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We formulate equations of time-dependent density functional theorysTDDFTd in the comoving Lagrangian
reference frame. The main advantage of the Lagrangian description of many-body dynamics is that in the
comoving frame the current density vanishes, while the density of particles becomes independent of time.
Therefore a comoving observer will see a picture which is very similar to that seen in the equilibrium system
from the laboratory frame. It is shown that the most natural set of basic variables in TDDFT includes the
Lagrangian coordinate,j, a symmetric deformation tensorgmn, and a skew-symmetric vorticity tensor,Fmn.
These three quantities, respectively, describe the translation, deformation, and the rotation of an infinitesimal
fluid element. Reformulation of TDDFT in terms of new basic variables resolves the problem of nonlocality
and thus allows us to regularly derive a local nonadiabatic approximation for exchange correlationsxcd
potential. Stationarity of the density in the comoving frame makes the derivation to a large extent similar to the
derivation of the standard static local density approximation. We present a few explicit examples of nonlinear
nonadiabatic xc functionals in a form convenient for practical applications.
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I. INTRODUCTION

Traditionally, the physical understanding of various
many-body phenomena is based on Landau’s intuitive con-
cept of quasiparticles, which relates the behavior of a
strongly interacting quantum system to the properties of a
gas of noninteractingsor weakly interactingd elementary
excitations.1 The common field-theoretical formulation of the
many-body problem2–4 allows us to rigorously justify this
very appealing point of view, provided the system is in a
weakly excited many-body state. Unfortunately, practical ap-
plications of traditional many-body methods to real systems,
even in the equilibrium or linear response regime, is compu-
tationally very demanding. In strong nonequilibrium systems
the situation is much worse. The simple intuitive picture of
elementary excitations breaks down, while the direct appli-
cation of the standard many-body theory becomes increas-
ingly difficult even for model systems.

An alternative approach to the quantum many-body prob-
lem is offered by the density functional theory5–7 sDFTd.
DFT represents a mathematically rigorous realization of an-
other famous idea in theoretical physics which is a concept
of collective variables theory.8 Indeed, DFT opens a possi-
bility to formulate the many-body problem in the form of a
closed theory that contains only a restricted set of basic vari-
ables, such as density in the static DFTsRef. 5d or density
and current in the time-dependent DFTsTDDFTd.6,7,9 In
classical physics a theory of this type has been known for
more than 250 years. This is classical hydrodynamics. In
fact, the Runge-Gross mapping theorem in TDDFTsRef. 9d
proves the existence of an exact quantum hydrodynamics. An
analogy of TDDFT to hydrodynamics has been already noted
in the original paper by Runge and Gross,9 ssee also Tokatly
and Pankratov10d. In this respect the static DFT should be
viewed as an exact quantum hydrostatic. It is indeed known

that the condition of energy minimum is equivalent to the
condition for a local compensation of the external and inter-
nal stress forces exerted on every infinitesimal element of an
equilibrium system.11 Thus DFT not only introduces an al-
ternative formalism in the quantum many-body problem, but
it also naturally suggests an alternative way of thinking that
refers to the physical intuition, developed over hundreds of
years of experience in classical continuum mechanics. Inter-
estingly, equations of TDDFT in the hydrodynamic formula-
tion can be also considered as force balance conditions, but
in a local noninertial reference frame moving with the flow.
In the time-dependent case there is a local compensation of
the external, inertial, and internal stress forces. This demon-
strates a close similarity of the static DFTswhich is currently
a well developed theoryd to TDDFT swhich is still under
constructiond in the comoving frame. The above similarity
was the main motivation to reconsider the formulation of
TDDFT from the point of view of a local observer in the
comoving Lagrangian reference frame. In this paper we
present the results of such a reconsideration, based on our
recent formulation of the many-body theory in the Lagrang-
ian frame.12 sIn what follows the paper in Ref. 12 is referred
to as I.d

Practical applications of any DFT rely on the Kohn-Sham
sKSd construction,5,13 which maps the calculation of basic
observables in the interacting systems to the solution of an
auxiliary, noninteracting KS problem. Noninteracting KS
particles move in a self-consistent exchange correlationsxcd
potential that is adjusted to reproduce the correct values of
basic variables, i.e., density and current in TDDFT. From the
hydrodynamical point of view the KS construction allows
one to compute exactly the kinetic part of the internal stress
force, while treating the xc contribution to the stress in an
approximate fashion. Thus the central problem of any prac-
tical DFT reduces to the construction of adequate approxi-
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mations for xc potentials. In the static DFT a good starting
point is provided by the local density approximationsLDA d.
On the one hand, the static LDA, by itself, gives quite rea-
sonable results, and, on the other hand, it allows for further
modifications and refinements. The construction of a similar
basic local approximation in TDDFT turned out to be prob-
lematic. The reason for these problems is the inherent non-
locality of the nonadiabatic, nonequilibrium DFT. General
arguments,14,15 based on the harmonic potential theorem,16

require that any consistent nonadiabatic xc potential must be
a strongly nonlocal functional of the density. Otherwise the
harmonic potential theorem is violated.

In 1996 Vignale and Kohn17 sVK d realized that, at least in
the linear response regime, the problem of nonlocality can be
resolved by changing the basic variable and by using the xc
vector potentialAxc instead of the scalar one. Namely, VK
showed that if one considers the currentj sinstead of the
densitynd as a basic variable, a consistent linear local ap-
proximation forAxc can be regularly derived.17 Shortly after
that, Vignale, Ullrich, and Conti18 sVUCd found that the fur-
ther switching of variables from the currentj to the velocity
v= j /n allows us to represent the complicated VK expression
in a physically transparent viscoelastic form. VUCsRef. 18d
also phenomenologically constructed a nonlinear, nonadia-
batic xc functional. In this construction they formally
adopted the linear VK form, but with coefficients taken at a
“retarded position.”19 The meaning is that the phenomeno-
logical construction issid similar, sii d, linear, andsiii d based
on the Keldysh contour action functional, has been recently
proposed by Kurzweil and Baer.20 An attempt to regularly
derive a nonlinear, nonadiabatic local approximation in TD-
DFT was made in Tokatly and Pankratov.10 Noting that the
applicability conditions for the linear VK approximation ex-
actly coincided with those for the “collisionless hydrody-
namics” of Refs. 21–23, we extended the hydrodynamics
formalism to TDDFT. Using Landau Fermi-liquid theory, we
derived a nonadiabatic, nonlinear approximation for the xc
stress tensor that defines the xc potential.10 It has been shown
that the stress tensor is a local functional of new basic vari-
ables: the Lagrangian coordinate and a second-rank metric-
like tensor. An appearance of the Lagrangian coordinate as a
basic variable is quite remarkable, if we recall the above-
mentionedfsee also IsRef. 12dg staticlike force balance in
the co-moving Lagrangian frame.

In this paper we reformulate TDDFT using the exact
equations of quantum many-body dynamics in the Lagrang-
ian frame.12 We show that possibly the most natural complete
set of basic variables in TDDFT consists of the Lagrangian
coordinatej, the symmetric Green’s deformation tensorgmn,

and the skew-symmetric vorticity tensorF̃mn. These three
quantities, one vector, one symmetric, and one skew-
symmetric tensor, contain 12 numbers that are required for
the complete local characterization of a deformed state of

any continuum media.24 Namely, j, gmn, and F̃mn, respec-
tively, describe the translation, deformation, and the rotation
of an infinitesimal fluid element. On the other hand, tensors

gmn and F̃mn describe generalized inertia forces in the La-
grangian framessee Id. All three quantities are functionals of
velocity in accordance with the Runge-Gross mapping

theorem.9 The new formulation of TDDFT relates the local
stress in the system to the dynamic deformations, which is
very natural physically. The main practical advantage is that
the reformulation of TDDFT in terms of new basic variables
resolves the problem of nonlocality on the most fundamental
level. We show that the dynamic xc stress-deformation rela-
tion can be made local. This allows us to derive a local
nonadiabatic approximation in a regular way that is similar
to the derivation of the static LDA. The whole history of
nonadiabatic approximations in TDDFT can be viewed as a
staircase of successive transformations of basic variables,
from the density, via the current and the velocity, to the gen-
eral geometric characteristics of deformed media. The first
step was made by VKsRef. 17d in 1996. Hopefully the
present formulation of TDDFT corresponds to the last step
on this staircase.

The structure of the paper is the following. In Sec. II we
consider the hydrodynamic formulation of TDDFT. Using
this formulation, we introduce the KS system and define xc
potentials in terms of stress tensors. In Sec. III we discuss
local approximations in DFT. We derive the common static
LDA and explain physical reasons for the nonlocality in TD-
DFT. Sections IV and V are the central parts of the present
paper. In Sec. IV we introduce basic variables and develop a
complete geometric formulation of TDDFT. We also formu-
late a universal many-body problem which determines the xc
stress tensor and the xc potential as functionals of basic vari-
ables. In Sec. V we discuss an approximate solution of the
universal many-body problem in the lowest order of the gra-
dient expansion. Explicit examples of nonadiabatic local xc
functionals are presented in Secs. V B–V D. In the conclud-
ing part of Sec. V D we formulate the full set of time-
dependent KS equations in the nonlinear time-dependent lo-
cal deformation approximation. In the equilibrium case these
equations reduce to the common equations of DFT with the
static LDA xc potential, while in the linear response regime
we recover the results of VK approximation. In Sec. VI we
summarize our results. Three appendixes contain technical
details of the calculations.

II. DEFINITION OF EXCHANGE CORRELATION
POTENTIALS VIA STRESS DENSITY

In this section we discuss a hydrodynamic formulation of
DFT and introduce a definition of xc potentials in terms of
local stress forces. Let us consider a system of N interacting
fermions in the presence of a time-dependent external poten-
tial Uextsx ,td. The system is described by the following
Hamiltonian:

H = T̂ + Ŵ+ Û, s1d

whereT̂, Ŵ, andÛ correspond to the operators of the kinetic
energy, interparticle interaction energy, and the energy of in-
teraction with the external field, respectively,

T̂ = −E dxc†sxd
¹2

2m
csxd, s2d

Ŵ=
1

2
E dxdx8wsux − x8udc†sxdc†sx8dcsx8dcsxd, s3d
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Û =E dxUextsx,tdc†sxdcsxd. s4d

Herewsuxud is the potential of a pairwise interparticle inter-
action. Field operatorsc† and c satisfy the fermionic com-
mutation relation,

hc†sxd,csx8dj = dsx − x8d. s5d

For definiteness we consider a Fermi system, although most
of the results of this paper are independent of statistics.

The hydrodynamic formulation of DFT follows the
Heisenberg equations of motion for the density and for the
current operators

]

]t
nsx,td − ikfH,n̂sxdgl = 0, s6d

]

]t
j sx,td − ikfH, ĵ sxdgl = 0, s7d

where nsxd=kn̂sxdl and j sxd=kĵ sxdl are the density of par-
ticles and the current density. The corresponding operators
are defined by the standard expressions,

n̂sx,td = c†sx,tdcsx,td, s8d

ĵmsx,td = −
i

2m
Sc† ]c

]xm −
]c†

]xm cD . s9d

Angle brackets in the above formulas denote averaging with
the exact density matrixr̂, i.e., kAl=Trr̂A. Equationss6d and
s7d can be represented in a form of the hydrodynamics bal-
ance equations.sDetails of the derivation can be found, for
example, in Id,

Dtn + n
]

]xmvm = 0, s10d

mnDtvm +
]

]xn Pmn + n
]

]xmU = 0. s11d

Equations10d is the common continuity equation, while Eq.
s11d corresponds to the local momentum conservation law. In
these equationsv= j /n is the velocity of the flow,Dt
=s] /]td+v¹ is the convective derivative andU=Uext+UH is
the sum of the external and the Hartree potentials,

UHsx,td =E wsux − x8udnsx8,tddx8. s12d

The exact stress tensor in Eq.s11d,

Pmnsx,td = Tmnsx,td + Wmnsx,td, s13d

contains the kineticTmn and the interactionWmn contribu-
tions. Divergences of the tensorsTmn and Wmn in Eq. s11d
come from the commutators of the current operator with op-

eratorsT̂, Eq. s2d, andŴ, Eq. s3d, respectively. In I we have
derived the following explicit representations for the stress
tensorsssee also Refs. 2 and 25–27d:

Tmnsxd =
1

2m
Ksq̂mcd†q̂nc + sq̂ncd†q̂mc −

dmn

2
¹2n̂L ,

s14d

Wmnsxd = −
1

2
E dx8

x8mx8n

ux8u
]wsux8ud

]ux8u

3E
0

1

G2„x + lx8,x − s1 − ldx8…dl, s15d

whereq̂=−i ¹−mv is the operator of “relative” momentum,
andG2sx ,x8d=kc†sxdn̂sx8dcsxdl−nsxdnsx8d is the pair corre-
lation function.28 It is worth mentioning that the represent-
ability of the stress force in a form of a divergence of a
tensor is a direct consequence of the Newton’s third lawssee
Appendix A in Id.

Equationss10d and s11d represent the exact local conser-
vation laws which must be satisfied for an arbitrary evolution
of the system. Let us apply them to TDDFT. The first, less
restrictive part of the TDDFT mapping theorem9,29 states the
existence of a unique and invertible map:j →Uext or, equiva-
lently, v→Uext. This implies that the exact many-body den-
sity matrix r̂std for a given initial condition,r̂s0d= r̂0, is a
functional of the velocityv. Hence the stress tensor of Eq.
s13d is a functional ofv and of the initial density matrix:
Pmnfr̂0,vg. Therefore Eqs.s10d ands11d constitute a formally
closed set of the exact quantum hydrodynamics equations
with the memory of initial many-body correlations. It is in-
teresting to note that the common classical hydrodynamics
can be viewed as a particular limiting form of TDDFT. In
this limiting case the stress tensor functional is known
explicitly—it takes the usual Navier-Stokes form.30

In the equilibrium system Eq.s11d reduces to the static
force balance equation,

]

]xn Pmn + n
]

]xmU = 0. s16d

This equation shows that the force produced by the external
and the Hartree potentials is compensated by the force of
internal stresses. The net force, exerted on every infinitesimal
fluid element is zero, which results in zero current density
and a stationary particles’ density distribution. According to
the Hohenberg-Kohn theorem5,31 any equilibrium observ-
able, in particular the stress tensor, is a functional of the
densityn: Pmn=Pmnfng. Hence Eq.s16d is, in fact, the equa-
tion of the exact quantum hydrostatics that uniquely deter-
mines the density distribution in the equilibrium system. In
the semiclassical limit Eq.s16d reduces to the common hy-
drostatics equation30 sfor a degenerate high-density Fermi
gas we recover the Thomas-Fermi theoryd.

Practical applications of DFT always rely on the KS con-
struction that is a particular consequence of the mapping
theorems. The current and the density in the interacting sys-
tem can be reproduced in a system of noninteracting KS
particles, moving in a properly chosen self-consistent poten-
tial US=U+Uxc.

32 The hydrodynamic formulation of TD-
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DFT and/or DFT allows us to relate the xc potentialUxc to
the stress density. Hydrodynamics balance equations for the
KS system take the form

Dtn + n
]

]xmvm = 0, s17d

mnDtvm +
]

]xnTmn
S + n

]

]xmUxc + n
]

]xmU = 0, s18d

where the kinetic stress tensor of KS system,Tmn
S is given by

Eq. s14d, but with the averaging over the state of noninter-
acting particles. Comparing Eqs.s10d ands11d with Eqs.s17d
ands18d we find that the velocityv and the densityn of the
noninteracting and the interacting systems coincide if the xc
potentialUxcsx ,td satisfies the equation,

]Uxc

]xm =
1

n

]Pmn
xc

]xn s19d

wherePmn
xc is the xc stress tensor that equals the difference of

the stress tensors in the interacting and noninteracting sys-
tems with the same velocity distribution,

Pmn
xc = Pmn − Tmn

S . s20d

Equationss19d and s20d demonstrate the physical signifi-
cance ofUxc. The xc potential should produce a force which
compensates for the difference of the internal stress forces in
the real interacting system and in the auxiliary noninteracting
KS system. By the continuity equation, the densityn is a
functional of the velocity. Therefore Eq.s19d definesUxc sup
to a constantd as a functional ofv. Equations19d shows that
n−1]nPmn

xc is a potential vector. This does not mean that vec-
tors n−1]nPmn and n−1]nTmn

S , separately, have no rotational
components. However, according to the balance equations of
Eqs.s11d ands18d the rotational components of these vectors
coincide, both being equal to the rotational part of the vector
mDtv.

It is also possible to construct the proper KS system using
the xc vector potentialAxc or, in the most general case, a
combination of the xc vector and scalar potentials.10,17,18,33In
this case the exact local conservation laws require that the
total xc force,Fxc, should compensate for the difference of
the stress forces in the interacting and the KS systems,

Fm
xc =

]Am
xc

]t
− fv 3 s¹ 3 Axcdgm +

]Uxc

]xm =
1

n

]Pmn
xc

]xn . s21d

This equation determines the xc potentialsAxc andUxc up to
a gauge transform. Equations21d represents a very important
exact property of xc potentials: they produce a force that
must be a divergence of a second-rank tensor. This require-
ment automatically implies the well known zero-force and
zero-torque sum rules,6

E nFxcdx = 0, E nsx 3Fxcddx = 0. s22d

We would like to outline that the exact local condition of Eq.
s21d is much stronger than the common integral requirements
of Eq. s22d. Apparently the above definition of xc potentials

equally well applies both to TDDFT and to the static DFT. It
should be mentioned that in the equilibrium case the stress
forces in the interacting and KS systems, separately, are po-
tential vectors.

Let us briefly discuss the role of the xc vector potential in
DFT. Apparently an appearance ofAxc is unavoidable in the
presence of an external magnetic field.33 Independent of the
character of external fields, the formulation in terms ofAxc is
convenient in the linear response regime.17,18 Indeed, in the
linearized theory we can perform the Fourier transform in the
time domain, which makesAxc completely local, provided
the xc stress tensor is a local functional of some basic vari-
ables. In the nonlinear regime this advantage clearly disap-
pears. For a nonlinear evolution the description of xc effects
in terms of the scalar potential, defined by Eqs.s23d and
s24d, looks at least as convenient as the formulation in terms
of Axc. Below, for definiteness, we assume the noninteracting
v representability of the velocity, which allows us to con-
struct the KS system using only the scalar xc potential. Re-
formulation of the theory for the xc vector potential is
straightforwardssee the Conclusiond.

For the practical applications it is possibly more conve-
nient to represent the force definition ofUxc, Eq. s19d, in a
familiar form of the Poisson equation,

¹2Uxcsx,td = 4prxcsx,td, s23d

where the quantityrxcsx ,td,

rxc =
1

4p

]

]xmS1

n

]

]xn Pmn
xcD , s24d

can be interpreted as an xc “charge” density. In this context
the xc stress force,n−1]nPmn

xc , has a clear meaning of an xc
“polarization” density. The additional differentiation in Eq.
s23d requires an additional boundary condition. The most
natural condition, which we should impose on the solution to
Eq. s23d, is the requirement of boundness at infinity.

Equations19d or, equivalently, Eqs.s23d and s24d reduce
the problem of approximations forUxc to the construction of
approximations for the xc stress tensorPmn

xc . Since the stress
density has a clear physical and microscopic meaning there
is a hope that the latter problem is more tractable.

III. STATIC LDA VS TIME-DEPENDENT LDA

Let us first derive the standard static LDA from the force
definition ofUxc, Eq. s19d. Formally the staticUxc

LDAsxd is the
solution to Eq.s19d in the lowest order of the gradient ex-
pansion. This solution is obtained by insertingPmn

xc for a ho-
mogeneous system of the densitynsxd into the right-hand
side of Eq.s19d. In the homogeneous system the stress ten-
sorsPmn andTmn

S are diagonal,

Pmnfng = dmnPsnd, Tmn
S fng = dmnP0snd,

where P and P0 are the pressure of the interacting system
and the pressure of an ideal gas, respectively. Therefore to
the lowest order in the density gradients we get
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Pmn
xc fngsxd = dmnPxcfnsxdg, s25d

where Pxc=P−P0 is the xc pressure of the homogeneous
system. Substituting Eq.s25d into Eq. s19d, and using the
common thermodynamic relations,dP=ndm, m=]F /]n, we
find the following result for the xc potential:

Uxcfngsxd = Uxc
LDAfnsxdg, Uxc

LDAsnd =
]Fxc

]n
. s26d

Here Fxc is the xc free energy of the homogeneous system.
The result of Eq.s26d recovers the standard static LDA.5

Physically the above derivation of the static LDA means
the following: If the density distribution is a semiclassically
slow function in space, every small volume element can be
formally considered as an independent, homogeneous many-
body system. The density in this homogeneous system equals
the density at the location of the element. By solving the
homogeneous many-body problem we find the stress tensor,
which, after the substitution into Eq.s19d provides us with
Uxc

LDA.
The situation in the time-dependent theory is much more

complicated. Even if at any instantt the density distribution
nsx ,td is a slow function in space, a small volume element,
located at some pointx, cannot be considered as a system
that is independent of surrounding space. For nonadiabatic
dynamics, particles, arriving at the pointx from other re-
gions, bring information about other spatial points. This is
the physical reason for the well known nonlocality, imma-
nent to any nonadiabatic TDDFT.14,15 It is straightforward to
demonstrate the failure of any plain attempt to extend the
above derivation of the static LDA to the time-dependent
case. Indeed, a homogeneous many-body problem, which we
would get by formally separating a small volume element,
corresponds to an infinite system with a strongly noncon-
served number of particles. Apparently this problem is mean-
ingless.

In the rest of this paper we show that the nonlocality
problem in TDDFT is resolved by changing a “point of
view” on the nonequilibrium many-body system. Any flow in
the system can be considered as a collection of small fluid
elements moving along their own trajectories. It is possible
to divide the system into elements in such a way that the
number of particles in every element will be conserved. In-
deed, by the proper deformation and rotation of a fluid ele-
ment one can always adjust its shape to the motion of par-
ticles and thus prevent flow through its surface. Let us attach
a reference frame to one of those moving elements. The mo-
tion of the origin of this frame compensates the translational
motion of the fluid element. By properly changing scales and
directions of coordinate axes we can also compensate for
both the deformations and the rotation. This means that an
observer in the new frame will see no currents in the system
and a stationary density distribution. Thus from the point of
view of the comoving observer the nonequilibrium system
looks very similar to the equilibrium one, as it is seen by a
stationary observer in the laboratory reference frame. This
similarity is of course not complete since particles in the
described comoving frame should experience inertia forces.
However, the inertia forces are determined only by local geo-

metric characteristics of the frame. The locality of inertia
forces and the stationarity of the density allow us to consider
a small volume element in the comoving frame as an inde-
pendent many-body system. Therefore we can extend the
derivation of the static LDA to the time-dependent case.

The description of a flow in terms of trajectories of small
liquid element is the main idea behind the Lagrangian for-
mulation of classical continuum mechanics.24 One can show
that the transformation to the Lagrangian coordinates exactly
corresponds to the transformation to the comoving reference
frame. In Sec. IV we apply the general description of quan-
tum many-body dynamics in the Lagrangian frame12 to the
corresponding reformulation of TDDFT.

IV. MANY-BODY THEORY IN THE LAGRANGIAN
FRAME AND GEOMETRIC FORMULATION OF TDDFT

A. Many-body problem in the comoving frame

First we briefly review the key results of the many-body
theory in the Lagrangian framesall details and derivations
can be found in Id. The comoving Lagrangian reference
frame is defined as follows: Letvsx ,td= j sx ,td /nsx ,td be the
velocity of the flow. By solving the following initial value
problem:

]xsj,td
]t

= v„xsj,td,t…, xsj,0d = j, s27d

we find the functionxsj ,td, which describes the trajectory of
a fluid element. The initial point,j, of the trajectory can be
used as a unique label of the element. This initial position of
an infinitesimal fluid element is called the Lagrangian coor-
dinate. The transformation from the originalx space to thej
space of the initial positions is the transformation from the
Eulerian to the Lagrangian description of a fluid.24 On the
other hand, the equationx=xsj ,td, which mapsx to j, ex-
actly corresponds to the transformation to the frame, attached
to a fluid element. One of the most important characteristics
of the Lagrangian frame is Green’s deformation tensor,24

gmnsj ,td,

gmn =
]xa

]jm

]xa

]jn , gmn =
]jm

]xa

]jn

]xa . s28d

Tensor gmn plays the role of metric in the Lagrangianj
space.sWe will use the notationg for the determinant of

gmn.d It has been shown in I that the field operatorsc̃sj ,td in
the Lagrangian frame are related to the field operatorscsx ,td
in the laboratory frame as follows:

c̃sj,td = g1/4c„xsj,td,t….

Apparently the operatorsc̃sj ,td satisfy the common equal-
time commutation relations, which is guaranteed by the fac-

tor g1/4 in their definition. The current operatorj̃ m̂sj ,td and

the density operatorn̂̃sj ,td in the Lagrangian frame are de-
fined by the following expressions:

n̂̃sj,td = c̃†sj,tdc̃sj,td, s29d
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j̃ m̂sj,td = gmnF − i

2m
Sc̃† ]c̃

]jn −
]c̃†

]jn c̃D − ṽnc̃†c̃G , s30d

whereṽn=gnmṽm is the covariant component of the velocity
vectorv, transformed to the new frame,

ṽmsj,td =
]jm

]xn vn
„xsj,td,t….

The Heisenberg equation of motion for the density operator
of Eq. s29d takes a form of the operator continuity equation,

]n̂̃

]t
+

] j̃ m̂

]jm = 0. s31d

On the level of expectation values Eq.s31d is trivially satis-
fied. One can check by explicit calculations that the expec-
tation value of the current operator, Eq.s30d, is zero, while
the expectation value of the density operator, Eq.s29d, is
time independent,

j̃msj,td = k j̃ m̂sj,tdl = 0, s32d

ñsj,td = kn̂̃sj,tdl = ñsj,0d = n0sjd, s33d

wheren0sxd is the initial density distribution. Equationss32d
and s33d are in complete agreement with the qualitative dis-
cussion in Sec. III.

According to the results of the paper I, the vector
mṽmsj ,td plays the role of an effective vector potential in the

equation of motion for the field operator,c̃. In general the
velocity vectorṽmsj ,td has both potentialslongitudinald and
rotational stransversed parts. The potential part of a vector
potential can be always removed from the kinetic energy
operator by the gauge transformation. Therefore it is conve-
nient to separate explicitly the potential part,ṽLm=]mw, of
the vectorṽm,

ṽm =
]w

]jm + ṽTm, s34d

whereṽTm is the transverse part ofṽm. Performing the gauge

transformationc̃=eim wc̃8 in the equation of motion forc̃
fsee Eq.s34d in Ig we obtain the following equation of mo-

tion for the transformed operatorc̃8:

i
]c̃8sjd

]t
= g−1/4K̂m

ÎgK̂m

2m
g−1/4c̃8sjd

+E dj8wslj,j8dDn̂̃sj8dc̃8sjd

+ Sm
]w

]t
+ U − m

ṽmṽm

2
Dc̃8sjd, s35d

where Dn̂̃sj ,td= n̂̃sj ,td− ñsj ,td. sThe Hartree term is in-
cluded inU=Uext+UH.d Other notations in Eq.s35d are the
same as in I,

K̂m = − i
]

]jm − mṽTm

is the operator of kinematic momentum, andlj,j8 is the
length of geodesic connecting pointsj andj8. sEverywhere
the rising and lowering of tensor indexes are performed ac-
cording to the standard rules, i.e.,Am=gmnA

n, etc.d The de-
formation tensor and the velocity vector in Eq.s35d describe
generalized inertial forces in the local noninertial reference
frame. Tensorgmn in the kinetic energy term produces the
“geodesic” force. This inertia force is responsible for the
motion of a free particle along the geodesic inj space. The
velocity ṽm, which acts as a vector potential in Eq.s35d,
produces the Coriolis forcesan effective Lorentz forced and
the linear acceleration forcesan effective electric fieldd. The
last term in the brackets in Eq.s35d is responsible for the
inertia force that is related to the kinetic energy of the frame
san analog of the centrifugal forced.

Equation s35d is the equation of motion in a reference
frame moving with some velocityv. In fact, the form of Eq.
s35d is covariant under an arbitrary transformation of coordi-
nates, which is generated by a continuous, vector-valued
function vsx ,td via Eq. s27d. The function issid continuous,
and sii d vector valuedsor vector-valuedd. To specify a par-
ticular reference frame we need to impose an additional
“gauge” condition. The gauge condition assigns a particular
value to the generating functionvsx ,td. There are a few for-
mal possibilities to specify the comoving Lagrangian frame
ssee Id. For example, since the expectation value of the cur-
rent operator in the Lagrangian frame should be zero, we can
impose the condition of Eq.s32d on the solutions to the equa-
tion of motion, Eq.s35d. In the present paper we prefer to use
another gauge-fixing condition. Namely, we require that the
solution to the equation of motion, Eq.s35d, be consistent
with the equation of the local force balance in the Lagrang-
ian frame,

m
]ṽTm

]t
+

]

]jmSm
]w

]t
+ U − m

ṽnṽ
n

2
D +

Îg

n0
P̃m;n

n = 0, s36d

whereP̃m;n
n is the covariant divergence34,35 of the stress ten-

sor,

P̃m;n
n =

1
Îg

]ÎgP̃m
n

]jn −
1

2

]gab

]jm P̃ab. s37d

The force-balance equation of Eq.s36d corresponds to the
local momentum conservation law, Eq.s11d, transformed to
the Lagrangian frame. The stress tensor in the Lagrangian

frameP̃mn which enters Eq.s36d, is a linear functional of the
one-particle density matrixr̃1 and of the pair correlation

function G̃2,

P̃mn = P̃mnfr̃1,G̃2gsj,td. s38d

The explicit microscopic form of the functionalP̃mnfr̃1,G̃2g
is presented in Appendix Afsee Eqs.sA1d, sA4d, andsA5dg.
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Equations36d has precisely the same physical significance
as the static force balance equation of Eq.s16d. It shows that
the inertia forces exactly compensate for the external force,

s] /]jmdU, and the force of internal stress,sÎg/n0dP̃m;n
n . The

result of this compensation is the absence of the current and
stationary density distributions in the Lagrangian frame.

Equationss35d ands36d constitute the full set of equations
of quantum many-body theory in the Lagrangian frame.

B. TDDFT in the Lagrangian frame: Stress tensor as a
universal functional of the dynamic deformation

Now we are ready to resume the discussion of TDDFT.
The complete description of many-body dynamics in the La-
grangian frame corresponds to the solution of the equation of
motion, Eq.s35d, supplemented by the frame-fixing condi-
tion of Eq. s36d. Let us note that both Eqs.s35d and s36d
contain the same effective potentialfthe term in the paren-
theses in Eqs.s35d ands36dg. Using this simple property we
can formulate the following two-step procedure for solving
the system of Eqs.s35d ands36d. In the first step we solve a
universal nonlinear many-body problem of the form,

i
]c̃8sjd

]t
= g−1/4K̂m

ÎgK̂m

2m
g−1/4c̃8sjd + FE dj8wslj,j8dDn̂̃sj8d

+ Us-csj,tdGc̃8sjd, s39d

where the effective potentialUs-csj ,td is the solution to the
following self-consistency equation:

−
]

]jmUs-csj,td =
Îg

n0
P̃m;n

n fr̃1,G̃2g + m
]ṽTm

]t
. s40d

The initial conditions for Eqs.s39d ands40d are the same as
in the original physical many-body problem, Eqs.s35d and
s36d. The special form of the self-consistency equation, Eq.
s40d, ensures the stationarity of the particle density and zero-
current density. Indeed, using Eqs.s39d and s40d we obtain
the following equations of motion for the densityñ and for
the currentj̃ :

]ñ

]t
+

] j̃m

]jm = 0, s41d

] j̃m

]t
+ F̃mn j̃n = 0, s42d

whereF̃mn is the skew-symmetric vorticity tensor that plays
the role of an effective magnetic field,

F̃mn =
]ṽTm

]jn −
]ṽTn

]jm =
]ṽm

]jn −
]ṽn

]jm . s43d

The cancellation of the “external” force¹Us-c and the iner-
tial and the stress forces in Eq.s42d is a consequence of the
self-consistency equation, Eq.s40d. By solving Eqs.s41d and
s42d with the initial conditionsj̃ sj ,0d=0 andñsj ,0d=n0sjd,

we indeed confirm that for allt.0 j̃ sj ,td=0 and ñsj ,td
=n0sjd.

The self-consistent nonlinear problem of Eqs.s39d and
s40d is universal in the sense that no external potential enters
the equations. The only external variables in Eqs.s39d and
s40d are the deformation tensorgmnsj ,td san effective metricd
and the transverse part of the velocity,ṽTmsj ,td san effective
vector potentiald. The vectorṽTm is uniquely determined by

the skew-symmetric vorticity tensorF̃mn san effective mag-
netic fieldd, Eq. s43d. Therefore by solving the nonlinear
problem of Eqs.s39d ands40d we find the many-body density
matrix to be a functional of two basic variables,gmnsj ,td and

F̃mnsj ,td.36 Inserting this density matrix into the microscopic
expression for the stress tensor, Eq.s38d, we obtain the uni-
versal functional,

P̃mn = P̃mnfgmn,F̃mngsj,td. s44d

Calculation of the stress tensor functional, Eq.s44d, com-
pletes the first step in the solution of the original many-body
problem.

The symmetric Green’s deformation tensorgmn and the

skew-symmetric vorticity tensorF̃mn completely characterize
the deformed state of a fluid in the Lagrangian description.
Therefore Eq.s44d can be interpreted as the exact nonequi-
librium “equation of state” that relates the stress tensor to the

dynamic deformation in the system. Sincegmn and F̃mn are
the functionals of velocity, the stress tensor of Eq.s44d is
also a functional of velocity in agreement with the Runge-

Gross theorem. However, the present interpretation ofP̃mn as
a deformation functional looks more natural physically.

Substituting the equation of state, Eq.s44d, into the force
balance equation of Eq.s36d, we get the exact quantum
Navier-Stokes equation in the Lagrangian formulation. The
full set of exact hydrodynamics equations includes Eq.s36d
and the trajectory equation, Eq.s27d. The solution of the
system of Eqs.s27d and s36d corresponds to the second step
in the solution of the original many-body problem. In this
step we determine the evolution of velocity for a given ex-
ternal potential. Equationss27d and s36d with the stress ten-
sor of Eq.s44d correspond to the exact TDDFT hydrodynam-
ics in the Lagrangian formulation of continuum mechanics.

The KS formulation of TDDFT requires a knowledge of
the xc potentialUxc. In Sec. II we have shown thatUxc is

related to the xc stress tensorP̃mn
xc = P̃mn−T̃mn

S , whereT̃mn
S is

the stress tensor for the noninteracting KS system. Obvi-
ously, the KS stress tensor can be found from the solution of
a nonlinear noninteracting problem that corresponds to Eqs.
s39d and s40d with wslj,j8d=0. Hence by solving Eqs.s39d
and s40d with and without interaction we computeP̃mn and

T̃mn
S , respectively. The difference of these tensors gives us the

xc stress tensor in the Lagrangian frame as a functional of

gmn and F̃mn,

P̃mn
xc = P̃mn

xc fgmn,F̃mngsj,td. s45d

Transforming the xc stress tensor of Eq.s45d back to the
laboratory frame and substituting the result into Eqs.s23d
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and s24d, we obtain the equation for the xc potential
Uxcsx ,td. Another possibility is to determine the xc potential,

Ũxcsj ,td, directly in the Lagrangian frame by solving the
following equation:

]

]jmŨxcsj,td =
Îg

n0
P̃m;n

xcn . s46d

The transformation ofŨxcsj ,td to the laboratory frame cor-
responds to the following replacementj→jsx ,td, i.e.,

Uxcsx,td = Ũxcfgmn,F̃mngfjsx,td,tg, s47d

whereŨxc is the solution to Eq.s46d.
Let us note that the problem of calculation of the equilib-

rium stress tensor functional,Pmn, in the static DFT can be
formulated in exactly the same fashion. To calculatePmnfng
3sxd we need to find the equilibrium solution to the follow-
ing universal, nonlinear many-body problem:

i
]

]t
csxd = −

¹2

2m
csxd + Us-csxdcsxd

+E dx8wsux − x8udDn̂sx8dcsxd, s48d

]

]xmUs-csxd =
1

n

]

]xn Pmnfr1,G2g, s49d

where Pmnfr1,G2g=Tmnfr1g+WmnfG2g is defined after Eqs.
s14d ands15d. For a given densitynsxd the equilibrium solu-
tion to Eqs.s48d and s49d defines the stress tensorPmn as a
universal functional ofn.

The stationarity of the density in the Lagrangian frame
makes the dynamic universal problem of Eqs.s39d and s40d
to a large extent similar to the equilibrium universal problem
of Eqs. s48d and s49d. In Sec. V we use this similarity to
derive a local nonadiabatic approximation in TDDFT.

V. TIME-DEPENDENT LOCAL DEFORMATION
APPROXIMATION

In the Sec. IV we have shown that the calculation of the
xc stress tensor, which defines the xc potential, reduces to the
solution of the nonlinear, universal many-body problem, Eqs.
s39d ands40d. Obviously, it is not possible to solve this prob-
lem exactly. However, one can try to find an approximate
solution by a perturbative expansion in terms of a small pa-
rameter. Below we construct a local approximation that cor-
responds to the lowest order in the gradients of basic vari-
ablessi.e., the density in the static DFT and the deformation
tensor in TDDFTd.

A. General formulation of a nonadiabatic local approximation

1. Preliminaries: Derivation of the static LDA

To illustrate the general procedure we start again with the
familiar case of the equilibrium theory. The problem is to
find the equilibrium solution to Eqs.s48d ands49d, assuming

that the gradients of the densityn are vanishingly small. In
the limit ¹n→0 the spatial derivatives of the stress tensor
also vanish. Hence, to the lowest order in the density gradi-
ents the solution to the self-consistency Eq.s49d takes a
trivial form, Us-csxd=C, whereC is a constant. Therefore the
many-body equation of motion, Eq.s48d, simplifies as fol-
lows:

i
]csxd

]t
= −

¹2

2m
csxd +E dx8wsux − x8udn̂sx8dcsxd. s50d

Thus the nonlinear problem of Eqs.s48d ands49d reduces to
the usual linear many-body problem for a homogeneous
equilibrium system with a given densityn. Substituting the
equilibrium solution to Eq.s50d into Eqs.s13d–s15d, we com-
pute the stress tensor,Pmnsnd=dmnPsnd, whereP is the pres-
sure of the homogeneous system,

Psnd =
2

d
Ekin −

1

2d
E x

]wsuxud
]x

G2
eqsuxuddx. s51d

Hered is the number of spatial dimensions,Ekin is the kinetic
energy per unit volume, andG2

eqsuxud is the pair correlation
function of the equilibrium homogeneous system. Similarly,
by solving the homogeneous noninteracting problem we find
the KS stress tensorTmn

S snd=dmn2/dEkin
s0d, whereEkin

s0d is the
kinetic energy of an ideal Fermi gas. SubstitutingPmnfnsxdg
andTmn

S fnsxdg into Eqs.s20d and s19d, we recover the com-
mon static LDAssee Sec. IIId.

2. Basic equations of TDLDA: The homogeneous many-body
problem

The above procedure allows for a straightforward exten-
sion to the time-dependent problem. Let us assume that the
characteristic length scaleL of the deformation inhomogene-

ity goes to infinity. In this limit the vectorsÎg/n0dP̃m;n
n in the

right-hand side of Eq.s40d vanishes. Therefore to the lowest
order in 1/L→0 the self-consistent solution to Eq.s40d takes
the form,Us-csx ,td=Cstd andvT=0. Substituting this solution

into Eq.s39d, we get the equation of motion for thec̃ opera-
tor,

i
]c̃sjd

]t
= −

gmnstd
2m

]2c̃sjd
]jm]jn +E dj8wsij − j8idn̂̃sj8dc̃sjd,

s52d

whereij−j8i= lj,j8 is the length of the geodesic in a homo-
geneously deformed Lagrangian spacessee Appendix Bd,

ij − j8i = Îgmnstdsjm − j8mdsjn − j8nd. s53d

Equations52d corresponds to a homogeneous many-body
system. It is more natural to reformulate this homogeneous
problem using the momentum representation for field opera-
tors,

c̃sjd = o
k

eikmjm
ãk . s54d

The equation of motion for annihilation operator,ãk, takes
the form,
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i
]ãk

]t
= gmnstd

kmkn

2m
ãk + o

p,q

w̄siqid
Îgstd

ãp
†ãp+qãk−q s55d

wherew̄sqd is the Fourier component of the interaction po-
tential, and

iqi = Îgabstdqbqa s56d

is the norm of the wave vector in the deformed momentum
space. Equations55d corresponds to the following Hamil-
tonian:

H̃ = o
k

gmnkmkn

2m
ãk

†ãk +
1

2Îg
o
k,q

w̄siqidãk
†n̂̃qãk−q, s57d

wheren̂̃q=opãp
†ãp+q is the density operator in the momentum

representation. In Appendix B we show that to the lowest
order in the deformation gradients the microscopic expres-

sion for the stress tensorP̃mn simplifies as follows:

P̃mn =
1
Îg

o
k

kmkn

m
f̃skd

+
1

2g
o
k
Fkmkn

iki
w̄8sikid + gmnw̄sikidGG̃2skd, s58d

where f̃skd=kãk
†ãkl is the Wigner function,G̃2skd is the Fou-

rier component of the pair correlation function, andw̄8sxd
=dw̄sxd /dx.

It should be mentioned that Eq.s58d can be derived di-
rectly from the “geometric” definition of the stress tensor
ssee I and Ref. 37d,

P̃mn =
2
Îg
K dH̃

dgmnL .

Indeed, using the relationdg=−ggmndgmn, and computing the
derivative of the Hamiltonian, Eq.s57d, with respect togmn,
we immediately recover Eq.s58d.

The Hamiltonian of Eq.s57d determines the homogeneous
problem which we need to solve for the derivation of a local
approximation in TDDFT. This problem corresponds to a
system of particles in a small volume located at the pointj
of Lagrangian space. The density of particles is time inde-
pendent and equal to the initial density,n0sjd, at that point.
sObviously, the operator of the number of particles com-

mutes withH̃.d The behavior of the system is governed by
the local value of the deformation tensor,gmnsj ,td. By solv-
ing the equations of motion we find the Wigner function

f̃sk ,td and the pair correlation functionG̃2sk ,td. Substitution

of f̃sk ,td and G̃2sk ,td into Eq. s58d yields the stress tensor

functional P̃mnfgmnsj ,td ,n0sjdg. By the repetition of the
above procedure for the noninteracting systemfEqs.s57d and
s58d with w̄=0g we find the KS stress tensor,

T̃mn
S fgmnsj ,td ,n0sjdg, and, finally, the xc stress tensor,

P̃mn
xc fgmnsj,td,n0sjdg = P̃mn − T̃mn

S . s59d

SubstitutingP̃mn
xc of Eq. s59d into Eq. s46d we determine the

corresponding xc potential in the Lagrangian frame.

The xc stress tensorP̃mn
xc , Eq. s59d, is a local in the space

functional of the deformation tensor.sIt should be noted that
in general this functional is nonlocal in time.d In what fol-
lows, the approximation of Eq.s59d will be referred to as a
time-dependent local deformation approximationsTDLDA d.

The construction of TDLDA reduces to the solution of the
homogeneous many-body problem. In this respect the situa-
tion is similar to the static case. However, the homogeneous
time-dependent problem, defined by the Hamiltonian of Eq.
s57d, is still too complicated to be solved exactly. Indeed the
operator equation of motion, Eq.s55d, generates an infinite
set of coupled evolution equationsfBogoliubov-Born-Green-
Kirkwood-Yvon sBBGKYd hierarchy38g for correlation func-
tions. The first equation of this hierarchy is the equation of
motion for the Wigner function,

i
] f̃skd

]t
= o

p,q

w̄siqid
Îg

kãp
†sãk

†ãk−q − ãk+q
† ãkdãp+ql. s60d

An equation for the four-fermion correlator, entering the
right-hand side in Eq.s60d, couples to the six-fermion corre-
lation functions, etc. However, the homogeneity of the prob-
lem and a very specific form of the “driving force” in the
equations of motion allow us to construct reasonable ap-
proximate xc functionalsssee the next sectionsd.

3. Stress tensor of the noninteracting KS system

A necessary step in the derivation of TDLDA is to com-

pute the stress tensor,T̃mn
S , in the noninteracting system. This

problem can be solved exactly. In the noninteracting case
sw̄=0d Eqs. s58d and s60d reduce to the following simple
forms:

T̃mn
S =

1
Îg

o
k

kmkn

m
f̃sk,td, s61d

]

]t
f̃sk,td = 0. s62d

Equations62d shows that the distribution function of nonin-
teracting particles in the Lagrangian frame is time indepen-
dent. Let us assume for definiteness that the system evolves

from the equilibrium state, i.e.,f̃sk ,0d=nk
F, wherenk

F is the
Fermi function. In this case the solution to Eq.s62d takes the
form

f̃sk,td = f̃sk,0d = nk
F. s63d

Substituting Eq.s63d into Eq. s61d we get the kinetic stress
tensor of the KS system in the Lagrangian frame,

T̃mn
S sj,td =

dmn

Îgsj,td
P0fn0sjdg, s64d

where the functionP0snd=s2/ddEkin
s0dsnd is the equilibrium ki-

netic pressure of a noninteracting homogeneous Fermi gas.
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For the practical calculation of xc potential in TDLDA
fsee Eqs.s19d ands20dg we need the stress tensorTmn

S sx ,td in
the laboratory frame. Application of the common tensor
transformation rules,34

Pmnsx,td =
]ja

]xm

]jb

]xn P̃ab„jsx,td,t…, s65d

to the stress tensor of Eq.s64d yields the result,

Tmn
S sx,td = ḡmnsx,tdÎḡsx,tdP0fn0„jsx,td…g, s66d

whereḡmnsx ,td is the Cauchy’s deformation tensor24

ḡmnsx,td =
]ja

]xm

]ja

]xn . s67d

The determinantḡsx ,td of Cauchy’s deformation tensor, Eq.
s67d, is related to the determinantgsj ,td of Green’s deforma-
tion tensor, Eq.s28d, as follows:

ḡsx,td = g−1
„jsx,td,t…. s68d

Equation s66d clearly demonstrates an extreme nonlocality
which is related to the memory effects. The stress tensor
Tmn

S sx ,td at a given pointx depends on the initial density at
the pointjsx ,td that is the initial position of a fluid element
presently atx. Let us show that this dependence on the de-
layed position can be represented in a local form. By defini-
tion of the Lagrangian coordinate, the densitynsx ,td in the
laboratory frame can be expressed in terms of the initial den-
sity distributionsthe density in the Lagrangian framed,

nsx,td =
n0„jsx,td…

Îg„jsx,td,t…
. s69d

Using the relation of Eq.s68d we can represent the nonlocal
quantityn0(jsx ,td) in the following form:

n0„jsx,td… =
nsx,td
Îḡsx,td

. s70d

Substituting Eq.s70d into Eq. s66d, we obtain a completely
local representation for the KS kinetic stress tensor,

Tmn
S sx,td = ḡmnsx,tdÎḡsx,tdP0S nsx,td

Îḡsx,td
D . s71d

The nonlocality of the stress tensor in the form of Eq.s66d is
now hidden in the space-time dependence of the function
ḡsx ,td.

B. Exchange-only TDLDA

The most difficult part in the derivation of an explicit
TDLDA is the solution of the interacting problem defined by
the Hamiltonian of Eq.s57d. In this section we find the exact
solution of this problem in the exchange approximation,
which provides us with thex-only TDLDA. In the x-only

case the pair correlation functionG̃2sk ,td is completely de-

termined by the one-article distribution functionf̃sk ,td,

G̃2sk,td = − o
p

f̃sk + p,td f̃sp,td. s72d

Performing the mean field decoupling of the four-fermion
terms in Eq.s60d, we find that the right-hand side in this
equation vanishes. Therefore the equation of motion for the

function f̃sk ,td takes the form,

]

]t
f̃sk,td = 0. s73d

Equations73d coincides with the corresponding equation of
motion for the noninteracting system, Eq.s62d. Hence in the
x-only approximation both the Wigner function and the pair
correlation function in the Lagrangian frame preserve their
initial form,

f̃sk,td = nk
F, s74d

G̃2sk,td = G2
xsn0;kd = − o

p
nk+p

F np
F. s75d

Herek= uk u=Îkmkm is the usual modulus ofk, andG2
xsn;kd is

the exchange pair correlation function in the equilibrium
Fermi gas of the densityn. Substituting Eqs.s74d and s75d
into Eq. s58d we obtain the following stress tensor in the
interacting system:

P̃mn =
dmn

Îgsj,td
P0fn0sjdg + P̃mn

x fn0sjd,gmnsj,tdg. s76d

The first term in the right-hand side of Eq.s76d is the kinetic
stress tensor of the noninteracting system, while the second

term P̃mn
x , corresponds to the exchange contribution to the

local stress density,

P̃mn
x =

1

2g
o
k
Fkmkn

iki
w̄8sikid + gmnw̄sikidGG2

xsn0;kd.

s77d

Using the transformation rules of Eq.s65d we get the follow-
ing expression for the exchange stress tensor in the labora-
tory frame,

Pmn
x sn,ḡabd =

Îḡ

2 o
p
Fpmpn

p
w̄p8 + dmnw̄pG

3 G2
xS n

Îḡ
;ÎḡabpapbD , s78d

where we introduced a shortcut notationw̄p=w̄spd. Equations
s78d, s24d, and s23d uniquely determine the local potential
Uxsx ,td in x-only TDLDA. Apparently the exchange poten-
tial Uxsx ,td is a localsboth in space and in timed functional
of the density nsx ,td and Cauchy’s deformation tensor
ḡmnsx ,td. In the equilibrium systemsḡmn=dmnd the potential,
defined by Eqs.s78d, s24d, and s23d, reduces to that in the
common static local exchange approximation.
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C. Linear response TDLDA

In the linear response regime the deformation tensorgmn

slightly deviates from the Kronecker symbol,

gmnsj,td < dmn + dgmnsj,td, dgmn = −
]um

]jn −
]un

]jm ,

s79d

whereu=x−j is the displacement vector, which is assumed
to be small. In the linearized theory the trajectory equation of
Eq. s27d reduces to the common linear relation of the veloc-
ity to the displacement,

]usj,td
]t

= vsj,td. s80d

Substitutinggmn of Eq. s79d into Eq. s57d and keeping only
the term that are linear indgmn terms, we obtain the follow-
ing linearized Hamiltonian:

H̃ = H + P̂mndgmn, s81d

whereH is the standard Hamiltonian for the homogeneous

system, andP̂mn is the stress tensor operator,

P̂mn = o
k
Fkmkn

m
ãk

†ãk +
1

2
Skmkn

k
w̄k8 + dmnw̄kDn̂̃kn̂̃−kG .

s82d

First we need to compute the stress tensorP̃mn in the La-
grangian frame, Eq.s58d. In the linear regime Eq.s58d takes
the form,

P̃mn = dmnPsn0d + Q̃mnabsvddgabsvd, s83d

where the linear response kernelQ̃mnabsvd can be repre-
sented as follows:

Q̃mnabsvd = Q̃mnab
` + DQ̃mnabsvd. s84d

The first frequency-independent termQ̃mnab
` in Eq. s84d

comes from the explicit local-in-time dependence of the in-
tegrals in Eq.s58d on the deformation tensorgmnstd. Namely,

the fourth-rank tensorQ̃mnab
` is defined by the following de-

rivative:

Q̃mnab
` = S ]P̃mnffeq,G2

eqg
]gab D

gmn=dmn

, s85d

whereP̃mnffeq,G2
eqg is the stress tensor of Eq.s58d, calculated

with the equilibrium Wigner function,feqskd, and the equi-
librium pair correlation function,G2

eqskd. The perturbation
sthe second termd in the linearized Hamiltonian of Eq.s81d
induces deviations of the Wigner function and the pair cor-
relation function from their equilibrium values. These devia-
tions are responsible for the second, nonlocal-in-time term in
Eq. s84d,

DQ̃mnab = o
k

kmkn

2m

d f̃sk,td
dgabst8d

+
1

2o
k
Skmkn

k
w̄k8 + dmnw̄kDdG̃2sk,td

dgabst8d
. s86d

Comparing Eqs.s81d, s82d, ands86d we find that the dynamic

kernelDQ̃mnab can be related to the following stress autocor-
relation function:

DQ̃mnabsvd = − iE
0

`

dteivtkfP̂mnstd,P̂abs0dgl . s87d

Substituting the stress tensor in the Lagrangian frame, Eq.
s83d, into the transformation formula of Eq.s65d we compute
the stress tensor in the laboratory frame,

Pmnsx,vd = dmnPfn0sxdg + dPmnsx,vd, s88d

where

dPmn = − dmn

]P

]n0
u ¹ n0 + Qmnabsvdgabsvd. s89d

The kernelQmnabsvd in the laboratory frame takes the form,
below which is similar to that of Eq.s84d,

Qmnabsvd = Qmnab
` + DQ̃mnabsvd. s90d

The frequency-independent termQmnab
` in Eq. s90d is related

to the quantityQ̃mnab
` of Eq. s85d as follows:

Qmnab
` =

1

2
Psdmadnb + dnadmbd + Q̃mnab

` . s91d

It is worth mentioning that the first term in the right-hand
side in Eq. s89d guarantees that the harmonic potential
theorem16 is satisfied. In fact, only this term survives for the
rigid motion of the system. Within the present formalism this

term comes from the expansion of the argument ofP̃mn in the
transformation rule of Eq.s65d. The correction to the kernel
in the laboratory framefthe first term in Eq.s91dg corre-
sponds to the expansion of the tensor prefactor in Eq.s65d.

By symmetry the fourth-rank tensorQmnab is uniquely
representable in the form,

Qmnab = SK

2
+

m

d
Ddmndab +

m

2
sdmadnb + dnadmbd. s92d

The scalar coefficients,Ksvd and msvd, in Eq. s92d are re-
lated to the tensorQmnab contracted over different pairs of
indexes,

Ksvd =
2

d2Qaabbsvd, s93d

msvd =
2

d2 + d − 2
FQababsvd −

1

d
QaabbsvdG . s94d

Substitution of Eq.s92d into Eq. s89d yields the following
result for the linear correction to the stress tensor in the labo-
ratory frame,
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dPmn = − dmn

]P

]n0
u ¹ n0 + dmnK

1

2
dgaa + mSdgmn −

dmn

d
dgaaD .

s95d

The stress tensordPmn of Eq. s95d has a clear viscoelastic
form, whereKsvd and msvd are the bulk modulus and the
shear modulus, respectively. The xc stress tensor,dPmn

xc , is the
difference of the expressions given by Eq.s95d for the inter-
acting and the noninteracting systems. ApparentlydPmn

xc takes
a form of Eq.s95d with P, K, andm being replaced byPxc,
Kxc, andmxc, respectively, where

Pxc = P −
2

d
Ekin

s0d , s96d

Kxc = K − K0, mxc = m − m0, s97d

are the xc pressure and the xc viscoelastic moduli. In Eqs.
s96d and s97d Ekin

s0d, K0, andm0 correspond to the kinetic en-
ergy, the bulk modulus, and the shear modulus of an ideal
Fermi gas. Therefore in the linear response regime our
TDLDA naturally reduces to the Vignale-Kohn
approximation17 in the viscoelastic formulation of Ref. 18.

An explicit microscopic representation for the bulkK and
the shearm moduli can be found using Eqs.s94d, s93d, s91d,
s90d, s87d, ands85d. BothK andm take the following general
forms:

Ksvd = K` + DKsvd, s98d

msvd = m` + Dmsvd. s99d

The first terms,K` and m`, in the right-hand sides of Eqs.
s98d ands99d are obtained by the substitution ofQmnab

` from
Eq. s91d into Eqs.s93d ands94d. Performing straightforward
calculations for the interacting and the noninteracting sys-
tems, we arrive at the following results for the high fre-
quency parts of the xc elastic moduli:

Kxc
` =

d + 2

d F2

d
Ekin

xc + o
k

k2w̄k9 + s3d + 1dkw̄k8 + 2d2w̄k

2dsd + 2d
G2

eqskdG ,

s100d

mxc
` =

2

d
Ekin

xc + o
k

k2w̄k9 + sd + 1dkw̄k8

2dsd + 2d
G2

eqskd, s101d

whereEkin
xc =Ekin−Ekin

s0d is the xc kinetic energy of the equilib-
rium system. In the special case of Coulomb interaction the
momentum integrals in Eqs.s100d and s101d can be ex-
pressed in terms of the potential energy per unit volume,

Epot =
1

2o
k

w̄kG2
eqskd.

In d dimensions the Coulomb potential is proportional to
1/kd−1. Therefore we get the following identities for the de-
rivatives that enter Eqs.s100d and s101d,

kw̄k8 = − sd − 1dw̄k and k2w̄k9 = dsd − 1dw̄k.

These identities allow us to simplify Eqs.s100d ands101d as
follows:

Kxc
` =

2sd + 2d
d2 Ekin

xc +
d + 1

d2 Epot, s102d

mxc
` =

2

d
Ekin

xc −
d − 1

dsd + 2d
Epot. s103d

The high-frequency forms of Eqs.s102d and s103d are well
known in the literature.39–41 Commonly they are derived us-
ing the “third moment sum rule.” Within our formalism the
expressions of Eqs.s100d and s101d for Kxc

` and mxc
` come

about almost trivially from the explicit local-in-time depen-
dence of the stress tensor, Eq.s58d, on the deformation ten-
sor.

To represent the frequency dependent parts of viscoelastic
moduli in the most convenient form we decompose the stress

tensor operatorP̂mn, Eq. s82d, into scalar and traceless parts,

P̂mn = dmnP̂ + p̂mn, s104d

whereP̂=1/dTrP̂mn is the pressure operator,

P̂ =
1

d
o
k
Fk2

m
ãk

†ãk +
1

2
skw̄k8 + dw̄kdn̂̃kn̂̃−kG , s105d

and p̂mn is the operator of the traceless part of the stress
tensorsTrp̂mn=0d,

p̂mn = o
k
Skmkn

k2 −
dmn

d
DSk2

m
ãk

†ãk +
kw̄k8 + dw̄k

2d
n̂̃kn̂̃−kD .

s106d

SubstitutingDQ̃mnabsvd of Eq. s87d into Eqs.s93d and s94d
and using Eqs.s104d–s106d, we find thatDKxcsvd equals the
pressure-autocorrelation function,

DKxcsvd = − 2iE
0

`

eivtkfP̂std,P̂s0dgldt, s107d

whereas the dynamic part of the shear modulus,Dmxcsvd, is
proportional to the autocorrelation function of the traceless
tensor operatorp̂mn,

Dmxcsvd =
− 2i

d2 + d − 2
E

0

`

eivtkfp̂mnstd,p̂mns0dgldt.

s108d

The coefficient, 2 /sd2+d−2d, in Eq. s108d is exactly the in-
verse number of independent components of a second-rank
traceless tensor. We would like to outline a very natural form
of Eqs.s107d ands108d, which is in clear agreement with the
physical significance of the quantitiesK andm.

The frequency-dependent contributions to the viscoelastic
moduli are related to the dynamics of the Wigner function
and the pair correlation functionfsee Eq.s86dg. In Sec. V B
we have shown that in the exchange approximation the time-
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dependent deformation tensor in the Hamiltonian of Eq.s57d
does not induce any dynamics off̃skd andG̃2skd. Therefore
only correlations are responsible for nonvanishingDKxcsvd
andDmxcsvd. The most important effect of the dynamic cor-
relations, which is described by Eqs.s107d and s108d, is the
memory loss due to collisions. Since in a zero-temperature
Fermi system the collisional dissipation should be sup-
pressed, there is a hope that the frequency-dependent parts of
Kxc andmxc do not substantially influence the dynamics.sWe
note that this is not in general true for steady state transport
situations, in which dissipation plays an essential role.d Ne-
glecting DKxcsvd and Dmxcsvd we get a purely elastic xc
stress tensor with the bulk and the shear moduli defined by
Eqs. s100d and s101d. Another argument due to Conti and
Vignale39 also shows that for an electron gas the elastic ap-
proximation should work reasonably well. Indeed, the dissi-
pation effects are absent in thex-only approximation that is
valid in the weak-couplingshigh-densityd regime. In the
strong-couplingslow-densityd limit, electrons tend to form a
Wigner crystal—the state where the collisional dissipation
also vanishes. Therefore one naturally expects that at all in-
termediate densities the purely elastic approximation should
provide a reasonable description of the dynamic stress.

D. Nonlinear elastic TDLDA

The linear VK approximation with a purely elastic bulk
modulusKxc

` , Eq. s100d, and shear modulusmxc
` , Eq. s101d,

allows for a simple nonlinear extension. In this section we
derive this nonlinear elastic TDLDA and formulate a com-
plete set of self-consistent KS equations in a convenient for
practical applications form.

1. Exchange-correlation stress tensor in the elastic TDLDA

Elastic TDLDA is based on the assumption that both the
Wigner function and the pair correlation function in the La-
grangian frame preserve their initial forms. This corresponds
to the dynamics with extremely pronounced memory that is
not destroyed by the effects of collisional relaxation. To get
the stress tensor for the system evolving from the equilib-

rium state we have to substitutef̃sk ,td= feqsn0;kd and

G̃2sk ,td=G2
eqsn0;kd into Eq.s58d. As a result the stress tensor

in the Lagrangian frame takes the form,

P̃mn =
dmn

Îg

2

d
Ekinsn0d +

1

2g
o
k
Fkmkn

iki
w̄8sikid

+ gmnw̄sikidGG2
eqsn0;kd. s109d

TensorP̃mnsj ,td of Eq. s109d locally depends on the density
n0sjd and Green’s deformation tensorgmnsj ,td in a given
point j of the Lagrangian space. Transforming this tensor
back to the laboratory frame and subtracting the KS stress
tensor of Eq.s71d we obtain the following result for the xc
stress tensor in the physicalx space,

Pmn
xc =

2ḡmn

d
ÎḡEkin

xc S n

Îḡ
D +

Îḡ

2 o
p
Fpmpn

p
w̄p8 + dmnw̄pG

3G2
eqS n

Îḡ
;ÎḡabpapbD . s110d

Equations110d determines the xc stress tensor as a function
of the time-dependent density,nsx ,td, and Cauchy’s defor-
mation tensorḡmnsx ,td. Let us remember that the memory-
related nonlocality ofPmn

xc , Eq. s110d, is hidden in the “local”
representation of the functionn0fjsx ,tdg fsee Eq.s70dg. The
“elastic” xc potential is the solution to the Poisson Eq.s23d,
where the xc “charge density” is defined after Eqs.s24d and
s110d.

In the exchange approximation the stress tensorPmn
xc , Eq.

s110d, reduces to thex-only tensorPmn
x of Eq. s78d that is

exact in the weak-coupling limit. In the linear response re-
gime the corrections to the density and to the Cauchy’s de-
formation tensor are proportional to the displacement vector,

n = n0 − ¹ n0u, ḡmn = dmn +
]um

]xn +
]un

]xm . s111d

Linearizing the stress tensor of Eq.s110d and using Eq.s111d
we straightforwardly recover the VK approximation17,18with
the elastic moduliKxc

` , Eq. s100d, andmxc
` , Eq. s101d.

2. Self-consistent Kohn-Sham equations

Let us formulate the complete set of self-consistent KS
equations in the elastic TDLDA. The Kohn-Sham formula-
tion of TDDFT allows to calculate the densitynsx ,td and the
velocity vsx ,td in the interactingN-particle system using the
ideal gas formulas,

nsx,td = o
j=1

N

uf jsx,tdu2, s112d

vsx,td =
1

n
o
j=1

N
i

2m
ff j ¹ f j

* − f j
* ¹ f jg. s113d

Single particle orbitalsf jsx ,td satisfy the time-dependent KS
equations,

i
]f j

]t
= −

¹2

2m
f j + sUext + Uefffn,ḡmngdf j , s114d

whereUextsx ,td is the external potential. For the practically
important case of a three-dimensionals3Dd system with Cou-
lomb interaction the effective potentialUefffn,ḡmngsx ,td is
the solution to the following Poisson equation:

¹2Ueff = 4pse2n + rxcfn,ḡmngd. s115d

The first term in the brackets in Eq.s115d generates the Har-
tree potentialUH while the second term is responsible for the
xc potential. The xc charge densityrxc is the local functional
of n and ḡmn,

rxc =
1

4p

]

]xmF1

n

]

]xn Pmn
xc sn,ḡmndG , s116d
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where Pmn
xc sn,ḡmnd is the function of nsx ,td and ḡmnsx ,td,

which is defined by Eq.s110d. In Appendix C we show that
for a Coulomb system, Eq.s110d simplifies as follows:

Pmn
xc =

2

3
ḡmn

ÎḡEkin
xc S n

Îḡ
D + LmnsḡabdEpotS n

Îḡ
D , s117d

whereLmnsḡabd is a purely geometric factor that is explicitly
defined in Appendix C. Therefore the dependence of
Pmn

xc sn,ḡmnd on ḡmn and onn/Îḡ is completely factorized,
which should significantly simplify practical applications.
The kineticEkin

xc snd and the potentialEpotsnd energies of the
homogeneous electron gas can be expressed in terms of the
xc energy per particleexcsnd ssee, for example, Ref. 39d. For
d=3 we get,

Ekin
xc snd = 3n7/3S exc

n1/3D8
, Epotsnd = − 3n8/3S exc

n2/3D8

Hence, our nonadiabatic TDLDA requires only a knowledge
of the functionexcsnd for the homogeneous electron gas, ex-
actly as the common static LDA does.

The densityn, which enters Eqs.s115d–s117d, is related to
KS orbitals via Eq. s112d. The second basic variable,
Cauchy’s deformation tensorḡmn, is uniquely determined by
the velocityvsx ,td, Eq. s113d. To compute the deformation
tensor we need to solve the trajectory equation of Eq.s27d
and then substitute the solution into the definition ofḡmn, Eq.
s67d. It is, however, more convenient to determine this tensor
directly from the solution of an equation of motion for
ḡmnsx ,td.42 This equation of motion can be derived as fol-
lows. Let us consider the contravariant tensorḡmn sthe in-
verse ofḡmnd,

ḡmn =
]xm

]ja

]xn

]ja . s118d

Using the trajectory equation of Eq.s27d we can compute the
time derivative ofḡmn, Eq. s118d, at constantj si.e., within
the Lagrangian descriptiond,

S ]ḡmn

]t
D

j

=
]vm

]xa ḡan + ḡma]vn

]xa . s119d

The time derivative ofḡmn can be related to the time deriva-
tive of ḡmn=sḡmnd−1 as follows:]tḡ=−ḡs]tḡ

−1dḡ. Using this
relation and taking into account that

s]tdj = s]tdx + v ¹ ,

we get the final equation of motion for Cauchy’s deformation
tensorḡmnsx ,td,

]ḡmn

]t
= − va]ḡmn

]xa −
]va

]xm ḡan −
]va

]xn ḡam. s120d

Equations120d should be solved with the initial condition
ḡmnsx ,0d=dmn, which follows from the initial condition for
the trajectory equation of Eq.s27d.

The system of Eqs.s112d–s117d and s120d constitute the
complete set of self-consistent KS equations in the nonlinear
elastic TDLDA. In the equilibrium situationsḡmn=dmnd this

system reduces to the common static KS equation with the
LDA xc potential. In the linear regime it recovers the results
of VK approximation with the elastic moduli of Eqs.s102d
ands103d. The nonadiabatic memory effects are described by
Cauchy’s deformation tensor, which satisfies Eq.s120d. It
should be noted that from the computational point of view
the solution of this equation does not introduce any addition
difficulties. Formally Eq.s120d has the same structure as the
time-dependent KS Eq.s114d. Hence Eqs.s114d and s120d
can be solved simultaneously by the same method.

Very recently VK approximation has been successfully
applied to the description of the optical and polarization
properties of many different systems, such as atoms, mol-
ecules, semiconductors, and polymers.43–47 Since VK ap-
proximation is a linearized version of our theory, we hope
that the general TDLDA also will become a useful tool for
studying nonlinear time-dependent phenomena.

VI. CONCLUSION

TDDFT extends powerful ideology of the ground state
DFT to the domain of nonequilibrium phenomena. However,
in contrast to the static DFT, which is currently a common
computational tool in many branches of physics, its time-
dependent counterpart still suffers from a number of unre-
solved problems. One of those problems is a lack of a well
founded basic local approximation that would play a role
similar to the LDA in the static DFT. In this paper we have
shown that the local approximation in TDDFT can be regu-
larly derived, but that this derivation requires almost com-
plete reconsideration of the theory. We reformulated TDDFT
from the point of view of a local comoving observer. The
new formulation of the theory shows that the most natural
basic variables in TDDFT are the local geometric character-
istics of the deformations in a quantum many-body system.

Throughout this paper we used the analogy of TDDFT to
classical continuum mechanics. The importance of the hy-
drodynamic interpretation, which perfectly fits the very idea
of DFT, is one of the messages of the present work. Using
the hydrodynamic formulation of TDDFT we were able to
relate the xc potentials to the local stress. In particular we
proved that the exact xc force must have the form of the
divergence of a second-rank tensor. The well known zero-
force and zero-torque sum rules are direct consequences of
this strong local requirement. The functional dependence of
xc potential on the basic variables also acquires a clear
physical meaning. It corresponds to the stress-deformation
relation, which is very natural from the point of view of
continuum mechanics. If spatial derivatives of the deforma-
tion tensor are small, the stress-deformation relation be-
comes local and therefore we get the local approximation for
the xc potential in TDDFT. It is natural to abbreviate this
approximation as TDLDA, which means time-dependent lo-
cal deformation approximation. In the linear response regime
the general stress-deformation relationsTDLDA d reduces to
the linear Hook’s law,30 which exactly coincides with the
viscoelastic VK approximation.17,18 The formal applicability
conditions for the general nonlinear TDLDA are the same as
for the linear VK approximation. It should be also noted that
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neither of previously proposed nonlinear phenomenological
constructions18–20 is in general confirmed by the present
regular microscopic consideration.

In Sec. V of this paper we discussed the elastic TDLDA.
In this approximation the xc stress tensor is simply a func-
tion of the density and of the Cauchy’s deformation tensor.
For a system with a Coulomb interaction we presented the xc
stress tensor and the xc potential in an explicit “ready for
implementation” form. We also formulated the full set of
self-consistent KS equations in TDLDA. In the equilibrium
state the deformation tensor is diagonal and TDLDA reduces
to the standard static LDA, while in the linear response re-
gime it recovers VK approximation. To conclude we mention
that the self-consistent equations of Sec. V D 2 can be
straightforwardly reformulated in terms of xc vector poten-
tial. The only difference is that the Poisson equation forUxc
should be replaced by Eq.s21d which relatesAxc to the xc
stress tensor. This replacement leads to one more evolution
equation which should be solved simultaneously with the KS
equation and the equation for Cauchy’s deformation tensor.
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APPENDIX A: STRESS TENSORS IN A GENERAL,
NONINERTIAL FRAME

The microscopic representation for the stress tensor

P̃mnsj ,td in a general, local, noninertial frame has been de-
rived in I,

P̃mnsj,td = T̃mnsj,td + W̃mnsj,td, sA1d

where the kinetic stress tensorT̃mnsj ,td and the interaction

stress tensor,W̃mnsj ,td, are obtained by the transformation of
Tmnsx ,td, Eq. s14d, andWmnsx ,td, Eq. s15d, to the new frame.
Namely,

T̃mnsj,td =
]xa

]jm

]xb

]jn Tab„xsj,td,t…, sA2d

W̃mnsj,td =
]xa

]jm

]xb

]jn Wab„xsj,td,t…. sA3d

The result of the transformation, Eqs.sA2d and sA3d, takes
the following form:

T̃mnsj,td =
1

2m
KsK̂mgs−1/4dc̃d†sK̂ng

s−1/4dc̃d

+ sK̂ng
s−1/4dc̃d†sK̂mgs−1/4dc̃d

−
gmn

2

1
Îg

]

]ja
Îggab ]

]jb

c̃†c̃

Îg
L , sA4d

W̃mnsj,td = −
gmagnb

2Îg
E

0

1

dlE dhdh8dfj

− zh,h8sldg
żh,h8

a sldżh,h8
b sld

lh,h8

]wslh,h8d

]lh,h8
G̃2sh,h8d.

sA5d

Here the functionzh,h8sld is the geodesic that connects
pointsh andh8, andlh,h8 is the length of this geodesic. The
curvezh,h8sld can be found from the solution of the geodesic
equationssee, for example, Ref. 34d,

z̈msld + Gab
m szdżasldżbsld = 0, sA6d

supplemented by the boundary conditionszs0d=h, zs1d
=h8. In Eqs.sA5d and sA6d ż=]z/]l, andGab

m is an affine
connection,

Gab
m sjd =

1

2
gmnS ]gna

]jb +
]gnb

]ja −
]gab

]jn D . sA7d

EquationssA4d and sA5d define tensorsT̃mn and W̃mn as
functionals of the microscopic state of the system. Tensor

T̃mn is a linear functional of the one particle density matrix,

r̃1sj ,j8d=kc̃†sjdc̃sj8dl. Similarly, W̃mn is a linear functional

of the pair correlation functionG̃2sj ,j8d=kc̃†sjdn̂̃sj8dc̃sjdl
− ñsjdñsj8d. Therefore,

P̃mn = T̃mn + W̃mn = P̃mnfr̃1,G̃2gsj,td. sA8d

EquationsA8d is the result, which we need for the discussion
of TDDFT in Sec. IV.

APPENDIX B: STRESS TENSORS FOR A HOMOGENEOUS
DEFORMATION

For a homogeneous system withgmnsj ,td=gmnstd and
ṽTm

=0 the general expressions, Eqs.sA4d and sA5d, for the
stress tensors simplify as follows. EquationsA4d for the ki-
netic stress tensor takes the form,

T̃mn =
1

2mÎg
K ]c̃†

]jm

]c̃

]jn +
]c̃†

]jn

]c̃

]jmL = −
1

mÎg

]2r̃1sjd
]jm]jm ,

sB1d

where r̃1sj−j8d=kc̃†sjdc̃sj8dl is the one particle density
matrix for the homogeneous system. Introducing the Wigner
function,

f̃skd =E e−ikmjm
r̃1sjddj, sB2d

we obtain the following final representation forT̃mn:

T̃mn =
1
Îg

o
k

kmkn

m
f̃skd. sB3d

To calculate the interaction stress tensor, Eq.sA5d, we
need to solve the geodesic equation of Eq.sA7d. For a ho-
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mogeneous metric the solution is a straight line,

zh,h8sld = h + sh8 − hdl. sB4d

The length of the geodesic,lh,h8, can be calculated as fol-
lows:

lh,h8 =E
0

1
Îgmnszdżmsldżnslddl = Îgmnshm − hmdshn − hnd

ª ih − h8i. sB5d

Substituting Eqs.sB4d andsB5d into Eq.sA5d and taking into

account that for a homogeneous systemG̃2sh ,h8d=G̃2sh
−h8d, we arrive at the following result:

W̃mn = −
gmagnb

2Îg
E jajb

iji
]wsijid

]iji
G̃2sjddj. sB6d

Let us expand the pair correlation function,G̃2sjd, in a Fou-
rier series,

G̃2sjd = o
k

eikmjm
G̃2skd, sB7d

and expressW̃mn, Eq. sB6d, in terms ofG̃2skd.
First we note, that the following simple relation holds. Let

F̄suk ud, where uk u=Îkmkm, be the Fourier component of a
function Fsujud, i.e.,

F̄suk ud =E e−ikmjm
Fsujuddj. sB8d

Then, the Fourier component of the functionFsijid can be

expressed in terms ofF̄ as follows:

E e−ikmjm
Fsijiddj =

1
Îg

F̄sikid, sB9d

whereiji=Îgmnjmjn fsee Eq.sB5dg, and

iki = Îgmnkmkn. sB10d

Substituting the expansion of Eq.sB7d into Eq. sB6d and
using Eqs.sB8d andsB9d, we get the required representation
for the interaction stress tensor,

W̃mn =
1

2g
o
k
Fkmkn

iki
w̄8sikid + gmnw̄sikidGG̃2skd.

sB11d

In Eq. sB11d the functionw̄suk ud is the Fourier component of
the interaction potentialwsujud and w̄8sxd=dw̄sxd /dx.

The stress tensorP̃mn of Eq. s58d is the sum ofT̃mn, Eq.

sB3d, andW̃mn, Eq. sB11d.

APPENDIX C: ELASTIC STRESS TENSOR IN COULOMB
SYSTEMS

The general expression for the xc stress tensor, Eq.s110d,
can be represented in a much simpler form if the particles

interact via the Coulomb potential,w̄p=Ad/pd−1 swhereA3
=4pe2 andA2=2pe2d. Below we show that in this case the
second term in Eq.s110d can be related to the potential en-
ergy, Epot, of a homogeneous electron gas with the density
n/Îḡ.

Let us represent the momentum integral in Eq.s110d as a
sum of two terms,

Wmn = Wmn
s1d + Wmn

s2d sC1d

where

Wmn
s1d = dmn

Îḡ

2 o
p

Ad

pd−1G2
eqsÎḡabpapbd, sC2d

Wmn
s2d = − sd − 1d

Îḡ

2 o
p

Ad
pmpn

pd+1 G2
eqsÎḡabpapbd. sC3d

To shorten the notations we retain only important momentum
dependence in the argument of the pair correlation function
G2

eq.
The transformation ofWmn

s1d, Eq. sC2d, is straightforward.
By changing the integration variables this equation can be
reduced to the form,

Wmn
s1d = dmn

ḡ

2o
p

Ad

fḡabpapbgsd−1d/2G2
eqspd. sC4d

Separating the integration over the modulus and the direction
of momentum in Eq.sC4d yields the following result for
Wmn

s1d:

Wmn
s1d = dmnḡK 1

fḡablalbgsd−1d/2L
l
Epot, sC5d

where l is a unit vectorsl2=1d, and the angle brackets,
ks¯dll, stand for the averaging over the directions ofl.

The momentum integral forWmn
s2d, Eq. sC3d, can be re-

duced to a similar form. Let us first represent the deforma-
tion tensorḡmn in terms of its eigenvalues,l j

2, and eigenvec-
tors, h jm,

ḡmn = l j
2h jmh jn. sC6d

Here j =1, . . . ,d labels the eigenvectorsh j that satisfy the
completeness and the orthonormality conditions,

h jmh jn = dmn, himh jm = di j . sC7d

Tensorḡmn has the same eigenvectors, while its eigenvalues
equal to 1/l j

2. Substituting the eigenvector expansion ofḡmn

into Eq. sC3d, and performing an obvious change of the in-
tegration variables, we arrive at the following result for the
tensorWmn

s2d:

Wmn
s2d = − ḡh jmh jnKsd − 1dl j

2sh jld2

fḡablalbgsd+1d/2L
l
Epot. sC8d

Combining Eqs.sC1d, sC5d, andsC8d we obtain the interac-
tion stress tensorWmn in the following form:
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Wmn = LmnsgabdEpot, sC9d

where the calculation of the functionLmnsgabd involves only
the angle integration. The angle integralsffactors with angle

brackets in Eqs.sC5d and sC8dg are the scalar functions
which depend only on the eigenvalues ofḡmn. For d=2,3
these integrals are reducible to a combination of the standard
elliptic integrals.
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