E;~Eg. HereM, (w)=(R_[d|i) are the screened 0 ! r (bohr) 3
dipole matrix elements from EQq(13) in a relativistic B
angular-momentum basisL=(x,m), and p(r,r’,E)= FIG. 2. Local-field effect: the real part of the ratidd of the

—=(1/m)Im G(r,r',E) is the unoccupied one-electron density local screened x-ray field to the bare x-ray electric field is shown for
matrix, which in the real-space multiple-scattering formalismphoton energies above the tungsidg edge at 1850 eV by 20 eV

is given by (dashey 200 eV(long dashels and 400 eMdot-dashes Note that

the local fields are essentially restricted to the range of the initial-

p(r,r’' E)= 2 fi‘ﬁi(")'ﬂi*(r’)fs(E -E) core orbitallr ¢34(r)] (solid line), which for clarity is shifted verti-

i cally by unity.
= RL(NDRLA(r")pL L (E),
L X=X+ XK = X0+ XWX, (20

whereW- defines the local screened-exchange interaction,

pLu(B) =0+ x L (BE)]O(E-Ep). (19

W =[1-K-y 0K = ¢ 'KE (21)

Here R (r) are normalized scattering states calculated WithSecond we must calculate the full responsieom Eq. (12)

only the absorbing-atom potential, and,/(E) is the fine- o106 relations are applicable both for two-point and

structure matrix in- XAS  due fo scattering from the four-point forms of y. Here we need a four-point form,
environmen® Note that by replacing with the bare external \which we calculate as in a previous wdrk,

x-ray field d=e-r, the screened dipole-matrix elemeits

become bare dipole-matrix elements;, =(R |d|i) in Eq. “ow) =2 f (D (3) d—Ep(2,4,E)

(18), and one recovers the independent electron formula [ S

given by Fermi golden rule. Core-hole contributions can be 1

included approximately in this expression in terms of the X [ — + - } (22
w-E+E+iII' o+E-E+il

FSR. However, the use of fully screened core-hole potentials

is not always satisfactory, as discussed in Sec. V below. Next, we make use of the local atomic-projection operﬁ?tor

To illustrate the magnitude of the local fields, the ratio, approximate this local screened-dipole interactibie.,

Rea(r)/d(r) of the local field to the bare x-ray electrlc field ﬁ’=3n|¢n><l/fn|- This operator projects a given function onto a
is shown in Fig. 2 for tungsten. The imaginary partdf)  |ocal basis set of atomiclike orbitals at the central absorbing
(not shown is also included in our calculations, but is sig- atom. Then the density matrix can be approximated by its
nificantly smaller. Clearly the screening effect is negligible |, contributionp =~ pl°¢= ﬁ,pﬁ,_ This approximation can be

in space beyond the extent of the initia 8ore orbital(solid systematically improved by including a more complete set of

curve in Fig. 3, and it slowly reduces in magnitude with 51050 Consequently, the response functiby with our
increasing energy showing that our local approximation 'Sprojection method becomes

satisfactory.
W) = 2 i (DY) i i (0) (3) e (4),

inn’

IV. NONLOCAL CORE-HOLE INTERACTION

In this section we discuss pa(it) of our combined pro- 0 (0) = ﬂ(E N d._<‘ﬁn|RL>PL,L’<RL’|¢n’>
cedure, in which the nonlocal interactionskiY are treated. Xinjin @)= 7 £ w-E+E+il
This step requires an explicit calculation of the screened F
core-hole interaction given by E¢l1) for y in terms ofy-.  wherek=2(w+E;). Note that the localized part of° does
Thus we must first evaluate the local-response funcgibn not require a Kramers-Kronig transform at each space point,
using since the localized part of the photoelectron wave function

, (23
LL'
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can be separated into energy- and position-dependent parts. . .

Moreover, the overlap matrices decay quickly with energy, Kinins =f drdr’ i(r) i, (NW(r, 1", w;ir) X () (r'),
so the Kramers-Kronig transform converges well. This sig-

nificantly simplifies the calculations and allows us to use a (28)
fast-matrix formulation similar to that of Schwitalla and

Ebert® A similar expansion also can be applied to the localWhere i =|E;~E;/|. For deep core XAS the core hole is

(or RPA) response highly localized near the nucléef. Fig. 2], and thereforaV
is predominantly spherically symmetric. Thus it can couple
o) = > fifi,lpr(l),p;(g)x:-n (@) X 0 (2) i (4), substantially only the states with the same total momentum
ini'n’ ’ for the core-hole statfi)=j(i’), and coupling foii #i’ can

be neglected. Then the screened core-hole interaction simpli-

_.0 0 0 fies, and a static approximation can be used,
Xini'n' = Xinjir? + Xin,ilnl ilnl,iznz)(iznz,i’n" (24) PP
where the interactioM*(r,r’, ) is obtained from Eq(9),
and its matrix element\, ; .
culate, as discussed below

The equations for the renormalized transition-matrix ele- ~

ments are similar to those with the projection-method ap- Vi(r)=fdf'i/fi(r')l/fi*(f')W(r',r), (30)
proach introduced previoust,

N
- K i'n’
are straightforward to cal- nn

,ufdl' V(I")lﬁnr )wn )a (29)

IVIm =M, + Ki“r']’i,n,F(iL,n,’i,,n,,(w)l\N/li,,n//, (250  where W(r,r")=W(r,r',0=0), and T/i(r) represents the

core-hole potential for core-level BSE calculations usually

use a statically screened interactidh as calculated with a

K!:‘],i’n’(w) :Jdrdr’wi(r)zp;(r) X KN(r,r" )¢ (r ), (r').  linear response using the RPA,

(26) W=v+v)®W=[1-vxT. (31)

Here M;,=(y,/d|i); however, these matrices can be calcu- _Calculations of the screened core-hole interaction sim-
lated directly by matrix inversion plify in the static limit. Also due to the spherical symmetry

of deep core-hole states, only tbavave (I=0) component
M =M +KNy-M =[1 - KNy I, (27)  of the response function is needed. Again, using the formal-
ism of Stott and ZarembH, the sswave component of the
Clearly this approximation mixes the various angular-response is calculated using

momentum channels and is responsible, for example, for the
deviation of thels/L, intensity ratio from the statistical 1 EF Ao o
value of 2 in the one-electron approximation. The screened  x,(r,r’)==—=—1Im — 2 (I1+ DGAr,r',0).
o .~ 2 T

transition-matrixM; elements needed to calculate the cross
section are also given by Eq&5) and (26), with the re- (32
placement, — R_(E) for eachE.

As a consequence of the locality of the exchange-Then Eq (31 for W is evaluated by inverting[1
correlation kernel f,Jp(r)], the direct and exchange- —vx’liZo(r,r") in real space on a radial grid.
correlation contributions t&; ;. (w) satisfy the same selec- It is interesting to compare the RPA-screened core poten-
tion rules and can all be calculated using the standardials V with the fully screened potentials from the FSR.
relativistic formulas for the matrix elements of the electro-These potentials can be viewed as a difference in total self-
static interactior? consistent field SCP potentials(i.e., ASCF methoyl with

and without the core-hole,
V. SCREENED CORE-HOLE INTERACTION

Finally we discuss our treatment of the screened core-hole VESAr) = Vi(r) = VO(r), (33
interactionW, which is needed in the direct kern€l above.
An accurate treatment of the screening of the core-hole inwhereV/(r) is the total SCF potential with a core hole in
teraction potential is usually essential in quantitative calculeveli, andVO(r) is the ground-state potential.
lations of XAS. However, the extent of such screening is As an illustration, Fig. 3 shows our calculations of the
material dependent, and varioad hocprescriptions, such as screened core-hole potential for tungsten. Here the solid
the FSR or th&Z+ 1 approximation, which are screened to all curve is the bare, unscreened potential, which behavesras 1/
orders, can give too much screening. In contrast, the apat large distances. The dotted curve shows the screened core-
proach adopted here provides a systematic approach for cdtole potential calculated by linear resporge., the RPA
culating the screening effects within the RPA. In general thevith K-=v), and the dashes show the FSR potential. Both
screened matrix elements i can be frequency dependent, core-hole potentials are comparable and the sensitivity of the
e.g., XAS to the core-hole potential is shown in Fig. 4.
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FIG. 3. Core-hole potential. The bare core-hole potential for the FIG. 4. Mass-absorption coefficiettn?/g) near theMs edge

M5 level of tungster{solid) compared to the RPA screened potential of tungs’gen. LFTDDFT calculati_one.solid) compared to PMBSE
(dots, and the fully-screened FSR potentidashes for two different f:ore-hole potentials: RPA-screened poteliiels
and FSR potentialdashes

VI RESULTS AND DISCUSSION cancel. Thus RPA calculatiorithin solid) show a significant

. reduction of thel 3 white line. However, the addition of the

_ We have chosen a few examples to illustrate our approacfsg core-hole potential restores the intensity oflthevhite

in different screening limits. In particular the caseMdfshell e For this case the results appear to be very sensitive to
XAS in Willustrates one limit, where the core-hole interac- ihe screening of the core-hole potential. Thus we find a best
tion is weak(being strongly screeng@nd local-field effects  5greement with the experiment if we use a mixed potential,

dominate. The case df-edge XAS in MgO represents the \yhere about 80% of the core-hole interaction is taken from

other limit, where the core-hole interaction dominates. Thghe RpPA-screened potential and 20% from bare core-hole
case of the_s-edge XAS of Ni metal is intermediate, where potential.

both effects are strong and tend to cancel. _ Finally Fig. 6 shows our results for tHé¢ edge of MgO.

_ Figure 1 shows the effect of mcludmg Iocal-_f|eld effects This is the opposite limiting case, where the core-hole-

in the calculations fowV. Note that calculations with only the jnteraction effect is stronger than that from the local fields.

local TDDFT method(solid line) do not treat the nonlocal s js likely due to the generally weaker screening in insu-

core-hole potential, while our PMBSE approddotted N8  |ators than in metals. The standard real-space multiple-
loses accuracy at energies high above the edge. Also ”OE"cattering calculations based on #eFFs codel® which in-

that the LFTDDFT and the PMBSE both reasonably accountjydes a fully screened core-hole from the FSR, also give
for the corrections to the independent-electron approximagood results(Fig. 6, dashes since the local-field effect is

tion within the first 200 eV from the edge. The agreementgmg|| for MgO. The results obtained with the combined ap-
between these different approaches serves as a check on the

various numerical approximations in the calculations. Finally 4
note that our combined approach for the absolute cross sec
tion, which has no adjustable parameters, agrees with the
experiment to within experimental uncertainty.

Figure 4 shows the effect of including the core-hole inter-
action in calculations for tungsten. Here the solid line is the §
same as that in Fig. 1, and it corresponds to our LFTDDFTE |
approach with the neglect of the core-hole interaction. Thes 2[
dotted curve shows our full TDDFT-BSE calculation with
the RPA-screened potential, while the dashed curve shows
the full calculation with the FSR core hole. For this case itis 1
clear that the local-field effect on the spectra is much stron- J

ts)

Absorpti

ger than that of the core-hole interaction. A smaller effect
from the RPA-screened potential might have been expected N N T R .
since it is positive at higher distances, as discussed above. 850 860 Erer 87(2\/) 880 890
Next Fig. 5 shows calculations for the Ni near the &

edge. Here both the core-hole and local-field effects are im- F|G. 5. NiL,-edge and_,-edge absorption. The LFTDDFT cal-
portant, despite the fact that the single-electron calculationgulations(solid) as compared to independent particle approximation
(dots gives a good agreement with the experiment. The reagdots and experimentthick solid). The dashes show calculations
son is that the two effects are of opposite sign and tend tevith a fully-screened FSR core-hole potential.
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6 - T - T ' mented in our real-space multiple-scattering cotles.

I l Our combined approach has several practical advantages.
First, the LFTDDFT approach is very efficient, compared to
the BSE, and it is applicable over a wide spectral range
above the edge. Second, the precise form of the exchange-
correlation kernef,(p) appears not to be crucial away from
the edge, obviating the need for special or nonlocal kernels.
Third, the approach yields the full BSE response near the
edge, where nonlocal effects are most important. Moreover,
the method elucidates the nature of the screening, both of the
x-ray field and of the core hole in a system-dependent man-
ner, and thus explains why one or the other of these effects
. | . | . can dominate in a calculation.

500 1320 1340 1360 Our combined approach has been implemented using first
Energy (eV) an extension of the LFTDDFT approach of ZS, which pro-
vides a practical generalization of their approach for molecu-
FIG. 6. X-ray absorption for the Mg shell of MgO. Note that  |ar or condensed systems. The second part of our procedure
our combined approac(solid) significantly improves _the intensity s an implementation of the BSE, which is applicable in the
of the two leading peaks compared to the experim@®df. 20 near-edge region. For this part we use a local-projection
(thick solid) or final-state-rule calculationlashes method4 which has been extended here to treat the nonlocal
screened core-hole interaction. Since the two-particle inter-
proach of this papefFig. 6, thin solid ling compare well  action effectsk* andKP are of opposite signs and tend to
with the experiment? In particular, we find that the ratio of cancel, the results can be sensitive to the details of the core-
the two largest peaks is very sensitive to the core-hole pohole-potential construction and screening. Our calculations
tential W(r). Therefore the improvement of the intensity of make use of the adiabatic formalism of Stott and Zaréhba
the second peak compared with that in the experiment igo evaluate the screened core-hole interaction.
mainly due to our improved calculation B with the Stott- We find that our combined approach works well, both for
Zaremba method. For these MgO calculations we treat theases in which the local-field effect dominates, e.g., W, and
local-field effects via the LFTDDFT methadd) and include  where the core-hole interaction dominates, e.g., MgO. In par-
the core-hole potential using the PMBSIE). For both | and ticular the calculations with no adjustable parameters agree
I, we setf,.=0, since this cancels in the suih+KN in Egs.  with the absolute measurements to within experimental un-
(8) and(9). Within Il, we only use a single@orbital for the  certainty. Thus this approach provides an efficient method

Absorption (arb. units)

projection-method basis set. for general calculations of x-ray spectra and other optical
constants, over a broad spectrum from UV to x-ray
VIl. SUMMARY AND CONCLUSIONS energieg! Moreover, the ideas behind our combined ap-

proach are not restricted to the present application, and they

We have developed a combined TDDFT-BSE approach,y he used to extend the utility of existing TDDFT and
for calculations of x-ray spectra beyond the independentgge gdes.

particle approximation that includes the effects of local fields

from the screening of the x-ray field and a screened core-hole
interaction. In this combined approach, the response function
from the LFTDDFT approach is used in the subsequent cal- We thank A. Soininen and E. Shirley for suggestions and
culation of the full BSE response function to account for thefor a critical reading of the manuscript. We also thank Z.

nonlocal, screened core-hole interaction. A key step in th&evine for making available the experimental W and Ta data,
combined approach is the construction of the full four-pointand G. Bertsch, J. Chelikowsky, A. Nesvizhskii, S. Pan-
response function, using results obtained from the two-pointelides, and L. Reining for useful comments. This work was
response function, as calculated within TDDFT or the RPAsupported by DOE Grant Nos. DE-FG03-97ER45623 and
Our treatment also includes inelastic losses and self-enerdyE-FG03-98ER45718 and was facilitated by the DOE Com-
shifts based on the quasiparticle approximation, as impleputational Materials Science Network.
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