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We formulate equations of time-dependent density functional th@dpFT) in the comoving Lagrangian
reference frame. The main advantage of the Lagrangian description of many-body dynamics is that in the
comoving frame the current density vanishes, while the density of particles becomes independent of time.
Therefore a comoving observer will see a picture which is very similar to that seen in the equilibrium system
from the laboratory frame. It is shown that the most natural set of basic variables in TDDFT includes the
Lagrangian coordinateg, a symmetric deformation tensgy,,, and a skew-symmetric vorticity tensdf,,,.

These three quantities, respectively, describe the translation, deformation, and the rotation of an infinitesimal
fluid element. Reformulation of TDDFT in terms of new basic variables resolves the problem of nonlocality
and thus allows us to regularly derive a local nonadiabatic approximation for exchange corrétajion
potential. Stationarity of the density in the comoving frame makes the derivation to a large extent similar to the
derivation of the standard static local density approximation. We present a few explicit examples of nonlinear
nonadiabatic xc functionals in a form convenient for practical applications.
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[. INTRODUCTION that the condition of energy minimum is equivalent to the
condition for a local compensation of the external and inter-
Traditionally, the physical understanding of various nal stress forces exerted on every infinitesimal element of an
many-body phenomena is based on Landau’s intuitive conequilibrium systent! Thus DFT not only introduces an al-
cept of quasiparticles, which relates the behavior of aernative formalism in the quantum many-body problem, but
strongly interacting quantum system to the properties of at also naturally suggests an alternative way of thinking that
gas of noninteractingor weakly interacting elementary refers to the physical intuition, developed over hundreds of
excitationst The common field-theoretical formulation of the years of experience in classical continuum mechanics. Inter-
many-body probledt allows us to rigorously justify this estingly, equations of TDDFT in the hydrodynamic formula-
very appealing point of view, provided the system is in ation can be also considered as force balance conditions, but
weakly excited many-body state. Unfortunately, practical apin a local noninertial reference frame moving with the flow.
plications of traditional many-body methods to real systems|n the time-dependent case there is a local compensation of
even in the equilibrium or linear response regime, is computhe external, inertial, and internal stress forces. This demon-
tationally very demanding. In strong nonequilibrium systemsstrates a close similarity of the static DE¥hich is currently
the situation is much worse. The simple intuitive picture ofa well developed theojyto TDDFT (which is still under
elementary excitations breaks down, while the direct appliconstruction in the comoving frame. The above similarity
cation of the standard many-body theory becomes increasvas the main motivation to reconsider the formulation of
ingly difficult even for model systems. TDDFT from the point of view of a local observer in the
An alternative approach to the quantum many-body probeomoving Lagrangian reference frame. In this paper we
lem is offered by the density functional theoty’ (DFT). present the results of such a reconsideration, based on our
DFT represents a mathematically rigorous realization of anrecent formulation of the many-body theory in the Lagrang-
other famous idea in theoretical physics which is a concepian frame!? (In what follows the paper in Ref. 12 is referred
of collective variables theo/Indeed, DFT opens a possi- to as |)
bility to formulate the many-body problem in the form of a  Practical applications of any DFT rely on the Kohn-Sham
closed theory that contains only a restricted set of basic varikS) constructior?,*® which maps the calculation of basic
ables, such as density in the static DFRef. 5 or density  observables in the interacting systems to the solution of an
and current in the time-dependent DRTDDFT).57° In  auxiliary, noninteracting KS problem. Noninteracting KS
classical physics a theory of this type has been known foparticles move in a self-consistent exchange correlgtohn
more than 250 years. This is classical hydrodynamics. Ipotential that is adjusted to reproduce the correct values of
fact, the Runge-Gross mapping theorem in TDDIREf. 9 basic variables, i.e., density and current in TDDFT. From the
proves the existence of an exact quantum hydrodynamics. Anydrodynamical point of view the KS construction allows
analogy of TDDFT to hydrodynamics has been already notedne to compute exactly the kinetic part of the internal stress
in the original paper by Runge and Grdssee also Tokatly force, while treating the xc contribution to the stress in an
and Pankratol). In this respect the static DFT should be approximate fashion. Thus the central problem of any prac-
viewed as an exact quantum hydrostatic. It is indeed knowtical DFT reduces to the construction of adequate approxi-
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mations for xc potentials. In the static DFT a good startingtheorem® The new formulation of TDDFT relates the local
point is provided by the Ioc;al density approximati(irDA). stress in the system to the dynamic deformations, which is
On the one hand, the static LDA, by itself, gives quite rea-very natural physically. The main practical advantage is that
sonable results, and, on the other hand, it allows for furthethe reformulation of TDDFT in terms of new basic variables
modifications and refinements. The construction of a similafesolves the problem of nonlocality on the most fundamental
basic local approximation in TDDFT turned out to be prob-jevel. We show that the dynamic xc stress-deformation rela-
lematic. The reason for these problems is the inherent nonion can be made local. This allows us to derive a local
locality Ofémg nonadiabatic, nonequilibrium DFT. Gegq(j}]ral nonadiabatic approximation in a regular way that is similar
arguments; based on the harmonic potential theorem, 4 he derivation of the static LDA. The whole history of

require that any consistent nonadiabatic xc potential must bﬁonadiabatic approximations in TDDFT can be viewed as a

a strongly nonlo_cal func'uongl Of the density. Otherwise thestaircase of successive transformations of basic variables,
harmonic potential theorem is violated.

In 1996 Vignale and KohH (VK) realized that, at least in from the density, via the current and the velocity, to the gen-

. . ) eral geometric characteristics of deformed media. The first
the linear response regime, the problem of nonlocality can bgtep was made by VKRef. 17 in 1996. Hopefully the

Bresent formulation of TDDFT corresponds to the last step
on this staircase.
The structure of the paper is the following. In Sec. Il we
nsider the hydrodynamic formulation of TDDFT. Using
this formulation, we introduce the KS system and define xc
potentials in terms of stress tensors. In Sec. lll we discuss
. _local approximations in DFT. We derive the common static
"LDA and explain physical reasons for the nonlocality in TD-
. DFT. Sections IV and V are the central parts of the present
abaper. In Sec. IV we introduce basic variables and develop a
complete geometric formulation of TDDFT. We also formu-
late a universal many-body problem which determines the xc
stress tensor and the xc potential as functionals of basic vari-
ables. In Sec. V we discuss an approximate solution of the
Yiniversal many-body problem in the lowest order of the gra-
dient expansion. Explicit examples of nonadiabatic local xc
functionals are presented in Secs. V B-V D. In the conclud-
ing part of Sec. VD we formulate the full set of time-
dependent KS equations in the nonlinear time-dependent lo-
cal deformation approximation. In the equilibrium case these

; . S %quations reduce to the common equations of DFT with the
formalism to TDDFT. Using Landau Fermi-liquid theory, we static LDA xc potential, while in the linear response regime

dtenvetz a nor:gd;adba;'nc, rlﬁnllnear ta%%;;l)ﬁmagon fOL the XGye recover the results of VK approximation. In Sec. VI we
stress tensor that detines the Xc pote nas been SNOWNn - o, marize our results. Three appendixes contain technical

that the stress tens_or is a Ior_:al functional of new basic Valiyatails of the calculations.
ables: the Lagrangian coordinate and a second-rank metric-
like tensor. An appearance of the Lagrangian coordinate as a |I. DEFINITION OF EXCHANGE CORRELATION

basic variable is quite remarkable, if we recall the above- POTENTIALS VIA STRESS DENSITY
mentioned[see also I(Ref. 19] staticlike force balance in . . . . )
In this section we discuss a hydrodynamic formulation of

the co-moving Lagrangian frame. DFT and introduce a definition of xc potentials in terms of

In this paper we reformulate TDDFT using the exactlocal stress forces. Let us consider a system of N interactin
equations of quantum many-body dynamics in the Lagrang; : Y 9

ian frame'2 We show that possibly the most natural com pleteIgImS nixl nt)thgrﬁgesser:t:gncl)f g “dnc]ei-cdr?b%%ndbenttﬁgti[)rl]lzlv\ﬁﬁten_
set of basic variables in TDDFT consists of the Lagrangiar"_| .IE*X D y y g
coordinate&, the symmetric Green’s deformation tensgy, amiltonian:

and the skew-symmetric vorticity tensét,,. These three H=T+W+ O, (1)
gquantities, one vector, one symmetric, and one skew- oA .

symmetric tensor, contain 12 numbers that are required fowhereT, W, andU correspond to the operators of the kinetic
the complete local characterization of a deformed state ognergy, interparticle interaction energy, and the energy of in-
any continuum medi& Namely, £, U, andF,,, respec- teraction with the external field, respectively,

tively, describe the translation, deformation, and the rotation ~ V2

of an infinitesimal fluid element. On the other hand, tensors T= —f XmﬂT(X)?niﬁ(X). 2

0., and F,, describe generalized inertia forces in the La-

grangian framésee ). All three quantities are functionals of -1

velocity in accordance with the Runge-Gross mapping W= > J dxdx"w(|x = x" ) () (X V(X )p(x),  (3)

vector potentialA*® instead of the scalar one. Namely, VK
showed that if one considers the currgnfinstead of the

densityn) as a basic variable, a consistent linear local ap.,
proximation forA*¢ can be regularly derivet. Shortly after
that, Vignale, Ullrich, and Con'f (VUC) found that the fur-
ther switching of variables from the currgnto the velocity

batic xc functional. In this construction they formally
adopted the linear VK form, but with coefficients taken at a
“retarded position?® The meaning is that the phenomeno-
logical construction igi) similar, (i), linear, and(iii) based

on the Keldysh contour action functional, has been recentl
proposed by Kurzweil and Baét.An attempt to regularly

derive a nonlinear, nonadiabatic local approximation in TD-
DFT was made in Tokatly and Pankrat®WNoting that the

applicability conditions for the linear VK approximation ex-
actly coincided with those for the “collisionless hydrody-
namics” of Refs. 21-23, we extended the hydrodynamic
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N 1 0,
U= f AXU (X, )4 (X)) 4) T(x) = %<(QM¢)T€IV¢+ @69~ —Z’LVV2ﬁ>.

Herew(|x|) is the potential of a pairwise interparticle inter- (14)
action. Field operatorg® and ¢ satisfy the fermionic com-

mutation relation, 1 X w(|x'|)
T ’ ’ W/W(X) =75 dX,—/ 4
{' (), fx")} = 8(x = x"). (5 2 X[ alx’|
For definiteness we consider a Fermi system, although most ! , ,
of the results of this paper are independent of statistics. XL Gox+ A" x = (1 =M)x)d\, - (15)

The hydrodynamic formulation of DFT follows the
Heisenberg equations of motion for the density and for th‘?/vhereq:

—-iV-mv is the operator of “relative” momentum,
current operators

andG,(x,x") ={(T(x)AX" ) (x))—n(x)n(x’) is the pair corre-

9 ) ~ lation function?® It is worth mentioning that the represent-

E”(th) —i([H,n(x)])=0, (6)  ability of the stress force in a form of a divergence of a
tensor is a direct consequence of the Newton’s third (see
Appendix A in I).

ﬁj (x,t) —i([H,j(x)]) =0, (7) I_Equations(l_O) and(11) represent the exact local conser-

ot vation laws which must be satisfied for an arbitrary evolution

of the system. Let us apply them to TDDFT. The first, less

vyhere n(x)=(n(x)) andj(x) =,<j (x)) are the densi'ty of par- octrictive part of the TDDFT mapping theorgfd states the
ticles and the current density. The corresponding operatorsyistence of a unique and invertible map: U, or, equiva-

are defined by the standard expressions, lently, v— Ug,. This implies that the exact many-body den-
A, 1) = T (x, D) (x, ) (8) sity matrix p(t) for a given initial condition,p(0)=p,, is a
' ' Y functional of the velocity. Hence the stress tensor of Eq.

t
07_1/; - (9—{/; (9) P ..o, V]. Therefore Eqs(10) and(11) constitute a formally
oXE dx closed set of the exact quantum hydrodynamics equations

Angle brackets in the above formulas denote averaging withVith the memory of initial many-body correlations. It is in-
the exact density matrik, i.e.,(A)=TrpA. Equationg6) and  teresting to note that the common classical hydrodynamics
(7) can be represented in a form of the hydrodynamics bal€an be viewed as a particular limiting form of TDDFT. In

ance equationgDetails of the derivation can be found, for this _Ii_miting case the stress te_nsor functional is known
example, in ) explicitly—it takes the usual Navier-Stokes foffh.

In the equilibrium system Eq11) reduces to the static

A | (13) is a functional ofv and of the initial density matrix:
J'M(X,t)=—§n<lﬂ ¢>-

d force balance equation,
Din+ nwvﬂ =0, (10
J J
—Pu,tn—U=0. (16)
J J X ox*
mnDw, + %PMV-F I’IMUZO. (11

This equation shows that the force produced by the external
Equation(10) is the common continuity equation, while Eg. and the Hartree potentials is compensated by the force of
(11) corresponds to the local momentum conservation law. Innternal stresses. The net force, exerted on every infinitesimal
these equationsy=j/n is the velocity of the flow,D;  fluid element is zero, which results in zero current density
=(al at)+VvV is the convective derivative ad=U,,+Uy is  and a stationary particles’ density distribution. According to

the sum of the external and the Hartree potentials, the Hohenberg-Kohn theorét any equilibrium observ-
able, in particular the stress tensor, is a functional of the

U (x,) =fw(|x—x’|)n(x’,t)dx’. (12) densityn: P,,=P,,[n]. Hence Eq(16) is, in fact, the equa-
tion of the exact quantum hydrostatics that uniquely deter-

mines the density distribution in the equilibrium system. In

The exact stress tensor in HQJ), the semiclassical limit Eq.16) reduces to the common hy-

P =T, 1) + W, (x,1), (13) drostatics equaticfi (for a degenerate high-density Fermi
. _— . . ) gas we recover the Thomas-Fermi thgory
contains the kineticT,,, and the interactiorw,, contribu- Practical applications of DFT always rely on the KS con-

tions. Divergences of the tensofg, andW,,, in Eq. (11)  stryction that is a particular consequence of the mapping
come from the commutators of the current operator with 0pthegrems. The current and the density in the interacting sys-
eratorsT, Eq.(2), andW, Eq. (3), respectively. In | we have tem can be reproduced in a system of noninteracting KS
derived the following explicit representations for the stressparticles, moving in a properly chosen self-consistent poten-
tensors(see also Refs. 2 and 25927 tial Us=U+U,.3* The hydrodynamic formulation of TD-
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DFT and/or DFT allows us to relate the xc potentigl. to  equally well applies both to TDDFT and to the static DFT. It
the stress density. Hydrodynamics balance equations for th&hould be mentioned that in the equilibrium case the stress

KS system take the form forces in the interacting and KS systems, separately, are po-
J tential vectors.
Dn+n—v,=0 (17) Let us briefly discuss the role of the xc vector potential in
X ’

DFT. Apparently an appearance Af¢ is unavoidable in the
presence of an external magnetic figldndependent of the
character of external fields, the formulation in term#\df is
convenient in the linear response regité® Indeed, in the
o o linearized theory we can perform the Fourier transform in the
where the kinetic stress tensor of KS systdi), is given by  time domain, which makes,, completely local, provided
Eq. (14), but with the averaging over the state of noninter-ine xc stress tensor is a local functional of some basic vari-
acting particles. Comparing Eqd.0) and(11) with Egs.(17)  aples. In the nonlinear regime this advantage clearly disap-
and(18) we find that the velocity and the densityr of the  pears. For a nonlinear evolution the description of xc effects
noninteracting and the interacting systems coincide if the X¢, terms of the scalar potential, defined by E¢@3) and
potentialU,(x,t) satisfies the equation, (24), looks at least as convenient as the formulation in terms
U 1 gp*c of A*®. Below, for definiteness, we assume the noninteracting
—X- -k (190 v representability of the velocity, which allows us to con-
ax“ N ox struct the KS system using only the scalar xc potential. Re-

whereP’, is the xc stress tensor that equals the difference oformulation of the theory for the xc vector potential is
the stress tensors in the interacting and noninteracting sy$traightforward(see the Conclusion

s 4l U=0 (18
mnqv#+axv ’“’+nﬁx"UXC+no7X'“U_ , (18

< S nient to represent the force definition Of., Eq.(19), in a
Pu=Pu =T, (200 familiar form of the Poisson equation,

Equations(19) and (20) demonstrate the physical signifi-
cance ofU,.. The xc potential should produce a force which
compensates for the difference of the internal stress forces Where the quantity,(x, t)
the real interacting system and in the auxiliary noninteracting Xem
KS system. By the continuity equation, the densitys a 1 /(19
functional of the velocity. Therefore E¢L9) definesU,. (up Pyc= __<‘_,,PZCV) , (29
to a constantas a functional of/. Equation(19) shows that 4ar I\ N IX

n*3,P);, is a potential vector. This does not mean that vec- _ . , _ .
tors n-1 2,P,, and n-1 (9VT,SW separately, have no rotational can be interpreted zﬁ anxzc charge” density. _In this context
components. However, according to the balance equations € xc str_esi force_] TP has_ a clear_ meaning of an xc
Egs.(11) and(18) the rotational components of these vectors polarlzatl_on den5|ty._'_l'he additional d|ffere_n_t|at|on in Eq.
coincide, both being equal to the rotational part of the vector(23) requires an adqmonal bound?fy condition. The most
mDy. natural condition, which we should impose on the solution to

It is also possible to construct the proper KS system usin&q' (23), .is the requirement of boundness at infinity.
the xc vector potentiah* or, in the most general case, a Equation(19) or, equivalently, Eqs(23) and (24) reduce

combination of the xc vector and scalar potentais18:33n the problem of approximations fda#,. to the construction of

this case the exact local conservation laws require that th pproximations for the XC stress tenﬂfv' S'f?ce the stress
total xc force,F*¢, should compensate for the difference of ; ensity has a clear physical and microscopic meaning there

the stress forces in the interacting and the KS systems, is a hope that the latter problem is more tractable.

VU, o(X,1) = 4mpye(X,1), (23

XC % X My 1(9PXCV IIl. STATIC LDA VS TIME-DEPENDENT LDA
fM:_ﬁt&_[VX(VXAC)]”-FW:HFXﬁ_' (21 : -

) ) ) . Let us first derive the standard static LDA from the force
This equation determines the xc potential§ andU,. upto  definition of U, Eq.(19). Formally the statidJ:>?(x) is the
a gauge transform. Equati¢@l) represents a very important gq|ytion to Eq.(19) in the lowest order of the gradient ex-
exactproperty of xc potentials: they produce a force that,ansion. This solution is obtained by insertiRff, for a ho-
must be a divergence of a second-rank tensor. This requ"‘?ﬁogeneous system of the densiti) into the Vright-hand
ment automatically implies the well known zero-force andg;yq of Eq.(19). In the homogeneous system the stress ten-

zero-torque sum rules, sorsP,, andT;, are diagonal,
C, — C —
J nF*dx =0, j n(x X F)dx =0. (22 P,.[n]=5,,P(n), T,Sw[n] = 8,,Po(N),
We would like to outline that the exact local condition of Eq. where P and P, are the pressure of the interacting system
(212) is much stronger than the common integral requirementand the pressure of an ideal gas, respectively. Therefore to

of Eq. (22). Apparently the above definition of xc potentials the lowest order in the density gradients we get
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P*°In](x) = 8,,P,Jn(x)] (25) metric characteristics of the frame. The locality of inertia
uv uvt XC ’ ) 3 . .

] forces and the stationarity of the density allow us to consider
where P,.=P—P, is the xc pressure of the homogeneousy small volume element in the comoving frame as an inde-
system. Substituting Eq25) into Eq. (19), and using the pendent many-body system. Therefore we can extend the
common thermodynamic relationdP=ndu, u=dF/dn, we  derivation of the static LDA to the time-dependent case.

find the following result for the xc potential: The description of a flow in terms of trajectories of small
9F liquid element is the main idea behind the Lagrangian for-
U dn](x) = UPA[N(x)], ULPA(n) = ch (26)  mulation of classical continuum mechanf¢ne can show

that the transformation to the Lagrangian coordinates exactly

HereF,. is the xc free energy of the homogeneous systemcorresponds to the transformation to the comoving reference

The result of Eq(26) recovers the standard static LA.  frame. In Sec. IV we apply the general description of quan-
Physically the above derivation of the static LDA meanstum many-body dynamics in the Lagrangian fréfe the

the following: If the density distribution is a semiclassically corresponding reformulation of TDDFT.

slow function in space, every small volume element can be

formally considered as an independent, homogeneous many- |\, MANY-BODY THEORY IN THE LAGRANGIAN

body system. The density in this homogeneous system equal$p AvE AND GEOMETRIC FORMULATION OF TDDET
the density at the location of the element. By solving the

homogeneous many-body problem we find the stress tensor, A. Many-body problem in the comoving frame
which, after the substitution into Eq19) provides us with First we briefly review the key results of the many-body
Uge - theory in the Lagrangian fram@ll details and derivations

The situation in the time-dependent theory is much morgan pe found in ). The comoving Lagrangian reference
complicated. Even if at any instanthe density distribution  grame is defined as follows: Let(x,t)=j(x,t)/n(x,t) be the
n(x,t) is a slow function in space, a small volume element,q|ocity of the flow. By solving the following initial value
located at some point, cannot be considered as a systempgpjem:
that is independent of surrounding space. For nonadiabatic
dynamics, particles, arriving at the poirtfrom other re- XL _ _
gions, bring information about other spatial points. This is ot =v(x(§0).0, x(£0=§, @7
the physical reason for the well known nonlocality, imma- ] ) ] ) }
nent to any nonadiabatic TDDPF.151t is straightforward to ~ We find the functiorx(£,t), which describes the trajectory of
demonstrate the failure of any plain attempt to extend the fluid element. The initial point, of the trajectory can be
above derivation of the static LDA to the time-dependentused as a unique label of the element. This initial position of
case. Indeed, a homogeneous many_body prob|em' which v infinitesimal fluid element is called the Lagrangian coor-
would get by formally separating a small volume elementdinate. The transformation from the originabpace to th&
Corresponds to an infinite System with a Strong]y nonconspace of the initial pOSitionS is the transformation from the

served number of particles. Apparently this problem is meanEulerian to the Lagrangian description of a fléfdOn the
ingless. other hand, the equatiaxn=x(£,t), which mapsx to &, ex-

In the rest of this paper we show that the nonlocalityactly corresponds to the transformation to the frame, attached
problem in TDDFT is resolved by changing a “point of to a fluid element. One of the most important characteristics
view” on the nonequilibrium many-body system. Any flow in of the Lagrangian frame is Green's deformation teriéor,
the system can be considered as a collection of small flui@..(§:1),
elements moving along their own trajectories. It is possible X X o8 g
to divide the system into elements in such a way that the 9,=——, g"=—
number of particles in every element will be conserved. In- Kot og” X" Ix“

deed, by the proper deformation and rotation of a fluid eIeTensorg plays the role of metric in the Lagrangia
wy

ment one can always adjust its shape to the motion of paisyace (We will use the notatiorg for the determinant of

ticles and thus prevent flow through its surface. Let us attach

a reference frame to one of those moving elements. The mélw') It has been shown in | that the field operatgfg,t) in

tion of the origin of this frame compensates the translationaj"® Lagrangian frame are related to the field operafoxst)

motion of the fluid element. By properly changing scales and" the laboratory frame as follows:
directions of coordinate axes we can also compensate for

> — /4
both the deformations and the rotation. This means that an ED =g X(ED, D).

observer in the new frame will see no currents in the SySte?\pparently the operatorgf(g,t) satisfy the common equal-

a_nd a stationary de_nS|ty distribution. Thus fr_o.m .the point ofy e commutation relations, which is guaranteed by the fac-
view of the comoving observer the nonequilibrium system 14 ) o —
looks very similar to the equilibrium one, as it is seen by ato" g in their definition. The current operatg#(£,t) and

stationary observer in the laboratory reference frame. Thishe density operatdi(£,t) in the Lagrangian frame are de-
similarity is of course not complete since particles in thefined by the following expressions:

described comoving frame should experience inertia forces. . ~ _

However, the inertia forces are determined only by local geo- Nt = ¢T(§,t)¢(§,t), (29

(28)
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e = gﬂ”[ _ (w* % _o w) -7 W], (30 =i~
ag o¢ ’ 29
wherev,=g,,v* is the covariant component of the velocity is the operator of kinematic momentum, ahg. is the
vectorv, transformed to the new frame, length of geodesic connecting poirgsand &'. (Everywhere
the rising and lowering of tensor indexes are performed ac-
THEL) = ”(x(g £),1). cording to the standard rules, i.é\,=g,,A", etc) The de-

formation tensor and the velocity vector in E§5) describe

generalized inertial forces in the local noninertial reference
The Heisenberg equation of motion for the density operatofame. Tensorg,,, in the kinetic energy term produces the

of Eq. (29) takes a form of the operator continuity equation, «geqdesic” force. This inertia force is responsible for the

s = motion of a free particle along the geodesic&space. The
@J,aj_:o_ (31) velocity EM, which acts as a vector potential in E@5),
gt o produces the Coriolis forcan effective Lorentz forgeand

the linear acceleration forgan effective electric field The
last term in the brackets in Eq35) is responsible for the
inertia force that is related to the kinetic energy of the frame
(an analog of the centrifugal forke
Equation (35) is the equation of motion in a reference
frame moving with some velocity. In fact, the form of Eq.
. (35) is covariant under an arbitrary transformation of coordi-
']',u(g,t) G (£1)=0, (32) nates, which is_ generated by a co_ntin_uo_us, veptor—valued
function v(x,t) via Eq. (27). The function is(i) continuous,
N and (ii) vector valued(or vector-valuegl To specify a par-
N(&,1) =M(&,1) =T(£,0) =ng($), (33  ticular reference frame we need to impose an additional
“gauge” condition. The gauge condition assigns a particular
value to the generating functior(x,t). There are a few for-
mal possibilities to specify the comoving Lagrangian frame
According 10 the resus of the paper 1, the vector(S6% . For Saole since e expectalon veue of e cur
WM(?’D plays the role of an.effectwe ve~ctor potential in the impose the condition of E¢32) on the solutions to the equa-
equation of motion for the field operatap, In general the tjon of motion, Eq(35). In the present paper we prefer to use
velocity vectorv,,(£,t) has both potentiallongitudina) and  gnother gauge-fixing condition. Namely, we require that the
rotational (transvers}e parts. The potential part of a vector splution to the equation of motion, E¢35), be consistent

potential can be always removed from the kinetic energyyith the equation of the local force balance in the Lagrang-
operator by the gauge transformation. Therefore it is conven frame,

nient to separate explicitly the potential past,,=d,¢, of

On the level of expectation values H&1) is trivially satis-
fied. One can check by explicit calculations that the expec-
tation value of the current operator, E§0), is zero, while
the expectation value of the density operator, E2), is
time independent,

whereny(x) is the initial density distribution. Equatiori82)
and(33) are in complete agreement with the qualitative dis-
cussion in Sec. Il

the vectorv ,, &I o o T
" ﬂ’i+—<m—"o+u—mu +—gP” ,=0, (36)
e . o\ at 2 ) n

(34)
whereP;. , is the covariant divergenge® of the stress ten-
wherevy, is the transverse part of,. Performing the gauge sor,

transforma’uonw em ‘Pw in the equation of motion fow

[see Eq.34) in 1] we obtain the following equation of mo- B - 1 8\gP” _109upap 37)
tion for the transformed operatar': LN \g g 2 9¢*
,c7¢~//(§) B _1,4R \«"af(“ i The force-balance equation of E(6) corresponds to the
a9 om Y V'@ local momentum conservation law, E@.1), transformed to
the Lagrangian frame. The stress tensor in the Lagrangian
+f dg’w(lggy)Aﬁ(g’)T/;’(g) frameP,, which enters Eq(36), is a linear functional of the
’ one-particle density matrijp, and of the pair correlation
9 = =u\ function G,
+<mf+u—m3“2l>¢’(§), (35 ?
E,uv = E),uvljﬁlvéZ](gat) . (38)

where Aﬁ(g,t) =ﬁ(§,t) -Nn(&,1). (The Hartree term is in- _ _
cluded inU=U,,+Uy.) Other notations in Eq(35) are the  The explicit microscopic form of the function&,,,[p;,G;]
same as in |, is presented in Appendix fsee Egs(Al), (A4), and(A5)].
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Equation(36) has precisely the same physical significancewe indeed confirm that for alt>0 T(§,t):0 andfi(&,t)
as the static force balance equation of Bi). It shows that = (g).
the inertia forces exactly compensate for the external force, The self-consistent nonlinear problem of E¢89) and
(9l 9é*)U, and the force of internal stres(s;ﬁ/ Ng) wa. The (40 is universal in the sense that no external potential enters
result of this compensation is the absence of the current anitie equations. The only external variables in E@®) and
stationary density distributions in the Lagrangian frame.  (40) are the deformation tensgy,,(£,t) (an effective metrig
Equationg35) and(36) constitute the full set of equations and the transverse part of the velociy,, (&,t) (an effective
of quantum many-body theory in the Lagrangian frame.  vector potentigl The vectofvr, is uniquely determined by

the skew-symmetric vorticity tensdt,, (an effective mag-
netic field, Eq. (43). Therefore by solving the nonlinear
problem of Egs(39) and(40) we find the many-body density

matrix to be a functional of two basic variableg,,(§,t) and

Now we are ready to resume the discussion of TDDFTE (£ 1) 36 |nserting this density matrix into the microscopic

The complete description of many-body dynamics in the Lagynression for the stress tensor, E28), we obtain the uni-
grangian frame corresponds to the solution of the equation Qfarsa| functional

motion, Eq.(35), supplemented by the frame-fixing condi-

tion of Eq. (36). Let us note that both Eq$35) and (36) Py =Pl Ful(ED). (44)
contain the same effective potent{éhe term in the paren-
theses in Eq935) and(36)]. Using this simple property we
can formulate the following two-step procedure for solvin
the system of Eq9.35) and(36). In the first step we solve a
universal nonlinear many-body problem of the form,

B. TDDFT in the Lagrangian frame: Stress tensor as a
universal functional of the dynamic deformation

Calculation of the stress tensor functional, Ed44), com-
gpletes the first step in the solution of the original many-body
problem.
The symmetric Green’s deformation tensyy, and the

skew-symmetric vorticity tenstTfﬂ,, completely characterize

_a?,/}’(g) _ _1,4k \@IA(" A, , 2., the deformed state of a fluid in the Lagrangian description.
= 9 MZm g Y () +| | dg'wllgg)ARE) Therefore Eq(44) can be interpreted as the exact nonequi-
librium “equation of state” that relates the stress tensor to the

+ Us.c(§,t)}t~ﬂ’(§), (39) dynamic deformation in the system. Singg, andF,, are

the functionals of velocity, the stress tensor of E4y) is

where the effective potentidl(£,1) is the solution to the also a functional of velocity in agreement with thf: Runge-
following self-consistency equation: Gross theorem. However, the present interpretatio, gfas

a deformation functional looks more natural physically.
d Substituting the equation of state, Eg4), into the force
_0_5# balance equation of Eq.36), we get the exact quantum
Navier-Stokes equation in the Lagrangian formulation. The
The initial conditions for Eqs(39) and (40) are the same as full set of exact hydrodynamics equations includes &)
in the original physical many-body problem, Eq85) and  and the trajectory equation, ER7). The solution of the
(36). The special form of the self-consistency equation, Eqsystem of Eqs(27) and(36) corresponds to the second step
(40), ensures the stationarity of the particle density and zerom the solution of the original many-body problem. In this
current density. Indeed, using E489) and (40) we obtain  step we determine the evolution of velocity for a given ex-
the following equations of motion for the densiyand for  ternal potential. Equation®7) and(36) with the stress ten-
the curreng: sor of Eq.(44) correspond to the exact TDDFT hydrodynam-
ics in the Lagrangian formulation of continuum mechanics.
The KS formulation of TDDFT requires a knowledge of
the xc potentiall,.. In Sec. Il we have shown thal,. is
related to the xc stress tensBf’,=P,,~T, , whereT,, is
(7] - the stress tensor for the noninteracting KS system. Obvi-
_ﬁtE +F,.0,=0, (42)  ously, the KS stress tensor can be found from the solution of
a nonlinear noninteracting problem that corresponds to Egs.

whereF ,, is the skew-symmetric vorticity tensor that plays (39) and (40) with w(l¢,)=0. Hence by solving Eqs39)

[

Vg~ =~ ]
Usd g9 = 2Py, [7n,Gol +m™IE. (40)
0

L

2 + &gﬂ_o, (41)

the role of an effective magnetic field, and (40) with and without interaction we compute,, and
TS respectively. The difference of these tensors gives us the
~ d, o, d, o, wy . : ;
F ——#_ 207k 7V (43) Xc stress tensor in the Lagrangian frame as a functional of

My 9& ot ¢ agu' G andEMV,
The cancellation of the “external” forcéUg . and the iner- ~ e xc ~

tial and the stress forces in E@2) is a consequence of the Puv= PMV[gM, F;w](g't)- (45)
self-consistency equation, E@0). By solving Eqs(41) and  Transforming the xc stress tensor of H¢5) back to the
(42) with the initial conditions (£,0)=0 andni(&,0)=ny(£€), laboratory frame and substituting the result into E(29)
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and (24), we obtain the equation for the xc potential that the gradients of the densityare vanishingly small. In
U,.(x,t). Another possibility is to determine the xc potential, the limit Vn— 0 the spatial derivatives of the stress tensor
U,.(£&,1), directly in the Lagrangian frame by solving the @S0 vanish. Hence, to the lowest order in the density gradi-
following equation: ent; the solution to the self—qon&stency E49 takes a
trivial form, Ug_(x)=C, whereC is a constant. Therefore the

J ~ O~y many-body equation of motion, E§48), simplifies as fol-
@ch(g’ t)= P P (46)  |ows:
o apx) V2 R
The transformation o), (£,t) to the laboratory frame cor- i—— == —(x) + [ dx'w(|x —x'])A(x")(x). (50)
responds to the following replacemefit- &(x,1), i.e., ot 2m
= ~ Thus the nonlinear problem of Eq&l8) and(49) reduces to
UscX,8) = Usd 9 Pl €., (47) the usual linear many-body problem for a homogeneous

equilibrium system with a given density Substituting the
equilibrium solution to Eq(50) into Egs.(13)—(15), we com-
pute the stress tensd?,,,(n)=4,,P(n), whereP is the pres-
sure of the homogeneous system,

WhereGXC is the solution to Eq(46).
Let us note that the problem of calculation of the equilib-
rium stress tensor functiond®,,,, in the static DFT can be

formulated in exactly the same fashion. To calculgfg[n]

X (x) we need to find the equilibrium solution to the follow- 2 1 aw(|x])
ing universal, nonlinear many-body problem: P(n) = 4Fkin ™ og f XTGSGUXWX- (5
2
iiw(x) - V_,p(x) +Ug (X)#h(x) Hered is the number of spatial dimensioris, is the kinetic
ot 2m energy per unit volume, an@5Y|x|) is the pair correlation
function of the equilibrium homogeneous system. Similarly,
+ J dx’w(|x = x'[)AR(X") (X), (48) by solving the homogeneous noninteracting problem we find
the KS stress tensofs,(n)=4,,2/dE,, whereEg, is the
kinetic energy of an ideal Fermi gas. Substitutig,[n(x)]
iUs-c(X) - liva[pl,ez], (49) and Tiv[q(x)] into Eqgs.(20) and(19), we recover the com-
Xt n dx mon static LDA(see Sec. I\
where P,,,[p1,G,]=T,,[p1]+W,,[G;] is defined after Egs. 2. Basic equations of TDLDA: The homogeneous many-body
(14) and(15). For a given density(x) the equilibrium solu- problem

tion to Egs.(48) and (49) defines the stress tensBy,, as a
universal functional oh.
The stationarity of the density in the Lagrangian frame

The above procedure allows for a straightforward exten-
sion to the time-dependent problem. Let us assume that the

characteristic length scaleof the deformation inhomogene-
makes the dynamic universal problem of E(&9) and (40) ISt g ont g

to a large extent similar to the equilibrium universal problem!ty 90€s to infinity. In this limit the vectofvg/ng)P,., in the
of Egs. (48) and (49). In Sec. V we use this similarity to right-hand side of Eq(40) vanishes. Therefore to the lowest

derive a local nonadiabatic approximation in TDDFT. order in 11— 0 the self-consistent solution to E@0) takes
the form,Ug_{(x,t)=C(t) andv;=0. Substituting this solution
into Eq.(39), we get the equation of motion for thieopera-

V. TIME-DEPENDENT LOCAL DEFORMATION tor

APPROXIMATION

In the Sec. IV we have shown that the calculation of the iﬁlﬂ(f) __9w® Fid +J dEw((|£ - £|)RE)HD
xc stress tensor, which defines the xc potential, reduces to the = 4t 2m o9& 9E” ’
solution of the nonlinear, universal many-body problem, Egs. (52)
(39) and(40). Obviously, it is not possible to solve this prob-

lem exactly. However, one can try to find an approximatewhere|£-¢'|=I; 4 is the length of the geodesic in a homo-
solution by a perturbative expansion in terms of a small pageneously deformed Lagrangian spdsee Appendix B
rameter. Below we construct a local approximation that cor-

responds to the lowest order in the gradients of basic vari- 1€~ &'l = Vg, (D& = &)(&" - ") (53
ableS(i.e., the denSity in the static DFT and the deformation Equat|on(52) Corresponds to a homogeneous many_body
tensor in TDDFT. system. It is more natural to reformulate this homogeneous

problem using the momentum representation for field opera-
A. General formulation of a nonadiabatic local approximation tors,

1. Preliminaries: Derivation of the static LDA WE =D ', . (54)
k

To illustrate the general procedure we start again with the
familiar case of the equilibrium theory. The problem is to The equation of motion for annihilation operatay, takes
find the equilibrium solution to Eq$48) and(49), assuming  the form,
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B g Kby 5 WAy P[0, (£, 10(&)] = P, = T, (59)
T T O g A 2T Rdea (59 :

SubstitutingINDZCV of Eq. (59) into Eg. (46) we determine the
wherew(q) is the Fourier component of the interaction po- 0rresponding xc potential in the Lagrangian frame.

tential, and The xc stress tenscﬁ"fw Eg. (59, is a local in the space
functional of the deformation tensdit should be noted that
lall = Vg“ﬁ(t)qﬁqa (56) in general this functional is nonlocal in timen what fol-

lows, the approximation of Eq59) will be referred to as a
is the norm of the wave vector in the deformed momentunfime-dependent local deformation approximatiGibLDA ).
space. Equatiort55) corresponds to the following Hamil- The construction of TDLDA reduces to the solution of the
tonian: homogeneous many-body problem. In this respect the situa-
tion is similar to the static case. However, the homogeneous
~ KK, 1 N time-dependent problem, defined by the Hamiltonian of Eq.
H=> g“V‘é“_a;iak + =2 W(llal)&fi@-q. (570  (57), is still too complicated to be solved exactly. Indeed the
k m 2\'9 k'q . . . -
operator equation of motion, E¢55), generates an infinite
-~ P ) _ set of coupled evolution equatiofBogoliubov-Born-Green-
whereng=2pa,3,.q is the density operator in the momentum kirkwood-Yvon (BBGKY) hierarchy®] for correlation func-
representation. In Appendix B we show that to the loweskjons. The first equation of this hierarchy is the equation of
order in the deformation gradients the microscopic expreSmotion for the Wigner function,

sion for the stress tens@rﬂy simplifies as follows:

f (K W
) 5 W(”q”)@;('élék-q 3 A)Eg).  (60)

~ 1« Kk~ aq
P.,= = (k) At pa VO
Vg M An equation for the four-fermion correlator, entering the

1 kK, _ ~ right-hand side in Eq(60), couples to the six-fermion corre-
+ 2—92 K W ([k[) + g, W(K[) |G2(k), (58)  |ation functions, etc. However, the homogeneity of the prob-
K lem and a very specific form of the “driving force” in the

~ L . o~ . equations of motion allow us to construct reasonable ap-
wheref(k)=(&,3y) is the Wigner function,(k) is the Fou-  proximate xc functionalésee the next sections
rier component of the pair correlation function, and(x)

= dW(x)/dx. 3. Stress tensor of the noninteracting KS system
It should be mentioned that E¢68) can be derived di- A necessary step in the derivation of TDLDA is to com-
rectly from the “geometric” definition of the stress tensor pute the stress tensd’r‘zy, in the noninteracting system. This
(see | and Ref. 37 problem can be solved exactly. In the noninteracting case
(w=0) Egs. (58 and (60) reduce to the following simple
~ 2/ SH forms:
Pu=Tg\ g/ O
TS, = =2 (k) (61)
gk M

Indeed, using the relatiofy=-gg,,,69*", and computing the
derivative of the Hamiltonian, Eq57), with respect tay*?, P
we immediately recover Eq58). “f(k,H)=0. (62)

The Hamiltonian of Eq(57) determines the homogeneous at
problem which we need to solve for the derivation of a localg ation(62) shows that the distribution function of nonin-
approximation in TDDFT. This problem corresponds 10 ayeracting particles in the Lagrangian frame is time indepen-

system of particles in a small volume located at the pgint et | et us assume for definiteness that the system evolves
of Lagrangian space. The density of particles is time inde-

. . . = _F =
pendent and equal to the initial density(£), at that point. from fthe eq_umbrlum_ state, |.ef,(k,0)_—nk, wheren, is the
(Obviously, the operator of the number of particles com-Fermi function. In this case the solution to £§2) takes the

mutes withﬁ.) The behavior of the system is governed by 5 5
the local value of the deformation tensgy,,(£,t). By solv- f(k,t) = f(k,0) =nf. (63)
ing the equations of motion we find the Wigner function

~f(k ,t) and the pair correlation functioﬁ~32(k ,t). Substitution
of ~f(k,t) and éz(k,t) into Eq. (58) yields the stress tensor

Substituting Eq(63) into Eq. (61) we get the kinetic stress
tensor of the KS system in the Lagrangian frame,

- ~ 5.,

functional P,,[g,.(&,),no(&)]. By the repetition of the To (&) = =2=Pdng(§)], (64)
above procedure for the noninteracting sysféms.(57) and Vo(&0)

(58 with w=0] we find the KS stress tensor, where the functiorPy(n)=(2/d)E\(n) is the equilibrium ki-
Tiy[gw(g,t),no(g)], and, finally, the xc stress tensor, netic pressure of a noninteracting homogeneous Fermi gas.
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For the practical calculation of xc potential in TDLDA = NI 7
[see Egs(19) and(20)] we need the stress tens‘ﬁjv(x,t) in Galk.) == 2 Tk +p.OT(P.D). (72)
the laboratory frame. Application of the common tensor
transformation rule& Performing the mean field decoupling of the four-fermion
terms in Eq.(60), we find that the right-hand side in this
(65) equation vanishes. Therefore the equation of motion for the

function~f(k ,t) takes the form,

p

_ g ogP
PuelD = i

E)aﬁ(g(xit)it)l
to the stress tensor of E(64) yields the result,

T, (68 = 9,, (D VG, D P No(&(x, )], (66)

whereg,,(x,t) is the Cauchy’s deformation tensbr Equation(73) coincides with the corresponding equation of
motion for the noninteracting system, E§2). Hence in the
9" 9 x-only approximation both the Wigner function and the pair

O~
Ef(k't) =0. (73

g#,,(x,t) - XM ox?” (67) correlation function in the Lagrangian frame preserve their
initial form,
The determinang(x,t) of Cauchy’s deformation tensor, Eq.
(67), is related to the determinagt£, t) of Green's deforma- Tkt =nf, (74)
tion tensor, Eq(28), as follows:
o(x,t) =g H&x,b),1). (68) Gu(k,t) = G(ngik) = - > Nieep - (75)
p

Equation(66) clearly demonstrates an extreme nonlocality -

which is related to the memory effects. The stress tensoHerek=|k|=1k,k, is the usual modulus df, andGj(n;k) is
Tiy(x,t) at a given pointx depends on the initial density at the exchange pair correlation function in the equilibrium
the point&(x,t) that is the initial position of a fluid element Fermi gas of the density. Substituting Eqs(74) and (75)
presently atx. Let us show that this dependence on the deinto Eq. (58) we obtain the following stress tensor in the
layed position can be represented in a local form. By definiinteracting system:

tion of the Lagrangian coordinate, the dengifi,t) in the

laboratory frame can be expressed in terms of the initial den- P = Sy P +PX t 76
sity distribution(the density in the Lagrangian frame M g(&) olNo(&)]+ PLulNo(8). gun(&:0]. - (76)
no(§(x,1)) The first term in the right-hand side of E@6) is the kinetic

nx,0) = (69) stress tensor of the noninteracting system, while the second

VO(EX, D)1 S e |
) . term PZV, corresponds to the exchange contribution to the
Using the relation of Eq(68) we can represent the nonlocal |ocg] stress density.

quantity ng(£€(x,t)) in the following form:

~ 1 k k _
n(xt) PlL=o-2 [-’*—”W(Ilkllhg Vw(llkll)} 5(No; k).
No(£(x,0) = —=—. (70 w295 LK : 2
vg(x,t)
(77)
Substituting Eq(70) into Eq. (66), we obtain a completely ) )
local representation for the KS kinetic stress tensor, Using the transformation rules of E(5) we get the follow-
ing expression for the exchange stress tensor in the labora-
_ — n(x,t ,
TS, =G, DVGIX,D PO( i—:)) (7y o frame
VX, =
- - | PX (NG = 2> | 2P s 5
The nonlocality of the stress tensor in the form of Ep) is p\MGap) = 2 p P owlp
now hidden in the space-time dependence of the function .
g(x,1). N =3—
9o X Gé(\—ﬁ; Vg Bpap/;), (79)

B. Exchange-only TDLDA . . .
where we introduced a shortcut notatiwg=w(p). Equations

The r_’nost difficglt part in.the de'rivation of an gxplicit (78), (24), and (23) uniquely determine the local potential
TDLDA is the solution of the interacting problem defined by U(x,t) in x-only TDLDA. Apparently the exchange poten-
the Hamiltonian of Eq(57). In this section we find the exact a1y (x 1) is a local(both in space and in timeunctional
sol_utlon of_th|s prob_lem in the exchange approximation, ¢ density n(x,t) and Cauchy’s deformation tensor
which prov@es us W'.th the<—or1|3/ TDLDA' In the x-only 9,.(X,1). In the equilibrium systenfg,,=4,,) the potential,
case the pair correlation functidd,(k,t) is coTpIeter de-  Jefined by Eqs(78), (24), and (23), reduces to that in the
termined by the one-article distribution functid(k,t), common static local exchange approximation.
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C. Linear response TDLDA Bf(k 1)
In the linear response regime the deformation temgQr MWB 2 2m 5gaﬁ(t )
slightly deviates from the Kronecker symbol,
kK, 8G,(k,1)
dau, au, = LW+ 8, ) 2 86
g“V(g,t) ~ 5lw+ 5g“”(§,t), 59’“’: — ﬁ_glf = ag"’ 2% ( k 5ga5(t ) ( )

(79 Comparing Eqs(81), (82), and(86) we find that the dynamic

kerneIAQMmﬁ can be related to the following stress autocor-

whereu=x-¢ is the displacement vector, which is assumed {elatlon function:

to be small. In the linearized theory the trajectory equation o

Eq. (27) reduces to the common linear relation of the veloc- ~ . * ol -
ity to the displacement, AQuap(®@) __Ifo dte <[Puv(t)'PaB(o)]>' (87)
&u(ft) V(ED). (80) Substituting the stress tensor in the Lagrangian frame, Eq.
at (83), into the transformation formula of E¢65) we compute

o ) ) the stress tensor in the laboratory frame,
Substitutingg”? of Eq. (79) into Eq. (57) and keeping only

the term that are linear iAg”” terms, we obtain the follow- Pu(X, @) = 8, P[No(X)] + 6P (X, @), (88)
ing linearized Hamiltonian: where

T oD s P

H=H+P,,o0"", (81 8P, =~ %a—nou Vo + Quap(@g™(w). (89

whereH is the standard Hamiltonian for the homogeneous _
system, and®,, is the stress tensor operator, The kerneIQ#_,,aB(_w)_ in the laboratory frame takes the form,
below which is similar to that of Eq.84),

- kK, 1/ k,k,— —\z 2 o =
P,u,v = E |: m ala'k + _( k Wy + ) Vwk> nkn—k:| . Q,uvaﬁ(w) = Q,u,va,B + AQ,u,vaB(w) . (90)
k

The frequency-independent te@j,,,, in Eq. (90) is related

82 to the quantityQZmB of Eq. (85) as follows:
First we need to compute the stress tenBgy in the La- -
grangian frame, Eq58). In the linear regime Eq58) takes Quvap= > ( 5% 6,a0,p) + Quiap- (91
the form,
_ It is worth mentioning that the first term in the right-hand
8,,P(No) +Q’umﬁ(a))5gaﬁ(w), (83 side in Eg. (89) guarantees that the harmonic potential
. theorem® is satisfied. In fact, only this term survives for the
where the linear response kern@l,,.s(w) can be repre- rigid motion of the system. Within the present formalism this

sented as follows: term comes from the expansion of the argumer gfin the
~ ~ - transformation rule of Eq(65). The correction to the kernel
Quiap(®) = Qs+ AQ,ap(w). (84) in the laboratory framdthe first term in Eq.(91)] corre-
— sponds to the expansion of the tensor prefactor in(&9).
The first frequency-independent ter@;,,, in Eq. (84) By symmetry the fourth-rank tens@,, s is uniquely

comes from the explicit local-in-time dependence of the in-representable in the form,
tegrals in Eq(58) on the deformation tensgy,,(t). Namely,

— K

t_he fourth—rank tensoR;,,.z is defined by the following de- Quuap= (2 d)é Oup 2(5 a0t 0,40,p). (92)
rivative:

- The scalar coefficient¥(w) and u(w), in Eq. (92) are re-

S (aP”,,[feq 2] (85) !ated to the tenso@,,,.z contracted over different pairs of
uvaf 0—,ga,8 ! Indexes,
g,uu=(9/w
2

whereP,,,[f%9, G5 is the stress tensor of EE:8), calculated K(w) = @Qaaﬁﬁ(“’)v (93
with the equilibrium Wigner functionf®dk), and the equi-
librium pair correlation functionG54k). The perturbation 2 1
(the second terinin the linearized Hamiltonian of Eq81) w(w) = Frd-2 Qupap(®) = aQaaﬂﬁ(w) . (99

induces deviations of the Wigner function and the pair cor-

relation function from their equilibrium values. These devia-Substitution of Eq.(92) into Eq. (89) yields the following
tions are responsible for the second, nonlocal-in-time term imesult for the linear correction to the stress tensor in the labo-
Eq. (84), ratory frame,
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P 1 5 W, = —(d— 1w, W = - 1Dw,.
oP =-=§6 V[QTU \v} Ny + 5/.LVK§59(M + Iu<5g,uv_ _(.;«_V(Sgaa> . ka (d 1)Wk and k W d(d 1)Wk
0

g g These identities allow us to simplify EqE.00) and(101) as
(95) follows:
The stress tensofP,, of Eq. (95) has a clear viscoelastic » 20d+2) . N EE (102
form, whereK(w) and u(w) are the bulk modulus and the €T 42 kn ' 42 =pob
shear modulus, respectively. The xc stress te IS the
difference of the expressions given by Eg5) for the inter- 2 d-1
acting and the noninteracting systems. Apparesity, takes M= aEﬁicn - mEpot- (103
a form of Eq.(95) with P, K, and u being replaced by,.,
Kye and u,., respectively, where The high-frequency forms of Eq$102) and (103 are well
known in the literaturé®*!Commonly they are derived us-
P —p- EE(Q) (96) ing the “third moment sum rule.” Within our formalism the
X d expressions of Eqg100 and (101 for K§, and wx, come

about almost trivially from the explicit local-in-time depen-
(97) dence of the stress tensor, E§8), on the deformation ten-
sor.
are the xc pressure and the xc viscoelastic moduli. In Egs. To represent the frequency dependent parts of viscoelastic
(96) and (97) E© Ko, and uo correspond to the kinetic en- moduli in the most convenient form we decompose the stress

ergy, the bulk krquodulus, and the shear modulus of an ideaknsor operatoIAD Eq. (82), into scalar and traceless parts,
Fermi gas. Therefore in the linear response regime our . .

TDLDA naturally reduces to the Vignale-Kohn Puw=08,P+7,,, (109
approximatiof’ in the viscoelastic formulation of Ref. 18.

An explicit microscopic representation for the bidkand ~ WhereP=1/dTrP,, is the pressure operator,

K=K =Ko,  pixc= 1 = po,

uv

the sheam moduli can be found using Eq&4), (93), (92), .1 K2 1 PN
(90), (87), and(85). BothK andu take the following general P= az a’élék + 5(kW|L +dw)nn |, (105
forms: k

and 7, is the operator of the traceless part of the stress

K(w) = K* + AK(w), (98) tensor(Tr, = 0)
ur=Y)
2 i
o) = pw” + Ap(w). (99 L (k“ky 9 V)(k_~,r~ | W+ dwz )
Tw= &\ e Ty A& T g MKk

The first termsK* and p”, in the right-hand sides of Egs.
(98) and(99) are obtained by the substitution Qf;,,, from (106

Eqg. (92) into Egs.(93) and(94). Performing straightforward L e .
calculations for the interacting and the noninteracting sysSUPSHtUtingAQ,,,q4(w) of Eq. (87) into Egs.(93) and (94)

tems, we arrive at the following results for the high fre- @nd using Eqs(104—(106), we find thatAK,(w) equals the

quency parts of the xc elastic moduli: pressure-autocorrelation function,
o042 20 5 KW (B4 DKW+ 20 o AK,o(w) = - 2i f do{[P(t),PO))dt, (107
T d [d R 2d(d+2) 2 0

(100) whereas the dynamic part of the shear modulys,(w), is
proportional to the autocorrelation function of the traceless
tensor operatotr,,,,

9K, (10 i f

Apye(w) = Frd—2

2

B kW + (d + 1)kw]
chza ﬁﬁf*% : :

2dd+2) e[, (0,7, (O]

0
WhereEﬁfr,:Ekin—E(k?g is the xc kinetic energy of the equilib- (109
rium system. In the special case of Coulomb interaction the
momentum integrals in Eq4100 and (101 can be ex- The coefficient, 2(d’+d-2), in Eq. (108 is exactly the in-
pressed in terms of the potential energy per unit volume, verse number of independent components of a second-rank

1 traceless tensor. We would like to outline a very natural form

_IN e of Egs.(107) and(108), which is in clear agreement with the
Epor= sz: WGz K. physical significance of the quantiti&sand .
The frequency-dependent contributions to the viscoelastic

In d dimensions the Coulomb potential is proportional tomoduli are related to the dynamics of the Wigner function
1/k%1, Therefore we get the following identities for the de- and the pair correlation functidisee Eq.(86)]. In Sec. V B
rivatives that enter Eq$100) and(101), we have shown that in the exchange approximation the time-
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dependent deformation tensor in the Hamiltonian of @) 29 e

) A ~ — PXC _ ggy/ / EXC 1 + \_gz pgpv_r +5 vy
does not induce any dynamics ftk) and G,(k). Therefore wr= "y V950 g 2 D Wp * 0 Wp
only correlations are responsible for nonvanishiki§, (o) P
andéuxc(w). _The_ most important effect of the dyna.mic cor- % G 1,\,/% (110
relations, which is described by Eq4.07) and(108), is the 2\\Jg alB

memory loss due to collisions. Since in a zero-temperature

Fermi system the collisional dissipation should be Suquuation(llo) determines the xc stress tensor as a function
pressed, there is a hope that the frequency-dependent parts@jfthe time-dependent densitg(x,t), and Cauchy’s defor-
K, and u,. do not substantially influence the dynamiéale ~ mation tensomg,,(x,t). Let us remember that the memory-
note that this is not in general true for steady state transporelated nonlocality of’’,, Eq.(110), is hidden in the “local”
situations, in which dissipation plays an essential jdie-  representation of the functiom[ &(x,t)] [see Eq.(70)]. The
glecting AK,(w) and Au,(w) We get a purely elastic xc “elastic” xc potential is the solution to the Poisson E2p),
stress tensor with the bulk and the shear moduli defined bwhere the xc “charge density” is defined after E(s) and
Egs. (100 and (101). Another argument due to Conti and (110).

Vignale®® also shows that for an electron gas the elastic ap- In the exchange approximation the stress terﬁgﬁ; Eq.
proximation should work reasonably well. Indeed, the dissi{110), reduces to the:-only tensorwa of Eq. (78) that is
pation effects are absent in theonly approximation that is exact in the weak-coupling limit. In the linear response re-
valid in the weak-coupling(high-density regime. In the gime the corrections to the density and to the Cauchy’s de-
strong-couplinglow-density limit, electrons tend to form a formation tensor are proportional to the displacement vector,
Wigner crystal—the state where the collisional dissipation

also vanishes. Therefore one naturally expects that at all in- N=np— VNoU, G, =0,,+ My ¥ %_ (111
termediate densities the purely elastic approximation should X" oxt

provide a reasonable description of the dynamic stress. Linearizing the stress tensor of Ed10) and using Eq(111)

we straightforwardly recover the VK approximatié®with

D. Nonlinear elastic TDLDA the elastic modulK},, Eq. (100, and uy,, Eq. (101).
The linear VK approximation with a purely elastic bulk 2. Self-consistent Kohn-Sham equations
modulusKi, Eq. (100, and shear modulug,., Eg.(101), Let us formulate the complete set of self-consistent KS

allows for a simple nonlinear extension. In this section weequations in the elastic TDLDA. The Kohn-Sham formula-
derive this nonlinear elastic TDLDA and formulate a com- tion of TDDFT allows to calculate the densityx,t) and the

plete_set of sglf-qonsistent KS equations in a convenient fOVeIocityv(x,t) in the interacting\-particle system using the
practical applications form. ideal gas formulas

1. Exchange-correlation stress tensor in the elastic TDLDA N

n(x,t) = 2 [(x. P, (112
Elastic TDLDA is based on the assumption that both the =1
Wigner function and the pair correlation function in the La-
grangian frame preserve their initial forms. This corresponds 1 i .
to the dynamics with extremely pronounced memory that is v(x,)==2> 2—[¢j Vo —¢ Vel (113
not destroyed by the effects of collisional relaxation. To get Aj=1 M
the stress tensor for the system evolving from the equilibsingle particle orbitalgs(x, t) satisfy the time-dependent KS
rium state we have to substituté(k,t)=f4ng;k) and  equations,

Ez(k ,1)=G54ng; k) into Eq.(58). As a result the stress tensor I V2 B
in the Lagrangian frame takes the form, izl =- %(l&j + (Ut Uerln, gDy, (119

N

~ S 2 1 K k. whereUg(X,t) is the external potential. For the practically
Pu= ‘fgaEkin(no) + 2—2 {T{L—HVW'(||k||) important case of a three-dimensiofiaD) system with Cou-

v 9« lomb interaction the effective potentidleq[n,g,,](x,t) is
the solution to the following Poisson equation:

VZ2Ug = 4m(€°n + ped N, ). (115

— _ The first term in the brackets in E(L15 generates the Har-
TensorP,,(£,t) of Eq. (109 locally depends on the density tree potentiall,, while the second term is responsible for the
ny(§) and Green's deformation tensgy,,(£,t) in a given  y¢ potential. The xc charge density, is the local functional
point £ of the Lagrangian space. Transforming this tensorgf n andg,,,
back to the laboratory frame and subtracting the KS stress
tensor of Eq.(71) we obtain the following result for the xc _1 0 lipxc(n 9. (116)
stress tensor in the physicalspace, P g axt naxe w9 |

+ QWW(IIKII)}GSq(no;k)- (109
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where P5(n,g,,) is the function of n(x,t) and g,,(x,t),  system reduces to the common static KS equation with the
which is defined by Eq(110). In Appendix C we show that LDA xc potential. In the linear regime it recovers the results
for a Coulomb system, Eq110) simplifies as follows: of VK approximation with the elastic moduli of Eq§102
) . 0 and(103). The nonadiabatic memory effects are described by
xc — S0 foexe [ L i Cauchy’s deformation tensor, which satisfies EtR0). It
P = 30w gEk'”( JE) ¥ L“”@B)Ep°t< \§> (17 should be noted that from the computational point of view
) . ) o the solution of this equation does not introduce any addition
whereL,,(g.p) is a purely geometric factor that is explicitly gjtficulties. Formally Eq(120) has the same structure as the
deflned_ in Ap_pendlx C. Thgrgfore the depende.nce Ofime-dependent KS Eq114). Hence Eqs(114) and (120
P(n,g,,) ong,, and onn/\g is completely factorized, can be solved simultaneously by the same method.
which should significantly simplify practical applications.  Very recently VK approximation has been successfully
The kineticEyj;(n) and the potentiaE,(n) energies of the applied to the description of the optical and polarization
homogeneous electron gas can be expressed in terms of theoperties of many different systems, such as atoms, mol-
Xc energy per particle.(n) (see, for example, Ref. 39For  ecules, semiconductors, and polym&g’ Since VK ap-
d=3 we get, proximation is a linearized version of our theory, we hope
, , that the general TDLDA also will become a useful tool for
ES (n) = 3n7/3(:TX/°3) . Epoln) =- 3n8’3<%;) studying nonlinear time-dependent phenomena.
Hence, our nonadiabatic TDLDA requires only a knowledge V1. CONCLUSION
of the functione(n) for the homogeneous electron gas, ex-
actly as the common static LDA does. TDDFT extends powerful ideology of the ground state
The densityn, which enters Eqg115—(117), is related to  DFT to the domain of nonequilibrium phenomena. However,
KS orbitals via Eq. (112. The second basic variable, in contrast to the static DFT, which is currently a common
Cauchy’s deformation tensay,,, is uniquely determined by computational tool in many branches of physics, its time-
the velocityv(x,t), Eq. (113. To compute the deformation dependent counterpart still suffers from a number of unre-
tensor we need to solve the trajectory equation of @g)  Solved problems. One of those problems is a lack of a well
and then substitute the solution into the definitiorgpf, Eq. ~ founded basic local approximation that would play a role
(67). It is, however, more convenient to determine this tensogimilar to the LDA in the static DFT. In this paper we have
directly from the solution of an equation of motion for Shown that the local approximation in TDDFT can be regu-

9.,(x,1).42 This equation of motion can be derived as fol- larly derived, but that this derivation requires almost com-
Io‘:;\}/s. Let us consider the contravariant teng@t (the in- plete reconsideration of the theory. We reformulated TDDFT

verse ofg,,,), from the point of view of a local comoving observer. The
new formulation of the theory shows that the most natural
oy OXE X basic variables in TDDFT are the local geometric character-

T oggr gg istics of the deformations in a quantum many-body system.

] ) ] Throughout this paper we used the analogy of TDDFT to
Using the trajectory equation of E(27) we can compute the  ¢jassical continuum mechanics. The importance of the hy-
time derivative ofg”’, Eq. (118), at constang (i.e., within  grodynamic interpretation, which perfectly fits the very idea

(118

the Lagrangian description of DFT, is one of the messages of the present work. Using
g pn v’ the hydrodynamic formulation of TDDFT we were able to
( P ) = %?V"'gwé,xa (119 relate the xc potentials to the local stress. In particular we

proved that the exact xc force must have the form of the

The time derivative 0, can be related to the time deriva- divergence of a second-rank tensor. The well known zero-
tive of g**=(g,,)™* as follows: 3,g=-9(4g Hg. Using this force and zero-torque sum rules are direct consequences of

relation and taking into account that this strong local requirement. The functional dependence of
xc potential on the basic variables also acquires a clear
(3)e=(d)x+VV, physical meaning. It corresponds to the stress-deformation

relation, which is very natural from the point of view of
continuum mechanics. If spatial derivatives of the deforma-
tion tensor are small, the stress-deformation relation be-

we get the final equation of motion for Cauchy’s deformation
tensorg,,,(x,1),

99, aaﬁ . Y v comes local and therefore we get the local approximation for
U e a9 T o Gan (120 the xc potential in TDDFT. It is natural to abbreviate this

approximation as TDLDA, which means time-dependent lo-

Equation (120 should be solved with the initial condition cal deformation approximation. In the linear response regime
9,.(x,0)=68,,, which follows from the initial condition for the general stress-deformation relati@ibLDA) reduces to
the trajectory equation of Eq27). the linear Hook’s law® which exactly coincides with the
The system of Eqs(112—(117) and (120 constitute the viscoelastic VK approximatioi’* The formal applicability

complete set of self-consistent KS equations in the nonlineactonditions for the general nonlinear TDLDA are the same as

elastic TDLDA. In the equilibrium situatiog,,=4,,) this  for the linear VK approximation. It should be also noted that
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neither of previously proposed nonlinear phenomenological - 9,
construction®-2° is in general confirmed by the present W, (£t =~ —“_Ef dkjdﬂdﬂ aé
regular microscopic consideration.

In Sec. V of this paper we discussed the elastic TDLDA. 7 N2 0N ow(l, )
. . . . . 1]’1’ )7’1] -~ ’
In this approximation the xc stress tensor is simply a func- =Z,,(\)] Gy(n, 7).
tion of the density and of the Cauchy’s deformation tensor. Ly N gy
For a system with a Coulomb interaction we presented the xc (A5)

stress tensor and the xc potential in an explicit “ready for

implementation” form. We also formulated the full set of Here the functionz, ,,(\) is the geodesic that connects
self-consistent KS equations in TDLDA. In the equilibrium Pointsz and#’, andl,, ,,, is the length of this geodesic. The
state the deformation tensor is diagonal and TDLDA reduce§Urvez, ,,(A) can be found from the solution of the geodesic
to the standard static LDA, while in the linear response re€quation(see, for example, Ref. 34

gime it recovers VK approximation. To conclude we mention "

that the self-consistent equations of Sec. VD2 can be Z'(N) + T, (Z)Z WZ0n) =0, (AB)
straightforwardly reformulated in terms of xc vector poten-supplemented by the boundary condition®)=17%, z(1)

tial. The only difference is that the Poisson equationdgr =4, In Egs.(A5) and (A6) z=4dz/J\, and T4, is an affine
should be replaced by E¢21) which relatesA* to the Xc  connection,

stress tensor. This replacement leads to one more evolution
equation which should be solved simultaneously with the KS UL g“”( Wa | Mg _ (9ga§> (A7)
equation and the equation for Cauchy’s deformation tensor. 9k 9 o9& )’

Equations(A4) and (A5) define tensor's'T'W andVVW as

ACKNOWLEDGMENT functionals of the microscopic state of the system. Tensor
This work was supported by the Deutsche Forschungsge-[m is a linear functional of the one particle density matrix,
meinschaft under Grant No. PA 516/2-3. (€, &)= <z//T(§)z,/;(§ ). Slmllarly, , is a linear functional
of the pair correlation funCtIOIG2(§,§ )—<¢T(§)n(§ )l,b(f)
APPENDIX A: STRESS TENSORS IN A GENERAL, —n(§n(&’). Therefore,

NONINERTIAL FRAME ~ ~ ~ ~ ~
P = T » W = Puv[bl!GZJ g t) (A8)

The microscopic representation for the stress tenso
P P I&quat|on(A8) is the result, which we need for the discussion
(§ t) in a general, local, noninertial frame has been de- “of TDDET in Sec. IV.

nved in
~ ~ ~ APPENDIX B: STRESS TENSORS FOR A HOMOGENEOUS
Pu&D =Tuu(§0 + W, (&), (A1) DEFORMATION

where the kinetic stress tensd,,(£,t) and the interaction For a homogeneous system witf),,(£,t)=g,,(t) and

stress tensolV,,,(£,1), are obtained by the transformation of U, =0 the general expressions, E¢a4) and (AS5), for the
T,.(x,1), Eq (14) andW,,,(x, 1), Eq.(15), to the new frame. stress tensors simplify as follows. Equatig®) for the ki-
MV B : nv
netic stress tensor takes the form,

Namely,
~ ot i
o S S T A S )
T(&0 = 98 9 TapX(ED,D), (A2) M 2myg \ 98 e e g m\g o9&+ a¢
(B1)
~ X axP where py(£- &) ={y (&) y(£')) is the one particle density
Warl(&D = EH ag”W”‘B(X(g’t)’t)' (A3) matrix for the homogeneous system. Introducing the Wigner
function,
The result of the transformation, Eq#2) and (A3), takes
the following form: F(k) = J ek (£)dé (B2)
T;w( £ = —<(KMg( 1/4) 4//)T(K e ) we obtain the following final representation Ftﬁpy:
~ - A ~ T _,u_
* (R,g 1) (R o) = D (53
91 9 \r w9 lﬂTlﬁ (Ad) To calculate the interaction stress tensor, Eb), we
2 gaga g agﬁ \,g ’ need to solve the geodesic equation of E4j7). For a ho-
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mogeneous metric the solution is a straight line,

Zyy )=+ (97" - p\. (B4)

The length of the geodesit

.y Can be calculated as fol-
lows:

1
Ly = f Vg2 N2 NN =g, (7 = 77" = 7)

0
=[lp— 7. (B5)
Substituting Eqs(B4) and(B5) into Eq.(A5) and taking into

account that for a homogeneous systeﬂn,n’)=62(n
-7’), we arrive at the following result:

W - _ g;/,agV,B f gagﬂ Wv(”f”)"’
114 2\!6

G dé. B6
ia g c2P% (B9

Let us expand the pair correlation functi@(g), in a Fou-
rier series,

Gy = >, €t Gylk), (B7)
k

and expres?\/w Eqg. (B6), in terms oFéz(k).

First we note, that the following simple relation holds. Let
be the Fourier component of a

F(k|), where |k|=1kk

i
function F(|&), i.e.,

F(k)) = f & F (|2 d. (B8)

Then, the Fourier component of the functié||) can be
expressed in terms df as follows:

. “ 1 —
| enerigos=ZFID, @9

where] &=, £ [see Eq(85), and
Il = gk 10

Substituting the expansion of E¢B7) into Eq. (B6) and

using Eqs(B8) and(B9), we get the required representation

for the interaction stress tensor,

~ 1o kK, s
W, = =2 | W (k) + g, wilk]) | Go(k).
2g°% L [l

(B11)

In Eq. (B11) the functionw(|k|) is the Fourier component of
the interaction potential(|£]) andw’ (x)=dw(x)/dx.

The stress tensdh?fw of Eq. (59) is the sum ofT,,, Eq.
(B3), andW,,, Eq.(B11).

uv

APPENDIX C: ELASTIC STRESS TENSOR IN COULOMB
SYSTEMS

The general expression for the xc stress tensor(Ed),

PHYSICAL REVIEW B 71, 165105(2005

interact via the Coulomb potentialy,=Aq/ pd1 (where Ag
=4me? and A,=27e?). Below we show that in this case the
second term in Eq110) can be related to the potential en-
ergv;,Epot, of a homogeneous electron gas with the density
n/vg.

Let us represent the momentum integral in Bd.O) as a
sum of two terms,

— 1) 2)
W, = WD + W2 (C1)
where
/l:
V9 B
W= 0, S G, (2
p

VIS 5 PPy eq Frp
W= (d- D52 A GGG by (CY
p

To shorten the notations we retain only important momentum
dependence in the argument of the pair correlation function
G4

The transformation of/\/(:z, Eq. (C2), is straightforward.
By changing the integration variables this equation can be
reduced to the form,

W=

uv ,uvg . Ad ZGgq(p) (C4)

[apPabp] &

Separating the integration over the modulus and the direction

of momentum in Eq.(C4) yields the following result for
1.

v

W =

v

1
0\ — T za=nrz / Epot (CYH)
1% @Blalﬂ](d 1)/2>I pot
where | is a unit vector(1°=1), and the angle brackets,
{(--+)),, stand for the averaging over the directiond .of

The momentum integral fovvfi, Eqg. (C3), can be re-
duced to a similar form. Let us first represent the deforma-
tion tensorg,,, in terms of its eigenvaluea?, and eigenvec-
tors, 7j,,

Herej=1,... d labels the eigenvectorg; that satisfy the
completeness and the orthonormality conditions,
BiwTv=Oum MuWip= G- (C7)
Tensorg”” has the same eigenvectors, while its eigenvalues
equal to 1A2. Substituting the eigenvector expansiongéf
into Eq. (Csﬁ, and performing an obvious change of the in-
tegration variables, we arrive at the following result for the
tensorvvflz
_ d- DA (g1)?
W2 =_ag79 » (—J_l E. . cs
wr =" 9Mu v @Blalﬁ](d+l)/2 | pot (C8)

Combining Egs(C1), (C5), and(C8) we obtain the interac-

can be represented in a much simpler form if the particlegion stress tensdW,,, in the following form:
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W,., =L, (9up) Epots (C9) brackets in Eqs(C5) and (C8)] are the _scalar functions
which depend only on the eigenvalues gf,. For d=2,3
where the calculation of the functidr,,(g,s) involves only  these integrals are reducible to a combination of the standard
the angle integration. The angle integrifsctors with angle  elliptic integrals.
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